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ABSTRACT	15	

Imaging	systems	were	developed	to	explore	the	fine	scale	distributions	of	plankton	(<10	m),	but	16	

they	generate	huge	datasets	 that	are	still	a	challenge	to	handle	rapidly	and	accurately. So	far,	17	

imaged	organisms	have	been	either	classified	manually	or	pre-classified	by	a	computer	program	18	

and	 later	 verified	 by	 human	 operators.	 In	 this	 paper,	we	 post-process	 a	 computer-generated	19	

classification,	 obtained	 with	 the	 common	 ZooProcess	 and	 PlanktonIdentifier	 toolchain	20	

developed	for	the	ZooScan,	and	test	whether	the	same	ecological	conclusions	can	be	reached	21	

with	this	 fully	automatic	dataset	and	with	a	reference,	manually	sorted,	dataset.	The	Random	22	

Forest	classifier	outputs	the	probabilities	that	each	object	belongs	in	each	class	and	we	discard	23	

the	objects	with	uncertain	predictions,	i.e.	under	a	probability	threshold	defined	based	on	a	1%	24	

error	 rate	 in	a	self-prediction	of	 the	 learning	set.	Keeping	only	well-predicted	objects	enabled	25	

considerable	 improvements	 in	 average	 precision,	 84%	 for	 biological	 groups,	 at	 the	 cost	 of	26	

diminishing	recall	(by	39%	on	average).	Overall,	it	increased	accuracy	by	16%.	For	most	groups,	27	

the	 automatically-predicted	 distributions	were	 comparable	 to	 the	 reference	 distributions	 and	28	

resulted	 in	 the	 same	 size-spectra.	 Automatically-predicted	 distributions	 also	 resolved	29	

ecologically-relevant	 patterns,	 such	 as	 differences	 in	 abundance	 across	 a	 mesoscale	 front	 or	30	

fine-scale	vertical	 shifts	between	day	and	night.	This	post-processing	method	 is	 tested	on	 the	31	

classification	of	plankton	 images	 through	Random	Forest	here,	but	 is	based	on	basic	 features	32	

shared	by	all	machine	learning	methods	and	could	thus	be	used	in	a	broad	range	of	applications.	33	
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INTRODUCTION	37	

From	 the	 centimetre	 to	 kilometre-scales,	 hydrodynamics,	 predator-prey	 interactions	 and	38	

behaviour	 strongly	 structure	 the	 patchy	 distributions	 of	 planktonic	 organisms	 in	 pelagic	39	

environments	(Davis	et	al.,	1992;	Pinel-Alloul,	1995;	Lough	and	Broughton,	2007).	At	mesoscales	40	

(10-100	km)	 and	 submesoscales	 (<10	km),	 plankton	 distributions	 are	 primarily	 determined	 by	41	

hydrological	structures	like	fronts	and	eddies	(Belkin,	2002;	Belkin	et	al.,	2009;	Luo	et	al.,	2014).	42	

For	example,	convergent	flows	at	frontal	features	can	increase	primary	production	(Grimes	and	43	

Finucane,	 1991)	 and	 mechanically	 concentrate	 organisms	 (Bakun,	 2006;	 Olson	 et	 al.,	 1994).	44	

However,	 the	 influence	 of	 these	 structures	 may	 be	 counter-balanced	 by	 behaviour	 or	 other	45	

biotic	processes.	Indeed,	at	fine	scale	(<1	km),	diel	vertical	migrations	can	be	a	strong	driver	of	46	

plankton	 distributions	 (Benoit-Bird	 and	 McManus,	 2012;	 Neilson	 and	 Perry,	 1990).	 At	47	

microscales	(<1	m	to	10	m),	biotic	 interactions	such	as	competition	and	predation	are	 likely	to	48	

generate	 vertical	 gradients	 in	 the	distribution	of	 zooplankton.	 For	 example,	 in	Monterey	Bay,	49	

predator	avoidance	 is	 thought	to	vertically	separate	copepods,	phytoplankton	thin	 layers,	and	50	

gelatinous	 zooplankton	 predators	 (Greer	 et	 al.,	 2013).	 Off	 the	 coast	 of	 Massachusetts,	51	

interactions	between	internal	waves	and	foraging	drives	a	temporary	overlap	between	layers	of	52	

high	copepod	concentration	and	ichthyoplankton	(Greer	et	al.,	2014).	53	

Historically,	 zooplankton	 and	 ichthyoplankton	 distributions	 have	 been	 sampled	 with	 pumps	54	

(Herman	 et	 al.,	 1984)	 and	 regular	 or	 stratified	 plankton	 nets	 (e.g.	 regular:	WP2,	 Bongo;	 e.g.	55	

stratified:	MOCNESS,	 BIONESS,	MULTINET;	Wiebe	 and	 Benfield,	 2003).	 However,	 even	 depth-56	

stratified	 nets	 cannot	 typically	 resolve	 the	 fine	 and	 microscale	 processes	 at	 which	 biotic	57	

interactions	occur,	because	they	usually	sample	(and	integrate)	over	at	least	10	m	vertically	and	58	

much	 more	 horizontally.	 While	 pumps	 offer	 finer	 spatio-temporal	 resolution,	 they	 are	 often	59	

limited	 to	 surface	 layers	 (<10	m	 depth	 --	 Boucher,	 1984;	 sometimes	 down	 to	 100	m	 depth	 --	60	

Herman	 et	 al.,	 1984)	 and	 sample	 much	 smaller	 volumes	 (on	 average	 50-60	L	min-1	 vs.	61	

7,500	L	min-1		for	a	small	plankton	net;	Wiebe	and	Benfield,	2003).	62	

In	 the	 last	 two	 decades,	 in	 situ	 imaging	 systems	 were	 developed	 with	 the	 aim	 of	 sampling	63	



microscale	processes	in	the	plankton	and	accelerating	data	processing	using	efficient	automatic	64	

classification	 techniques	 (MacLeod	 et	 al.,	 2010;	 Wiebe	 and	 Benfield,	 2003).	 Several	 imaging	65	

systems	have	emerged,	tackling	different	ecological	questions	by	targeting	different	size	spectra	66	

of	 organisms.	 The	 Video	 Plankton	 Recorder	 (VPR;	 Benfield	 et	 al.,	 1996)	 and	 the	 Underwater	67	

Vision	Profiler	(UVP;	Picheral	et	al.,	2010)	sample	particles	and	zooplankton.	The	Shadow	Image	68	

Particle	 Profiling	 Evaluation	 Recorder	 (SIPPER;	 Samson	 et	 al.,	 2001),	 the	 ZOOplankton	69	

VISualization	imaging	system	(ZOOVIS;	Bi	et	al.,	2013)	and	the	 In	Situ	 Ichthyoplankton	Imaging	70	

System,	used	 for	 this	 study	 (ISIIS;	 Cowen	and	Guigand,	 2008),	 target	 large	 zooplankton	up	 to	71	

several	 centimetres.	 ISIIS	has	been	 specifically	designed	 to	 sample	 fish	 larvae	 that	 are	patchy	72	

and	rare	(Cowen	et	al.,	2013).	Therefore,	it	samples	larger	volumes	of	water	compared	to	other	73	

instruments	 (ISIIS:	 from	108	 to	168	L	s-1;	UVP:	 typically	8	L	s-1,	up	 to	20.0	L	s-1;	SIPPER	9.2	L	s-1;	74	

ZOOVIS	3.6	L	s-1;	VPR:	10	to	17	mL	s-1)	and	has	proved	to	be	particularly	suited	to	describe	the	75	

fine-scale	distribution	of	both	ichthyoplankton	(Cowen	et	al.,	2013;	Greer	et	al.,	2014)	and	other	76	

taxa,	including	gelatinous	zooplankton	(Luo	et	al.,	2014;	McClatchie	et	al.,	2012).	These	imaging	77	

systems	 generate	 large	 datasets	 of	 images.	 For	 example,	 in	 one	 hour,	 ISIIS	 records	 over	78	

200	billion	pixels	(the	equivalent	of	more	than	200	GB	of	greyscale	TIFF	images),	usually	yielding	79	

several	hundred	 thousand	objects	of	 interest,	 that	have	 to	be	 identified.	Manually	processing	80	

such	big	datasets	has	to	be	limited	to	few	groups	of	interest	(e.g.	Greer	et	al.,	2015,	2014;	Luo	et	81	

al.,	2014;	McClatchie	et	al.,	2012)	but	remains	time	prohibitive.	Developing	accurate	automatic	82	

identification	processes	for	such	datasets	is	still	a	challenge	(Benfield	et	al.,	2007;	Cowen	et	al.,	83	

2013;	 Culverhouse	 et	 al.,	 2006)	 that	 needs	 to	 be	 solved	 in	 order	 to	 fully	 resolve	 microscale	84	

processes.	85	

Imaging	 data	 are	 typically	 handled	 in	 a	 three-step	 process:	 first,	 detecting	 and	 segmenting	86	

relevant	 objects	 (or	 regions	 of	 interest)	 from	 raw	 images;	 then	 measuring	 features	 of	 each	87	

object	 (such	as	 size,	 aspect	 ratio,	etc.);	 and	 finally	using	 these	 features	 to	 classify	 the	objects	88	

into	 biologically/ecologically	 relevant	 groups	 through	 machine	 learning	 algorithms.	 Several	89	

automatic	 identification	 procedures	 have	 already	 been	 tested	 on	 plankton	 datasets	 of	 a	 few	90	

thousand	images	using	various	classifiers:	Random	Forest	(e.g.	Bell	and	Hopcroft,	2008),	Support	91	

Vector	Machines	(e.g.	Hu	and	Davis,	2005),	Bayesian	models	(Ye	et	al.,	2011)	or	neural	networks	92	



(e.g.	Davis	et	al.,	2004).	Some	also	combined	several	classifiers	to	improve	prediction	accuracy	93	

(Hu	and	Davis,	2005;	Li	et	al.,	2014;	Zhao	et	al.,	2010).	While	the	algorithms	differ,	all	of	these	94	

classifiers	have	in	common	the	fact	that	they	result	 in	a	final	score	(often	a	probability)	for	an	95	

object	 to	 be	 in	 each	 class	 and	 attribute	 the	 object	 to	 the	 class	 with	 the	 highest	 score.	 This	96	

predicted	 class	 is	 often	 the	 only	 information	 that	 is	 retained	 from	 the	 classifier.	 So,	 while	97	

classification	is	typically	viewed	as	a	yes-or-no	problem,	the	real	outputs	from	the	classifiers	are	98	

actually	continuous.	99	

In	this	study,	we	take	the	example	of	 the	commonly-used	 image	processing	and	 identification	100	

toolchain	ZooProcess	and	Plankton	Identifier	(PkID)	(Gorsky	et	al.,	2010).	The	software	was	first	101	

developed	 for	 the	 ZooScan	 (laboratory	 plankton	 scanner)	 and	 then	 extended	 to	 the	 UVP	102	

(Picheral	 et	 al.,	 2010)	 and	 other	 imaging	 systems.	 ZooProcess	 segments	 objects	 from	 the	 full	103	

image	and	computes	a	set	of	descriptive	features	(grey	levels,	 length,	width,	area,	shape,	etc.)	104	

that	are	then	used	by	PkID	 through	various	classification	algorithms	(Support	Vector	Machine,	105	

Neural	network,	Random	Forest,	etc.),	although	Random	Forest	(Breiman,	2001)	has	proven	to	106	

be	the	most	accurate	and	is	now	used	routinely	(Gorsky	et	al.,	2010).	This	software	suite	is	free,	107	

open-source,	easy	 to	 install,	and	well	 supported.	Therefore,	 it	 is	widely	distributed	worldwide	108	

and	used	by	60	 research	 teams	 from	the	 tropics	 to	 the	poles	 (e.g.	France	 (Vandromme	et	al.,	109	

2011);	 New-Caledonia	 (Smeti	 et	 al.,	 2015);	 Antarctica	 (Espinasse	 et	 al.,	 2012)).	 It	 is	 most	110	

commonly	used	as	 a	computer-assisted	 identification	 system,	whereby	 the	 classifier	proposes	111	

identifications	that	are	then	validated	by	human	operators	for	all	objects.	112	

ZooProcess	 and	 PkID	 offer	 appropriate	 tools	 to	 handle	 ISIIS	 data	 but	 the	 amount	 of	 data	113	

generated	 by	 ISIIS	 makes	 human	 validation	 impractical.	 For	 example,	 validating	 the	114	

identifications	of	 the	1.5	million	objects	used	as	a	 reference	 in	 this	study	took	seven	full-time	115	

months;	a	few	days	of	 ISIIS	deployments	typically	yield	from	ten	to	a	hundred	million	objects.	116	

However,	 given	 the	 size	 and	 spatial	 resolution	 of	 the	 dataset,	 even	 a	 subset	 of	 it	 is	 likely	 to	117	

contain	relevant	ecological	information,	at	least	at	the	meter	to	10	m	scale.	Here,	we	propose	to	118	

discard	objects	with	a	low	classification	score	(i.e.	the	least	likely	to	be	correctly	identified)	and	119	

assume	that	all	remaining	objects	are	correctly	classified,	hence	bypassing	the	validation	step.	120	



Most	other	 studies	compare	automatic	classification	methods	using	only	classification	metrics	121	

(e.g.	 precision,	 recall).	 We	 suggest	 that	 a	 more	 biologically	 relevant	 approach	 is	 to	 examine	122	

whether	 the	 same	 ecological	 patterns	 can	 be	 detected	 in	 datasets	 generated	 by	 various	123	

methods.	Here	we	compare	the	same	data	either	manually	 identified	(hereafter	the	reference	124	

dataset)	or	automatically	classified	and	further	filtered	based	on	classification	score	(hereafter	125	

the	predicted	dataset).	We	specifically	explore	the	fine-scale	spatial	distribution	of	zooplankton	126	

across	 a	 frontal	 structure,	 its	 relationship	 with	 the	 environment,	 the	 size	 distribution	 of	127	

planktonic	groups	as	well	as	their	diel	vertical	migration	patterns.	128	

MATERIALS	AND	METHODS	129	

Description	of	ISIIS	130	

The	 In	 Situ	 Ichthyoplankton	 Imaging	 System	 (ISIIS)	 is	 a	 towed	 underwater	 imaging	 system	131	

(Cowen	 and	 Guigand,	 2008).	 It	 uses	 backlight	 shadowgraph	 imaging,	 which	 makes	 it	 ideally	132	

suited	for	small	and	often	transparent	planktonic	organisms	in	a	consistent	manner.	The	version	133	

of	ISIIS	used	here	was	slightly	modified	from	that	of	Cowen	and	Guigand	(2008).	The	line-scan	134	

camera	imaged	a	10.5	cm-tall	field	of	view	with	a	50	cm	depth	of	field.	With	a	line-scan	camera,	135	

the	 image	 is	 created	by	 the	movement	of	 the	 instrument	and	scanning	at	28	kHz	produced	a	136	

continuous	image	when	towed	at	2	m	s-1	(4	knots).	These	settings	resulted	in	a	sampling	rate	of	137	

108	L	 s-1.	 Additionally,	 ISIIS	 is	 equipped	 with	 environmental	 sensors	 recording	 temperature,	138	

conductivity	 (hence	 salinity	 and	 density),	 oxygen,	 chlorophyll	 a	 fluorescence	 and	139	

photosynthetically	active	radiation	(PAR)	at	a	rate	of	2	Hz.	140	

Test	data	141	

ISIIS	 was	 deployed	 for	 two	 transects	 across	 the	 Ligurian	 current,	 a	 coastal	 jet	 that	 creates	 a	142	

permanent,	mesoscale	 front.	The	current	delineates	a	coastal,	a	 frontal	and	an	offshore	zone,	143	

with	 characteristic	 hydrological	 properties	 (Sammari	 et	 al.,	 1995)	 and	 biological	 communities	144	

(Boucher	et	al.,	1987).	One	transect	was	conducted	at	night,	the	other	during	the	following	day,	145	



in	 July	 2013.	 Both	 transects	 were	 conducted	 on	 the	 same	 line,	 though	 the	 night	 transect	146	

sampled	 from	 onshore	 to	 offshore,	 and	 the	 day	 transect	 sampled	 from	 offshore	 to	 onshore.	147	

Thanks	 to	 moveable	 fins,	 ISIIS	 sampled	 the	 water	 column	 in	 a	 tow-yo	 fashion,	 between	 the	148	

surface	and	100	m	depth,	with	a	vertical	speed	of	0.2	m	s-1.	The	images	in	this	study	come	from	149	

13	down-casts	of	the	night	transect	and	7	down-casts	of	the	day	transect,	which	were	the	only	150	

ones	fully	processed	of	the	~26	total	up-	and	down-	casts	of	each	transect.	151	

Image	pre-processing	152	

ISIIS	 collected	 a	 continuous	 stream	 of	 pixels,	 2048	 pixels	 in	 height.	 The	 stream	was	 cut	 into	153	

square	 2048	 x	 2048	 frames	 by	 the	 acquisition	 software	 (example	 in	 Figure	 1).	 Because	 the	154	

camera	was	continuously	scanning	the	same	 line,	a	single	speckle	or	scratch	along	the	optical	155	

path	would	create	a	continuous	streak	in	the	resulting	2D	image.	These	streaks	were	removed	156	

by	dividing	each	frame	by	the	average	of	the	previous	50	consecutive	frames	and	normalising	157	

the	result	to	[0,	255]	in	grey	intensity,	a	process	known	as	flat-fielding.	158	

Segmentation	159	

The	 shadows	 of	 planktonic	 organisms	 or	 particles	 imaged	 by	 ISIIS	 appeared	 dark	 on	 a	 light	160	

background.	All	images	were	thresholded	at	the	195	grey	level;	i.e.	adjacent	pixels	darker	than	161	

195	 (255=white,	 0=black)	 were	 considered	 as	 objects	 of	 interest.	 The	 flat-fielding	 procedure	162	

resulted	 in	an	almost	white	background	and	well	contrasted	objects	 (Figure	1).	Therefore,	the	163	

detection	of	objects	was	not	very	sensitive	to	the	threshold	value	and	195	was	chosen	after	a	164	

few	tests.	165	

Small	objects	were	difficult	 to	 identify	 reliably,	even	 for	human	operators.	Only	objects	 larger	166	

than	250	px	in	area	(equivalent	to	18	px	in	diameter	for	a	spherical	object)	were	considered	in	167	

this	 study.	 With	 a	 pixel	 resolution	 of	 51	μm,	 this	 converts	 to	 an	 area	 of	 0.6	mm2	 and	 an	168	

equivalent	diameter	of	920	μm.	169	

All	 objects	 with	 sufficient	 size	 and	 darkness	 were	 segmented	 out	 of	 the	 frames	 (Figure	 1	170	

exemplifies	which	objects	were	considered	and	which	were	not)	and	the	region	outside	of	the	171	



object	itself	was	made	pure	white.	A	total	of	1.5	million	objects	were	detected.	172	

Feature	extraction	173	

The	 purpose	 of	 this	 study	 is	 to	 optimise	 an	 existing	 classification	 procedure	 a	 posteriori.	174	

Therefore,	the	feature	extraction	was	based	on	the	standard	configuration	in	ZooProcess/PkID	175	

and	 is	not	described	 in	detail	here	(please	refer	to	Gasparini	and	Antajan,	2013;	Gorsky	et	al.,	176	

2010).	 Briefly,	 37	 features	 were	 measured	 by	 ZooProcess,	 and	 9	 additional	 variables	 were	177	

derived	by	PkID	 from	the	original	37	 features.	These	 features	characterised	each	object’s	 size	178	

and	 shape	 (length	 of	 the	 minor	 and	 major	 axes	 of	 the	 best	 fitting	 ellipse,	 Feret	 diameter,	179	

circularity,	 symmetry,	 aspect	 ratio),	 transparency	 (five	measures	 of	 grey	 levels:	mean,	mode,	180	

standard	deviation,	minimum,	maximum),	and	aspect	(grey	level	histogram	descriptors	such	as	181	

skewness,	cumulative	histograms,	etc.).	When	combined,	those	features	can	characterise	object	182	

classes;	 for	example,	small,	dark,	ovoid	objects	with	a	 large	Feret	diameter	compared	to	their	183	

overall	size	are	probably	copepods	with	their	antennae	extended.	Therefore,	they	serve	as	the	184	

basis	for	automatic	classification.	185	



	186	

Figure	1.	Example	of	a	 flat-fielded	2048	x	2048	pixels	 frame	collected	by	 ISIIS.	The	bounding	187	

box	 of	 objects	 extracted	 and	 measured	 is	 drawn	 in	 red.	 Those	 objects	 are	 labelled	 (Ag:	188	

aggregates;	Ar:	Trachymedusae	Arctapodema	spp;	Ch:	chaetognath;	Co:	calanoid	copepod;	Do:	189	

doliolid;	 Ep:	 Pelagia	 noctiluca	 ephyrae;	 Fl:	 fish	 larva;	 Un:	 unidentified).	 Note	 that,	 on	 rare	190	

occasions,	 some	 small-bodied	 and	 transparent	 organisms,	 such	 as	 doliolids,	 were	 either	191	

truncated	or	split	into	several	objects	and	then	became	hardly	identifiable.	192	
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Learning	set	and	classification	193	

Supervised	 classification	 techniques	 require	 a	 set	of	 identified	and	measured	objects	 to	 learn	194	

the	differences	between	classes	based	on	their	 features.	Our	 learning	set	comprised	14	biotic	195	

and	 abiotic	 classes	with	 a	 target	 size	 of	 200	 objects	 per	 class	 (see	 Table	 1),	 a	 number	which	196	

proved	to	be	appropriate	for	previous	ZooProcess/PkID	projects	(Gorsky	et	al.,	2010).	The	most	197	

numerous	classes	in	the	data	(noise	in	particular)	were	also	inflated	in	the	learning	set,	to	get	a	198	

total	 of	 5979	 objects.	 Objects	 in	 the	 learning	 set	 were	 chosen	 to	 be	 representative	 of	 the	199	

diversity	of	each	class.	200	

All	 1.5	 million	 segmented	 objects	 were	 classified	 into	 these	 14	 classes	 by	 a	 Random	 Forest	201	

classifier	using	the	46	measured	features	(Gorsky	et	al.,	2010).	The	parameters	of	the	classifier	202	

were	 left	 at	 the	 appropriate	 defaults	 in	 PkID:	 100	 trees,	 bagging	 of	 1,	 6	 features	 randomly	203	

selected	per	tree,	leaf	size	of	2	objects.	204	

Finally,	three	trained	operators	validated	the	classification	of	each	object,	yielding	a	completely	205	

manually-identified	dataset	of	1.5	million	objects,	hereafter	referred	to	as	the	reference	dataset.	206	

Table	1.	Name,	number	of	objects	in	the	learning	set	(n)	and	description	of	classes.	First	non-207	

living	objects	or	artefacts,	then	biological	organisms.	208	

Class	 n	 Description,	taxonomical	identification	

Dark	aggregates	 314	 Solid,	opaque	marine	snow	

Light	aggregates	 489	 Marine	snow	(larvacean	houses,	mucus,	etc.)	

Fibers	 433	 Thin	fibers	and	fecal	pellets	

Noise	 2296	 Noise	generated	by	water	density	changes	

Tentacles	 224	 Pelagia	noctiluca	tentacles		

Copepods	 349	 Mainly	calanoid	copepods	

Doliolids	 209	 Thaliacean,	Family	Doliolidae	

Fish	larvae	 289	 Fish	larvae	

Trachymedusae	 200	 Trachymedusae	(e.g.	Arctapodema	spp)	

Diatom	chains	 342	 Phytoplankton,	diatoms	chains	



Acantharia	radiolarians	 213	 Radiolaria,	Order	Acantharia	

Radiolarian	colonies	 255	 Radiolaria,	Order	Colodaria,	in	colonies	

Solitary	radiolarians	 267	 Radiolaria,	Order	Colodaria,	solitary	

Shrimps	 99	 Shrimp-like	organisms	(e.g.	Mysidacae	or	Euphausiacae)		

Data	filtering	and	optimisation	of	the	classifier	precision	209	

To	detect	meaningful	ecological	patterns	in	the	distribution	of	a	computer-predicted	class,	there	210	

needs	to	be	sufficiently	high	confidence	that	objects	in	that	class	belong	to	the	same	taxonomic	211	

group.	In	terms	of	classifier	performance,	this	requires	high	precision	(precision	=	proportion	of	212	

correctly	classified	objects	in	a	predicted	class).	With	low	precision,	a	predicted	class	would	be	a	213	

heterogeneous	 mixture	 of	 various	 taxonomic	 groups,	 the	 distribution	 of	 which	 cannot	 be	214	

interpreted	ecologically.	Conversely,	for	high	frequency	imaging	datasets,	the	data	are	often	in	215	

sufficient	 quantity	 that	 a	 subsample	 of	 the	 whole	 dataset	 would	 be	 enough	 for	 detecting	216	

ecological	patterns.	 In	 terms	of	classification	metrics,	a	 low	 recall	may	be	acceptable	 (recall	=	217	

proportion	of	the	total	number	of	objects	of	a	class	that	are	predicted	in	that	class).	Therefore,	218	

we	 suggest	 that,	 to	 detect	 ecological	 patterns	 in	 a	 high	 frequency	 dataset,	 particularly	 for	219	

common	taxa,	precision	 is	more	 important	than	recall.	To	test	this	hypothesis,	we	filtered	out	220	

the	most	likely	mistakes	in	the	computer-predicted	dataset	(to	increase	precision),	at	the	cost	of	221	

discarding	some	correctly	 identified	objects	 (hence	decreasing	recall),	and	then	compared	the	222	

resulting	dataset	against	the	reference	set.	223	

The	probabilities	for	each	object	to	be	in	each	class	(i.e.	the	final	output	of	the	classifier)	were	224	

used	 as	 the	 filtering	 criterion.	 All	 objects	 assigned	 to	 a	 given	 class	were	 ranked	 in	 increasing	225	

order	of	probability.	All	objects	with	probability	above	a	threshold	were	kept	and	assumed	to	be	226	

correctly	 identified;	other	objects,	with	probability	equal	to	or	 lower	than	the	threshold,	were	227	

considered	to	be	potentially	wrong	and	were	discarded.	Since	precision	needs	to	be	controlled,	228	

the	threshold	should	be	set	to	result	in	a	given	precision.	For	example,	picking	the	probability	of	229	

the	 first	 wrongly	 identified	 object	 as	 the	 threshold	 would	 yield	 100%	 precision	 (all	 objects	230	

ranked	 above	 the	 first	 false	 positive	 are	 correctly	 classified).	 Here,	 a	 1%	 error	 rate	 (99%	231	

precision)	was	deemed	acceptable.	Error	 rates	 lower	 than	1%	 resulted	 in	discarding	3%	more	232	



objects	while	improving	precision	by	only	0.2.	Higher	error	thresholds	resulted	in	low	precision	233	

when	applied	to	the	whole	dataset	(average	precision	with	threshold	at	10%=54,	at	5%=60.1,	at	234	

1%=76.9).	 A	 1%	 error	 threshold	 allowed	 us	 to	 increase	 precision	 significantly	 and	 still	 keep	 a	235	

representative	percentage	of	objects.	236	

The	 computation	 of	 thresholds	 was	 done	 with	 the	 learning	 set	 only,	 because	 in	 operational	237	

conditions,	 only	 the	 identifications	 of	 the	 objects	 in	 the	 learning	 set	 are	 known.	 The	 class	238	

probability	 of	 each	 object	 in	 the	 learning	 set	 was	 predicted	 using	 2-fold	 cross-validation	239	

repeated	50	times,	using	the	Random	Forest	classifier	in	PkID.	The	probabilities	were	averaged	240	

over	the	50	repetitions,	objects	were	assigned	to	the	class	of	highest	probability,	and	probability	241	

thresholds	 at	 1%	 error	 were	 computed	 in	 each	 class.	 Those	 thresholds,	 computed	 on	 the	242	

learning	set,	were	then	applied	to	the	predictions	of	 the	1.5	million	objects	and	the	subset	of	243	

objects	that	was	kept	constituted	the	predicted	dataset.	Thus,	once	the	objects	in	the	learning	244	

set	are	identified	manually	(which	is	required	for	prediction	anyway),	this	precision	optimisation	245	

method	requires	only	computation,	no	further	human	validation	effort.	246	

Consequence	of	data	filtering	on	classification	metrics	247	

By	 construction,	 the	 chosen	 thresholds	 resulted	 in	 exactly	 99%	precision	 on	 the	 learning	 set.	248	

Because	all	1.5	million	objects	in	the	reference	set	were	actually	identified	in	this	exercise,	the	249	

precision,	recall	and	F1	score	(2	×	precision	×	recall	/	(precision	+	recall))	could	be	computed	for	250	

each	 class	 over	 the	whole	 dataset,	 before	 and	 after	 the	 filtering	 process.	 This	 allowed	 us	 to	251	

check	whether	 the	precision	after	 filtering	approached	99%	on	 the	whole	dataset	as	well	and	252	

how	much	this	improvement	in	precision	cost	in	terms	of	decrease	in	recall.	253	

Comparison	of	size	spectra	254	

The	size	structure	of	planktonic	communities	is	often	considered	as	a	proxy	to	study	the	transfer	255	

of	energy	through	the	food	web	and	the	export	and	sequestration	of	carbon	(Legendre	and	Le	256	

Fèvre,	1991).	It	could	be	expected	that	smaller	objects	would	be	less	defined,	would	therefore	257	

be	predicted	with	lower	confidence	(i.e.,	lower	probabilities)	and	may	be	preferentially	filtered	258	

out	by	our	method.	 To	assess	 this,	 size	 spectra	 (i.e.,	 probability	density	distributions	of	 sizes)	259	



were	estimated	with	a	kernel	method	(Gaussian	kernel	with	a	0.25	mm	standard	deviation)	and	260	

compared	in	the	reference	and	predicted	dataset.	261	

Statistical	comparisons	of	spatial	distributions	262	

Individual	objects	were	counted	over	1	m	depth	bins	along	the	undulating	trajectory	of	ISIIS	and	263	

counts	were	 transformed	 into	 concentrations	by	dividing	by	 the	volume	sampled	 in	each	bin.	264	

This	resulted	in	maps	of	the	concentration	of	each	class	of	organism	across	depth	(0-100	m)	and	265	

distance	from	the	coast	(0-60	km)	for	each	transect	(for	examples	see	Figures	3	and	4).	266	

The	similarity	between	the	maps	for	the	reference	and	predicted	datasets	was	assessed	using	267	

the	t-test	modified	by	Dutilleul	(Dutilleul	et	al.,	1993;	H0:	no	correlation	between	the	maps,	H1:	268	

significant	 correlation	 between	 the	maps),	 as	 well	 as	 the	 Pearson	 and	 Spearman	 correlation	269	

coefficients.	 On	 a	 map,	 observations	 close	 to	 each	 other	 are	 usually	 similar;	 this	 spatial	270	

autocorrelation	means	that	observations	close	to	each	other	are	not	independent	and	that	the	271	

number	of	actual	degrees	of	freedom	is	lower	than	the	apparent	sample	size.	The	Dutilleul	t-test	272	

corrects	 the	 number	 of	 degrees	 of	 freedom	based	 on	 the	 spatial	 autocorrelation	 of	 the	 data	273	

(computed	as	Moran's	I)	and	is	therefore	appropriate	to	avoid	over-estimating	the	similarity	of	274	

spatial	patterns.	275	

Because	 diel-vertical	 migration	 is	 such	 a	 widespread	 behaviour	 in	 marine	 ecosystems	 (Hays,	276	

2003)	 and	 strongly	 influences	 survival	 through	predator-avoidance	 and	 foraging	 in	many	 taxa	277	

(Neilson	and	Perry,	 1990),	data	were	 specifically	 inspected	 in	 the	 vertical	dimension.	Average	278	

vertical	distributions	were	computed	 for	each	group	and	each	 transect	 (hence	 separating	day	279	

and	night).	 Reference	and	predicted	 vertical	 distributions	were	 compared	with	 the	 version	of	280	

Kolmogorov-Smirnoff	test	modified	by	Solow	et	al.	(2000),	which	specifically	takes	into	account	281	

autocorrelation	along	depth	caused	by	the	patchiness	of	plankton.	282	

By	 construction,	 concentrations	 were	 lower	 in	 the	 predicted	 dataset	 than	 in	 the	 reference	283	

dataset,	because	the	former	is	a	subset	of	the	latter.	Before	the	comparisons	described	above,	284	

concentrations	were	normalised	 to	 a	maximum	value	of	 1	 for	 each	 class	 in	 each	 transect,	 by	285	

dividing	by	 the	maximum	concentration	recorded.	This	put	 the	 focus	on	distribution	patterns,	286	



rather	 than	 actual	 concentration	 values,	 which	 were	 poorly	 estimated	 when	 recall	 was	 low	287	

anyway.	288	

Finally,	the	predicted	and	reference	datasets	are	not	independent	(one	is	a	subset	of	the	other)	289	

and	 the	 absolute	 values	 of	 the	 test	 statistics	 and	p-values	 are	 therefore	 biased.	 The	 relative	290	

values,	among	classes,	are	informative	however.		291	

Comparison	of	ecological	patterns	292	

The	frontal	structure	across	which	the	transects	were	sampled	 is	characterised	by	an	 inshore-293	

offshore	gradient	of	increasing	salinity,	with	a	front	that	can	be	delineated	by	the	38.2	and	38.3	294	

isohalines	(Sammari	et	al.,	1995)	and	is	expected	to	strongly	structure	zooplankton	communities	295	

(e.g.	Boucher,	1984;	Pedrotti	and	Fenaux,	1992).	Beyond	comparing	 the	distribution	maps	 for	296	

the	reference	and	predicted	datasets	statistically,	the	results	were	 interpreted	with	respect	to	297	

the	frontal	structure	to	check	whether	the	ecological	patterns	were	the	same.	In	addition,	the	298	

relationships	 between	 planktonic	 abundances	 and	 environmental	 variables	were	 inspected	 in	299	

the	reference	and	predicted	datasets.	The	variables	inspected	were:	salinity,	which	best	marks	300	

the	front,	temperature,	which	is	strongly	stratified	vertically,	chlorophyll	a	fluorescence,	which	301	

marks	 a	 clear	 Deep	 Chlorophyll	Maximum	 (DCM),	 and	 oxygen	 concentration,	 which	 depends	302	

both	 on	 the	 frontal	 structure	 and	 on	 the	 DCM.	When	 the	 relationships	 could	 be	 considered	303	

linear,	the	slopes	were	estimated	through	Generalised	Linear	Models	(GLM)	with	Poisson	errors	304	

and	statistically	compared	between	the	two	datasets	using	ANOVA.	305	

Similarly,	beyond	comparing	vertical	distributions	statistically,	we	assessed	whether	 the	 range	306	

and	 strength	 of	 diel	 vertical	migrations	 could	 be	 as	 readily	 detected	 in	 the	 predicted	 dataset	307	

than	 in	 the	 reference	 dataset.	Within	 each	 class,	 day	 and	 night	 distributions	were	 compared	308	

with	the	Solow-Kolmogorov-Smirnov	test	and	the	value	of	 its	statistic	was	compared	between	309	

reference	 and	 predicted	 data.	 The	 day-night	 shift	 in	 the	 depth	 centre	 of	 mass	 of	 the	310	

distributions	(mean	of	depth	weighted	by	abundance	at	that	depth,	Zcm;	Irisson	et	al.,	2010)	was	311	

computed	and	compared	between	the	reference	and	predicted	datasets.	312	



Data	selection	313	

Abrupt	 changes	 in	 water	 temperature	 around	 the	 thermocline	 generated	 large	 density	314	

differences,	which	are	unfortunately	well	captured	on	shadowgraphs.	These	numerous	objects	315	

(n=1,287,302)	were	classified	as	"Noise".	Another	abundant	class	of	objects	were	 tentacles	of	316	

the	medusa	Pelagia	noctiluca	(n=8,106),	which	occasionally	got	stuck	on	ISIIS	and	were	imaged	317	

constantly.	These	two	classes	of	objects	are	not	biologically	relevant	 in	the	present	study,	but	318	

were	abundant	and	predicted	with	high	precision	(>95%),	and	were	thus	both	omitted	from	the	319	

subsequent	analyses.	320	

RESULTS	321	

Consequences	of	data	filtering	on	classification	metrics	322	

Discarding	 low	probability	 images	considerably	 increased	precision,	by	37%	on	average	 (Table	323	

2).	While	probability	thresholds	were	set	to	yield	99%	precision	on	the	cross-validated	learning	324	

set,	 precision	 was	 lower	 when	 the	 thresholds	 were	 applied	 to	 the	 whole	 dataset.	 This	 was	325	

expected,	because	the	~6000	images	in	the	learning	set	cannot	fully	represent	the	variability	in	326	

the	whole	dataset	(1.5	million	images).	The	average	precision	of	the	biological	categories	after	327	

filtering	 was	 84%.	 The	 trachymedusae	 and	 Acantharia	 radiolarians	 displayed	 the	 lowest	328	

precision	 (61.9%	and	65.4%	 respectively)	 but	 this	 already	was	 an	 improvement	 of	more	 than	329	

50%	compared	to	the	situation	before	filtering.	330	

To	 reach	 these	 precision	 levels,	 a	 large	 amount	 of	 images	 had	 to	 be	 discarded,	 leaving	 only	331	

28.1%	 of	 the	 objects	 from	 the	 original	 dataset	 (n=39,758,	 excluding	 “noise”	 images).	 The	332	

percentage	of	objects	retained	ranged	from	8.5%	for	fibres	(n=557)	to	a	maximum	of	63.7%	for	333	

solitary	radiolarians	(n=8,569).	As	a	consequence,	on	average,	filtering	decreased	recall	by	39%	334	

and	 F1	 score	 by	 7.8%.	 However,	 the	 improvement	 in	 precision	 dominated	 the	 effect	 of	 the	335	

decrease	in	recall,	because	classification	accuracy	of	the	whole	dataset	improved	from	40.2%	to	336	

56.3%	after	filtering.	337	



Table	 2.	 Classification	 metrics	 before	 and	 after	 filtering	 out	 objects	 with	 low	 prediction	338	

confidence:	 number	 of	 particles	 before	 filtering	 (n);	 percentage	 of	 data	 kept	 after	 filtering;	339	

precision,	 recall,	 and	 F1	 score	 before	 and	 after	 filtering,	 and	 difference	 (after	 –	 before).	340	

Improvements	(positive	differences)	are	bolded.	Non-living	groups	are	presented	first,	groups	of	341	

biological	interest	second.	342	

		 		 		 Precision	 Recall	 F1	
Class	 n	 %kept	 before	 after	 diff	 before	 after	 diff	 before	 after	 diff	

Dark	aggregates	 60164	 6.5	 77	 95	 19	 50	 7	 -43	 60	 7	 -54	
Light	aggregates	 4209	 4.2	 8	 17	 9	 53	 4	 -49	 14	 4	 -10	
Fibers	 8055	 6.9	 46	 85	 38	 56	 7	 -49	 51	 7	 -44	
Copepods	 17459	 22.4	 54	 88	 34	 72	 22	 -49	 62	 22	 -39	
Doliolids	 30478	 40.2	 80	 95	 16	 64	 40	 -24	 71	 40	 -31	
Fish	larvae	 802	 23.2	 12	 80	 67	 62	 23	 -39	 21	 23	 3	
Trachymedusae	 524	 50.6	 9	 62	 53	 79	 51	 -29	 16	 51	 35	
Diatom	chains	 11015	 28.6	 75	 97	 22	 72	 29	 -43	 73	 29	 -45	
Acantharia	radiolarians	 1021	 18.9	 7	 65	 58	 74	 19	 -55	 14	 19	 5	
Radiolarian	colonies	 4367	 16.7	 24	 94	 70	 62	 17	 -45	 35	 17	 -18	
Solitary	radiolarians	 13049	 65.7	 68	 88	 19	 89	 66	 -23	 77	 66	 -12	
Shrimps	 213	 52.6	 51	 89	 38	 74	 53	 -21	 60	 53	 -7	

Comparison	of	size	spectra	in	the	reference	and	predicted	datasets	343	

In	most	classes,	the	size	distribution	of	objects	in	the	automatically	predicted	dataset	and	in	the	344	

reference	 dataset	 were	 closely	 related	 (Figure	2).	 However,	 in	 three	 groups	 (fish	 larvae,	345	

radiolarian	colonies,	and	shrimps),	the	shape	of	the	spectrum	was	conserved	but	the	occurrence	346	

of	 small	 objects	was	 under-estimated.	 In	 particular,	 the	mode	of	 the	 spectrum	 (i.e.	 the	most	347	

frequent	size	class)	was	 larger	by	1.3	mm	for	fish	 larvae	 in	the	predicted	dataset	compared	to	348	

the	reference	dataset,	by	6	mm	for	radiolarian	colonies	and	by	2.8	mm	for	shrimps	(Figure	2).	349	



	350	

Figure	2.	Per-class	size	spectra	 in	the	reference	(solid	 lines)	and	automatically	predicted	and	351	

filtered	(dotted	lines)	datasets.	Probability	density	distributions	of	sizes	were	scaled	between	0	352	

and	 1	 to	 focus	 attention	 on	 the	 shapes	 of	 the	 distribution	 rather	 than	 the	 differences	 in	 the	353	

number	of	objects	between	the	two	datasets.	The	minimum	size	of	objects	considered	was	250	354	

pixels	in	area,	resulting	in	≥	920	µm	in	major	axis.	355	

Distribution	of	plankton	with	respect	to	the	front	356	

The	 automatically	 predicted	 and	 filtered	 spatial	 distributions	 of	most	 taxa	 and	 particles	were	357	

significantly	correlated	with	the	reference	distributions	in	20	of	the	22	groups	at	the	p	<	0.001	358	
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level	(Table	3;	Figure	3).	Correlation	coefficients	were	also	very	high	(seven	classes	with	r	>	0.7,	359	

and	eight	additional	classes	with	r	>	0.5).	The	only	two	exceptions	are	fish	larvae	and	shrimps	in	360	

the	day	transect,	both	of	which	were	very	rare.	361	

At	 the	 chosen	 99%-precision	 filtering	 level,	 so	 many	 images	 of	 fish	 larvae	 and	 fibres	 were	362	

discarded	 that	 the	 resulting	 spatial	distributions	were	very	 sparse	 (14.9%	and	8.5%	of	 images	363	

left,	 respectively;	 Figure	 4).	 Such	 sparse	 distributions	 would	 clearly	 not	 be	 interpreted	364	

ecologically,	given	how	little	data	are	left	and	how	much	is	discarded.	So,	information	is	lost	but	365	

at	least	no	wrong	conclusions	would	be	drawn.	In	addition,	even	in	those	cases,	the	locations	of	366	

the	maximum	concentration	zones	were	properly	captured	in	the	predicted	dataset;	there	were	367	

just	too	few	objects	to	represent	the	finer	patterns	(Figure	4).	368	

Table	3.	Statistical	comparisons	of	spatial	distributions	between	the	reference	and	predicted	369	

datasets	 with	 three	 statistics:	 Dutilleul	 modified	 t-test	 (statistic,	 recomputed	 degrees	 of	370	

freedom	 and	 p-value),	 Pearson's	 correlation	 coefficient	 and	 Spearman's	 rank	 correlation	371	

coefficient.	NB:	no	light	aggregates	were	observed	at	night.	372	

	 	
Dutilleul	t-test	

	 	Class	 Transect	 F-stat	 DoF	 p-value	 Pearson's	r	 Spearman's	rho	
Dark	aggregates	 Night	 29.99	 35	 p<0.001	 0.66	 0.68	

	
Day	 24.11	 20	 p<0.001	 0.68	 0.74	

Light	aggregates	 Day	 10.05	 76	 p<0.01	 0.11	 0.34	
Fibers	 Night	 103.22	 155	 p<0.001	 0.38	 0.62	
		 Day	 144.93	 191	 p<0.001	 0.42	 0.62	
Copepods	 Night	 54.37	 36	 p<0.001	 0.74	 0.71	

	
Day	 36.50	 28	 p<0.001	 0.73	 0.71	

Doliolids	 Night	 12244.11	 275	 p<0.001	 0.66	 0.94	

	
Day	 27064.77	 187	 p<0.001	 0.55	 0.94	

Fish	larvae	 Night	 231.25	 162	 p<0.001	 0.44	 0.77	

	
Day	 1.58	 561	 0.21	 0.09	 0.05	

Trachymedusae	 Night	 286.28	 168	 p<0.001	 0.61	 0.78	

	
Day	 130.66	 287	 p<0.001	 0.48	 0.55	

Diatom	chains	 Night	 431.64	 74	 p<0.001	 0.72	 0.92	

	
Day	 377.12	 97	 p<0.001	 0.75	 0.86	



The	 reference	 spatial	 distributions	 showed	 that	 most	 taxa	 were	 strongly	 influenced	 by	 the	373	

frontal	zone:	fish	 larvae,	Acantharia	radiolarians	and	doliolids	were	constrained	on	the	coastal	374	

side	of	 the	 front,	copepods	were	also	more	concentrated	towards	 the	coast	and	 in	 the	upper	375	

layers	 of	 the	water	 column,	while	 diatom	 chains	were	more	 abundant	 in	 the	 deep,	 offshore	376	

zones	(Figure	3,	left	column).	The	high	spatial	resolution	of	the	data	allowed	us	to	detect	smaller	377	

scale	 patterns	 such	 as	 a	 region	 of	 slightly	 lower	 concentrations	 of	 copepods	 and	 solitary	378	

radiolarians	 at	 the	 front	 (around	 30	m	 depth	 for	 copepods	 and	 50	m	 depth	 for	 radiolarians;	379	

Figure	3).	Solitary	radiolarians	also	occurred	in	shallower	water	in	the	offshore	zone	compared	380	

to	the	coastal	zone	(Figure	3)	and	precisely	followed	the	DCM	(not	mapped).	All	these	patterns,	381	

from	the	contrasts	between	taxa	to	the	fine-scale	low	concentration	regions	at	the	front,	could	382	

also	 be	 well	 detected	 on	 the	 predicted	 data	 (Figure	 3,	 right	 column).	 The	 ecological	383	

interpretations	in	terms	of	the	distribution	relative	to	the	frontal	zone	would	be	the	same.	384	

Acantharia	radiolarians	 Night	 130.32	 176	 p<0.001	 0.53	 0.64	

	
Day	 107.86	 167	 p<0.001	 0.47	 0.65	

Radiolarian	colonies	 Night	 220.39	 358	 p<0.001	 0.61	 0.64	

	
Day	 116.20	 393	 p<0.001	 0.52	 0.49	

Solitary	radiolarians	 Night	 107.11	 22.24	 p<0.001	 0.91	 0.89	

	
Day	 101.06	 14.33	 p<0.001	 0.92	 0.91	

Shrimps	 Night	 685.26	 893.08	 p<0.001	 0.72	 0.82	
		 Day	 0.01	 719.25	 0.91	 0.00	 0.00	



Figure	3.	Examples	of	some	spatial	distributions	in	the	predicted	dataset	(right)	that	are	well	385	

correlated	with	the	reference	dataset	 (left).	From	top	to	bottom:	copepods,	doliolids,	diatom	386	

chains	and	solitary	radiolarians,	all	during	the	night	transect.	The	x-axis	is	the	distance	from	the	387	

coast	(coastal	side	on	the	left,	offshore	side	on	the	right).	The	area	of	the	dots	is	proportional	to	388	

the	concentration,	scaled	to	a	maximum	of	1	per	taxon	in	each	dataset,	to	ease	comparison	of	389	

patterns;	the	legend	shows	five	examples	but	scaling	is	continuous.	Grey	lines	are	the	38.2	and	390	

38.3	 isohalines	 that	 delineate	 the	 frontal	 region.	 Ellipses	 highlight	 regions	 of	 lower	391	

concentration	located	in	the	frontal	zone.		392	



	393	

Figure	4.	Examples	of	poorly	predicted	spatial	distributions	(right)	compared	to	the	reference	394	

distributions	 (left).	 From	 top	 to	 bottom:	 fibres	 at	 night,	 then	 during	 the	 day	 and	 fish	 larvae	395	

during	the	day.	Same	conventions	as	Figure	3.	396	

The	 relationships	 between	 the	 abundance	 of	 biological	 taxa	 and	 various	 environmental	397	

variables	 (salinity,	 temperature,	 chlorophyll	 a	 fluorescence,	 oxygen	 concentration)	 were	 very	398	

similar	in	the	reference	and	predicted	datasets.	In	fact,	in	69	of	the	80	relationships	that	could	399	

be	modelled	with	GLMs,	the	slopes	were	not	significantly	different	between	the	two	datasets.	400	

For	example,	copepods	were	more	abundant	in	fresher	waters	(Figure	5),	which	were	found	on	401	

the	coastal	side	of	the	front.	The	relationships	with	chlorophyll	a	 fluorescence	highlighted	the	402	



association	of	diatom	chains	and	solitary	radiolarians	with	the	DCM.	Finally,	doliolids	were	vastly	403	

more	abundant	 in	warmer,	 surface	waters	 (Figure	5).	All	 these	conclusions	would	be	 reached	404	

with	 the	 predicted	 dataset,	 which	 suggests	 that	 it	 could	 be	 used	 to	 explore	 and	 define	 the	405	

habitat	preference	of	various	organisms.	406	

407	
Figure	 5.	 Examples	 of	 the	 influence	 of	 environmental	 variables	 on	 the	 distribution	 and	408	

concentration	 of	 several	 taxa	 for	 the	 reference	 dataset	 (black)	 and	 automatically	 predicted	409	

and	filtered	dataset	(red).	The	lines	are	the	fitted	values	of	GLMs	with	a	Poisson	distribution	of	410	

the	 residuals.	 The	 slopes	 of	 the	 GLM	 based	 on	 the	 predicted	 dataset	 are	 not	 significantly	411	

different	 from	the	ones	based	on	the	reference	dataset	 (ANOVA,	all	p>0.05).	Concentration	 is	412	
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standardised	between	groups	based	on	the	maximum	concentration	per	taxa	and	per	dataset.		413	

Day	and	night	vertical	distributions	414	

In	 8	 of	 12	 groups,	 the	 predicted	 and	 reference	 vertical	 distributions	 were	 slightly	 but	415	

significantly	 different	 (Solow-Kolmogorov-Smirnov	 test,	 p	<0.05;	 Table	 4).	 The	 four	 groups	 in	416	

which	 the	 distributions	were	 not	 statistically	 different	were	 doliolids,	 Acantharia	 radiolarians,	417	

colonial	radiolarians	and	shrimps,	although	the	lack	of	significant	difference	in	the	latter	group	418	

was	probably	due	to	their	low	overall	numbers.	419	

Table	4.	Statistical	comparisons	of	vertical	distributions	between	the	reference	and	predicted	420	

datasets.	The	statistic	and	p-value	of	the	Solow-Kolmogorov-Smirnov	test	are	reported,	as	well	421	

as	the	depth	centre	of	mass	of	the	distribution.	422	

		 		
Solow	K-S	
Reference	~	Predicted	 Depth	(m)	

Class	 Transect	 K	 p	 Reference	 Predicted	
Dark	aggregates	 Day	 3.22	 <0.0001	 49.1	 55.3	

	
Night	 3.91	 <0.0001	 41.2	 53.1	

Light	aggregates	 Day	 2.98	 <0.0001	 29.0	 40.5	
Fibres	 Night	 3.97	 <0.0001	 51.5	 69.3	

	
Day	 1.61	 0.0050	 61.8	 69.7	

Copepods	 Night	 2.97	 <0.0001	 40.8	 44.9	

	
Day	 1.44	 0.0250	 56.1	 55.1	

Doliolids	 Night	 0.67	 0.5690	 5.1	 6.9	

	
Day	 0.82	 0.3370	 7.1	 8.6	

Fish	larvae	 Night	 1.86	 <0.0001	 16.9	 10.9	

	
Day	 1.25	 0.0490	 32.6	 52.2	

Trachymedusae	 Night	 1.44	 0.0080	 10.5	 12.7	

	
Day	 1.31	 0.0240	 25.9	 29.5	

Diatom	chains	 Night	 3.67	 <0.0001	 57.5	 63.1	

	
Day	 1.72	 0.0010	 64.3	 67.8	

Acantharia	radiolarians	 Night	 1.13	 0.1300	 25.3	 27.1	

	
Day	 0.69	 0.6070	 28.3	 29.9	

Radiolarian	colonies	 Night	 1.20	 0.0940	 45.4	 44.4	



	
Day	 0.51	 0.9020	 45.8	 46.3	

Radiolarians	solitary	 Night	 2.43	 <0.0001	 53.5	 55.9	

	
Day	 2.23	 <0.0001	 59.3	 60.9	

Shrimps	 Night	 1.00	 0.1990	 55.3	 53.8	
		 Day	 0.51	 1.0000	 49.9	 44.1	

For	many	groups,	except	trachymedusae	and	fish	larvae,	ecological	conclusions	regarding	depth	423	

spread	and	preferendum	would	be	the	same	in	the	reference	and	predicted	dataset,	even	when	424	

distributions	were	statistically	different	(Table	4,	column	“Depth	(m)”	and	Figure	4).	Similarly,	an	425	

analysis	of	diel	vertical	migration	patterns	would	reach	very	similar	conclusions	on	the	reference	426	

and	 on	 the	 predicted	 dataset.	When	 a	 significant	 diel	 vertical	migration	was	 detected	 in	 the	427	

reference	dataset,	it	was	also	significant	in	the	predicted	one	(Table	5).	Conversely,	radiolarian	428	

colonies	and	Acantharia	radiolarians	do	not	appear	to	vertically	migrate	and	this	conclusion	was	429	

also	reached	with	the	predicted	dataset.	The	range	of	downward	migration	of	Trachymedusae,	430	

solitary	 radiolarians	and	doliolids	were	also	very	comparable	between	 the	datasets;	 the	same	431	

was	 true,	 to	 a	 lesser	 extent,	 for	 calanoid	 copepods	 (Table	 5,	 Figure	 6).	 However,	 the	 vertical	432	

migration	of	fish	larvae	was	poorly	predicted,	with	a	bias	towards	the	surface	at	night	that	was	433	

much	greater	than	in	reality	(Figure	6).	434	

	435	

Figure	6.	Exemples	of	vertical	distribution	during	 the	day	 (left	 side)	and	at	night	 (right	 side,	436	

shaded)	as	depicted	in	the	reference	dataset	(solid)	and	in	the	predicted	and	filtered	dataset	437	
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(dashed).	 The	 significant	 levels	 of	 the	 comparisons	 between	 reference	 and	 predicted	438	

distributions	are	 indicated	 for	both	day	and	night	 (NS:	not	 significant;	*:	p	<0.05;	**:	p	<0.01;	439	

***:	p	<0.001).		440	

Table	5.	Comparison	of	the	resolution	of	diel	vertical	migration	patterns	in	the	reference	and	441	

predicted	datasets.	Reported	for	each	dataset	are:	(i)	the	statistic	(K)	of	the	Solow-Kolmogorov-442	

Smirnov	test	comparing	day	and	night	 (bold	when	the	test	 is	significant),	which	quantifies	the	443	

overall	difference	 in	distribution,	and	 (ii)	 the	difference	between	 the	depth	centre	of	mass	at	444	

night	and	during	the	day,	a	proxy	for	the	migration	range	(night	−	day;	negative	means	upward	445	

migration	at	night).	446	

		 Solow-K-S	day	~	night	(K)	 Migration	range	(m)	
		 Reference	 Predicted	 Reference	 Predicted	
Copepods	 4.10	 2.86	 -15.3	 -10.3	
Doliolids	 1.16	 1.14	 -2.1	 -1.7	
Fish	larvae	 1.88	 1.72	 -15.8	 -41.4	
Trachymedusae		 1.72	 2.07	 -15.4	 -16.8	
Diatom	chains	 2.53	 2.25	 -6.8	 -4.7	
Acantharia	radiolarians	 0.99	 1.15	 -3.0	 -2.9	
Radiolarian	colonies	 0.50	 0.67	 -0.4	 -1.9	
Solitary	radiolarians	 3.04	 2.75	 -5.8	 -5.0	
Shrimps	 0.83	 0.81	 5.4	 9.6	

DISCUSSION	447	

The	 method	 presented	 here	 aimed	 at	 bypassing	 the	 manual	 validation	 of	 predicted	448	

identifications	by	discarding	objects	 classified	with	 low	confidence,	hence	 improving	precision	449	

(but	 decreasing	 recall).	 The	 precision	 increase	 (+37%	 on	 average)	was	 counter-balanced	 by	 a	450	

recall	 decrease	 (-39%	 on	 average),	 but	 overall	 classification	 accuracy	 using	 this	 method	451	

increased	by	16%.	452	

The	 quality	 and	 resolution	 of	 images	 may	 influence	 the	 maximum	 taxonomic	 resolution	453	



achievable	 by	 any	 automatic	 classification	 method.	 Studies	 based	 on	 high	 quality	 laboratory	454	

imagery	of	plankton	have	usually	reached	higher	accuracy	and	could	resolve	a	larger	number	of	455	

groups	 (e.g.	 22	 phytoplankton	 groups	 in	 Sosik	 and	 Olson	 (2007);	 25	 zooplankton	 groups	 in	456	

Fernandes	et	al.	(2009);	10-20	groups	in	Benfield	et	al.,	2007)	than	studies	based	on	images	of	457	

zooplankton	 captured	 in	 situ	which	 are	 usually	 of	 lesser	 quality	 (e.g.	 three	 groups	with	 SVM,	458	

achieving	80%	accuracy	(Bi	et	al.,	2015);	seven	groups	with	random	subspace	model	achieving	459	

>90%	 precision	 but	 in	 a	 self-prediction	 of	 the	 learning	 set	 (Zhao	 et	 al.,	 2010);	 five	 to	 seven	460	

groups	with	 neural	 networks,	 reaching	 60	 to	 80%	 accuracy;	Davis	 et	 al.,	 2004;	Hu	 and	Davis,	461	

2005).	While	only	a	formal	comparison,	using	the	same	dataset	(e.g.	Fei-Fei	et	al.	2007),	could	462	

resolve	 the	 differences	 between	 classification	 methods,	 comparing	 the	 size	 orders	 of	463	

classification	metrics	between	studies	can	still	be	informative.	Here,	our	classifier	dealt	with	14	464	

groups	 and,	 after	 filtering,	 reached	 56.3%	 general	 accuracy	 as	 well	 as	 84%	 precision	 on	465	

biological	 groups.	 This	 falls	 within	 the	 higher	 range	 in	 terms	 of	 precision	 and	 number	 of	466	

predicted	 groups	 compared	 to	 previous	 studies	 on	 in	 situ	 images	 of	 zooplankton,	 especially	467	

considering	 that	 67-83%	 accuracy	 is	 often	 used	 as	 a	 benchmark	 for	 plankton	 classifications	468	

(Culverhouse	et	al.,	2003;	Hu	and	Davis,	2005).	While	there	is	still	room	for	improvement	in	the	469	

original	classification	rates,	the	data	filtering	method	presented	in	this	study	markedly	improved	470	

the	performance	of	the	standard	ZooProcess/PkID	classification.		471	

Large	image	datasets	are	likely	to	become	increasingly	common	thanks	to	the	development	of	472	

affordable	 high-frequency,	 high-resolution	 cameras	 like	 the	 one	 installed	 on	 ISIIS.	 In	 such	 big	473	

datasets,	all	the	information	may	not	be	essential	and	some	may	be	efficiently	omitted	(Bi	et	al.,	474	

2015).	 The	 filtering	 approach	 used	 in	 this	 study	 considerably	 subsampled	 the	 data	 (72%	 of	475	

objects	 were	 discarded)	 in	 order	 to	 focus	 only	 on	 well-predicted	 objects.	 Despite	 this	 high	476	

subsampling	 rate,	 the	 two	 dimensional,	 and	 to	 a	 lesser	 extent	 vertical,	 distributions	 of	many	477	

classes	 were	 not	 significantly	 different	 between	 the	 subsampled	 and	 the	 total,	 reference	478	

dataset.	In	addition,	the	poorly	predicted	groups	could	be	easily	identified	by	the	sparseness	of	479	

their	 predicted	 distribution	 and/or	 the	 high	 proportion	 of	 discarded	 images	 (>90%).	 This	480	

provided	an	additional	control	for	the	validation	of	automatically	predicted	distributions.	481	



More	 importantly,	 studying	 realistic	 ecological	 questions	 with	 the	 reference	 and	 predicted	482	

datasets	resulted	in	the	same	conclusions.		483	

The	size	distribution	of	objects	of	most	classes	(9	of	12)	were	similarly	represented	in	both	the	484	

automatically	predicted	and	filtered	dataset	 (Figure	2).	 In	the	three	other	classes,	 the	filtering	485	

method	discarded	small	objects	 (<5	mm)	more	often	 than	 larger	ones,	possibly	because	small	486	

objects	are	more	prone	to	be	misclassified	due	to	their	lower	level	of	detail.	487	

The	results	also	highlighted	the	foremost	influence	of	the	frontal	structure,	marked	by	a	salinity	488	

gradient,	 on	 the	 distributions	 of	 organisms	 along	 the	 across-front	 section	 (Figure	 5).	 This	 is	489	

consistent	with	many	studies	from	the	 literature	(Boucher,	1984;	Goffart	et	al.,	1995;	Pedrotti	490	

and	 Fenaux,	 1992).	 For	 example,	 some	 taxa	 like	Acantharia	 radiolarians,	 doliolids,	 fish	 larvae,	491	

and,	to	a	 lesser	extent,	copepods	were	mostly	observed	 in	the	coastal	or	 frontal	zones	and	 in	492	

the	upper	50	m	of	the	water	column	(Figures	3	and	4).	Both	datasets	allowed	us	to	relate	the	493	

abundance	of	various	taxa	to	the	salinity	gradient,	which	marks	the	frontal	region,	the	intensity	494	

of	 the	 fluorescence	 of	 chlorophyll	 a	 associated	 with	 the	 DCM,	 or	 the	 warmer	 temperatures	495	

found	near	the	surface	(Figure	5).	Overall,	86%	of	the	relationships	with	environmental	variables	496	

that	were	 explored	were	 not	 statistically	 different	 between	 the	 two	 datasets.	 Finally,	 diatom	497	

chains	 were	 most	 abundant	 in	 the	 deeper	 layers	 of	 the	 central	 zone,	 where	 copepod	498	

concentrations	 were	 the	 lowest	 (Figure	 3),	 suggesting	 a	 possible	 influence	 of	 grazing.	 These	499	

results	 suggest	 that	 species-environment	 relationships	 or	 interspecific	 interactions	 can	 be	500	

studied	 at	 the	 very	 fine	 scales	 that	 imaging	 techniques	 provide	 without	 requiring	 labour-501	

intensive	validation.	502	

Changes	in	vertical	distributions	between	day	and	night,	even	over	less	than	10	m,	could	also	be	503	

detected	in	the	predicted	data	for	most	taxa,	with	a	power	and	resolution	similar	to	that	of	the	504	

reference	dataset	(Figure	6;	Table	4).	Diel	vertical	migrations	of	copepods	and	medusae	are	well	505	

described	in	the	literature	(e.g.	Hays,	2003;	Sabatés	et	al.,	2010).	However,	the	apparent	<10	m	506	

vertical	 movements	 of	 solitary	 Colodaria	 radiolarians	 or	 the	 2	m	 downward	 displacement	 of	507	

doliolids	during	the	day	are	not	documented	in	prior	studies,	possibly	because	they	were	missed	508	

by	other	sampling	methods	with	lower	vertical	resolutions.	The	ecological	significance	of	these	509	



fine	scale	vertical	movements	is	not	within	the	scope	of	this	study,	but	the	fact	that	they	could	510	

be	detected	highlights	the	efficacy	of	both	high	frequency	imaging	systems	and	this	automatic	511	

classification	and	filtration	method	in	exploring	microscale	processes	in	the	plankton.	512	

Nonetheless,	 some	 taxa	 share	 striking	 similarities	 and	 only	 a	 trained	 expert	 may	 be	 able	 to	513	

differentiate	between	them.	These	size	and	shape	resemblances	can	lead	to	high	error	rates	in	514	

the	 automatic	 prediction	 of	 these	 groups	 (Fernandes	 et	 al.,	 2009).	 Automatic	 classification	515	

methods	may	never	reach	the	taxonomical	 resolution	achieved	by	experts	observing	plankton	516	

through	 a	 stereomicroscope	 (even	 if	 both	 make	 mistakes;	 Culverhouse	 et	 al.,	 2003).	 Still,	517	

combined	 with	 data	 filtering,	 automatic	 classification	 can	 accurately	 describe	 spatial	518	

distributions	when	low	taxonomical	resolution	is	acceptable,	for	example	to	study	broad	groups	519	

that	provide	an	environmental	or	biological	context	for	a	species	of	interest.	Eventually,	manual	520	

validation	 is	 likely	to	still	be	required	 in	order	to	focus	on	some	specific	taxonomic	group.	For	521	

example,	 fish	 larvae	 imaged	here	were	very	diverse	and	appeared	similar	 to	appendicularians	522	

and	 chaetognaths	 in	 terms	of	body	 size,	 shape	and	opacity.	As	a	 result,	 this	 group	was	badly	523	

predicted	and	manual	methods	would	still	be	necessary	to	tease	apart	their	distribution.	524	

Using	 the	 proposed	method,	 the	 processing	 of	 1.5	 million	 objects	 required	 only	 the	manual	525	

classification	of	5979	objects	 (0.41%).	 It	 could	properly	describe	distribution	patterns,	but	 the	526	

drastic	 filtering	process	would	 lead	to	vastly	underestimating	the	abundances	of	all	groups.	 In	527	

future	 studies,	 these	 underestimated	 abundances	 could	 be	 scaled	 up	 by	 quantifying,	 in	 each	528	

class,	the	proportion	of	discarded	and	wrongly	classified	objects	(e.g.	with	a	confusion	matrix).	529	

This	quantification	requires	to	manually	validate	a	random	subset	of	images	of	each	category	of	530	

the	predicted	dataset,	thus	requiring	additional	human	effort.	However,	during	validation	of	the	531	

1.5	million	 in	 this	project,	 the	throughput	of	a	 trained	operator	was	about	10,000	objects	per	532	

day.	Therefore,	human	effort	on	the	order	of	a	couple	of	weeks	would	probably	yield	enough	533	

data	 to	 correct	 abundances	 and	 further	 control	 the	 error	 rate	 for	 the	 rest	 of	 the	 predicted	534	

images.	535	

The	present	method	is	based	on	two	features	shared	by	all	machine	learning	methods:	the	use	536	

of	a	learning	set	to	teach	the	model	how	to	differentiate	between	classes	and	the	computation	537	



of	a	final	score,	or	probability,	for	each	object	to	belong	in	each	class.	The	probability	thresholds	538	

for	 the	 filtering	 step	 are	 computed	 by	 cross-validating	 the	 learning	 set	 and	 do	 not	 require	539	

additional	 manual	 sorting.	 In	 many	 cases,	 Random	 Forest,	 working	 on	 a	 few	 dozen	 features	540	

deterministically	measured	on	the	object,	came	out	as	the	most	efficient	classifier	for	plankton	541	

data	 (e.g.	 Bell	 and	 Hopcroft,	 2008;	 Fernandes	 et	 al.,	 2009;	 Gorsky	 et	 al.,	 2010).	 Yet,	 overall	542	

accuracy	 was	 never	 more	 than	 80%.	 However,	 deep	 machine	 learning	 methods	 such	 as	543	

convolutional	 neural	 networks	 (CNNs)	 are	 emerging	 as	 promising	 tools	 for	 a	 range	 of	 image	544	

classification	 tasks	 (Krizhevsky	 et	 al.,	 2012;	 Simonyan	 and	 Zisserman,	 2015).	 Applying	 the	545	

filtering	 method	 described	 here	 to	 classifiers	 that	 already	 achieve	 high	 accuracy	 on	 large	546	

datasets	may	eventually	 lead	 to	near-perfect	automatic	 classifications,	without	discarding	 too	547	

much	 information.	 Such	 a	 combination	 would	 allow	 the	 handling	 of	 large	 plankton	 imaging	548	

datasets	 that	 are	 still	 challenging	 to	 process	 rapidly	 and	 accurately	 (Benfield	 et	 al.,	 2007;	549	

Culverhouse	 et	 al.,	 2006),	 hence	 providing	 appropriate	 tools	 to	 explore	 the	 finescale	 and	550	

microscale	processes	occurring	in	the	oceans.	551	
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