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SUMMARY

The variational approach to fracture is effective for simulating the nucleation and propagation of complex
crack patterns, but is computationally demanding. The model is a strongly nonlinear non-convex variational
inequality that demands the resolution of small length scales. The current standard algorithm for its solution,
alternate minimization, is robust but converges slowly and demands the solution of large, ill-conditioned
linear subproblems. In this paper, we propose several advances in the numerical solution of this model that
improve its computational efficiency. We reformulate alternate minimization as a nonlinear Gauss-Seidel
iteration and employ over-relaxation to accelerate its convergence; we compose this accelerated alternate
minimization with Newton’s method, to further reduce the time to solution; and we formulate efficient
preconditioners for the solution of the linear subproblems arising in both alternate minimization and in
Newton’s method. We investigate the improvements in efficiency on several examples from the literature;
the new solver is 5–6× faster on a majority of the test cases considered.

KEY WORDS: fracture, damage, variational methods, phase-field, nonlinear Gauss-Seidel, Newton’s
method

1. INTRODUCTION

Cracks may be regarded as surfaces where the displacement field may be discontinuous. Fracture
mechanics studies the nucleation and propagation of cracks inside a solid structure. Variational
formulations recast this fundamental and difficult problem of solid mechanics as an optimization
problem. The variational framework naturally leads to regularized phase-field formulations based
on a smeared description of the discontinuities. These methods are attracting an increasing interest
in computational mechanics. The aim of our work is to propose several improvements in the linear
and nonlinear solvers used in this framework.

The code for the algorithms proposed in this paper, and the thermal shock example of section 4.3,
are included as supplementary material†.

∗Correspondence to: Corrado Maurini, Institut Jean Le Rond d’Alembert, Sorbonne Universités, UPMC, Univ Paris 06,
CNRS, UMR 7190, France. E-mail: corrado.maurini@upmc.fr
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Computing at Simula Research Laboratory.

Contract/grant sponsor: Engineering and Physical Sciences Research Council (UK); Agence Nationale de la Recherche
(France); contract/grant number: EP/K030930/1, ANR-13-JS09-0009, and ANR-11-LABX-0037-01
†The code is available online at https://bitbucket.org/pefarrell/varfrac-solvers.
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1.1. Variational formulation of fracture and gradient damage models

The variational approach to fracture proposed by Francfort and Marigo [1] formulates brittle fracture
as the minimization of an energy functional that is the sum of the elastic energy of the cracked solid
and the energy dissipated in the crack. The simplest fracture mechanics model, due to Griffith [2],
assumes that the cracked solid Ω \ Γ is linear elastic and that the surface energy is proportional to
the measure of the cracked surface Γ. The crack energy per unit area is the fracture toughness Gc, a
material constant. In this case the energy functional to be minimized is

E(u,Γ) =

∫
Ω\Γ

1

2
A0ε(u) · ε(u) dx+GcS(Γ), (1)

where u is a vector-valued displacement field, ε(u) = sym(∇u) is the second order tensor associated
to the linearised strains inside the material, A0 the fourth order elasticity tensor of the uncracked
solid, and S(Γ) is the Hausdorff surface measure of the crack set Γ. In a quasi-static time-discrete
setting, given an initial crack set Γ0, the cracked stated of the solid can be found by incrementally
solving the following unilateral minimization problem [3, 1]:

arg min{E(u,Γ), u ∈ Cū(Ω \ Γ),Γ ⊃ Γi−1}, (2)

where
Cū(Ω) ≡ {u ∈ H1(Ω,Rn), u = ū on ∂ūΩ} (3)

is the space of admissible displacements, ∂ūΩ is the part of the boundary where the Dirichlet
conditions are prescribed and H1(Ω \ Γ, Rn) denotes the Sobolev space of vector fields defined on
Ω \ Γ with values in Rn. The minimization problem above is labelled unilateral because the crack
set cannot decrease in time. This problem is quasi-static and rate-independent, so that time enters
only via the irreversibility constraint. The numerical solution of the free-discontinuity problem [4]
above is prohibitive, because of the difficulty related to the discretization of the unknown crack set
Γ where the displacement may jump.

To bypass this issue, Bourdin et al. [5] transposed to fracture mechanics a regularization
strategy introduced by Ambrosio and Tortorelli [6] for free-discontinuity problems arising in image
segmentation [7]. The regularized model approaches the solution of (2) by the solution of

arg min{E(u, α), u ∈ Cū(Ω), α ∈ Dαi−1
}, (4)

with the regularized energy functional

E(u, α) =

∫
Ω

[
1

2
a(α)A0ε(u) · ε(u) +

Gc
cw

(
w(α)

`
+ `∇α · ∇α

)]
dx, (5)

with cw = 4
∫ 1

0

√
w(α) dα. In this formulation α is a smooth scalar field, that can be interpreted as

damage, and ` is an additional parameter controlling the localization of α. With αi−1 the solution at
the previous time step and denoting by ∂ᾱΩ the part of the boundary where the Dirichlet conditions
are prescribed on α, the admissible space for α is a convex cone imposing the unilateral box
constraint

Dᾱ(Ω) ≡ {u ∈ H1(Ω,R), ᾱ ≤ α ≤ 1 a.e. in Ω, α = ᾱ on ∂ᾱΩ}, (6)

which prevents self-healing. Following [6], Bourdin et al. [5] uses a(α) = (1− α)2 + k` and
w(α) = α2, with k` = o(`). With these conditions it is possible to show through asymptotic methods
(Γ-convergence) that the solutions of the global minimization problem (4) tend to the solutions of
the global minimization problem (2) as `→ 0 [8]. In the regularized problem, the α-field localizes
in bands of thickness on the order of ` giving smeared representation of the cracks which is
energetically equivalent to the Griffith model (the dissipated energy per unit crack surface is Gc).
This behaviour is preserved for a large class of functions w and a.

Similar “smeared” crack models have been developed in other contexts. In the physics
community, they are regarded as phase-field approximations developed by adapting the Ginzburg-
Landau theory of phase transitions [9]. In mechanics, they are regarded as gradient damage models
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[10, 11]. The α field is a damage variable that modulates the elastic stiffness and introduces
an energy dissipation. In this context, (5) can be regarded as a model per se for the evolution
of damage in the material, and one can associate a physical meaning to the internal length and
to evolutions following local minima of the functional (5). In particular, one can show that in
quasi-static evolutions ruled by a local minimality condition, the internal length is regarded as a
constitutive parameter that controls the critical stress in the material before failure. We refer the
reader to [11] and Section 4 for further details on this point.

Whilst the original model of Bourdin et al. [5] assumes small deformations, isotropic materials,
quasi-static evolution, and allows for interpenetration of crack lips in compression, recent
contributions include extensions to dynamics [12, 13, 14], multiphysics couplings [15, 16],
anisotropic materials [17], large elastic deformations [18, 19, 20], cohesive fracture [21], and
compressive failure with unilateral contact at crack lips [22, 23, 24, 25, 26], plates and shells
[27, 28], thin films [29]. Other works [11, 10, 30, 31] discuss how the choice of the functions a
and w in (5) affects the properties of the solutions, by analytical and numerical investigations. On
the basis of these results, recent numerical works [see e.g. 32] adopt the choice w(α) = α and
a(α) = (1− α)2 + k`, which we also employ in the rest of this paper. We refer the reader to [11]
for a comparative analysis of this model and the original model in Bourdin et al. [5].

In the remainder of this paper, we discuss the numerical solution of the minimization problem
(4), after a standard finite element discretisation. We focus on the simplest model, neglecting the
effect of geometrical non-linearities and the non-symmetric behaviour of fracture in traction and
compression. More complex physical effects drastically modify the character of the numerical
problems to be solved and require further problem-specific developments that are outside the scope
of this work.

1.2. The optimization problem and current algorithms

The minimization problem (4) problem is numerically challenging, for the following reasons:

1. the functional is non-convex and thus the minimization problem in general admits many local
minimizers;

2. the irreversibility of damage, required to have a thermodynamically consistent model and to
forbid crack self-healing, introduces bound constraints on the damage variable α and demands
the solution of variational inequalities;

3. the problem size after discretization is usually very large, because the minimizers of (5) are
typically characterized by localization of damage and elastic deformations in bands of width
on the order of `. This width is usually very small with respect to the simulation domain, and
the mesh size must be small enough to resolve the bands;

4. the linear systems to be solved are usually very badly conditioned, because of the presence of
damage localizations where the elastic stiffness varies rapidly from the undamaged value to
zero.

At each loading step, the minimization of (4) is an optimization problem with necessary
optimality conditions: find (u, α) ∈ Cū ×Dᾱi−1

satisfying the first order optimality conditions

Eu(u, α; v) = 0,∀v ∈ C0, Eα(u, α;β − α) ≥ 0,∀β ∈ Dᾱi−1
(7)

with

Eu(u, α; v) =

∫
Ω

a(α)A0ε(u) : ε(v) dx, (8)

Eα(u, α;β) =

∫
Ω

(
a′(α)

2
A0ε(u) : ε(u)β +

Gc
cw

w′(α)

`
β + 2

Gc
cw
`∇α · ∇β

)
dx, (9)

where Eu and Eα are the Fréchet derivatives of the energy with respect to u and α. Because of
the unilateral constraint on the damage field α, the first order optimality conditions on α form a
variational inequality. The linearization of these conditions is: find (û, α̂) ∈ C0 ×D0 such that for
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all (v, β) ∈ C0 ×D0

Euu(u, α; v, û) + Euα(u, α; v, α̂) = −Eu(u, α; v),

Eαu(u, α;β − α̂, û) + Eαα(u, α;β − α̂, α̂) ≥ −Eα(u, α;β − α̂), (10)

where

Euu(u, α, v, û) =

∫
Ω

a(α)A0ε(v) : ε(û) dx, (11a)

Euα(u, α; v, α̂) = Eαu(u, α; α̂, v) =

∫
Ω

a′(α)A0ε(u) : ε(v)α̂ dx, (11b)

Eαα(u, α;β, α̂) =

∫
Ω

[(
a′′(α)

2
A0ε(u) : ε(u) +

Gc
cw

w′′(α)

`

)
βα̂+ 2

Gc
cw
`∇β · ∇α̂

]
dx. (11c)

Note that the bilinear form Euu is akin to a standard linear elasticity problem, and that the bilinear
form Eαα is akin to a Helmholtz problem.

The most popular algorithm for the solution of the system (7) is the alternate minimization method
proposed by Bourdin et al. [5]. This algorithm rests on the observation that while the minimization
problem (4) is nonconvex, the functional is convex separately in u or α if the other variable is
fixed. Alternating minimization consists of alternately fixing u and α and solving the resulting
smaller minimization problem, iterating until convergence. At each iteration before convergence
the optimization subproblem has a unique solution with a lower energy, and thus the algorithm
converges monotonically to a stationary point [33]. The algorithm is detailed in Algorithm 1.

Algorithm 1: Standard alternate minimization
Result: A stationary point of (4).
Given (ui−1, αi−1), the state at the previous loading step.
Set (u0, α0) = (ui−1, αi−1).
while not converged do

Find uk ∈ Cū : Eu(u, αk−1; v) = 0 ∀v ∈ C0.
Find αk ∈ Dαi−1 : Eα(uk, α;β − αk) ≥ 0, ∀β ∈ Dαi−1 .

end
Set (ui, αi) = (uk, αk).

The first subproblem, finding the updated displacement given a fixed damage, involves solving
a standard linear elasticity problem, but with a strongly spatially varying stiffness parameter. The
second subproblem, finding the updated damage given a fixed displacement, involves solving a
variational inequality where the Jacobian is a generalized Helmholtz problem, again with spatially
varying coefficients. The standard termination criterion used in [5] is to stop when the change in
the damage field drops below a certain tolerance. Another approach [26] is to stop based on a
normalized change in the energy. Miehe et al. [34] perform a single alternate minimization iteration
and propose the use of an adaptive time-stepping.

The main drawback of alternate minimization is its slow convergence rate. This motivates
the development of alternative approaches using variants of Newton’s method for variational
inequalities [10], such as active set [35] or semismooth Newton methods [36]. Newton’s method is
quadratically convergent close to a solution, but its convergence is erratic when a poor initial guess
is supplied [37, 38]. Numerical experience indicates that Newton’s method alone does not converge
unless extremely small continuation steps are taken. Recent attempts to address these convergence
issues include the use of continuation methods [39] or globalization devices such line searches and
trust regions [40]. Moreover, Newton-type method result in a large system of linear equations to be
solved at each iteration; in prior work direct methods have been employed, limiting the scalability
of the approach.
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In this work we make several contributions to the solution of (4). First, we cheaply accelerate
alternate minimization by interpreting it as a nonlinear Gauss-Seidel method and applying over-
relaxation. Second, we further reduce the time to solution by composing alternate minimization with
an active set Newton’s method, in such a way that inherits the robustness of alternate minimization
and the asymptotic quadratic convergence of Newton-type methods. Third, we design scalable linear
solvers for both the alternate minimization subproblems, and the coupled Jacobians of the form (10)
arising in active-set Newton methods.

Following Bourdin et al. [5], we spatially discretize the problem with standard piecewise linear
finite elements on unstructured simplicial meshes [41]. This discretization converges to local
minimizers of the Ambrosio–Tortorelli functional [42]. Alternatives proposed in the literature, but
not considered here, includes isogeometric approaches [13]. Adaptive remeshing is a valuable
method of improving to computational efficiency [43]. The presence of thin localisation bands
renders anisotropic remeshing strategies [44] particularly attractive. Our work on the linear and non-
linear solver is potentially synergetic with these other efforts to improve computational efficiency.

The paper is organised as follows. Section 2 presents our improved nonlinear solver. The
underlying linear solvers and preconditioners are discussed in section 3. Section 4 introduces three
fundamental test problems that we use to assess the performance of the solvers. The results of the
corresponding numerical experiments are reported in section 5. Finally, we conclude in section 6.

2. NONLINEAR SOLVERS

In this section we propose several improvements to the nonlinear solver employed for the
minimization of the regularized energy functional (4). The first improvement is to reinterpret
alternate minimization as a nonlinear Gauss-Seidel iteration: this naturally suggests employing an
over-relaxed Gauss-Seidel approach, which we discuss in section 2.1. This over-relaxation greatly
reduces the number of iterations required for convergence, with minimal computational overhead.
The second improvement is to use alternate minimization as a preconditioner for Newton’s method
[45], as discussed in section 2.3. By combining these, our solver enjoys the robust convergence of
(over-relaxed) alternate minimization and the rapid convergence of Newton’s method. Alternate
minimization is used to drive the approximation within the basin of convergence of Newton’s
method; once this is achieved, Newton’s method takes over and solves the nonlinear problem to
convergence in a handful of iterations. As our numerical experiments in section 5 demonstrate, this
strategy is faster than relying on alternate minimization alone, even with over-relaxation.

2.1. Over-relaxed alternate minimization

In the block-Gauss-Seidel relaxation method for linear systems, the solution variables are
partitioned; at each iteration, some variables are frozen and a linear subproblem is solved for the
remaining free variables; the updated values for these variables are used in the solution of the next
subset. Similarly, a nonlinear block-Gauss-Seidel relaxation first solves a nonlinear subproblem
for one subset of the variables, then uses those updated values to solve for the next subset, and
so on [46]. Alternate minimization is precisely a nonlinear block-Gauss-Seidel method that iterates
between the displacement and damage variables. Just as over-relaxation can accelerate linear Gauss-
Seidel [47], it can also accelerate nonlinear Gauss-Seidel [46]. Therefore, we augment the standard
alternate minimization algorithm with a simple over-relaxation approach, Algorithm 2. The state
before and after each alternate minimization substep are compared to determine the update direction,
and over-relaxation is applied along that direction with relaxation parameter ω. In the damage step,
the bound constraint on α is enforced during the line search: if a step with ω would be infeasible, the
algorithm sets ω̄ to the midpoint of [1, ω], and repeats this recursively until the update to α retains
feasibility. (The question of infeasibility does not arise for ω < 1.)

The literature on over-relaxation methods is vast, and we briefly summarise the main points here.
In linear successive over-relaxation (SOR) applied to a matrix A, the convergence depends on the
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Algorithm 2: Over-relaxed alternate minimization (ORAM)
Result: A stationary point of (4).
Given (ui−1, αi−1), the state at the previous loading step, and the over-relaxation parameter
ω ∈ (0, 2).

Set (u0, α0) = (ui−1, αi−1).
while not converged do

Find ũk ∈ Cū : Eu(u, αk−1; v) = 0 ∀v ∈ C0.
Set δuk = ũk − uk−1.
Set uk = uk−1 + ωδuk.

Find α̃k ∈ Dαi−1 : Eα(uk, α̃k;β − α̃k) ≥ 0 ∀β ∈ Dαi−1 .
Set δαk = α̃k − αk−1.
Choose the largest ω̄ ∈ (0, ω) so that αk−1 + ω̄δαk ∈ Dαi−1

.
Set αk = αk−1 + ω̄δαk.

end
Set (ui, αi) = (uk, αk).

spectral radius of the SOR iteration matrix

M = (D − ωL)−1(ωU + (1− ω)D),

where D,−L and −U are the diagonal, lower triangular and upper triangular components of A.
Essentially, over-relaxation attempts to choose an ω that reduces ρ(M). A similar result holds for
block SOR [48]. Kahan [49] proved that ω ∈ (0, 2) is a necessary condition for the convergence
of SOR, i.e. for ρ(M) < 1. Ostrowski [50] proved that this is sufficient for convergence in the
case where A is symmetric and positive-definite. For nonlinear SOR, Ortega and Rheinboldt [46,
Theorem 10.3.5] proved the surprising result that the asymptotic convergence rate depends on the
spectral radius of the SOR iteration matrix evaluated at the Jacobian of the residual evaluated at the
solution. Nonlinear Gauss-Seidel methods (ω = 1) can also be extended to minimisation problems
with constraints, under the name of block coordinate descent. We are not aware of any analysis
of over-relaxation in the context of constraints, or in the infinite dimensional setting, as would
be necessary here for a proof of convergence; however, the numerical experiments of section 5
demonstrate that convergence was achieved for all problems with all values of ω ∈ (0, 2) attempted,
and that over-relaxation can significantly reduce the number of iterations required for convergence
on difficult problems.

2.2. Choosing the relaxation parameter ω

The number of iterations required depends sensitively on the choice of ω. Extrapolating from the
nonlinear SOR theory, we hypothesize that the optimal ω is that that minimizes the spectral radius
of the SOR iteration matrix associated with the unconstrained degrees of freedom at the minimizer.
Unfortunately, identifying this ω a priori appears to be difficult: such an analysis would rely on the
spectral properties of the Hessian at the unknown minimizer [51], which are not in general known.
In this work we rely on the naı̈ve strategy of numerical experimentation on coarser problems, and
defer an automated scheme for choosing ω to future work.

2.3. Composing over-relaxed alternate minimization with Newton

Even with over-relaxation, achieving tight convergence of the optimization problem takes an
impractical number of iterations (on the order of hundreds or thousands for difficult problems).
Therefore, instead of driving the optimization problem to convergence with ORAM, we use it
instead to bring the iteration within the basin of convergence of a Newton-type method, Algorithm
3. There are two main problems to solve in designing such a composite solver: first, deciding when
to switch from ORAM to Newton, and second, handling the possible failure of the Newton-type
method.
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The inner termination criterion for the over-relaxed alternate minimization used in this work is
based on the norm of the residual of the optimality conditions (7). As the optimality conditions are a
variational inequality, it is not sufficient to merely evaluate a norm of [Eu, Eα], because the feasibility
condition should enter in the termination criterion. Instead, the residual is defined via a so-called
nonlinear complementarity problem (NCP) function Φ: a function which is zero if and only if the
variational inequality is satisfied [52]. In this work we use the Fischer–Burmeister NCP-function,
which is described in section 2.4. A typical inner termination criterion might be to switch when the
norm of the Fischer–Burmeister residual has decreased by two orders of magnitude, although the
choice taken should vary with the difficulty of the problem considered. If the inner tolerance is too
tight, an excessive number of alternate minimization iterations will be performed before switching
to Newton; if the inner tolerance is too loose, then the Newton iteration may not converge and the
extra cost of solving Jacobians yields no advantage.

If the Newton-type method diverges (possibly significantly increasing the residual), it can be
handled in one of two ways. The first is to check at the end of an outer iteration whether Newton’s
method reduced the residual: if not, discard the result of Newton and continue with more alternate
minimization iterations. The second is to choose a Newton-type method that is guaranteed to
monotonically decrease the norm of the residual, or to terminate with failure: this property is
achieved by complementing the Newton iteration with a backtracking line search. This latter option
was implemented in our experiments. If the Newton method fails to achieve a sufficient reduction,
the outer composite solver simply reverts to alternate minimization to bring the solution closer
to the basin of convergence. In this way, the robustness and monotonic convergence of alternate
minimization is combined with the quadratic asymptotic convergence of Newton’s method.

Algorithm 3: Over-relaxed alternate minimization combined with Newton (ORAM-N)
Result: A stationary point of (4).
Given (ui−1, αi−1), the state at the previous loading step.
Set (u0, α0) = (ui−1, αi−1).
while not converged do

Set ‖Φ0‖ to be the norm of the residual of the optimality conditions evaluated at (uk, αk).

while ‖Φk‖/‖Φ0‖ > inner tolerance do
Apply over-relaxed alternate minimization, Algorithm 2.

end

while not converged and maximum iterations not reached do
Apply an active-set Newton method with backtracking line search, such as Algorithm 4.

end
end
Set (ui, αi) = (uk, αk).

2.4. Reduced-space active set method

Both the damage subproblem and the subproblem to be solved at each coupled Newton iteration are
variational inequalities, which when discretized yield complementarity problems. In this section
we briefly review the Newton-type method used to solve these complementarity problems, a
reduced-space active set method implemented in PETSc [53]. While semismooth Newton methods
have gained significant popularity in recent years, the reduced-space method employed in this
work makes devising preconditioners for the linear system to be solved in section 3.3 more
straightforward.

A mixed complementarity problem (MCP) is defined by a residual F : Rn → Rn, a lower
bound vector l ∈ Rn−∞, and an upper bound vector x ∈ Rn∞, where R∞ = R ∪ {∞} and R−∞ =
R ∪ {−∞}. A solution x ∈ {x ∈ Rn : l ≤ x ≤ u} satisfies MCP(F, l, u) iff, for each component i,
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precisely one of the following conditions holds:

Fi(x) = 0 and li < xi < ui

Fi(x) ≥ 0 and li = xi (12)
Fi(x) ≤ 0 and xi = ui.

A special case of a mixed complementarity problem is the choice l = 0, u =∞, which is referred
to as a nonlinear complementarity problem (NCP), NCP(F ). For clarity, the algorithm will be
described in the context of NCPs; the extension to MCPs is straightforward [52].

An NCP-function φ : R×R→ R is a function with the property that φ(a, b) = 0 ⇐⇒ a ≥
0, b ≥ 0, ab = 0, i.e. that a solves NCP(b). An example is the Fischer–Burmeister function [54]

φFB(a, b) =
√
a2 + b2 − a− b. (13)

NCP-functions are useful because it is possible to reformulate an NCP as a rootfinding problem.
Given an NCP-function, it is possible to define a residual of NCP(F ):

Φi(x) = φ(xi, Fi(x)). (14)

A solution x satisfies NCP(F ) iff Φ(x) = 0. While Φ(x) is semismooth, its squared-norm ‖Φ(x)‖2
is smooth [55].

Algorithm 4: Reduced-space active set method.
Result: A solution of NCP(F ).
Given x0, the initial guess.
while ‖Φ(xk)‖ > tolerance do

Compute the active and inactive sets A and N via (15).
Set dA = 0.
Solve the reduced Newton step (16) for dN .
Choose the step length µ such that ‖Φ‖2 is minimized, via line search on π

[
xk + µd

]
; if

this search direction fails, use the steepest descent direction instead.
end

At each iteration, the algorithm constructs a search direction d. The search direction is defined
differently for the active and inactive components of the state. Given an iterate x and a fixed zero
tolerance ζ > 0, define the active set

A = {i : xi ≤ ζ and Fi(x) > 0}, (15)

and define the inactive set N as its complement in {1, . . . , n}. The active set represents a hypothesis
regarding which variables will be zero at the solution. At each iteration, the active subvector of
the search direction is zeroed. For the inactive component of the search direction, a Newton step is
performed. The inactive component is defined by approximately solving

JN,NdN = FN , (16)

where J is the Jacobian of the residual F . The submatrix retains any symmetry and positive-
definiteness properties of the underlying Jacobian [53]. Given this search direction, a line search
is performed with merit function ‖Φ(x)‖2, with each candidate projected on to the bounds with
projection operator π. If this line search fails, the steepest descent direction is used instead. The
algorithm is listed in Algorithm 4. A major advantage of this approach over other algorithms is
that the linear systems to be solved in (16) are of familiar type: they are submatrices of PDE
Jacobians, which have been well studied in the literature. This familiarity is exploited to design
suitable preconditioners for (16) in section 3.3.
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3. LINEAR SOLVERS AND PRECONDITIONERS

With this configuration of nonlinear solvers, there are three linear subproblems to be solved:
linear elasticity for the displacement field with fixed damage; a Helmholtz-like operator for the
damage field with fixed displacement; and (submatrices of) the coupled Jacobian of the optimality
conditions. As it is desirable to solve finely-discretized problems on supercomputers, it is important
to choose scalable iterative solvers and preconditioners for each subproblem. These are discussed
in turn.

3.1. Linear elastic subproblem

The linear elastic problem is symmetric and positive-definite, and hence, the method of conjugate
gradients [56] is used. However, the problem is poorly conditioned due to the strong variation
in stiffness induced by damage localization, and appropriate preconditioners must be employed.
The Krylov solver is preconditioned by the GAMG smoothed aggregation algebraic multigrid
preconditioner [57], which is known to be extremely efficient for large-scale elasticity problems.

For algebraic multigrid to be efficient, it is essential to supply the algorithm with the near-
nullspace of the operator, eigenvectors associated with eigenvalues of small magnitude [58]. The
elasticity problem without damage has a near-nullspace consisting of the rigid body modes of
the structure; with damage, the localized variation in stiffness induces additional near-nullspace
vectors. Calculations of the smallest eigenmodes of the elasticity operator with SLEPc [59] indicate
that if the structure is partitioned into two or more undamaged regions separated by damaged
regions, the elasticity operator has additional near-nullspace vectors associated to independent rigid
body motions of the separate regions. For example, suppose algebraic multigrid alone (no Krylov
accelerator) is used to solve the elasticity problem arising with the converged damage field of
the problem of the traction of a bar (section 4.2). With no nullspace configured, convergence is
achieved in 2004 multigrid V-cycles; if only the entire rigid body modes are supplied, convergence
is achieved in 50 V-cycles; and if the additional near-nullspace vectors corresponding to the partition
are supplied, then convergence is achieved in 6 V-cycles.

While these additional near-nullspace vectors assist the convergence of the algebraic multigrid
algorithm, they are very difficult to compute, as they depend on the damage field itself. Therefore
in this work we do not supply these additional near-nullspace vectors, supplying only the rigid
body modes of the entire structure. When a Krylov method is used to accelerate the convergence of
the algebraic multigrid, the ratio of iteration counts between the full and partial near null-spaces
decreases from approximately 10 to approximately 2. However, it may be possible to improve
the convergence of the linear elasticity problem by approximating the additional near-nullspace
vectors arising due to damage. This could be of significant benefit, as this phase constitutes a large
proportion of the solver time.

3.2. Damage subproblem

The inactive submatrix of the Helmholtz problem for damage is also solved with conjugate gradients
and the ML smoothed aggregation multigrid algorithm [60, 61], with the near-nullspace specified as
the constant vector.

3.3. The Newton step

Let the inactive submatrix of the coupled Jacobian be partitioned as

J =

[
A B
BT C

]
, (17)

whereA is the assembly of linear elasticity operator (11a), andB and C are the inactive submatrices
of the coupling term (11b) and the linearised damage operator (11c). The fast iterative solution of
block matrices has been a major topic of research in recent years [62], with most preconditioners
relying on the approximation of a Schur complement of the operator. It is straightforward to verify
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that if A is invertible, then the inverse of a block matrix like (17) can be written as [63, equation
(3.4)]

J−1 =

[
A−1 0

0 I

] [
I −B
0 I

] [
A 0
0 S−1

] [
I 0
−BT 0

] [
A−1 0

0 I

]
(18)

=

[
A−1 +A−1BS−1BTA−1 −A−1BS−1

−S−1BTA−1 S−1

]
, (19)

where S = C −BTA−1B is the (dense) Schur complement matrix of J with respect to A. In this
work, we take the simple approximation S ≈ C, which yields the preconditioner

P−1 =

[
A−1 0

0 I

] [
I −B
0 I

] [
A 0
0 C−1

] [
I 0
−BT 0

] [
A−1 0

0 I

]
(20)

=

[
A−1 +A−1BC−1BTA−1 −A−1BC−1

−C−1BTA−1 C−1

]
(21)

which requires one application of C−1 and two applications of A−1 per preconditioner application.
This is implemented in PETSc using the symmetric multiplicative variant of the PCFIELDSPLIT
preconditioner [64, 65]. Both inverse actions are approximated by two V-cycles of algebraic
multigrid. MINRES [66] is employed as the outer Krylov solver, as far from minimizers the Hessian
may not be positive definite.

4. TEST CASES

In this section we introduce three test cases that are used to assess the performance of the proposed
solvers. These test cases will then be used to assess the performance of the solver in section 5. The
first investigates temporally smooth propagation of a single crack driven by appropriately controlled
Dirichlet boundary conditions. The second consists of the uniaxial traction of a bar, testing crack
nucleation. The last considers a thermal shock problem involving the nucleation and propagation
of a complex pattern. All test cases consider isotropic homogeneous materials. In this context, the
relevant material parameters are the Poisson ratio ν, the Young’s modulus E, the fracture toughness
Gc, and the internal length `. One can show that the internal length may be estimated by knowledge
of the limit stress σc through the relation

` =
3

8

GcE

σ2
c

. (22)

Dimensional analysis shows that without loss of generality both Gc and E can be set to 1, with a
suitable rescaling of the loading. Hence, in all experiments we fix Gc = E = 1, and in addition we
fix ν = 0.3.

4.1. Surfing: smooth crack propagation

The main advantage of the variational regularized approach to fracture analyzed in this paper is
its ability to compute the propagation of cracks along complex paths, including crack bifurcation,
merging, and possible jumping in time and space. However, it is desirable to test the numerical
algorithm in a simpler situation where a single preexisting crack is expected to propagate smoothly
along a straight path with an assigned velocity v. To this end, we consider the surfing experiment
proposed by Hossein et al. [67]. This consists of a rectangular slab Ω = [0, L]× [−H/2, H/2] of
length L and height H with the Dirichlet boundary condition

u(x1, x2, t) = ū(x1 − Lc − v t, x2) on ∂Ω (23)

imposed on the whole boundary of the domain. ū is the asymptotic Mode-I crack displacement of
linear elastic fracture mechanics

ū =
KI

2µ

√
r

2π

(
3− ν
1 + ν

− cos θ

)
(cos (θ/2)e1 + sin(θ/2)e2) , (24)
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where (r, θ) are the polar coordinates, (e1, e2) are the Cartesian unit vectors, µ is the shear modulus,
and Lc is the length of the preexisting crack. The intensity of the loading is controlled by the stress
intensity factor KI . From the theory we expect that the crack propagates at the constant speed v
along the line x2 = 0 for KI = Kc

I =
√
GcE. In the numerical experiments we set KI/K

c
I = 1.0,

v = 1, L = 2, H = 1 and Lc = 0.05.
Figure 1 reports the results of the corresponding numerical simulations. This test is particularly

useful to verify that the dissipated energy does not depend on ` and is equal to the product of
the crack length and the fracture toughness Gc. Obviously, in order for this condition to hold, the
discretisation should be changed with the internal length, as ` controls the width of the localization
band. We typically set the mesh size to h = `/5. In the present test, to speed up the benchmarks,
we use a non-uniform mesh respecting this condition only in the band where we expect the crack to
propagate, as shown in Figure 1. This a priori mesh refinement is exceptional and not applicable in
general. In all other tests, a sufficiently fine uniform mesh will be employed.
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Figure 1. Smooth crack propagation test on a rectangular slab of dimensions 2× 1 with the surfing loading
(24) applied on the boundary. Left: snapshot of the damage field and mesh for ` = 0.05 and h = 0.01. Right:
Dissipation energy versus time for v = 1 and KI = 1 comparing the results obtained through the damage
model when varying the internal length ` and the mesh size h; the continuous line is the expected surface
energy according to the Griffith model, corresponding to a constant crack speed v = 1. The given mesh size

refers to the typical element dimension in the refined band in the middle.

4.2. Traction of a bar

Elastic energy
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Figure 2. Uniaxial traction of bar. Left: boundary conditions and damage field for t > tc. The width of the
localization band may be calculated analytically and is given by 2

√
2 `. Right: evolution of the energy at the

solution given by the minimization algorithm as the applied end-displacement t is increased.
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A basic problem of fracture mechanics is to estimate the ultimate load before fracture of a straight
bar in traction. We consider a two dimensional bar of length L and height H under uniaxial traction
with imposed displacement, as shown in figure 2. Analytical studies [30, 11] show that, for L
sufficiently greater that `, a local minimum of the energy functional (5) is the purely elastic solution
α = 0 for t < tc =

√
3Gc/8E` and the solution with one crack represented in figure 2 for t > tc.

The cracked solution has a vanishing elastic energy and a surface energy given by GcW . The test
may be easily extended to a 3D geometry. The critical load tc is the same in 1D under a uniaxial
stress condition, in 2D plane stress, or in 3D.

4.3. Thermal shock

The thermal shock problem of a brittle slab [32] is a challenging numerical test for the nucleation
and propagation of multiple cracks. In physical experiments [68, 69], several ceramic slabs are
bound together, uniformly heated to a high temperature and quenched in a cold bath, so as to submit
the boundary of the domain to a thermal shock. The inhomogeneous temperature field induces
an inhomogeneous stress field inside the slab, causing the emergence of a complex crack pattern,
with an almost periodic array of cracks nucleating at the boundary and propagating inside the slab
with a period doubling phenomenon. Following [32, 70], we consider a simplified model of this
experimental test. The computational domain Ω = [−L/2, L/2]× [0, H] (see Figure 3) is a slab of
width L and height H , with a thermal shock applied at the bottom surface x2 = 0. At each timestep
τi, we seek the quasi-static evolution of the cracked state of the solid by solving for a stationary
point of the following energy functional:

E`(u, α) =

∫
Ω

a(α)

2
A0 εeff(u; τ) : εeff(u; τ) dx+

Gc
cw

∫
Ω

(
w(α)

`
+ `∇α · ∇α

)
dx, (25)

where εeff(u; τ) = ε(u)− ε0(τ) is the effective elastic deformation accounting for the thermally
induced inelastic strain

ε0(τ) = β T (τ) I, T (τ) = −∆T Erfc

(
x2/`

τ

)
, (26)

where β is the thermal expansion coefficient. The temperature field T imposed is the analytical
solution of an approximate thermal diffusion problem with a Dirichlet boundary condition on the
temperature for a semi-infinite homogeneous slab of thermal diffusivity kc. In particular, it neglects
the influence of the cracks on the thermal diffusivity. The function Erfc denotes the complementary
error function and τ = 2

√
kct/`2 a dimensionless time acting as the loading parameter.

Figure 3. Geometry and boundary conditions for the thermal shock problem (left), where u1 and u2 denotes
the two components of the displacement field. The loading is given by the thermal stress induced by the

temperature field T (x2, τ) of (26), whose dependence in x2 is sketched on the right for different times τ .

As discussed in Bourdin et al. [32], the system is governed by three characteristic lengths: the size
of the domain L, the internal length `, and the Griffith length `0 = Gc/E(β∆T )2. Hence, choosing
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` as the reference length, the solution depends on two dimensionless parameters: the mildness of the
thermal shock `0/` and the size of the slab L/`. Here we perform numerical simulations for fixed
slab dimensions L = 20 and internal length ` = 1. We apply the displacement boundary conditions
described in Figure 3 and do not impose any Dirichlet boundary condition on the damage field. As
can be show by dimensional analysis, without loss of generality, we set E = 1, Gc = 1, β = 1. We
consider the performance of the solver for varying ∆T and mesh sizes h.

Analytical and semi-analytical results are available for verification purposes and for the design
of the numerical experiments. For ∆T < ∆Tc =

√
8E`/3β2Gc the solution is purely elastic with

no damage (α = 0 everywhere) [32, 70]. For ∆T > ∆Tc the solution evolves qualitatively as in
Figure 4, with (i) the immediate creation of an x-homogeneous damage band parallel to the exposed
surface, (ii) the bifurcation of this solution toward an x-periodic one, which (iii) further develops in
a periodic array of crack bands orthogonal to the exposed surface. These bands further propagate
with a period doubling phenomenon (iv). The three columns in Figure 4 show the phases (ii)-(iv) of
the evolution for ∆T/∆Tc equal to 2, 4 and 8. The wavelength of the oscillations and the spacing of
the cracks increase with ∆T . In particular [32] shows that for ∆T � ∆Tc the initial crack spacing
is proportional to

√
`0`. Figure 5 reports the evolution of the dissipated energy versus time for the

three cases of Figure 4. We note in particular that, while the evolution is smooth for intense thermal
shocks (see the curve ∆T = 8∆Tc), for mild shocks there are jumps in the energy dissipation and
hence in the crack length (see the curve ∆T = 2∆Tc). These jumps correspond to snap-backs in
the evolution problem, where the minimization algorithm is obliged to search for a new solution,
potentially far from the one at the previous time step.

This problem constitutes a relevant and difficult test for the solver. First, the presence of a
large number of cracks renders the elastic subproblem particularly ill-conditioned, and tests the
effectiveness of the linear subsolvers and the coupled preconditioning strategy. Second, the presence
of bifurcations and snap-backs stresses the convergence and effectiveness of the outer nonlinear
solver. Third, the solution of the overall quasi-static evolution problem is strongly influenced by the
irreversibility condition, testing the effectiveness of the variational inequality solvers.

t = 1.61

t = 1.71

t = 5.0

t = 0.76

t = 1.61

t = 0.66

t = 0.81

t = 5.0

Intensity = 2 Intensity = 4 Intensity = 8

t = 5.0

Figure 4. Snapshot of the evolution of the damage variable α during the evolution (blue: α = 0; red: α = 1)
showing the initial solution independent of the x1 variable, the emergence of a periodic crack pattern and
its selective propagation with period doubling. Each column corresponds to the result obtained for a specific
intensity, increasing from left (2) to right (8). Here ` = 1 and the slab dimensions are 40× 10 with a mesh

size h = 0.2.

5. RESULTS OF NUMERICAL EXPERIMENTS

We present here the results of the numerical experiments that were performed to assess the
performance of the proposed solvers. All problems were solved to an absolute l2 residual tolerance
of 10−7. For each test problem, we analyse the dependence of the results on the relevant physical
parameter: we vary the internal length ` in the traction and surfing tests, and the intensity of the
loading ∆T/∆Tc in the thermal shock problem.
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Figure 5. Dissipated energy versus time for the thermal shock problem with intensity ∆T/∆Tc equal to
0.9, 2, 4 and 8, as in Figure 4. For intensity ∆T = 2∆Tc, the evolution shows two clear jumps in time,
corresponding to snapbacks and sudden crack growths. By contrast, the evolution is smooth for ∆T = 8∆Tc.

` ω = 0.8 ω = 1.0 ω = 1.2 ω = 1.4 ω = 1.6 ω = 1.8 reduction

0.20 361 233 148 98 174 394 57.94%
0.10 564 369 251 159 148 307 59.89%
0.05 1168 773 537 368 236 320 69.47%
0.02 2523 1680 1182 835 569 461 72.56%

Table I. Impact of over-relaxation on the surfing case. Standard alternate minimization converges slowly,
and over-relaxation significantly reduces the number of iterations required.

` ω = 0.8 ω = 1.0 ω = 1.2 ω = 1.4 ω = 1.6 ω = 1.8 reduction

0.10 124 53 111 181 324 729 0%
0.05 120 37 115 185 326 747 0%
0.02 132 39 121 195 332 726 0%
0.01 139 39 121 186 325 709 0%

Table II. Impact of over-relaxation on the traction case. Standard alternate minimization converges rapidly
for all values of ` and over-relaxation hinders convergence.

∆T/∆Tc ω = 0.8 ω = 1.0 ω = 1.2 ω = 1.4 ω = 1.6 ω = 1.8 reduction

2 3577 2364 1685 1273 1095 1666 53.68%
4 3283 2156 1548 1184 1023 1611 52.55%
8 5100 2619 1844 1354 1094 1542 58.23%
16 5097 3382 2367 1669 1226 1756 63.75%

Table III. Impact of over-relaxation on the thermal shock case. Standard alternate minimization converges
slowly, and over-relaxation significantly reduces the number of iterations required.

5.1. Over-relaxation

We first consider ORAM, the over-relaxation of alternate minimization described in section 2.1.
Each problem of section 4 was solved with values of the over-relaxation parameter ω taken from
{0.8, 1.0, . . . , 1.8}. To consider the effect of over-relaxation alone, the Newton solver was disabled
and all linear solves were performed with LU [71].

14



time (s)
` alternate minimization alone composite solver reduction

0.20 9.11 3.68 59.60%
0.10 27.00 15.43 42.85%
0.05 168.42 96.83 42.51%
0.02 2643.86 1886.53 28.64%

Table IV. Combining alternate minimization with Newton’s method for the surfing case. This further reduces
the runtime of the solver compared to over-relaxed alternate minimization.

time (s)
` alternate minimization alone composite solver reduction

0.10 2.94 2.60 11.56%
0.05 5.94 5.71 3.87%
0.02 41.90 29.32 30.02%
0.01 195.97 175.06 10.67%

Table V. Combining alternate minimization with Newton’s method for the traction case. In this case, the
gains are modest.

time (s)
∆T/∆Tc alternate minimization alone composite solver reduction

2 312.29 215.68 30.94%
4 319.87 220.73 30.99%
8 335.38 238.28 28.95%
16 386.57 287.48 25.63%

Table VI. Combining alternate minimization with Newton’s method for the thermal shock case. This further
reduces the runtime of the solver compared to over-relaxed alternate minimization.

The results for the surfing, traction and thermal shock problems are shown in Tables I, II and III
respectively. In all tables, the reduction column describes the decrease in iterations for the optimal
ω compared to standard alternate minimization, ω = 1. In the traction case, standard alternate
minimization is extremely efficient: a small number of iterations is required, the number of iterations
required does not grow with `, and applying any other ω slows the convergence of the method. By
contrast, in the surfing and thermal shock cases, standard alternate minimisation converges slowly,
and the number of iterations required increases as the physical parameters ` and ∆T/∆Tc are varied.
In this sense, the surfing and thermal shock cases are harder than the traction case. In these problems,
over-relaxation helps significantly, reducing the number of iterations required by a factor between
1/2 and 3/4. Furthermore, the advantage gained by over-relaxation increases as the problem gets
harder.

5.2. Composition of alternate minimization with Newton’s method

We next consider ORAM-N, the composition of alternate minimization with Newton’s method as
described in section 2.3. For these experiments, Newton’s method was attempted once alternate
minimization had reduced the l2 norm of the residual by 10−1. All linear solves (both for alternate
minimization and Newton’s method) were performed with LU, and all alternate minimizations
employed the optimal over-relaxation parameter determined in the previous experiments (ω = 1.6
for the surfing and thermal shock cases, ω = 1 for the traction case). The time in seconds was
measured for both approaches, as comparing iteration counts would be irrelevant. The runs were
executed in serial on an otherwise unloaded Intel Xeon E5-4627 3.30 GHz CPU with 512 GB of
RAM.
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The results for the surfing, traction and thermal shock problems are shown in Tables IV, V and
VI respectively. Again, the traction case is unusual compared to the other two: while the gains are
marginal in the traction case, composition yields a worthwhile and consistent reduction in runtime
for the other tests. If a more robust semismooth Newton solver were available, the speedup from
composition would further increase.

5.3. Preconditioning the full Jacobian

The preconditioner (20) requires inner solvers for the displacement elasticity operator A and
the damage Helmholtz operator C. We first consider the performance of (20) with ideal inner
solvers (LU), to investigate how the iteration counts scale with the physical parameters and with
mesh size h. We then consider the performance with practical inner solvers, two V-cycles of
algebraic multigrid for A and C. Each Jacobian solve was terminated when the l2 norm of the
residual was reduced by a factor of 10−6, although adaptive tolerance selection should be used
in practical calculations to retain quadratic convergence of the inexact Newton method [72]. For
each configuration of physical parameters and h, the total number of Krylov iterations required for
convergence over all loading steps was divided by the total number of Newton iterations, to compute
the average number of Krylov iterations required to solve a Jacobian. In these experiments the
alternate minimization was terminated with a relative residual reduction of 10−3, or if the absolute
residual norm reached 10−6. As the gains from employing Newton’s method in the traction case
were marginal, we consider here only the surfing and thermal shock problems.

The results for the surfing case with ideal and practical inner solvers are shown in Tables VII and
VIII, and the corresponding results for the thermal shock case are shown in Tables IX and X. In the
surfing case, the number of iterations required grows slowly as the mesh is refined, and grows slowly
as ` is reduced. However, even for the smallest ` on the finest mesh, the number of outer Krylov
iterations required is modest, and the results barely differ if the ideal inner solvers are replaced with
practical variants. In the thermal shock case, the number of iterations required stays approximately
constant as the mesh is refined, and grows slowly with the intensity ∆T/∆Tc. Here, replacing
the ideal inner solvers with practical variants does have a measurable cost in iteration count; this
could be reduced by tuning the parameters of the algebraic multigrid algorithm employed, or by
employing stronger inner solvers. These results show that the preconditioner (20) is a practical and
efficient solver for the full coupled Jacobian, whose performance degrades slowly as the difficulty
of the problem is increased.

6. CONCLUSION

In this paper we proposed several improvements to the current standard algorithm for solving
variational fracture models. Over-relaxation is extremely cheap and simple to implement, but can
greatly reduce the number of iterations required for convergence. Composing over-relaxed alternate
minimization with Newton-type methods yields a further decrease in runtime, although at a more
significant development cost. Together, these improvements to alternate minimization reduce the
time to solution by a factor of 5–6× for the surfing and thermal shock test cases. Lastly, we
proposed and tested preconditioners for the linear subproblems in alternate minimization and the
coupled Jacobian arising in the Newton iterations when solving the whole problem with a monolithic
active set method. These efforts are complementary to other approaches recently proposed in the
literature, such as adaptive remeshing [44], adaptive time-stepping, continuation algorithms [39], or
refined line-search techniques [40] that were not considered in this work. Our tests focus only on
the simplest settings for variational fracture mechanics assuming small deformations and a simple
rate-independent material behaviour. However, the developed techniques can be readily adapted to
more complex contexts, including hyperelasticity, viscoelasticity, and inertial effects.

These results suggest several directions for future research. It would be highly desirable to
develop a convergence analysis of block over-relaxed nonlinear Gauss-Seidel for variational
inequalities, although we do not anticipate this will yield constructive insight for the choice of the
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average Krylov iterations
` h = `/5 h = `/10 h = `/15

0.20 6.17 9.47 12.03
0.10 8.92 10.91 13.53
0.05 10.74 13.07 15.58
0.02 13.07 14.95 18.03

Table VII. The average Krylov iterations per Newton step for different internal lengths ` and mesh sizes h
for the surfing case, with ideal inner solvers (LU). The preconditioner depends weakly on mesh refinement

and on `.

average Krylov iterations
` h = `/5 h = `/10 h = `/15

0.20 6.33 10.57 11.64
0.10 8.50 10.93 13.68
0.05 11.13 13.53 16.15
0.02 13.53 15.61 18.80

Table VIII. The average Krylov iterations per Newton step for different internal lengths ` and mesh sizes h
for the surfing case, with practical inner solvers (AMG). Switching to practical inner solvers hardly affects

the convergence of the preconditioner.

average Krylov iterations
∆T/∆Tc h = `/4 h = `/8 h = `/16

2 10.11 7.87 6.87
4 10.56 11.44 14.70
8 15.97 19.64 17.75
16 23.15 22.37 22.03

Table IX. The average Krylov iterations per Newton step for different intensities ∆T/∆Tc and mesh sizes
h for the thermal shock case, with ideal inner solvers (LU). The preconditioner depends weakly on mesh

refinement and on Griffith length.

average Krylov iterations
∆T/∆Tc h = `/4 h = `/8 h = `/16

2 15.25 12.54 11.82
4 12.95 13.42 18.25
8 19.08 19.65 22.51
16 27.79 27.22 29.54

Table X. The average Krylov iterations per Newton step for different intensities ∆T/∆Tc and mesh sizes
h for the thermal shock case, with practical inner solvers (AMG). In this case, using practical inner solvers

somewhat degrades the convergence of the preconditioner.

over-relaxation parameter ω. It may be possible to design `-robust preconditioners for the coupled
Jacobian (where the convergence is independent of `) by choosing appropriate `-dependent inner
products for the displacement and damage function spaces. If the appropriate Babuška constants are
independent of `, the convergence will be also [73].

In this work we have considered only the simplest fracture model, assuming small deformations
and symmetric behaviour in traction and compression. Our developments on over-relaxation and
composition of alternate minimization with Newton could be applied with minor modifications to
more complex cases, including for example the tension-compression splitting of the elastic energy
to account for the non-interpenetration condition on the crack lips [22, 23, 24, 25, 26]. In this case an
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efficient solver would require the development of suitable preconditioners for the elastic subproblem
and the coupled Jacobian.
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[43] Burke S, Ortner C, Süli E. An adaptive finite element approximation of a variational model of
brittle fracture. SIAM Journal on Numerical Analysis 2010; 48(3):980–1012.

[44] Artina M, Fornasier M, Micheletti S, Perotto S. Anisotropic mesh adaptation for crack
detection in brittle materials. SIAM Journal on Scientific Computing 2015; 37(4):B633–B659.

[45] Brune P, Knepley MG, Smith B, Tu X. Composing scalable nonlinear algebraic solvers.
preprint ANL/MCS-P2010-0112, Argonne National Laboratory 2013.

[46] Ortega J, Rheinboldt W. Iterative Solution of Nonlinear Equations in Several Variables. SIAM,
2000.

[47] Young DM. Iterative methods for solving partial difference equations of elliptic type. PhD
Thesis, Harvard University, Massachusetts, USA 1950.

[48] Arms RJ, Gates LD, Zondek B. A method of block iteration. Journal of the Society for
Industrial and Applied Mathematics 1956; 4(4):220–229.

[49] Kahan W. Gauss-Seidel methods of solving large systems of linear equations. PhD Thesis,
University of Toronto, Ontario, Canada 1958.

[50] Ostrowski AM. On the linear iteration procedures for symmetric matrices. Rendiconti di
Matematica e sue Applicazioni 1954; 5(14):140–163.

[51] Reid JK. A method for finding the optimum successive over-relaxation parameter. The
Computer Journal 1966; 9(2):200–204, doi:10.1093/comjnl/9.2.200.

[52] Munson TS. Algorithms and environments for complementarity. PhD Thesis, University of
Wisconsin-Madison, Wisconsin, USA 2000.

20

http://www.sciencedirect.com/science/article/pii/S0045782515004235
http://www.sciencedirect.com/science/article/pii/S0045782515004235


[53] Benson SJ, Munson TS. Flexible complementarity solvers for large-scale applications.
Optimization Methods and Software 2006; 21(1):155–168.

[54] Fischer A. A special Newton-type optimization method. Optimization 1992; 24(3–4):269–284.

[55] Facchinei F, Soares J. A new merit function for nonlinear complementarity problems and a
related algorithm. SIAM Journal on Optimization 1997; 7(1):225–247.

[56] Hestenes MR, Stiefel E. Methods of conjugate gradients for solving linear systems. Journal of
Research of the National Bureau of Standards 1952; 49(6):409–436.

[57] Adams MF, Bayraktar HH, Keaveny TM, Papadopoulos P. Ultrascalable implicit finite
element analyses in solid mechanics with over a half a billion degrees of freedom.
ACM/IEEE Proceedings of SC2004: High Performance Networking and Computing,
Pittsburgh, Pennsylvania, 2004.

[58] Falgout RD. An introduction to algebraic multigrid computing. Computing in Science &
Engineering 2006; 8(6):24–33.

[59] Hernandez V, Roman JE, Vidal V. SLEPc: A scalable and flexible toolkit for the solution of
eigenvalue problems. ACM Transactions on Mathematical Software 2005; 31(3):351–362.
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