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Abstract

When written in an Eulerian frame, the conservation laws of contin-
uum mechanics are similar for fluids and solids leading to a single set of
variables for a monolithic formulation. Such formulations are well adapted
to large displacement fluid-structure configurations, but stability is a chal-
lenging problem because of moving geometries. In this article the method
is presented; time implicit discretizations are proposed with iterative algo-
rithms well posed at each step, at least for small displacements; stability
is discussed for an implicit in time finite element method in space by
showing that energy decreases with time. The key numerical ingredient
is the Characterics-Galerkin method coupled with a powerful mesh gen-
erator. A numerical section discusses implementation issues and presents
a few simple tests. It is also shown that contacts are easily handled by
extending the method to variational inequalities. This paper deals only
with incompressible neo-Hookean Mooney-Rivlin hyperelastic material in
two dimensions in a Newtonian fluid; but the method is not limited to
these; compressible and 3D cases will be presented later.

Finite Element, Fluid-Structure, Energy Stable, Monolithic scheme, Characteristics-
Galerkin, Eulerian Formulation.
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Introduction

For the numerical simulation of fluid-structure interactions, arbitrary Lagrangian
Eulerian methods (ALE) are popular and efficient in the case of small displace-
ments (see [32] and the references therein). For large displacements the difficulty
is transferred to the mesh [27] [37] and to a lesser extent to the matching condi-
tions at the fluid-solid interface [25]. Furthermore, iterative solvers which rely
on alternative solutions in the fluid part and in the structure part are subject
to the added mass effect and require special preconditioners [17][8]. Cited ref-
erences here are certainly not exhaustive as an enormous amount of work has
gone into ALE methods.

Immersed boundary methods (IBM)[28] are very efficient for thin structures.
For solid shells or membranes in 3D fluids, precision seems to require level sets
and for 3D solids mesh adaption [12], yet it is a very flexible method which has
been shown stable – for a given deformation map – by Boffi et al [5].

The Eulerian approach makes use of the fact that continuum mechanics does
not distinguish between solids and fluids up to the constitutive equations. Clas-
sically, one uses the Lagrangian variable, denoted x = X(x0, t), to restate the
equations for the structures in terms of the x0-gradient of its displacement
d(x0, t) := X(x0, t) − x0 defined in the initial domain x0 ∈ Ωs0. In an Eule-
rian formulation one frames the solids by its velocity u(x, t) and displacement
d(x, t) = x−X−1(x, t) in the moving domain x ∈ Ωst with x-gradients of these;
here X−1 is the inverse map of x0 7→ x = X(x0, t).

These facts have been highlighted particularly in [26] (and perhaps also in
[3]) and even more so by Stefan Turek in [22] (yet still using d(x0, t) and ALE)
who revived the term “monolithic”; we use it here in this sense: one variational
equation for the whole system both at the continuous and discrete levels by
opposition to a partition or segregated approach.

In a series of papers in the wake of Thomas Dunne’s thesis (2007) (see
[14][15]), ALE was replaced by a fully Eulerian algorithm for the structure and
the fluid. As more papers have been written on this topic, in particular by Rolf
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Rannacher[16] (hierarchical meshes)[33] (adaptive meshes), Thomas Wick[37]
(comparison with ALE), Thomas Richter[35][36] ((an XFEM-like strategy to
capture the interface and also an immersed boundary-like strategy and fixed
meshes) and Stefan Frei[19] (detailed study of contacts) we will refer to them
as of the Heidelberg school.

While embarking on Eulerian formulations, in [30], we were not aware of the
work of the Heidelberg school and so while rediscovering the formulation which
appeared first in Dunne’s thesis we devised different discretization and solution
strategies.

More precisely while Dunne works with velocities in the fluid and displace-
ment d(x, t) in the solid, we propose to work with velocities everywhere as in
[36]. There are minor differences in the continuous formulation (no inverse ma-
trix of ∇d) and essential differences in the solver at each time step and in the
spatial discretizations; while an immerse boundary fixed mesh method is used
in [35] and an XFEM-like method in [36], we update the solid region with a La-
grangian mesh; it is a departure from the fully Eulerian paradigm but it is only
for the mesh. One reason for this choice is that for moving domains it is hard
to find a better mesh adaptation than the one given by the solid deformation
itself; another reason is that we can prove energy stability with it.

Several differences with the previous work of the Heidelberg school are high-
lighted here:

1. In our case every step requires the solution of a well posed problem, at
least in the case of small displacements.

2. We use the Characteristics-Galerkin method to solve the equation which
connects the velocity to the displacement in Eulerian coordinates:

3. We propose an implicit in time adaptation of the fluid-structure interface,
which requires fixed-point type iterations at each time step but which
allow us to establish an energy estimate, even in the fully discrete case.

4. Finally we move the vertices of the mesh in the structure with its own
velocity u while we remesh at every time step in the fluid.

This Eulerian monolithic approach is presented in two dimensions for Mooney-
Rivlin neo-Hookean incompressible hyperelastic materials coupled to incom-
pressible Newtonian flows but it extends to compressible materials [31] and
to three dimensions [11].

The paper may be difficult to follow by readers used to work with structures
modeled by the equations of elasticity in the initial domain. So a summary of
the Eulerian approach is given before embarking on a more detailed derivation
of the equations.

In sections 1 and 2 we recall the fundamental principles and the algebra
that lead to the Eulerian formulation (5) for a fluid-structure problem. Unsur-
prisingly this monolithic formulation is in term of velicity-pressure u, p for the
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fluid part and displacement-pressure d, p for the solid part; however it requires
a little rethinking to write the structure part in the moving domain Ωst .

A key point in section 3 for the fully implicit in time discretization of system
(5) is the approximation of the purely convective space-time PDEs by finite-
difference in time approximations of the material derivatives. In variational form
this is known as the Characteristics-Galerkin method [29]. Henceforth dn+1 can
be eliminated in favor of un+1 so as to obtain a monolithic FSI system which
involves a solver in terms of un+1 and pn+1 only, and in the full domain; this is
(7).

Now there is a delicate problem with PDEs written on time dependent do-
mains: dn+1(x) (resp. dn(x)) makes sense only if x ∈ Ωsn+1 (resp. x ∈ Ωsn).
This forces the following definition for Ωsn+1: it is the set of x such that
x − un+1(x)δt ∈ Ωsn. This is both a difficulty and an advantage. It requires
an iterative solution of (7) with a readjustment of Ωsn+1 – we propose in (9) a
simple fixed point iteration scheme– but it is also an asset because, evidently,
Ωsn+1 is an unknown and an implicit scheme should iterate on it.

Although we cannot prove that the fixed point scheme converges, we can
prove (see section 4) that at each step the problem is well posed for small
displacements and that it is a first order consistent time approximation of the
continuous problem. Moreover we can prove that the scheme is energy stable
(Theorem 2 of section 5).

In section 6, we propose a spatial approximation by the finite element
method. Because of the fluid part – and probably also for the solid part– the
velocity and pressure spaces have to be compatible with the inf-sup condition.
One natural choice is the P 2−P 1 triangular conforming element, yet one has to
allow for discontinuity in the pressure at the fluid-structure interface. Another
well known element is the P 1bubble−P 1 element. One great feature of this last
choice is that with a minor modification it is energy stable too. To achieve this
goal the cubic bubble is replaced by a linear bubble constructed by dividing
the pressure triangles into 3 subtriangles using any point in pressure triangles
as fourth vertex. We refer below to it as the P 1

3 − P 1 element. Finally, the
simplest is to use a stabilized P 1 − P 1 element on the same grid for velocities
and pressure; this leads also to an energy stable scheme.

Adapting the mesh to moving domains is difficult and in fact the Heidelberg
school has several of their aforementioned papers devoted to this problem. We
propose a boundary fitted strategy (by opposition to IBM): move the solid mesh
with its own velocity and remesh the fluid part by a Delaunay-Voronoi algorithm
from the knowledge of the new position of the interface boundary. It requires
a projection step in the fluid (most other options we know of do too); here it
is done by linear or quadratic interpolation, depending on the degree of the
element. Such an algorithm is compatible with the energy stability result, at
least in the solid part; in the fluid part it would require an energy diminishing
projection operator in place of interpolation, but our numerical tests do not
point to such a complicate necessity.

Finally, in section 7, we show briefly that contacts modeled by variational
inequalities are fairly easy to handle with this Eulerian monolithic scheme, espe-
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cially if a semi-smooth Newton method is used for solving the nonlinear system.

Now, besides energy stability, an important part of this article is devoted to
the numerical implementation, with the following aim:

1. Validate the theoretical propositions: in all our numerical tests we found
the method to be quite robust and and capable of giving decent results
even with coarse meshes. Hence it is very fast; all tests are done on a
Macbook Pro in minutes, except the flag behind a cylinder in subsection
8.2 which requires half an hour.

2. Study the stability of the fixed point iterations: 2 iterations is an optimal
choice.

3. Study error estimates, energy and mass conservation.

4. Compare with results available in the literature.

Errors are not as good as expected from the degree of the polynomial approx-
imation. In a way this is expected because at the fluid-structure interface the
gradient of the velocities are discontinuous. This is shown in subsection 8.1 on a
configuration for which we have a semi-analytical solution with a discontinuous
gradient.

The conservation of energy is studied in subsection 8.3 . The results are
very good but they do not show that the P 1

3 − P 1 element is better that the
P 1bubble-P 1 element. They show however that two iterations are much better
than one in the fixed point algorithm (it was shown in [30] that 3 iterations or
more make no improvement). For the conservation of mass the results are also
within 1% after 50 time steps.

Comparison with earlier numerical results is made difficult by the fact that
most studies except one by Dunne [33] have been done for compressible solids.
We have performed two cases proposed by Dunne and one by Frei [19] for
contact. Agreement with Dunne’s (subsection 8.2) is not good in one case but
good in the other and excellent with Frei’s (subsection 8.4), even though Frei’s
is for a compressible solid; probably the solid is hard enough and hence almost
incompressible.

1 Continuum Mechanics: notations

Consider two non overlapping time dependent bounded sets of R2, Ωft and Ωst for

the fluid and solid respectively, t ∈ (0, T ). Let the full domain be Ωt = Ωft ∪Ωst .

The fluid-structure interface is denoted Σt = Ωft ∩ Ωst and the boundary of Ωt
is ∂Ωt. Later we will denote Γ the part of ∂Ωt where either the structure is
clamped or the fluid does not slip (see Figure 1) At initial time Ωf0 and Ωs0 are
prescribed.

The following notations are standard in continuum mechanics (e;g. [24],[3],
[1]):
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Ωft Γ

Ωst

Σt

Figure 1: Sketch of the fluid - structure domain and notations

- X : Ω0 × (0, T ) 7→ X(x0, t) ∈ Ωt, the Lagrangian position at t of x0; in other
words, a material point at x0 at t = 0 is tranported to X at time t by the
motion.

- u = ∂tX, the velocity of the motion,

- F = ∇Tx0
X := (∇x0X)T = ((∂x0j

Xi)), the transposed gradient of the motion.
We follow [4]; however in some books on continuum mechanics the gradient
is the contravariant gradient and the transposed operator is absent.

- d = X(x0, t)− x0, the displacement vector of the structure.

We denote by trA and detA the trace and determinant of A. To describe the
system, let ρ(x, t) be the density and σ(x, t) the stress tensor. at position x and
time t. Finally and unless specified otherwise, all spatial derivatives are with
respect to x ∈ Ωt and not with respect to x0 ∈ Ω0.

We recall a few properties:

1. If φ is a function of x = X(x0, t), x0 ∈ Ω0,

∇x0
φ = ((∂x0i

φ)) =
∑
j

((∂x0i
Xj∂xj

φ)) = FT∇φ.

2. When X is one-to-one and invertible, d and F can be seen as functions of
(x, t) instead of (x0, t). They are related by

FT = ∇x0
X = ∇x0

(d + x0) = ∇x0
d + I = FT∇d + I, ⇒ F = (I−∇d)−T (1)

3. Time derivatives are related by (notice the notation for the material deriva-
tive)

Dtφ :=
d

dt
φ(X(x0, t), t) = ∂tφ(x, t) + u · ∇φ(x, t).

Finally, it is convenient to introduce the notations:

J = detF, Du = ∇u +∇Tu.
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Conservation of momentum and conservation of mass take the same form for
the fluid and the solid:

ρDtu = f +∇ · σ, d

dt
(Jρ) = 0, (2)

where f is the density of volumic forces. So Jρ = ρ0 at all times and, conse-
quently, if the medium is incompressible, ρ is constant in the fluid and constant
in the solid if it was constant at t = 0. We denote these constants by ρf and ρs

and at any point x and time t, the density is ρ(x, t) = ρf1Ωf
t
(x, t) +ρs1Ωs

t
(x, t),

where 1Ω(x) = 1 if x ∈ Ω and 0 otherwise.
Continuity of u and of σ · n at the fluid-structure interface Σ (with n its

normal) is part of (2), in absence of external surface force. There are also
unwritten constraints pertaining to the realizability of the map X (see [10],[24]),
for instance X must be invertible.

1.1 Constitutive Equations

In this work we shall consider only two dimensional hyperelastic incompress-
ible Mooney-Rivlin materials – also referred as neo-Hookean – and Newtonian
incompressible viscous fluids; for those the stress tensors are

σf := σ|Ωf
t

= −pfI + µDu, σs := σ|Ωs
t

= −psI + ∂FΨFT (3)

The Helmholtz potential Ψ for a Mooney-Rivlin material is given by

Ψ(F) = c1(trFTF − 2) + c2(tr(FTF)2 − tr2
FTF − 2).

where c1, c2 are constant (see [10]) . Consequently ∂FΨFT = (2c1−4c2trFTF)FFT+
4c2(FFT )2.

In 2d, with any symmetric non singular matrix B, one can express B−1 and
B2 in terms of B and the identity I by the Cayley-Hamilton theorem. Now by
making use of (1) one obtains – for some scalars α, α′, functions of x and t,

∂FΨFT = 2c1(I−∇d)−T (I−∇d)−1 + αI = 2c1(Dd−∇d∇Td) + α′I. (4)

We now have a complete set of equations (2,3,4) in which the initial domain
Ωs0 does not appear.

2 Eulerian Variational Formulation in 2D

Written in variational form system (2,3,4) is:

Given Ωf0 ,Ω
s
0 and d,u at t = 0, find (u, p,d,Ωft ,Ω

s
t ) with u|Γ = 0 and∫

Ωf
t ∪Ωs

t

[
ρDtu · û −p∇ · û− p̂∇ · u

]
+

∫
Ωf

t

µ

2
Du : Dû
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+

∫
Ωs

t

c1(Dd−∇d∇Td) : Dû =

∫
Ωf

t ∪Ωs
t

f · û, (5)

for all (û, p̂) with û|Γ = 0, where d, Ωst and Ωft are defined forward in time by
Dtd = u and

dχ

dτ
= u(χ(τ), τ), χ(t) ∈ Ωrt ⇒ χ(τ) ∈ Ωrτ ∀τ ∈ (0, t), r = s, f (6)

We have used the notation B : C = trBTC. Relation (6) defines Ωst ,Ω
f
t forward

in time.
For simplicity we shall consider only the case of homogeneous boundary

conditions on Γ ⊂ ∂Ω, i.e. clamped or no-slip, and homogeneous Neumann
conditions on ∂Ωt\Γ.

Remark 1 A similar formulation has been used by Dunne in [15], eq.(9) (see
also[14]), but for compressible materials ans using the first form in (4). To solve
the problem at each time step they use Newton iterations on the whole system.
By contrast we will eliminate d from the time discretized system at each time
step.

3 Discretization in Time

3.1 A Monolithic Time-Discrete Variational Formulation

Theorem 1 The following variational problem is a first order in time consistent
approximation of (5): find un+1, pn+1,Ωn+1 with∫

Ωn+1

[
ρn+1

un+1 − un ◦ Yn+1

δt
· û− pn+1∇ · û− p̂∇ · un+1

]
+

∫
Ωf

n+1

µ

2
Dun+1 : Dû

+c1

∫
Ωs

n+1

[D(d̃n + δtun+1)−∇(d̃n + δtun+1)∇T (d̃n + δtun+1)] : Dû =

∫
Ωn+1

f · û,

Ωn+1 = {x : Yn+1(x) := x− δtun+1(x) ∈ Ωn} (7)

where the ˜ stands for the composition with Yn+1, i.e. d̃n = dn ◦ Yn+1, and
where d is updated by

dn+1 = d̃n + δtun+1. (8)

We defer the proof to a dedicated section, after showing how the problem can
be solved numerically.

3.2 Iterative Solution by Fixed Point

In (5), the bilinear part on Ωft is identical to that of a time dependent Stokes
problem. The integral in the solid region, on the other hand, is a trilinear form;
as the term of degree 3 is O(δt2), we neglect it and solve the nonlinearity due to
Y and Ωf ,Ωs, by an iterative process which is essentially a fixed point algorithm:

8



1. Set ρ = ρn, Ω = Ωn,u = un,Y(x) = x− δtu.

2. Solve, for all û, p̂ with û|Γ = 0,∫
Ω

[ρ
un+1 − ũn

δt
· û− pn+1∇ · û− p̂∇ · un+1] +

∫
Ωf

µ

2
Dun+1 : Dû

+

∫
Ωs

δtc1(Dun+1 −∇d̃n∇Tun+1 −∇un+1∇T d̃n) : Dû

=

∫
Ω

f · û−
∫

Ωs

c1(Dd̃n −∇d̃n∇T d̃n) : Dû (9)

3. Set u = un+1,Y(x) = x− δtu,Ωr = Y−1(Ωrn), r = s, f , update ρ by Ω.

4. If not converged return to Step 2.

Remark 2 It will be seen below that, after discretization in space, setting Y(x) =
x − δtu,Ωr = Y−1(Ωrn), r = s, f means to move each vertex q of the triangu-
lation of Ωs to q + δtu(d) and adapt Ωf to be compatible with Ωs, for instance
by remeshing entirely from the knowledge of the new position of the interface.

Remark 3 Notice that (9) contains a bilinear form on un+1 in Ωsn+1 which
may not be coercive. So we do not know that the problem is well posed, nor can
we prove that the iterations converge. However for small displacements Du will
dominate ∇u∇d and so the problem will be well posed for sufficiently small ∇d.

4 Proof of Theorem 1

To prove theorem 1 we need first to recall the Characteristics-Galerkin method
and apply it to (5).

4.1 Discretization of Material Derivatives

Given t ∈ (0, T ) and x ∈ Ω, let χtu,x(τ) be the solution at time τ of

χ̇(τ) = u(χ(τ), τ) ,∀τ ∈ (0, t), with χ(t) = x.

If u is Lipschitz in space and continuous in time the solution exists. The
Characteristics-Galerkin method relies on the concept of material derivative:

Dtv(x, t) :=
d

dτ
v(χ(τ), τ)|τ=t = ∂tv + u · ∇v.

Given a time step δt, let us approximate χ by Y:

χ
(n+1)δt
un+1,x (nδt) ≈ Yn+1(x) := x− un+1(x)δt

Remark 4 Note that

Jn+1 := det∇Yn+1 = 1−∇ · un+1δt+ det∇un+1δt2. (10)

So, in the incompressible case, one can neglect the Jacobians and still be O(δt)-
consistent.
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4.2 Variational Form of the Time Discrete Problem

Thus a consistent time discretization of (5) would be that at each time step one
must:
Find un+1 ∈ H1

0(Ωn+1), p ∈ L2(Ωn+1), Ωfn+1, Ωsn+1, such that with Ωn+1 =

Ωfn+1 ∪ Ωsn+1, ∀û ∈ H1
0(Ωn+1), ∀p̂ ∈ L2(Ωn+1) the 3 relations below hold:∫

Ωn+1

[
ρn+1

un+1 − un ◦ Yn+1

δt
· û− pn+1∇ · û− p̂∇ · un+1

]
+

∫
Ωf

n+1

µ

2
Dun+1 : Dû

+ c1

∫
Ωs

n+1

[Ddn+1 −∇dn+1∇Tdn+1] : Dû =

∫
Ωn+1

f · û, (11)

Ωn+1 = (Yn+1)−1(Ωn) = {x : Yn+1(x) := x− δtun+1(x) ∈ Ωn} (12)

dn+1 = dn◦Yn+1 + δtun+1. (13)

Remark 5 Note that ρ = ρf1Ωf
t

+ρs1Ωs
t

is convected by the velocity u. Denot-

ing ρn(x) := ρ(x, nδt),

ρn ◦ Yn+1(x) = ρn+1(x), x ∈ Ωn+1

So discretizing the material derivative of u or the material derivative ρu gives
the same scheme because in both cases

1

δt

(
vn+1(x)− vn(Yn+1(x))

)
= (∂tv+u∇v)|x,tn+1+O(δt) with v = u or v = ρu

�

Now to solve (11,12,13), let us plug (13) into (11) to obtain the “monolithic”
formulation of Theorem 1, i.e. using,

∇dn+1 = ∇d̃n + δt∇un+1

Thus (7) is proved.

5 Stability by Energy estimation

5.1 Conservation of Energy in the Continuous Case

The following is standard; it is given here as an aid for the proof of the same
for the discretized system.

Proposition 1

d

dt

∫
Ωt

ρ

2
|u|2 +

µ

2

∫
Ωf

t

|Du|2 +
d

dt

∫
Ωs

0

Ψ(I +∇Tx0
d) =

∫
Ωt

f · u
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Proof. Choosing û = u, p̂ = −p will give the proposition provided

2c1

∫
Ωs

t

(Dd−∇d∇Td) : DDtd =
d

dt

∫
Ωs

0

Ψ(∇x0
X).

By construction∫
Ωs

t

c1(Dd−∇d∇Td) : Dû =

∫
Ωs

t

(∂FΨ(F)FT − αI) : Dû =

∫
Ωs

0

∂FΨ(F) : Dx0 û

Now as
d

dt
Ψ(F) = ∂FΨ(F) : ∂tF and ∇x0

u(x0) = ∂t∇x0
d(x0) = ∂tF

T (x0),∫
Ωs

t

2c1(Dd−∇d∇Td) : ∇u =

∫
Ωs

0

d

dt
Ψ(F) =

d

dt

∫
Ωs

0

Ψ(I +∇Tx0
d).

The other terms are standard, in particular, with enough regularity on Ωrt ,∫
Ωr

t

(∂tu + u · ∇u) · u =
d

dt

∫
Ωr

t

|u|2

2
, r = f, s

Remark 6 When Ψ is convex, some regularity can be gained from this equality
which can lead to existence of solution under severe regularity assumption; one
of which (loosely speaking) is that T cannot exceed the first time two pieces of the
boundary which were not in contact initially come into contact. The first such
result is by Coutand-Shkoller [13], later improved by Boulakia [7] and extended
in a special case in [34].

5.2 Stability of the Scheme Discretized in Time

Theorem 2 When f = 0 and ρ is constant in each domain Ωrn, r = s, f ,∫
Ωn

ρn
2
|un|2 + δt

n∑
k=1

∫
Ωf

k

µ

2
|Duk|2 +

∫
Ωs

0

Ψn ≤
∫

Ω0

ρ0

2
|u0|2 +

∫
Ωs

0

Ψ0 (14)

We begin the proof with the following lemmas,

Lemma 1 The Lagrangian map Xn : Ω0 7→ Ωn, implicit from (12), satisfies
Xn+1 = (Yn+1)−1 ◦Xn, n ≥ 1 and Fn := ∇Tx0

Xn = (I−∇dn)−T .

Proof
Notice that Y1(Y2(..Yn−1(Yn(Ωn))..)) = Ω0 Hence

Xn+1 = [Y1(Y2(..Yn(Yn+1)))]−1 = (Yn+1)−1 ◦Xn.

By definition of dn+1 in (13),

dn+1(Xn+1(x0)) = dn(Yn+1(Xn+1(x0))) + δtun+1(Xn+1(x0))
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= dn(Xn(x0)) + δtun+1(Xn+1(x0)), (15)

so Xn+1(x0) = dn+1(Xn+1(x0)) + x0 and therefore

Fn+1 = ∇Tx0
(dn+1((Xn+1(x0))) + x0),

= ∇dn+1TFn+1 + I ⇒ Fn+1 = (I−∇dn+1)−T (16)

Lemma 2 For some α(x, t),

Ddn+1 −∇dn+1∇Tdn+1 = J−2
n+1[(I−∇dn+1)−T (I−∇dn+1)−1 + αI

Proof With β = det2
I−∇dn+1 , and γ the trace of (I−∇dn+1)(I−∇dn+1)T , by

the Cayley-Hamilton theorem, we have

Ddn+1 −∇dn+1∇Tdn+1 − I = −(I−∇dn+1)(I−∇dn+1)T

= β
(
(I−∇dn+1)(I−∇dn+1)T

)−1 − γI

Lemma 3∫
Ωs

n+1

c1[J−1
n+1(I−∇dn+1)−T (I−∇dn+1)−1] : Dû =

∫
Ωs

0

∂FΨn+1 : ∇x0 û

Proof
From Lemma 1,∫

Ωs
n+1

c1[J−1
n+1[(I−∇dn+1)−T (I−∇dn+1)−1] : Dû

=

∫
Ωs

n+1

c1J
−1
n+1[Fn+1Fn+1T ] : Dû =

∫
Ωs

0

c1F
n+1 : Dx0

û

=
1

2

∫
Ωs

0

∂FΨn+1 : Dx0
û =

∫
Ωs

0

∂FΨn+1 : ∇x0
û (17)

5.3 Proof of Theorem 2

Let r = s or f . Let us choose û = un+1 in (11,12,13). By Schwartz inequality

∫
Ωr

n+1

(ρrnu
n)◦Yn+1·un+1 ≤

(∫
Ωr

n+1

(
√
ρ
r
nu

n)2 ◦ Yn+1)

) 1
2
(∫

Ωr
n+1

(
√
ρ
r
n+1u

n+1)2

) 1
2

because ρrn ◦ Yn+1(x) = ρrn+1(x), x ∈ Ωrn+1. So by a change of variable∫
Ωr

n+1

ρrn+1(un ◦ Yn+1)2 =

∫
Ωr

n+1

(
√
ρrnu

n)2 ◦ Yn+1 =

∫
Ωr

n

ρrnu
n2.

12



Consequently, using ab ≤ 1
2a

2 + 1
2b

2,∫
Ωr

n+1

ρrn+1u
n ◦ Yn+1 · un+1 ≤ 1

2

∫
Ωr

n

ρrnu
n2 +

1

2

∫
Ωr

n+1

ρrn+1u
n+12

.

Finally,∫
Ωn+1

ρn+1

2
|un+1|2 + δt

∫
Ωf

n+1

µ

2
|Dun+1|2 +

∫
Ω0

Ψn+1 ≤
∫

Ωn

ρn
2
|un|2 +

∫
Ω0

Ψn.(18)

Remark 7 Inequality (18) shows that energy decays at each time step due to
fluid viscous effect. Notice however that to reach this result we had to re-
introduce in the variation formulation the second order terms in δt which we
intend to neglect in the numerical implementation; in particular Jn+1 will be
replaced by 1. No significant influence of these simplifications on the numerical
tests below has been observed.

6 Spatial Discretization with Finite Elements

Let T 0
h be a triangulation of the initial domain. Spatial discretization can

be done with Lagrangian triangular elements of degree 2 for the space Vh of
velocities and displacements and Lagrangian triangular elements of degree 1 for
the pressure space Qh provided that the pressure be different in the structure
and the fluid because the pressure is discontinuous at the interface Σ; therefore
Qh is the space of piecewise linear functions on the triangulation, continuous
in Ωrn+1, r = s, f ; V0h is the subspace of Vh of functions which are 0 on Γ. A
small penalization with parameter ε must be added to impose uniqueness of the
pressure.

Discretization in space by the Finite Element Method leads to find un+1
h , pn+1

h ∈
V0h ×Qh such that for all ûh, p̂h ∈ V0h ×Qh,∫

Ωn+1

[
ρn+1

un+1
h − unh ◦ Yn+1

δt
· ûh − pn+1

h ∇ · ûh − p̂h∇ · un+1
h

+1Ωf
n+1

µ

2
Dun+1

h : Dûh

+c11Ωs
n+1

[D(d̃nh + δtun+1
h )−∇(d̃nh + δtun+1

h )∇T (d̃nh + δtun+1
h )] : Dûh

]
=

∫
Ωn+1

f · ûh, , Ωn+1 = (Yn+1)−1(Ωn) = {x : Yn+1(x) ∈ Ωn} (19)

with dnh updated by dn+1
h = d̃nh + δtun+1

h where d̃nh = dnh ◦ Yn+1 and where

Yn+1(x) = x− δtun+1
h (x).

We claim that the proof of Theorem 2 used for the spatially continuous case
works also for the discrete case if the discrete Lagrangian maps verify

Xn = Xn+1 ◦ Yn+1. (20)
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T kn

T k0

Xn

T kn+1

Xn+1

Yn+1

qjn qjn+1

T k0

T kn T kn+1

Xn

Yn+1

Xn+1

qjn qjn+1

Figure 2: Sketch to understand if Xn = Yn+1 ◦ Xn+1; on the left the case
of P 2-isoparametric element for the velocities and on the right the case of the
P 1

3 − P 1 element where each triangle is divided into four subtriangles on which
the velocities are P 1 and continuous. A triangle T k0 in the reference domain
(chosen here to be its initial position at time zero) becomes the isoparametric
triangles T kn and T kn+1: T kn = Xn(T k0 ) and T kn+1 = Xn+1(T k0 ) in the case of
quadratic velocities. But as the vertices and mid-edges of T kn are obtained by
moving those of T kn+1 by −δtun+1 we cannot have Yn+1(T kn+1) = T kn because
the composition of two quadratic maps is of degree 4 in general. However in the
case of affine velocities, triangles are transformed into triangles and the mapping
composition property holds.

First let us consider the P 2 − P 1 element for V0h × Qh. Then the mapping
x 7→ Yn+1(x) is quadratic and may preserve an isoparametric mesh of degree 2
if the vertices and the mid-edge nodes of the mesh at time tn+1 are mapped by
Yn+1 to the corresponding vertices and mid-edge nodes of the mesh at time tn.
Unfortunately such a construction does not satisfy (20) for the obvious reason
that f ◦ g is of degree 4 when f and g are quadratic.

Now consider the P 1
3 −P 1 element: the fluid pressure and the solid pressure

are continuous and piecewise linear on the triangulation of Ωft and Ωst , sepa-
rately; then each “pressure-triangle” is divided into 3 smaller triangles by a a
fourth vertex anywhere inside the triangle; on this subdivided triangulation the
velocity is chosen continuous and piecewise linear.

Then (20) holds and the proof for the continuous case can be adapted, at
least in the solid region. The inner vertex used to construct the fluid mesh
will be moved by Yn+1 but Xn+1 ◦ Yn+1 remains linear and for each triangle
T kn = Yn+1(T kn+1) as long as the inner vertex is not transported outside the
pressure triangle.

In the fluid region, an additional difficulty occurs when the mesh is not
moved by Yn+1: a projection step from the old mesh to the new mesh must
be added. Here it is done by polynomial interpolation according to the degree

14



of the element. A careful analysis of the algorithm shows that we never have
to interpolate functions outside their domain of definition; for instance un is
defined on Ωn and needs to be interpolated when un(x − δtun+1) is computes
with x ∈ Ωn+1. As P 1-interpolations from one mesh to another reduces the L2

norms we conjecture that the energy decreases from one iteration to the next.

Remark 8 A stabilized P 1 − P 1 element for pressures and velocities could be
studied in place of P 1

3 −P 1, as in [14, 35] and others. Then a stabilization term
ω∇ · un+1∇ · v is added to the first integral in the variational formulation (19)
where ω is a mesh dependent parameter. The proof of Theorem 2 carries over

except that

∫
Ωf

n+1

µ

2
|Dun+1|2 becomes

∫
Ωf

n+1

µ

2
|Dun+1|2 +

∫
Ωn+1

ω(∇ · un+1)2.

Conclusion In the case of solid only, Theorem 2 holds for the fully discrete
problem (19) when linear elements are used. In the case of Fluid-Structure,
Theorem 2 is likely to be true too but one would have to analyze mathematically
the projection step from the mesh at time n + 1 to the mesh at time n. This
conjecture is based on the fact that interpolation of P 1 to P 1 on different meshes
reduces the norm.

7 Contacts

To each simply connected disjointed part Sit , i = 1..ns of Σt or Γt is associated
a signed distance function x 7→ dSi

t
(x) measuring the Euclidian distance of x to

Sit with the sign indicating whether x is in the structure (dSi
t
(x) < 0) or in the

fluid (dSi
t
(x) > 0) . When dSi

t
(x) = 0 for some x ∈ ∂Ω\Sit there is a contact.

Note that contacts between points on the same part Si is not covered by this
framework.

At contact points the equality in (5) becomes an inequality. Then the system
is modeled by a variational inequality with Lagrange multiplier λ:∫

Ωt

[
ρDtu · û −p∇ · û− p̂∇ · u

]
+

∫
Ωf

t

µ

2
Du : Dû

+

∫
Ωs

t

c1(Dd−∇d∇Td) : Dû +

∫
∂Ωt

λn · û =

∫
Ωt

f · û,

λ(x, t) ≤ 0, dSi
t
(x)λ(x, t) = 0 ∀x ∈ Sit , ∀t. (21)

To solve the problem we apply the discretization described above and the
Semi-Smooth Newton method proposed by Ito and Kunisch [23] which replaces
inequality constraints by equality constraints at each time step; here it is:

λn+1(x)−min{0, λn+1(x) + c0 dSi
n+1

(x + δtun+1
n (x)n(x))} = 0 ∀x ∈ Sin+1

and similarly on Γ; c0 is any positive constant. These equality constraints are
only left and right differentiable, but it is enough for a Newton-type algorithm
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to converge. In the end one needs to solve iteratively in k for each n,∫
Ωn+1,k

[
ρn+1

un+1,k+1
h − ũnh

δt
· ûh − pn+1

h ∇ · ûh − p̂h∇ · un+1
h + 1Ωf

n+1

µf

2
Dun+1,k+1

h : Dûh

+c11Ωs
n+1

[D(d̃nh + δtun+1,k+1
h )−∇(d̃nh + δtun+1,k

h )∇T (d̃nh + δtun+1,k+1
h )] : Dûh

]
+

ns∑
1

∫
Si
n+1∩{x:λ+c0dSi

n+1
(x+δtun+1,k

h (x))<0}
c3(x + δt(n · uhn+1,k+1)n)ûh =

∫
Ωn+1

f · ûh,

Ωn+1,k+1 = {x : Yn+1(x) := x− δtun+1,k+1
h ∈ Ωn} (22)

where c3 is a very large constant. The purpose of c3 is to impose x+δtun
n+1
h n(x) =

0 on the boundary where the constraint is almost active (it is not a penalization
of the constraint). Indeed it is standard practice to impose an homogeneous
Dirichlet condition at node i by changing the ith diagonal of the discrete system
to a very large value so that off-diagonal terms do not contribute; here the same
trick is used and a low order quadrature for the integral (mass lumping) will
make sure that c3 appears only on the diagonal of the linear system.

This shows that Eulerian formulations are well adapted to an easy treatment
of contacts as observed by Richter[35]. The argument above shows also that
semi-smooth Newton fits very well the Eulerian framework: it is simply an
additional surface integral. Moreover the iterations of index k can be combined
with the fixed point iterations required by the algorithm. Notice also that the
treatment of contact is symmetric; nowhere is it assumed that it is boundary Si
which hits boundary Sj .

8 Numerical Tests

In all tests except one, P 2−P 1 elements are used. The vertices in the structures
are moved by their own velocities. A procedure to extract the modified solid
boundary has been implemented in the public domain software freefem++[18]
and from this knowledge the mesh in the fluid region is rebuilt every time step
by a Delaunay-Voronoi algorithm. The number of fixed point iterations is fixed
at 2 in most tests; less results in a risk to lose mass, unless the time step is quite
small, and more does not make a difference.

8.1 Validation with a Rotating Disk

The purpose of this test is to compare the numerical solution of (19) with a
semi-analytical solution which can be computed to any desired accuracy.

A cylinder contains a fixed rigid cylindrical rod in its center, a cylindrical
layer of hyperelastic material around the rod; the rest is filled with a fluid (see
figure 3). First the system is at rest and then a constant rotation is given to the
outer cylinder. This causes the fluid to rotate with an angular velocity which
depends on the distance r to the main axis; in turn because the friction of the
fluid at the interface, the hyperelastic material will be dragged into a angular
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Fixed rod

Hyperelastic material

Fluid
outer cylinder

Vec Value
0
0.157903
0.315806
0.473709
0.631612
0.789515
0.947418
1.10532
1.26322
1.42113
1.57903
1.73693
1.89484
2.05274
2.21064
2.36855
2.52645
2.68435
2.84225
3.00016

Figure 3: A fluid-structure system inside a rotating cylinder (giving a constant
angular velocity to the fluid outer boundary) with a fixed rod in its center . Left:
sketch of the system. Right: a 2d calculation showing the velocity vectors at
time 0.85 for the coarser mesh.

velocity uθ which is also only a function of r and time . Due to elasticity uθ will
oscillate with time until numerical dissipation and fluid viscosity damps it.

In a two dimensional cut perpendicular to the main axis, the velocities and
displacements are two dimensional as well. Hence the geometry is a ring of inner
and outer radii, R0 and R1, with hyperelastic material between R0 and R and
fluid between R and R1. Because of the incompressibility of the fluid and axial
symmetry, R is constant.

In this test R0 = 3, R = 4, R1 = 5. The solid is neo-Hookean with c1 = 2
and ρs = 2. The Newtonian fluid has µ = 2, ρf = 1. The radial velocity of the
outer cylinder has magnitude 3.

As everything is axisymmetric the computation can be done in polar coor-
dinates r, θ, and the fluid-solid system reduces to

ρ∂tuθ −
1

r
∂r[ξ

fr∂ruθ + ξsr∂rd] = 0, ∂td = uθ, r ∈ (R0, R1), v|R0
= 0, uθ |R1

= 3, (23)

17



with ρ = ρs1r≤R + ρf1r>R, ξs = 2c11r≤R, ξf = µ1r>R, and with d(r, 0) = 0.
Comparison between this one dimensional system and the Eulerian 2D sys-

tem (19) is given on Figure 3, on the right, at T = 0.85 (which is the first
maximum rotation of the solid) after 70 time steps with a coarse mesh with 520
vertices.

Then the same is computed on a finer mesh with 140 time steps and 756
vertices and finally with a mesh with 1773 vertices and 280 time steps. Results
are displayed on Figure 4.
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fine mesh

    L2-error versus time
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coarse mesh 
semi-analytic
 middle mesh

        u       Angular velocity u vs radial distance r
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Figure 4: Rotating cylinder. Left: Evolution of the L2 error on the radial
velocity, between the semi-analytical solution and the 2D computation, versus
time for the 3 meshes. Right: velocities normal to the ray at θ = π/4 versus
r, computed on the 3 meshes. The solution of the one dimensional equation
is shown with green crosses; the curve corresponding to the finer mesh (blue
crosses) is hard to see because it is hidden by the green crosses when r− 3 < 0.3
and then hidden by the 2 other curves when r− 3 > 0.5 (middle mesh in dotted
blue and coarse mesh in red). Notice the discontinuity of the gradient of the
velocity at the fluid-solid interface.
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This test has two qualities: a/ the exact solution is easy to compute to any
precision; b/ the geometry does not change and hence the spatial discretization
of the Eulerian formulation can be assessed independently to the equation which
relates the displacement to the velocity because it can be simplified to dn+1 =
dn + δtun+1 instead of (8).

However, even with this simplification, Figure 4 on the right shows that the
L2 error is closer to O(h) where h is the mesh size. The right side of the same
figure shows that the solution is not smooth: there are slope discontinuities at
the fluid-structure interface, as expected. So optimal order convergence with P 2

elements for the velocities cannot be expected. There may be another reason,
similar to the Babuska paradox[2] (which says that in some problems involving
the trace of the stress on a curved boundary, approximated by a polygonal
line, convergence does not occur when the polygon converges to the curved line:
isoparametric elements have to be used).

Conclusion: The method converges but not at as fast as expected from the
degree of the polynomial approximation.

8.2 Flag Attached to a Cylinder

This is a reference test for compressible material, but not yet for incompressible
structures.

The test is called FLUSTUK-FSI-3 in [16]; it is a well established challenge,
considered to be hard, for compressible structures; FLUSTUK-FSI-3* is the
incompressible variant. A beam, shaped like a flag, made of an hyperelastic
neo-Hookean material is clamped at the back of a hard fixed cylinder in a fluid
contained in a rectangular pipe. The cylinder is slightly off the symmetry line
of the pipe so as to trigger vortex shedding at a relatively low Reynolds number.

Geometry The flag is a rectangle of size l×h at t = 0. It is attached behind a
cylinder of radius r so that the top and bottom left corners are symmetri-
cally on the cylinder; the left vertical boundary of the rectangle is inside
the cylinder. The fluid computational domain is a rectangle of size L×H;
the flow enters from the left and is free to leave on the right. The center
of the cylinder is at (c, c) with c = 0.2; other parameters are l = 0.35,
h = 0.02, L = 2.5, H = 0.41.

Fluid The density is ρf = 103kg/m3 and the reduced viscosity νf =
µ

ρf
=

10−3m2/s; the inflow velocity is horizontal and parabolic in y := x2 with

flux ŪH, with Ū = 2; namely u(0, y) = Ū

(
6

H2
y(H − y), 0

)T
. Top and

bottom boundaries are no-slip walls.

Solid ρs = ρf , c1 = 106kgm−1s−1 and no external force.
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Figure 5: An hyperelastic beam (flag) attached to a cylinder in a Navier-Stokes
flow. A snapshot of the velocity norms in the full computational domain at
t = 3.786.

Initially all velocities and displacements are zero. Around t ∼ 2, the flow starts
to oscillate and creates a Karman vortex street.

Figure 5 shows the position of the flag at t = 3.786 and a color map of the
velocity norms, while Figure 6 shows the x and y coordinates of a vertex on
the right vertical tip of the flag as a function of time. The results displayed
are obtained with a mesh with 2200 vertices and a time step equal to 0.005,
as in Dunne[14] . The results concur roughly with [16] in the sense that the
frequency is around 5.4s−1 compared to 6.7s−1 and the amplitude is around
0.015 compared to 0.013 in [16] however we do not consider this agreement
reliable.

In truth, mesh and time step refinements bring the frequency and the am-
plitude closer to 5.4s−1 and 0.025 respectively. Moreover the amplitude is very
sensitive to c1: a 10% increase induces a two-fold change.

Let it be noted, for comparison, that the same approach gives the correct
frequency (within 10%), when the structure is a compressible Mooney-Rivlin hy-
perelastic material (test case FSI-3 (see [31]) and also in absence of flag (Navier-
Stokes flow around a cylinder at Re = 100). This disagreement, which may be
due to unconverged results, will not be solved until more participants do the
tests.

8.3 Clamped Beam Falling Freely in a Fluid

The purpose of this test is to check how the algorithm preserves the invariants:
energy and mass in the case of large displacements and compare with [16].

In [16] the free fall under its own weight of the flag attached to the cylinder,
initially horizontal, is studied; the geometry is identical to the previous test.
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Figure 6: On the left (resp. right) the x (resp. y) position of a vertex on the right
tip of the flag versus time. The frequency is around 5.4s−1 and the amplitude
around 0.03. The mesh has 2200 vertices and the time step is 0.005.

IsoValue
-0.0175863
0.00866011
0.0261577
0.0436553
0.0611529
0.0786505
0.096148
0.113646
0.131143
0.148641
0.166138
0.183636
0.201134
0.218631
0.236129
0.253626
0.271124
0.288621
0.306119
0.349863

t=0.98

Figure 7: Final position of the flag at t=0.98 after it has fallen under its own
weight.
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The density of the solid is now 20, gravity is 1 and c1 = 0.25106; all other
parameters are identical to the previous case. After 50 time steps the lower
right tip of the flag is at height y = 0.01 at t = 0.97. In the present simulation
y = 0.0174 at t = 0.98. Figure 7 shows the velocity norms at this time.

We have used this test case to study conservation of mass, i.e. the area of
the flag versus time, and conservation of energy, i.e. the value versus time of
the relative difference between the energy at time n + 1 and the initial energy
minus the work of the force (gravity) at time n+ 1:

1−
(∫

Ωn+1

ρn+1

2
|un+1|2 +

n∑
1

δt

∫
Ω

f
j+1

µ

2
|Duj+1|2 +

∫
Ω0

Ψn+1
)
/
(∫

Ω0

Ψ0 −
n+1∑

1

δt

∫
Ωj

gρju
j
2

)
(24)

Three elements have been tested: P 2−P 1, P 1bubble−P 1 and P 1−P 1 without
stabilization (it seems that using D instead of ∇ for the viscous term has a
stabilizing effect).

Figure 8 displays the energy index (24) versus time. It shows that the P 1−P 1

element is the best, as the theory predicts. It also shows that one iteration in the
fixed point algorithm is not enough, two is best (similar plots with 3 iterations
have been given in [30][Figure 5] and show no improvement over 2).
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Figure 8: Free fall of a beam, clamped on the left, in a fluid initially at rest.
The energy index (24 is plotted, versus time, for several finite elements and one
or two fixed point iterations. Notice that P 1 − P 1 with 2 fixed point iterations
is best.

Finally Figure 9 displays the area of the flag versus time. Here we see that
no element is superior, but no more that 1% is lost in 50 time steps.
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Figure 9: Free fall of a beam, clamped on the left, in a fluid initially at rest.
Conservation of mass when using various finite elements and one or two fixed
point iterations.

We have also studied the P 1
3 − P 1 element with moving mid vertices; small

differences are observed but not worth the switch from P 1bubble−P 1 to P 1
3 −P 1.

Figure 10 shows the triangulation at one instant of time during the computation.
It is seen that most inner vertices stay fairly in the center of their pressure
triangles. Small differences are observed for energy balance and surface area of
the beam but not worth implementing the P 1

3 − P 1 element.

Figure 10: The P 1
3 − P 1 element is shown in action: zoom on the right tip of

the beam showing that most but not all inner vertices are in the center of the
pressure triangles. The colors correspond to the norm of the velocity vectors.
The edges in the structure are red.

Conclusion: The P 1 − P 1 element conserves energy better but all element
tested conserve energy and mass within 1% after 50 time steps even with a
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rather coarse triangulation. One fixed point iteration is not enough and we
suggest to use 2. We also suggest to use the stabilized P 1 − P 1 element instead
of P 1

3 − P 1 element.

8.4 Bouncing Ball

The purpose of this test is to analyze the performance of the algorithm in the
case of contact. The test was proposed by Thomas Richter[35] and Stefan Frei
in [19].

A circular structure of radius R = 0.4, centered at xc = 1, yc = 1, in a
rectangular cavity [0, 2] × [0, 1.5] filled with a fluid of density ρf = 1000 and
viscosity µ = 1000. The lateral walls of the cavity are numerical boundaries
where no condition is imposed in the variational formulation, i.e. σfn = 0.

The Mooney-Rivlin coefficient is c1 = 105 and ρs = 1000. The structure is
subject to a gravity g = 1 but the fluid is not. Hence the ball falls till it hits
the bottom of the cavity and then rebounds.

A snapshot shows the velocity norms in the middle of the rebound on Figure
11.

In Figure 12 the position of the lowest point on the disk is shown, versus
time, together with the vertical diameter of the disk, i.e. the distance between
the lowest and highest points on the disk versus time.

The results are identical to those obtained by Frei [19][Figure 12.4 page
138] (see also [35] for another case and [20] for a description of their Eulerian
formulation)

Conclusion: The present Eulerian formulation is well adapted to contacts
and agrees with a simulation by another team with a similar method but using
penalty instead of Semi-Smooth Newton iterations.
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Summary and Conclusion

An Eulerian fluid-structure formulation has been presented with steps to derive
an implicit in time energy stable scheme. The scheme is monolithic in the sense
that every iteration in a fixed point loop involves a linear solver on the velocities
and pressures only. Finite Element discretizations are proposed and studied
and one of them has been shown to be energy stable; it involves a standard P 1

element for the pressures (one for the fluid part and another for the structural
part) and a fancy P 1 element for the velocities on a mesh obtained by dividing
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IsoValue
-0.624592
-0.560956
-0.518532
-0.476107
-0.433683
-0.391259
-0.348835
-0.306411
-0.263987
-0.221563
-0.179139
-0.136715
-0.0942909
-0.0518668
-0.00944274
0.0329813
0.0754054
0.117829
0.160254
0.266314

t=1.65

IsoValue
-0.771878
-0.70152
-0.654615
-0.607709
-0.560804
-0.513899
-0.466993
-0.420088
-0.373182
-0.326277
-0.279372
-0.232466
-0.185561
-0.138655
-0.09175
-0.0448446
0.00206078
0.0489662
0.0958716
0.213135

t=1.75

Figure 11: Free fall of an hyperelastic disk in a fluid with rebounds on the
bottom. Two snapshots, of the velocity norms show, at t = 1.65, the beginning
of the contact and at t = 1.75, its end.
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Figure 12: Free fall of an hyperelastic disk in a fluid with rebounds on the bottom.
On the left the height of the lowest point on the disk versus time computed with 3
triangulations each twice finer than the previous one and similarly for the time
steps; the finest results are shown in blue. On the right the maximum vertical
diameter of the disk versus time computed with the finest mesh.
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the pressure elements into 3 subtriangles and an inner vertex which is allowed to
move with the structure velocity field when the mesh is updated. Alternatively
the stabilised P 1 − P 1 element can also be used with the same energy stability
property.

While it is interesting to know that there is at least one finite element space
which is energy stable, in practice it is unnecessarily complex and the usual
P 2 − P 1 or P 1bubble − P 1 elements or any other compatible element for the
inf-sup condition are acceptable.

The method has been implemented with the software freefem++[18] and
validation tests have been presented. Validation by comparison with other au-
thors is difficult because not many FSI codes exist for incompressible material
and large displacement.

The scheme is reasonably robust; occasionally it stalls while updating the
mesh in the structural region when an element is turned over by the structural
velocity. In principle such a situation could be fixed by remeshing; however
numerical tests show that when this happens a few time iterations later the
same trouble arises, indicating a deeper flaw, perhaps in the realizability of the
system.

We have also identified a precision issue due to the lack of regularity of the
velocity at the fluid-structure interface.

Nevertheless, the scheme is unusually stable and it passes most of the tests
considered difficult by the community, including contact. The code is also fast
and gives meaningful results even with coarse triangulations.

A generalization to compressible structure is available [31] and a 3D imple-
mentation is being developed [11]. Finding a second order in time extension
seems much harder.
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