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Abstract

Complex nongradual evolutionary processes such as gene remodeling are difficult to model, to visualize, and to investigate

systematically. Despite these challenges, the creation of composite (or mosaic) genes by combination of genetic segments from

unrelated gene families was established as an important adaptive phenomena in eukaryotic genomes. In contrast, almost no general

studies have been conducted to quantify composite genes in viruses. Although viral genome mosaicism has been well-described, the

extent of gene mosaicism and its rules of emergence remain largely unexplored. Applying methods from graph theory to inclusive

similaritynetworks,andusingdata frommorethan3,000completeviralgenomes,weprovide thefirstdemonstration thatcomposite

genes in viruses are 1) functionally biased, 2) involved in key aspects of the arm race between cells and viruses, and 3) can be classified

into two distinct types of composite genes in all viral classes. Beyond the quantification of the widespread recombination of genes

among different viruses of the same class, we also report a striking sharing of genetic information between viruses of different classes

and with different nucleic acid types. This latter discovery provides novel evidence for the existence of a large and complex mobilome

network, which appears partly bound by the sharing of genetic information and by the formation of composite genes

between mobile entities with different genetic material. Considering that there are around 10E31 viruses on the planet, gene

remodeling appears as a hugely significant way of generating and moving novel sequences between different kinds of organisms

on Earth.
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Introduction

The assembly of genetic material from different gene families,

producing composite genes (Enright et al. 1999; Jachiet et al.

2013), has been mostly described in eukaryotic genomes.

Individual studies have shown that the combination of

domains (Wang and Caetano-Anollés 2009) and the fusion of

genes account for important aspects of biological complexity,

from the evolution of distinct signaling systems to possible

key evolutionary transitions such as animal multicellularity

(Koonin et al. 2002). Genetic fragments common to all cellular

beings are combined in specific ways in each domain of

life, affecting as many as two-thirds of the proteins in unicel-

lular organisms to over 80% in metazoa (Apic et al. 2001).

However, the extent to which composite gene genesis is

observed across the viral world is unquantified.

If one considers the mechanisms by which genomes of

these major numerous evolutionary players evolve, it can

immediately be noted that viruses exploit a vast pool of

genes and that viral genomes are structurally and evolutionary

highly constrained. Most viral genes are under purifying

selection (Holmes 2003; Koonin and Wolf 2010) and intrage-

nomic gene duplication is rare (Liu et al. 2006; Simon-Loriere

and Holmes 2013) (with the exception of large and giant

DNA viruses [Shackelton and Holmes 2004; Filée 2009]).

However, frequent mutations, insertion/deletions, and hyper-

plastic regions allow viruses to go through their life cycle by

escaping their hosts immune systems and defense mecha-

nisms (Arias et al. 2009; Sanjuán et al. 2010). Moreover,

many mechanisms could be, in principle at least, involved in

the making of composite genes. More precisely, many viral

genomes, such as double-stranded (ds) DNA bacteriophages

GBE
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(Casjens 2008; Hatfull 2008) and RNA viruses (Lai 1992; Barr

and Fearns 2010; Jackwood et al. 2012), are highly recombi-

nogenic (Lima-Mendez et al. 2008). Viral gene repertoire is

thus commonly expanded by strand-switching, the use of in-

completely replicated genetic material as a primer for another

strain, by crossing-over of nonhomologous segments

(Liu et al. 2006; Arias et al. 2009; Savolainen-Kopra and

Blomqvist 2010), by genetic reassortment of fragments of ge-

nomes (Lei and Shi 2011), by the use of specific proteins en-

hancing recombination (Martinsohn et al. 2008), by

transposition and illegitimate recombination joining pieces of

DNA with limited homology (Crawford-Miksza and Schnurr

1996), and by the shuffling of groups of genes (modules)

between genomes (Botstein 1980).

These processes may not only generate composite

genomes but also composite genes in viruses. However,

processes producing composite genes have not been system-

atically analyzed for these taxa, although an estimated 6–8%

of viral genes have been reported to be multidomain (Hatfull

2008; Kristensen, Cai, et al. 2011; Kristensen et al. 2013), as

well as few occasional cases of gene fusions between viruses

of the same class (involving some tail fiber and replication

genes [Highton et al. 1990], and two cyanophage photosyn-

thetic genes [Sharon et al. 2009]). We seek to perform such a

systematic analysis of composite genes in viral genomes, and

in the process address three complementary questions. First,

we tested whether composite genes link genetic material

from different kinds of sequences in all viral classes based

on three major classifications. Second, we tested whether

these composite genes fulfilled central or less essential func-

tions for the completion of the viral life cycle. Third, we inves-

tigated whether composite genes may be constituted from

genetic segments from viruses belonging to different viral clas-

ses (e.g., DNA and RNA viruses), hence from distantly related

or even unrelated viruses.

Systematic studies of composite genes are best formulated

within the framework of sequence similarity networks (Adai

et al. 2004). In these graphs, each node is an individual

sequence, connected to others when they share some align-

able regions with significant similarity (Atkinson et al. 2009).

Composite genes act as detectable bridges that connect

sequences harboring segments from unrelated gene families

(Adai et al. 2004; Jachiet et al. 2013). Constant progress in

sequencing technologies, computing power and memory

capacities, network display (Shannon et al. 2003; Bastian

et al. 2009) and analyses (Song et al. 2008; Berry et al.

2010; Jachiet et al. 2013) now permit the analysis of the

structure of these graphs for data sets of thousands of viral

genomes. Here, we mined the genes of 3,008 viral genomes

and detected 8–15% composite sequences. These composite

genes were found in all viral classes (according to three clas-

sifications), mostly encoding important functions for the viral

life cycle. The emergence of composite genes operated

beyond the frontiers of both viral classes and gene families,

meaning that numerous viral adaptations are best understood

from a global perspective, because boundaries or viral classes

are not forbidding sharing of gene segments from different

gene families.

Materials and Methods

Data Sets

The viral data set contains 122,392 protein sequences from

3,008 completely sequenced viral genomes, including all of

those available at National Center for Biotechnology

Information (NCBI) on November 2012, and additional ge-

nomes from members of the proposed order Megavirales (vi-

ruses in supplementary table S1, Supplementary Material

online). The larger comparative data set, used to define impor-

tant functional classes for viruses, includes protein sequences

from completely sequenced plasmids (all available at NCBI) and

a phylogenetically balanced selection of cellular organisms

from all of life, resulting in a total of 740,842 sequences.

Repartitioning of sequences into genetic vectors is summarized

in supplementary table S1, Supplementary Material online, and

supplementary table S1, Supplementary Material online, de-

tails all included genomes. Taxonomical annotation was based

on 1) classification of viruses into families by the ICTV (http://

talk.ictvonline.org/files/ictv_documents/m/msl/4440.aspx, last

accessed August 28, 2014), 2) Baltimore classification that clas-

sified viruses according to the nature of their genome and their

replicative strategy (Baltimore 1971), and 3) classification into

five monophyletic classes of viruses and selfish genetic ele-

ments as demonstrated by Koonin et al. (2006).

Functional Annotations

Sequences were functionally annotated by the category

(Tatusov et al. 1997) of their best RPSBLAST match (if E

value<10E-5) against COG (baCteria) and KOG (euKaryota)

orthologous groups (Tatusov et al. 2003). Sequences with no

such significant hit were not considered in functional analyses

(74% of viral data set and 50% of larger comparative data

set). We did not use POGs (24) built on viral genomes, because

those have not been grouped into higher functional classes.

Statistical Test

To determine whether a functional category was significantly

enriched in one gene set with respect to another, we per-

formed a two-sided Fisher exact test of this category against

the combination of every other category. To account for mul-

tiple testing on 25 functional categories, we used the conser-

vative Bonferroni correction and considered significant only

those categories for which P value< 0.02 = 0.05/25.

Sequence Similarity Networks Construction and Analyses

We used the result of an all-against-all BLAST+ (Camacho

et al. 2009) (softmasking with segmasker) comparison to
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build a sequence similarity network for this data set, joining

pairs of sequences with an E value <10E-5. We symmetrized

the network and removed multiple edges by keeping the best

E value hit between each pairs of sequences. We mined this

network to detect composite genes using FusedTriplets

(Jachiet et al. 2013), with a stringency E value of 10E-10.

We searched for multicomposite genes by using the same

protocol on the subnetwork of previously identified composite

genes. We clustered nodes into densely packed groups as

determined by the first pass of Louvain community detection

algorithm (Blondel et al. 2008). We used NetworkX (Hagberg

et al. 2008) Python library to compute several networks

metrics: assortativity (Newman 2003) of viral classes in the

network, an approximate betweenness (Brandes and Pich

2007) of nodes using k = 5,000 random pivots, and a cycle

basis of Louvain community network (to find edges participat-

ing in cycles). We produced the displays of sequence similarity

networks using Cytoscape 2.0 (Shannon et al. 2003) with

Force Directed Layout, and the display of Louvain community

network Gephi (Bastian et al. 2009) with ForceAtlas2 Layout.

Results

Extensive Gene Remodeling in Viruses

We compared 122,392 sequences from 3,008 viruses in a

BLAST all-versus-all analysis, searching for sequences with sig-

nificant similar genetic fragments, called hits. Sequences were

included as nodes in sequence similarity networks. Two

sequences were connected when at least one of the pairwise

BLAST comparisons returned a hit with an E value<10E-5. At

this stringency threshold, false positive hits between nonho-

mologous sequences are not expected (Medini et al. 2006;

Fokkens et al. 2010), although genuine homology between

very divergent sequences can be missed. Using simple linkage,

we partitioned the graph into 24,092 singletons and 12,506

clusters or connected components of two sequences or more.

Homologous genes that have not diverged beyond recogni-

tion by BLAST typically produce such clusters. Composite

sequences indirectly bridge several different homologous fam-

ilies in the graph, when distinct regions of composite

sequences present similarity with distinct families. Thus com-

posite sequences produce larger connected components,

uniting sequences from different gene families (Enright and

Ouzounis 2000; Kristensen, Wolf, et al. 2011; Jachiet et al.

2013). The largest connected component present in the net-

work comprised 18,033 sequences (15% of the data set),

demonstrating that composite genes involved genetic seg-

ments from numerous and diverse homologous families.

The topology of this network was explored to find candi-

date composite genes, using FusedTriplets (Jachiet et al.

2013). Composite genes fulfill three conditions: i) They fall

at the center of a nontransitive triplet of nodes, ii) the hits

between a candidate composite sequence and each of its

two direct neighbors in such triplets must not overlap by

more than 20 amino acids. (These short windows of potential

overlap account for BLAST tendency to slightly extend a hit

between two similar regions over nonhomologous regions by

a few amino acids; this overlap criterion did not affect our

results, as they were virtually unchanged when removing

it—identifying 9,177 composite genes instead of 9,872 and

2,959 multicomposite genes instead of 3,351, see below.) iii)

Along a nontransitive triplet, the edges between sequences

with component fragments and the candidate composite se-

quence must present a similarity above the twilight zone (Rost

1999) (an E value of<10E-10 instead of the E value of<10E-5

used for network building), so no similarity, however weak, is

found between component sequences. This latter condition

ensures that nontransitive triplets do not comprise homolo-

gous divergent sequences, aligned over distinct regions. There

were 423 million triplets to investigate, out of which 123 mil-

lion were nontransitive (i), 85 million also fulfilled condition (ii)

and 53 million fulfilled all three conditions. Within these latter,

we counted 9,872 composite genes (8% of the data set, 10%

of the sequences present in the network when singletons are

excluded from the data set). Without enforcing the stringency

condition (iii), 12% of the sequences (15% of the sequences

present in the network without the singletons) were diag-

nosed as composite.

As a proof of concept, our approach identified some for-

merly known composite genes. Typically, it detected the

family of putative DNA polymerase beta/AP endonuclease

proteins from the functionally important base excision repair

system present in Melanoplus sanguinipes entomopoxvirus,

consistently with (Afonso et al. 1999). Moreover, our analysis

expanded this finding to another composite DNA polymerase

beta/AP endonuclease proteins, that of the Amsacta moorei

entomopoxvirus, when by contrast AP Endonuclease and DNA

polymerase beta were observed to exist as physically indepen-

dent genes in NCLDV viruses. Likewise, our protocol recovered

the composite nature of large, multidomain helicase/methyl-

transferase proteins in Burkholderia phage BcepIL02 and in

Burkholderia phage DC1. These genes, with widely distributed

homologs across bacteria, plasmids and IS elements, code

antirestriction proteins. Their remarkable size (about 4,650

amino acids, up to 23% of these viruses genomes) strongly

suggests that these composite genes benefit to the mobile

elements hosting them, likely by providing some protection

from the restriction system of cells by DNA methylation (Gill

et al. 2011; Lynch et al. 2012, p. 1). Similarly, we identified the

composite receptor-binding protein, responsible for the at-

tachment of the virion particle to its host, in the genome of

Lactococcus bacteriophage bIBB29. Its unusual structure had

been described in Hejnowicz et al. (2009), which reported that

the N-terminal part of bIBB29 RBP gene is highly conserved

among a first group of phages, whereas its C-terminal part

demonstrates homology to a gene in another phage, P475,

that does not belong to this group. Again, in connection with

Extensive Gene Remodeling GBE
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this first step of infection from cells by phages, we also de-

tected various composite cell wall-associated hydrolases in our

viral data set; consistently with previous reports of the modular

organization of these invasion-associated genes (Loessner

et al. 1997). These precise examples support the notion that

a network-approach can successfully identify bona fide com-

posite genes, and that some of these genes are apparently

involved in key functions for the viral cycle (from DNA repair

functions, important for virus survival, to the invasion of cel-

lular hosts, or to the arm race between phages and cells).

However, we immediately wish to add a note of caution. In

principle, homologs massively diverging over nonoverlapping

regions of their ancestrally derived sequences may also occa-

sionally produce patterns that could be mistaken for that of

typical composite genes (fig. 1); therefore, detailed analyses

on focal candidate composite genes are to be encouraged,

when the goal of the search for these composite is not a

general survey as it is the case for this study.

Composite genes may be the outcomes of two distinct

types of processes occurring in viral genomes, or in their

cellular hosts: Fusion events (when components of composite

genes originate from different gene families) and fission

events (when components of composite genes terminate in

different gene families). Here, we did not attempt to distin-

guish between these two processes (fig. 2). Rather we focused

on another observation: All viral classes contained at least one

composite gene (table 1). Furthermore, we detected an addi-

tional class of composite genes, called multicomposite genes.

These multicomposite genes exploit sets of genetic segments

found in sequences that were themselves identified as com-

posite by the above protocol. For instance, patterns indicating

multicomposite genes occur as a result of two successive steps

when genetic fragments from distinct composite genes are

subsequently assembled into a new sequence. Moreover,

sets of multicomposite genes will also be observed when se-

quences diagnosed as composite are directly connected in the

network, as these sequences evolved from different yet over-

lapping combinations of a common pool of genetic fragments

(fig. 2). We detected these multicomposite genes by applying

the three search conditions described above to a subset of the

network, retaining only the sequences already identified as

composite. We found 3,351 multicomposite viral sequences

(3% of the data set, 4% of the sequences in the network

without singletons). This is the first report of this class of com-

posite sequences in viral genomes. Again, all viral classes con-

tained at least one multicomposite gene (table 1).

These proportions of composite sequences indicate that

the fixation of composite genes is a general phenomenon in

virus evolution. The number of composite genes is likely an

underestimate, as some leave undetectable traces in sequence

similarity networks (fig. 2). Moreover, we tested for eventual

biases in the detection of short hits between component and

FIG. 1.—Examples of subgraphs with detected composite genes. Top panel: Subgraphs showing all direct neighbors of composite genes. Nodes (red for

composites, green for components) correspond to genes connected by edges when they share a BLAST E value <10�5. Bottom panel: BLAST alignment

showing the overlap between the sequence of a composite for the above gene families and component sequences. A plain segment indicates a region with

overlap (significant similarity according to BLAST). Segments are colored to reflect bitscores (black: <40, blue: 40–50, green: 50–80, pink: 80–200, red:

>200). Segments in different lines come from different genes. Top red segments correspond to composite genes, other segments to component genes. (a)

AP endonuclease IV/DNA polymerase IV fusions in Melanoplus sanguinipes entomopoxvirus and Amsacta moorei entomopoxvirus. Component genes

belong to NCLDV. (b) Composite receptor-binding protein in Lactococcus bacteriophage bIBB29. Sequences in the left component come from Lactococcus

phages sk1, jj50, and 712; sequences in the right component come from Streptococcus pyogenes phage 315.5, Cronobacter phage vB_CsaP_GAP52,

Lactococcus phage 949, and Vibrio phage KVP40.
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composite sequences in our approach. Although some short

fragments, shared between composite and component se-

quences, were identified, that is, the minimal ones measuring

25 amino acids, in general hits lengths between composite

and component genes were slightly larger than hits lengths in

the overall network (supplementary fig. S1, Supplementary

Material online). In addition, frequency histograms of �log(E

values) showed that there were more hits with low scores in

the overall network (e.g., for�log(E values) ranging from 1 to

5) than there were such hits between composite and compo-

nent sequences (supplementary fig. S2, Supplementary

Material online). As �log10(E values) correlates with hits

lengths (r2= 0.51/0.54 in the network/for hits between com-

posite and component sequences), our protocol appears con-

servative: It could miss some short-sized hits between

composite and component genes for low E values.

Therefore, our numbers can be seen as a lower-bound esti-

mate of composite genes in viruses. This minimal estimate of

composite genes is consistent, yet provides new information

with respect to former analyses of multidomain genes by

Kristensen et al. (2013), because composite genes can be

built from segments outside the boundaries of protein do-

mains, and because estimates of composite genes for each

viral class and functional categories have not been considered

previously (see below).

Remodeling of Genes Essential to the Viral Life Cycle

Composite genes were found in all functional categories in

different proportions (fig. 3), confirming that they broadly

FIG. 2.—Processes producing composite genes and characteristic similarity patterns. Composite genes result from processes (left) that produce typical

similarity networks (right). Shared inner motifs (e.g., wavelets) between genes indicate common ancestry. Underlined in color are genes detected as

composite (red), as multicomposite (violet) or not detected as such (green). (a) Fusions and fissions lead to the detection of composite genes. Fissioned

genes are composite because they combine fragments that exist as independent genes. (b) Multiple compositions lead to the detection of multicomposite

genes. (c) Composition between homologous genes produces transitive similarity relationships and is not detected by this protocol.
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contribute to the range of genetic diversity in viruses. Due to

the strong selective pressures acting on viral genomes, one

could argue that most of these composite genes are likely

adaptative, as viruses have large population sizes these com-

posite genes would be eliminated. One could also argue that

some neutral ratchet-like mechanism (a form of constructive

neutral evolution) (Gray et al. 2010) is responsible for the fix-

ation of composite genes in viral genomes. One argument in

favor of the adaptive interpretation of this extended distribu-

tion of composite genes is provided by the fact that these

genes are overrepresented in specific functional categories,

that is, the fixation is nonrandom. More precisely, we defined

functional classes as important for viruses using a larger com-

parative data set including cellular organisms from all branches

of life for a total of 740,842 sequences (supplementary table

S1, Supplementary Material online). The comparison with this

data set showed functional categories enriched in viruses with

respect to cellular organisms. Such categories include replica-

tion, recombination and repair (DNA modifications), transcrip-

tion, RNA processing and modification, chromatin structure

and dynamics, posttranslational modification, protein turn-

over and chaperones, nucleotide transport and metabolism,

cytoskeleton, cell wall/membrane/envelope biogenesis, extra-

cellular structures, defense mechanisms, and unknown or pre-

cisely unknown functions. Remarkably, most of the categories

that are functionally important for viruses were also enriched

in viral composite genes (with the exception of posttransla-

tional modification, protein turnover and chaperones, RNA

processing and modification, defense mechanisms, and cyto-

skeleton). This trend of enrichment in viral composite se-

quences in functional categories important for viruses was

most significant (P = 0.05) for chromatin structure and dynam-

ics, nucleotide transport and metabolism, cell wall/membrane/

envelope biogenesis, and extracellular structures. Therefore,

the fixation of composite genes in viruses is biased with re-

spect to functional categories, and composite genes for the

most part belong to functions that are essential for the com-

pletion of the viral cycle. Noteworthy, several functions parti-

cularly enriched in composite genes (e.g., ribonucleotide

reductase and thymidylate synthase) are encoded by genomes

from large and giant DNA viruses (Boyer et al. 2010). Other

composite genes of note encode ankyrin repeat containing

proteins that are known to mimic or manipulate various

host functions (Al-Khodor et al. 2010).

Indeed, there is a nongradual process of molecular evolu-

tion at the origin of such composite genes, because both ge-

netic fission and genetic fusion differ from punctual

mutations, and may be responsible of larger, potentially

more damaging changes in the sequences. Remarkably, func-

tionally important viral categories presented composite genes,

even though changes in such key genes may be generally

deleterious for their viral hosts. However, in large viral popu-

lations, such changes may be highly adaptive and therefore

are relatively frequently observed in extant genomes as shown

in our analysis. If composite genes within these functional

categories are of benefit at least to some members of the

population, for example by enhancing their potential to inter-

act with their cellular hosts, to escape their immune systems

and defense mechanisms, then composite genes are impor-

tant players in that arms race between cells and viruses. These

composite genes can be formed through a combinatorial pro-

cess mixing gene lineages that sustains viral life cycles in all

viral classes through (lucky) adaptive changes in key viral

genes. If this adaptative interpretation is correct, this result

proposes a novel instance of the red queen process in evolu-

tion, where intimate genetic transformations involving mate-

rial beyond the boundaries of the gene family allow for the

persistence of a lineage. As a note of caution with respect to

this interpretation of the enrichment of composite genes in

key viral functions, supplementary figure S1, Supplementary

Material online, shows that nonannotated sequences are

shorter than annotated sequences, and that annotated se-

quences enriched in viruses with respect to cellular organisms

are larger than average annotated sequences and annotated

sequences nonenriched in viruses. As composite genes are

larger than noncomposite genes, it is very possible that key

viral functions (e.g., annotated sequences enriched in viruses

with respect to cellular organisms) are enriched in composite

genes simply because genes with known function are longer

genes overall.

Table 1

Composite and Multicomposite Genes in Viral Classes

Data Set Composite Multicomposite

Baltimore classes

I: dsDNA 109,324 7,488 (6.8) 2,372 (2.2)

II: ssDNA 3,071 732 (23.8) 12 (0.4)

III: dsRNA 819 35 (4.3) 4 (0.5)

IV: +ssRNA 6,000 1,218 (20.3) 763 (12.7)

V: -ssRNA 983 94 (9.6) 31 (3.2)

VI: +ssRNA 394 148 (37.6) 80 (20.3)

DNA intermediate

VII: dsDNA 283 43 (15.2) 41 (14.5)

RNA intermediate

Unknown 1,518 114 (7.5) 48 (3.2)

Nucleic acid

DNA 112,941 8,270 (7.3) 2,431 (2.2)

RNA 8,212 1,495 (18.2) 878 (10.7)

Unknown 1,239 107 (8.6) 42 (3.4)

Monophyletic groups

1 6,587 1,212 (18.4) 702 (10.7)

2 675 188 (27.9) 118 (17.5)

3 3,241 731 (22.6) 10 (0.3)

4 59,937 3,683 (6.1) 1,330 (2.2)

5 23,765 2,458 (10.3) 652 (2.7)

NA 28,187 1,600 (5.7) 539 (1.9)

Total 122,392 9,872 (8.1) 3,351 (2.7)

NOTE.—Number and percentages of composite and multicomposite genes in
Baltimore and major monophyletic viral classes and by type of nucleic acid.
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The quantitative measures of composite genes proposed

for each viral class and functional category depend on the

quality of sequence annotation of viral genomes, and thus

may vary as the annotation improves. We assessed the

impact of quality of genomes on our conclusions, by restrict-

ing our analyses of the taxonomical and functional distribution

of composite genes to a very stringently defined “safest”

subset of 6,144 composite genes, using three additional con-

ditions. We removed from our analysis all genes from nontran-

sitive triplets in which components were found embedded in a

composite from the same genome (this was to circumvent the

issue of overlapping genes). We also removed composite

genes found exclusively in one nontransitive triplet where

the two component genes came from a single genome (to

remove false positives due to genes artefactually split during

the annotation process of that genome). Finally, we addition-

ally removed all composite genes that were only found in

one host genome, without homologs in any other genome

(to reduce the possibility of including genes artefactually

“fused” during the annotation process of that genome).

The “safest” composite genes are found in all viral classes

(following Baltimore classes, major monophyletic classes, or

nucleic acid types). We recovered the exact same trends

as previously described concerning functional categories (sup-

plementary fig. S3, Supplementary Material online). In addi-

tion, 1,920 “safest” multicomposite genes were identified.

Consequently, we do not suspect major biases in the trends

detected here (although we cannot insulate against overall

noise in the data from poorly sequenced genomes or misan-

notated genes).

An Informative Network View of Molecular Changes in
Viruses

The emergence of composite genes operates on a scale that is

broader than gene families. Its study requires a more global

perspective. The sequence similarity network, describing the

viral sequence space, provides a suitable framework. We

analyzed the topological properties of our graph to confirm

that the detection of composite genes by means of intransitive

triplets had successfully identified composite sequences acting

as bridges between unrelated protein families. Indeed, com-

posite sequences have a 17 times higher average between-

ness (a centrality estimating the proportion of shortest paths in

the network that pass through a node) than noncomposite

sequences (2.7E-5 vs. 1.6E-6).

We showed that these composite sequences bridge many

densely connected regions (called graph communities, identi-

fied by Louvain community detection algorithm) into a

giant-connected component (fig. 4). Moreover, composite

genes introduce cycles between these graph communities.

Such cycles indicate that sequences in this giant-connected

component have not simply diverged from a last common

ancestor. Indeed, although sequence divergence lowers the

density of connections between homologous sequences in

a sequence similarity network, it does not produce cycles.

Homologous sequences presenting little conservation (i.e.,

a lesser sequence similarity across them than the threshold

at which the network is constructed) will eventually produce

chains of sequences. Instead, we demonstrated that similari-

ties across sequences found in viruses presented cycles,

which we visualized by pooling densely connected groups of

FIG. 3.—Functional distribution of cellular, viral, and viral composite genes. The proportion of genes in each functional category was plotted for the

reference “cellular” data set (black), the viral data set (blue), and the viral composite subset (green). Genes assigned to multiple categories were redistributed

evenly into each of the specified categories. Unannotated genes were not considered. Stars highlight functional categories significantly depleted or enriched

in the viral data set with respect to the cellular data set, and in viral composite subset with respect to viral data set (Fisher test, overall significance level of

0.05). Final letter indicates broad functional categories: (I) information storage and processing, (C) cellular processes and signaling, (M) metabolism, (U) poorly

characterized.
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FIG. 4.—Giant-connected component of the viral gene similarity network. This graph contains 15% of the sequences, held together by composite

genes. (a) Nodes are individual sequences, edges connect similar sequences (BLAST E value < 10E-5). Composite are in red, multicomposite in violet, and

other genes in green. (b) Same graph with colors corresponding to Baltimore classes (dsDNA: green, ssDNA: orange, dsRNA: yellow, +ssRNA: dark blue,

�ssRNA: purple, +ssRNA with DNA intermediate: light blue, dsDNA with RNA intermediate: red). (c) Simplification of the graph by pooling together densely

connected groups of sequences. Super node area is proportional to community size. Edge width is proportional to 1 + log(number of intercommunity edges).

Edges participating to cycles are colored in red.
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nodes together in a super node in the graph (fig. 4c). These

cycles constitute a unique network pattern to diagnose

extensive gene remodeling (and nongradual evolutionary

processes).

Importantly, other informative patterns of connections

between viral sequences are also observed in the graph. A

first major observation from the graph is that genes have

a high tendency to be similar to genes from the same viral

class, as measured by their assortativity (1 means perfect

assortativity). The overall assortativity score for the Baltimore

classes is 0.992. Thus, Baltimore classes’ overall assortativity is

0.992 (class I: 0.994, class II: 0.998, class III: 0.910, class IV:

0.997, class V: 0.987, class IV: 0.706, class VII: 0.705).

Regarding classes VI and VII composed of viruses with differ-

ent types of nucleic acid but all encoding a reverse transcrip-

tase, their assortativity rises to 0.9 when aggregated. In

addition, major monophyletic classes’ overall assortativity is

0.941 (class 1: 0.954, class 2: 0.929, class 3: 1.000, class 4:

0.903, class 5: 0.916). This preferential connection of like with

like, for example, genes from the same viral class linked with

one another, means that full or partial homologs are not

usually readily detected in genomes across the viral classes

considered here. The sharing or mixing of genetic material is

not the rule for viruses from such distinct groups (which

should not be confused with lower level classes such as

International Committee on Taxonomy of Viruses [ICTV]

families, for example, for which some sharing can be

observed).

Although generally viruses from different groups have dif-

ferent genes, composite genes are not limited to associations

of genetic material within a given viral class. Indeed, some

viruses from different classes harbor sequences that are suffi-

ciently similar to connect together in our graph. Consequently,

densely connected sets of sequences from different viral clas-

ses or exploiting different nucleic acids fall into the same con-

nected component. Despite the major structural and

phylogenetic differences between their members, groups of

sequences from viruses from all Baltimore and monophyletic

classes (fig. 4b and supplementary fig. S4, Supplementary

Material online) are indirectly aggregated into the giant-

connected component, and in some other connected compo-

nents. This complex pattern is expected when composite

genes associate genetic fragments from different gene fami-

lies of distinct viral origins into a single composite sequence, or

when fragments of a composite sequence are inherited by

different gene families from different viral classes. In either

case, genetic information present in a given viral class can

be effectively remodeled to work into another class of viruses.

Figure 4b illustrates such cross-combination of genetic mate-

rial from RNA and DNA viruses.

These results expand our view on the remarkable plasticity

of viral genomes: Here illustrated by the combinations

of information encoded in genetic material of different

types and in unrelated entities (rather than by the more

standard acquisition of stand-alone genes from viruses of

the same class). Consistently, this holistic network reveals 40

instances of similar sequences distributed across Baltimore

viral classes, 20 of them across RNA and DNA viruses, which

represents further evidence that information (in particular

coding the manipulation of DNA molecules) can be used by

multiple members in the viral world, irrespective of biological

support (e.g., RNA or DNA) (supplementary figs. S5 and S6,

Supplementary Material online). Some large scale gene shar-

ing between very different mobile entities (i.e., viruses and

capsidless mobile elements) has recently been described else-

where (Desnues et al. 2012; Yutin et al. 2013) giving rise to

the concept of a mobilome network. Typically, virophages,

polintons, some transposable elements, transpovirons, adeno-

viruses, and some bacteriophages were reported to form

a network of evolutionary relationships, held together by over-

lapping sets of shared genes (Yutin et al. 2013). Our findings

on composite genes originating from different viral host

lineages provide a fundamentally novel line of evidence for

the recognition of the broad scope of the mobilome network,

and for the true genetic intricacy and fluidity within it.

Discussion

Our systematic large scale analysis of composite sequences

in viral genomes suggests that the fixation of composite

genes is a general fundamental phenomenon in virus evolu-

tion. As composite genes were mostly found in functionally

important gene categories (this suggests that they play a key

role in persistence), in all viral classes. We report the existence

of two classes of composite genes, involving genetic compo-

nents from sequences belonging to distinct, eventually already

composite, gene families. These results are relatively unex-

pected because unlike eukaryotic genomes, viral genomes

are not characterized by the presence of intron–exon

structure, or junk nucleic acids, that may ease the process of

emergence of composite genes. Furthermore, we report

composite genes involving information encoded on distant,

and even unrelated viral classes, such as RNA viruses and

DNA viruses. Viral genomes thus benefit from molecular evo-

lution having occurred in distant lineages, possibly because

this information, irrespective of which substrate it is encoded

on, allows effective interactions with the machinery of cellular

hosts, or alternatively because the functions encoded by some

genetic fragments and compatible with any genome type may

trace back to a profound connection between some RNA and

DNA viruses. Noteworthy, chimeras between RNA and single-

stranded (ssDNA) viruses were recently proposed to have

resulted from recombination (Diemer and Stedman 2012;

Roux et al. 2013).

We propose that the emergence of composite genes,

relying on the combination of genetic material from different

gene families, and occasionally from dramatically different

classes of viruses, may be seen as a nongradual instance of
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the red queen process. Viral lineages benefit from introgres-

sive combinations of genetic fragments that transform their

genes important for their life cycle, allowing these lineages

to survive in the cells–viruses arm races. Overall, the recogni-

tion of composite genes evolving from the association of

genetic material beyond the scale of individual viral gene

families and from distinct viral lineages provides further

evidence that genome mosaicism is a general feature of

viruses (Georgiades and Raoult 2012). This finding encourages

the development of increasingly combinatorial models and

network-based analyses of viral evolution. Future finer-

grained analyses of the rules of combination of domains in

viral genes are definitely one such option. Already, considering

that there are around 10E31 viruses on the planet, our results

indicate that gene remodeling is a hugely significant way of

moving novel sequences between different kinds of

organisms.

Supplementary Material

Supplementary tables S1–S3 and figures S1–S6 are available

at Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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