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Abstract. A continuum damage mechanics model has been derived within the framework of irreversible ther-

modynamics with internal variables in order to describe the behaviour of quasi-brittle materials under various

loading paths. The anisotropic character induced by the progressive material degradation is explicitly taken into

account, and the Helmholtz free energy is a scalar function of the basic invariants of the second order strain

and damage tensors. The elastic response varies depending on the closed or open configuration of defects. The

constitutive laws derived within the framework of irreversible thermodynamics theory display a dissymmetry

as well as unilateral effects under tensile and compressive loading conditions. This approach verifies continuity

and uniqueness of the potential energy. An application to uniaxial tension-compression loading shows a good

adequacy with experimental results when available, and realistic evolutions for computed stresses and strains

otherwise.

1 Introduction

Most geomaterials and concrete are regarded as isotropic and

heterogeneous materials before any mechanical loading at

mesoscopic scale. The application of a mechanical loading

causes occurence of defects whose directions of propagation

depends on the local stress field, Microcracks propagate in a

direction normal to tension, but tend to close in the case of

compression with possible frictional slip on the lips of dis-

continuities. Complete crack closure causes a recovery of the

material stiffness in the direction of compressive stress, this

phenomenon is called unilateral effect (Ramtani et al., 1992;

Yazdani and Schreyer, 1988; Torrenti and Djebri, 1990; Kra-

jcinovic, 1989). In addition, under a simple mechanical test

one observes that cancelation of loading leads to more or less

important irreversible strains (Ortiz, 1985). These effects are

caused by frictions at crack closure.

Damage mechanics offer a convenient theoretical tool for

describing the complex mechanisms associated with dam-

age and failure processes observed under mechanical load-

ing. Many works are reported concerning damage in con-

crete and geomaterials (Yazdani and Schreyer, 1988; Ortiz,

1985; Alliche and Dumontet, 2011). The production of nu-

merous macroscopic models is mainly imposed by the com-

plexity and the variety of the observed behaviors (Pigeon,

1969; Chaboche, 1993; Rabier, 1989; Marigo, 1985). Most

approaches favor the simplicity of the formulation by using

a single scalar damage parameter to describe density of de-

fects. More realistic damage model requires a tensorial for-

mulation for a system of defects strongly influenced by the

local field of stress. Some models take into account the uni-

lateral effect (Badel et al., 2007; Halm and Dragon, 1998;

Desmorat et al., 2007; Challamel et al., 2005; Alliche and

Dumontet, 2011) and the dissymmetry between tension and

compression.

Therefore, the formulation of any continuum damage

model must account for the principal characteristics de-

scribed previously, which are summarized below:

– degradation of material properties induced by the cre-

ation or propagation of defects,

– anisotropic behavior as a consequence of damage,

– dissymmetry in behavior between tension and compres-

sion,
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– occurrence of irreversible strains after complete unload-

ing.

Furthermore the potential of free energy must verify the

property of continuity. This implies conditions on the expres-

sion of the jump of the elastic stiffness tensor in the open and

closed configuration of the discontinuities.

The present model takes in account the various charac-

teristics quoted above. The potential of free energy is con-

sidered as a scalar function of the strain and damage ten-

sors. The constitutive equations are applied to describe the

anisotropic elastic damage behavior of concrete. A con-

frontation is made with existing experimental measurements

(Murakami and Kamiya, 1997).

The model has been implemented in the finite element

software Plaxis, in order to investigate the model response

under more general stress state conditions, as well as to as-

sess the applicability of the model to geotechnical case stud-

ies such as deep underground excavations in rocks.

2 Model formulation

2.1 Tensorial damage variable

The presence of microdiscontinuities and their evolution in

the material structure leads to an alteration of its mechani-

cal properties. These microcracks exist in different forms and

at different scales, in particular in heterogeneous brittle me-

dia which geomaterials constitute one of the representative

classes.

The need for predicting the mechanical response of geo-

materials under various loading paths leads to the represen-

tation of such defects by a damage variable, which can take a

scalar or tensorial character depending on the degree of char-

acterization of defects. For this class of materials, damage

can be represented by a distribution of defects depending on

the local field of stress and strain.

Anisotropic damage results from a distribution system of

n defects. In the case of a configuration of parallel defects,

the associated damage parameter can be written as follows:

D=Dini ⊗ni, (1)

where Di is the defects density for the ith family of microc-

racks of orientation ni . Consequently, for all the defects con-

tained within the microstructure, we obtain by accounting for

all the possible orientations:

D=
∑
i

Dini ⊗ni . (2)

The second order damage tensor in Eq. (2) is symmetric

and therefore has three eigenvalues Dk associated with three

eigenvectors Ek (k = 1,2,3). Consequently, any system of

discontinuities can be represented by p parallel families of

microcracks, which can be reduced to three mutually orthog-

onal defect densities Dk (k = 1,3):

D=

3∑
k=1

Dknk ⊗nk. (3)

2.2 Thermodynamic potential and state laws

In the case of an elastic damaged material, the thermody-

namic potential of free energy w is a scalar function of two

state variables, namely the strain tensor ε and the damage

tensor D:

w = w (ε,D) . (4)

The scalar function in Eq. (4) is taken to be linear with re-

spect to D in the case of non-interacting defects and quadratic

with respect to ε to express the linear nature of the behavior

law for this class of materials. A possible form of the poten-

tial of free energy is written below:

w (ε,D)=
1

2
ε :C (D) : ε, (5)

where C (D) is the fourth order stiffness tensor of an isotropic

material for a given damage state. In particular, for the virgin

material prior to damage onset, we have:

C (D= 0)=C0. (6)

Damage can be viewed as a perturbation of the material

structure, resulting in a decrease in the potential of free en-

ergy. Therefore the potential of the damaged material is con-

sidered to be equal to the potential of the undamaged material

w0 (ε,D= 0) reduced by the energy associated with damage

wD (ε,D):

w (ε,D)= w0 (ε,D= 0)−wD (ε,D) . (7)

2.3 Identification and explicit formulation of an

anisotropic damage model

2.3.1 Linear elasticity and continuity conditions

Macroscopic modeling of damage unilateral effects consti-

tutes an open research field. Several formulations have been

proposed to solve the problem of the damage activation-

deactivation process, also called unilateral effect (Chaboche,

1992). In a critical paper review, Cormery and Welemane

(2002) have examined several existing formulations and dis-

played some inconsistencies in existing models. In particu-

lar, their theoretical investigation has demonstrated that the

formulations proposed by Chaboche (1993) and Halm and

Dragon (1996), which are based on a spectral decompo-

sition of the potential to represent the damage activation-

deactivation process, lead to an unacceptable thermodynamic

potential.
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A damage brittle material such as geomaterials exhibit dif-

ferent stiffness in compressive and tensile loading with a kink

at the origine (Ramtani et al., 1992; Curnier et al., 1995). For

modelling such an unilateral response, we consider an elas-

tic potential energy which is continuously differentiable, and

piecewise twice continuously differentiable. Furthermore we

assume that for a given damage state D, the strain space E

can be partitioned into two half-spacesE− (for compression)

and E+ (for tension) by means of a hypersurface J charac-

terized by a scalar-valued function 0 (ε):

J = {ε/0 (ε)= 0}

E− = {ε ∈ E/0 (ε)< 0}

E+ = {ε ∈ E/0 (ε)≥ 0} (8)

Let w (ε,D) designate the continuously differentiable en-

ergy function defined over the strain space E.

w+ (ε,D) and w− (ε,D) are twice continuously differen-

tiable energy functions, such that:

w (ε,D)=

{
w+ (ε,D) if 0 (ε)≥ 0

w− (ε,D) if 0 (ε)< 0

σ+ (ε,D) and σ− (ε,D) represent the first order derivatives

of the energy function over their respective subdomains E+

and E−:

σ (ε,D)=


σ+ (ε,D)=

∂w+ (ε,D)

∂ε
if 0 (ε)≥ 0

σ− (ε,D)=
∂w− (ε,D)

∂ε
if 0 (ε)< 0

In the same way, C+ (D) and C− (D) represent the second

order partial derivatives with respect to the strain tensor, de-

fined respectively over E+ and E− :

C (D)=


C+ (D)=

∂2w+ (ε,D)

∂ε2
if 0 (ε)≥ 0

C− (D)=
∂2w− (ε,D)

∂ε2
if 0 (ε)< 0

The continuity of the stress-strain response at the transition

between the two states of damage (tension and compression)

requires the thermodynamic potential w (ε,D) to be contin-

uously differentiable. Curnier et al. (1995) and Welemane

(2002) have demonstrated that the necessary and sufficient

condition forw (ε,D) to be C1 – continuous can be expressed

as follows:[[
C (D

]]
=C+ (D)−C− (D)=

[[
∂2w

∂ε2

]]
= s

· (D)
∂0 (ε)

∂ε
⊗
∂0 (ε)

∂ε
,∀ε

/
0 (ε)= 0 (9)

where
[[
C (D

]]
represents the jump of the mechanical stiff-

ness tensor through the hyperplane 0 (ε)= 0.

s is a positive scalar quantity. The previous condition (9)

expresses the fact that the jump in the elasticity tensor across

the interface is normal to the interface.

2.3.2 Formulation of the elastic damage model

The most general form of the thermodynamic potential en-

ergy w (ε,D) can be expressed by a combination the invari-

ants of the strain and damage tensors ε and D :

w (ε,D)= w0 (ε,D= 0)+αtr (D) (tr (ε))2

+βtr (D) tr
(

(ε)2
)
+ γ tr (ε ·D) tr (ε)

+ δtr
(

(ε)2
·D
)
, (10)

where α, β, γ and δ are material constant parameters.

According to Eq. (10), the potential of free energy can be

expressed in the configuration where ε belongs to the tension

subdomain E+ (0 (ε)> 0):

w+= w+0 +α
+tr (D) (tr (ε))2

+β+tr (D) tr
(

(ε)2
)

+ γ+tr (ε ·D) tr (ε)+ δ+tr
(
ε2
·D
)
. (11)

When ε belongs to the compression subdomain E− (0 (ε)<

0):

w− = w−0 +α
−tr (D) (tr (ε))2

+β−tr (D) tr
(

(ε)2
)

+ γ−tr (ε ·D) tr (ε)+ δ−tr
(
ε2
·D
)
. (12)

From Eqs. (11) and (12) we obtain the following expression

for the stiffness tensor discontinuity:[[
C (D

]]
= 2

(
α+−α−

)
tr (D)1⊗ 1+ 2

(
β+−β−

)
1⊗1

+
(
γ+− γ−

)
(1⊗D+D⊗ 1)

+
(
δ+− δ−

)(
1⊗D+D⊗1

)
. (13)

By comparing Eqs. (9) and (10), the function 0 (ε)= 0 can

be identified as:

0 (ε)= tr (ε) (14)

The function associated with the hyperplaneJ is therefore

defined by Eq. (14). This implies that the criterion associated

with the transition between the tension hyperspace E+ and

the compression hyperspace E−, which is expressed for a

given state of the damage variable D, depends solely on the

sign of tr (ε). This may be illustrated through the analysis of

an uniaxial damage loading test, Fig. 1. The solid lines rep-

resent typical virgin loading curves under an uniaxial state

of tension or compression alone. The dash lines represent the

qualitative response of the model during unloading in the ten-

sion domain (after reaching a certain amount of damage) and

subsequent compression. During crossing of the hyperplane

0 (ε)= tr (ε)= 0, the tensorial damage variable D remains

constant, resulting in a null damage rate.
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Figure 1. Schematic representation of the transition state between tension and compression loading.

The continuity condition (9) and Eq. (13) imply the fol-

lowing set of relationships, that must be verified by parame-

ters α+, α−, β+, β−, γ+, γ− and δ+, δ−:

α+ 6= α−

β+ = β− = β

γ+ = γ− = γ

δ+ = δ− = δ

Equations (11) and (12) can be summarized in the follow-

ing expression, which expresses the potential of free energy

w (ε,D) in a unified way:

w (ε,D)=G0tr
(
εD · εD

)
+
K0

2
(tr (ε))2

+α+
[
(tr (ε))+

]2
tr (D)+α−

[
(−tr (ε))+

]2
tr (D)

+βtr (D) tr
(

(ε)2
)
+ γ tr (ε ·D)+ δtr

(
ε2
·D
)
, (15)

where εD = ε− 1
3

tr (ε)1 is the deviatoric strain tensor, and

K0 =
3λ0+2µ0

3
the compressibility modulus.

The terms in α+ and α− in Eq. (15) reflect the unilateral

effect due to possible partial deactivation of defects.

3 State laws and damage rate evolution

3.1 State laws : stress tensor and thermodynamic force

The macroscopic tensor σ is obtained by partial derivation of

w (ε,D) with respect to the strain tensor ε:

σ =
∂w

∂ε
= 2G0ε

D
+K0tr (ε)1+ 2α+(tr (ε))+tr (D)1

− 2α−(−tr (ε))+tr (D)1

+ 2βtr (D)ε+ γ [tr (ε ·D)1+ tr (ε)D]

+ δ (ε ·D+D · ε) . (16)

The second state law allows to introduce the thermody-

namic force associated to the second order damage tensor D:

Y=−
∂w

∂D
=−α+(tr (ε))2

+1−α−(−tr (ε))2
+1

−βtr (ε · ε)1− γ tr (ε)ε− δε · ε (17)

3.2 Damage criterion

Experimental tests performed on geomaterials show the ex-

istence of an area in the strain space inside which damage is

negligible. Initiation or evolution of defects may appear only

if the state of strain reaches the limit of this area. We assume

the existence of a damage criterion in the space of thermody-

namic forces written in the following form:

F (Y,D)= ‖Y‖−χ (D) , (18)

χ (D) is a scalar function, taken to be linear with respect to

D:

χ (D)= a1tr (D)+ a0, (19)

Mech. Sci., 7, 61–68, 2016 www.mech-sci.net/7/61/2016/
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where a0 and a1 are material constants: a0 characterizes the

initial damage threshold, while a1 describes the manner in

which the surface evolves with damage.

The choice of the criterion (18) indicates that the model

is associated, and damage evolution is assumed to follow the

normality rule:

Ḋ =

 0, if F < 0, or F = 0 and Ḟ < 0;

λ̇
∂F (Y,D)

∂Y
, if F = 0 and Ḟ = 0.

(20)

The damage multiplier λ̇ is determined by the consistency

equations F (Y,D)= 0 and Ḟ (Y,D)= 0, leading to:

Ḋ =
tr
(
Y · Ẏ

)
a1tr

(
Ẏ
)
‖Y‖

Y. (21)

From Eq. (21), the positivity of the dissipation D is imme-

diately verified:

D = Y · Ḋ. (22)

4 Application to uniaxial tension

The proposed model can be developed analytically and ex-

plicitly in the case of uniaxial monotonic tension. Let e1be

the direction of tension loading. The stress, strain and dam-

age tensors are given below:

σ =

 σ1 0 0

0 0 0

0 0 0

 ,ε =
 ε1 0 0

0 ε2 0

0 0 ε3

 ,
D=

 D1 0 0

0 D2 0

0 0 D3

 .
We have: σ1 ≥ 0, ε1 ≥ 0, ε2 = ε3 ≤ 0, which impliesD2 =

D3, and we consider that tr (ε)≥ 0. Using the previous ex-

pressions, constitutive relations (16) simplify in the follow-

ing way:

σ1=
4G0

3
(ε1− ε2)+K0tr (ε)+ 2

[
α+tr (ε)+βε1

]
tr (D)

+ γ [tr (ε ·D)+ tr (ε)D1] (23)

ε2=

2G0
3
−K0− 2α+ (D1+ 2D2)− γ (D1+D2)

2G0
3
+ 2K0+ 2

(
2α++β

)
(D1+ 2D2)+ 2(2γ + δ)D2

ε1.

(24)

The components of the thermodynamic damage force are

obtained from Eq. (17):

Y1=−α
+tr
(
(ε)+

)2
−βtr

(
ε2
)
− γ tr (ε)ε1− δ(ε1)2, (25)

Y2= Y3 =−α
+tr

(
(ε)+

)2
−βtr

(
ε2
)
− γ tr (ε)ε2 − δ(ε2)2 . (26)

The damage criterion is then expressed as:

F (Y,D)=
(
Y 2

1 + 2Y 2
2

) 1
2
− a1t tr (D)+ a0t (27)

Constant a0t is identified at the onset of damage by writ-

ing:

F (Y,D= 0)= ‖Y‖− a0t = 0

and thus,

a0t =

(
χ2

1t + 2χ2
2t

)
(ε2

1 )t . (28)

In the previous relation,

χ1t = α
+(1− 2ν0)2

+β
(

1+ 2ν2
0

)
+ γ (1− 2ν0)+ δ,

χ2t = α
+(1− 2ν0)2

+β
(

1+ 2ν2
0

)
+ γ (1− 2ν0)ν+ δν2

0 ,

where ν0 is Poisson’s ratio for the undamaged material, and

(ε1)t corresponds to the threshold tensile strain at the onset

of damage.

Equation (21) gives the components of the damage rate

tensor:

Ḋ1 =
Y1Ẏ1+ 2Y2Ẏ2

a1tr (Y)‖Y‖
Y1, (29)

Ḋ2 = Ḋ3 =
Y1Ẏ1+ 2Y2Ẏ2

a1tr (Y)‖Y‖
Y2. (30)

We have identified the five parameters of the model in the

case of the experimental compression and numerical tension

curves of Murakami and Kamiya (1997). The identification

of the model parameters has been performed with the numer-

ical optimization software BIANCA (Biological Analysis of

Composite Assemblages), which is based on genetical algo-

rithms (Vincenti et al., 2010). The first step consists in iden-

tifying the limit elastic strains in tension and compression di-

rectly on the experimental curves. The main objective func-

tion is the difference between the experimental axial stress

values and their numerical counterparts. The five indepen-

dent damage model parameters are computed by running a

large series of simulation, and minimizing the difference be-

tween the axial strain-axial stress curve and the correspond-

ing numerical curve in Murakami and Kamiya (1997) in a

least square sense.

The elastic material parameters are taken from Murakami

and Kamiya (1997): E = 21.4 GPa, ν = 0.2. The values of

the five independent damage parameters are the following

ones: α+ =−8.015 GPa, β =−3.001 GPa, γ = 11.587 GPa,

δ =−5.425 GPa, a1t = 0.0195 MPa.

Figure 2 illustrates the evolution of the longitudinal stress

computed from Eq. (23), the computed stress σ1 is very close

to the evolution obtained by Murakami and Kamiya (1997)

using their model, which shows the consistency of the iden-

tification procedure.

In Fig. 3, we have reported the evolutions of the longitudi-

nal stiffness modulus E and Poisson’s ratio ν, computed re-

spectively from Eqs. (23) and (24). As expected, Fig. 3 shows

a continuous decrease in Young’s modulus and Poisson’s ra-

tio starting from the damage threshold strain (ε1 = 4×10−4).

www.mech-sci.net/7/61/2016/ Mech. Sci., 7, 61–68, 2016
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Figure 2. Uniaxial tension. Uniaxial stress-strain curve.
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Figure 3. Uniaxial tension. Evolutions of Young’s modulus and

Poisson’s ratio.

5 Application to uniaxial compression

Similar to tensile loading, the equations of the proposed

model can be developed analytically in the case of uniaxial

compression. With e1 the direction of the compressive load,

the expressions of the stress, strain and damage tensors are

identical to the uniaxial tension case, the only difference be-

ing that we now consider tr (ε)≤ 0. Similar developments as

in Sect. 4 lead to the following set of equations:

σ1=
4G0

3
(ε1− ε2)+K0tr (ε)+ 2

[
α−tr (ε)+βε1

]
tr (D)

+ γ [tr (ε ·D)+ tr (ε)D1] , (31)

ε2=

2G0

3
−K0− 2α− (D1+ 2D2)− γ (D1+D2)

2G0

3
+ 2K0+ 2

(
2α−+β

)
(D1+ 2D2)+ 2(2γ + δ)D2

ε1, (32)

Y1 = −α
−tr
(
−(ε)+

)2
−βtr

(
ε2
)
− γ tr (ε)ε1− δ(ε1)2, (33)

Y2= Y3 =−α
−tr
(
−(ε)+

)2
−βtr

(
ε2
)
− γ tr (ε)ε2− δ(ε2)2. (34)

As in uniaxial tension, the compression parameter a0c is

identified by writing that F (Y,D= 0)= ‖Y‖−a0c = 0 at the
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Figure 4. Uniaxial compression. Uniaxial stress-strain curve.
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Figure 5. Uniaxial compression. Evolutions of Young’s modulus

and Poisson’s ratio.

onset of damage in compression, resulting in:

a0c =

(
χ2

1c+ 2χ2
2c

)
(ε2

1 )c (35)

where

χ1c = α
−(1− 2ν)2

+β
(

1+ 2ν2
)
+ γ (1− 2ν)+ δ,

χ2c = α
−(1− 2ν)2

+β
(

1+ 2ν2
)
+ γ (1− 2ν)ν+ δν2,

and (ε1)c corresponds to the threshold compressive strain.

Parameters β, γ and δ have the same values as for tensile

loading. The parameters associated to compression loading

have been obtained by applying the optimization procedure

to the experimental compression curve: α− =−0.647 GPa

and a1c = 0.126 MPa.

Figures 4 and 5 display respectively the stress-strain,

Young’s modulus and Poisson’s ratio evolutions under uni-

axial compression, as predicted by Eqs. (31–32) and a com-

parison with experimentaldata publishedby Wang and cited

by Murakami and Kamiya (1997). Figure 5 shows a decrease

in Young’s modulus and an increase of Poisson’s ratio from
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Figure 6. Unilateral effect in tension-compression loading.

the damage threshold strain in compression ((ε1)c = 10−3).

The evolution of these parameters indicates an increase of

damage in the transverse direction leading to a diminution

of Poisson’s ratio. The existence of these microcracks con-

tributes to the weakening of the material stiffness.

Figures 2 and 4 illustrate the dissymmetry existing be-

tween the behaviors in tension and compression for this class

of material. We observe a ratio of about 4 between the ulti-

mate tensile strength and ultimate compressive stress. This

ratio is directly dependent on the values adopted for the pa-

rameters of the model.

6 Unilateral effect

As mentioned previously, the transition from a tensile load-

ing to a compressive loading leads to partial or complete clo-

sure of cracks. This change in microstructure causes a re-

covery of the stiffness of the damaged material. There are

relatively few experimental results published on this subject.

Ramtani et al. (1992) showed an unilateral effect with total

recovery of the stiffness for the compression phase. The sim-

ulation we produce in Fig. 6 clearly indicates that the initial

stiffness is not completely recovered, and therefore does not

reproduce the behavior described by Ramtani. Nevertheless,

we may note that the loading path is quite complex to achieve

experimentally. It is likely that some cracks remain open dur-

ing the compression phase and prevent the total recovery of

stiffness.

7 Conclusion

A unified model based on continuum damage theory has been

developed for quasi-brittle materials such as concrete and

rocks. The proposed model relies on a second order tenso-

rial variable to describe anisotropic damage, and has been

specifically formulated to be continuously differentiable at

the transition between the open and closed cracks configu-

ration. The model has proved to be effective in describing

the mechanical behavior of concrete and geomaterials under

static loading, more specifically we are able to express:

– the concurrent decrease of Young’s modulus and in-

crease of Poisson’s ratio with damage development,

– damage-induced anisotropy,

– dissymmetric behavior between tension and compres-

sion,

– strain softening behaviour under uniaxial tension-

compression loads.

This model requires the identification of a limited set of

five parameters that have been extracted from tension-

compression experiments through an original and system-

atic identification procedure based on genetic algorithms. A

satisfying agreement is obtained between the experimental

tension-compression tests and the theoretical simulations.

Future work concerns the investigation of the predictive

capacities of the anisotropic damage model with unilateral

effects, by confronting Finite Element simulations with

available experimental results, including conventional

triaxial tests and real case studies.
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