
HAL Id: hal-01327335
https://hal.sorbonne-universite.fr/hal-01327335v1

Submitted on 6 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

A Fast Evaluation Approach of Data Consistency
Protocols within a Compilation Toolchain

Loïc Cudennec, Safae Dahmani, Guy Gogniat, Cédric Maignan, Martha
Johanna Sepulveda

To cite this version:
Loïc Cudennec, Safae Dahmani, Guy Gogniat, Cédric Maignan, Martha Johanna Sepulveda. A Fast
Evaluation Approach of Data Consistency Protocols within a Compilation Toolchain. Procedia Com-
puter Science, 2016, 80, pp.2297-2301. �10.1016/j.procs.2016.05.421�. �hal-01327335�

https://hal.sorbonne-universite.fr/hal-01327335v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


doi: 10.1016/j.procs.2016.05.421 

A Fast Evaluation Approach of Data Consistency Protocols

within a Compilation Toolchain

Löıc Cudennec1, Safae Dahmani2, Guy Gogniat3, Cédric Maignan3, and
Martha Johanna Sepúlveda4

1 CEA, LIST, Saclay, France
2 Sorbonne Universités, UPMC Paris 06, UMR 7606, LIP6, Paris, France

3 University of Bretagne-Sud, LabSTICC, Lorient, France
4 Institute for Security in Information Technology, Technical University of Munich, Germany

Abstract

Shared memory is a critical issue for large distributed systems. Despite several data consistency
protocols have been proposed, the selection of the protocol that best suits to the application re-
quirements and system constraints remains a challenge. The development of multi-consistency
systems, where different protocols can be deployed during runtime, appears to be an interest-
ing alternative. In order to explore the design space of the consistency protocols a fast and
accurate method should be used. In this work we rely on a compilation toolchain that trans-
parently handles data consistency decisions for a multi-protocol platform. We focus on the
analytical evaluation of the consistency configuration that stands within the optimization loop.
We propose to use a TLM NoC simulator to get feedback on expected network contentions.
We evaluate the approach using five workloads and three different data consistency protocols.
As a result, we are able to obtain a fast and accurate evaluation of the different consistency
alternatives.

Keywords: Many-core, Network-on-chip, Data-consistency Protocols, Analytical Evaluation

1 Introduction

Today, many-core processors embed thousands of processing cores on a single chip with com-
plex distributed memory systems (288-core Kalray MPPA, 72-core Tilera GX, 64-core Adapteva
Epiphany, 52-core Intel Xeon Phi). While hardware support can still enforce consistency be-
tween local L1 and L2 cache memories, there is a need to provide a global system that federates
larger memories such as scratchpads and memories that are shared within clusters of processing
elements (PE). As far as we know, most of the large many-core chips do not provide unified
consistent distributed memories. Towards the growing complexity of data consistency proto-
cols, software distributed shared memory (DSM) can help manage memories onto large parallel

Procedia Computer Science

Volume 80, 2016, Pages 2297–2301

ICCS 2016. The International Conference on Computational
Science

Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2016
c© The Authors. Published by Elsevier B.V.

2297

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.05.421&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.05.421&domain=pdf


processors. Several protocols for many-core processors [1,2,5] have been proposed. One conclu-
sion is that there is no unique protocol that fits to all applications, many-core architectures and
running contexts. Instead, we propose to use a multi-protocol platform that allows to choose
for each access to a shared data a specific protocol that is tightly parameterized. However, the
protocol decision relies on the developer of the application, with explicit information given to
the compiler for each memory access. Here we propose to automate this decision process at
compile time, by deeply analyzing the application source code. A regular compilation system
may not afford to simulate with a high level of precision and to process all possible solutions. In
order to overcome such drawback, in this work we propose the use of high-level cycle-accurate
system model for evaluating the consistency protocols in MPSoCs. As a result, different system
alternatives can be rapidly evaluated with higher precision, due to the contention-aware capa-
bility of our framework. Our framework extended the light-weight SystemC transaction-level
modeling cycle-accurate network-on-chip simulator [6] with three libraries: i) several MPSoC
consistency protocols; ii) goals and cost functions; and iii) memory access traces. The results
obtained with our framework are used within the optimization loop in order to improve and
guide the selection of the best configuration.

2 Contribution: A Time accurate NoC Model to evaluate
Cache Consistency Protocols

The Cache Validator tool reads a memory access trace of an application and calculates the traf-
fic generated within the NoC, given a particular data consistency protocol and a NoC topology.
It is based on an analytical model, meaning that statistics are calculated given input data
and calculation rules: no real execution of the application is performed at this point. How-
ever, such an input memory access trace is obtained using a dynamic binary instrumentation
tool [4] from a previous execution. The quality of the analytical evaluation directly depends
on the quality of the trace in terms of code coverage and shared data access interleaving. The
obtained traffic includes all exchanged messages (control and data messages) involved in a
memory access request. Different execution platform configurations can be explored using the
Cache Validator model according to some parameters: chip size (number of cores), network
topology (interconnections between the routers) and cache size (number of memory blocks). In
this work, we propose to extend the analytical evaluation with a cycle-accurate NoC model
that can highlight network contention, while keeping the computing time affordable to an op-
timization loop. The evaluation of different consistency protocols in MPSoCs is performed by
means of the extended TLM-NoC simulator [6]. The basic version of the simulator consists on
a modular SystemC-TLM cycle accurate simulation environment composed by a set of libraries
that allow the description and configuration of NoC-based MPSoCs. It is composed by: i)
Traffic generators and consumers, which emulate the behavior of the computation and storage
components of the MPSoC. Different traffic patterns are obtained by modifying the nature,
topology and type of the data exchanged; ii) Routers, which include a rich set of parameters
and which can be interconnected according to the desired topology; iii) Monitors, that annotate
all the communication events; and iv) Analysis tools, which quantify a set of metrics according
to the annotated values by the monitor. The configuration of such parameters determines the
architecture. This allows to evaluate each solution according to specific requirements. In order
to be able to evaluate the consistency protocols, we have enhanced the Traffic generators and
consumers, monitors and analysis tools. The Cache Validator generates the memory access
traces depending on the current consistency protocol. Then, the consumers emulate the behav-

A Fast Evaluation Approach of Data Consistency Protocols within a Compilation Toolchain Cudennec et al.

2298



ior of each data access. Each consistency protocol will present a different data injection. New
monitors include the ability to track each transaction due the consistency protocol. Finally,
the analysis tool allows to quantify the access latency of the different workloads. By using
the enhanced framework, it is possible to observe the NoC contention impact on the system
performance. As a study case, we consider a MPSoC composed by 8x8 tiles interconnected by
a mesh/torus NoC of 32-bit width channels. Each tile emulates the behavior of a processor
and a L1 cache. Only one tile located at the bottom right corner of the MPSoC emulates the
behavior of the main memory. In order to introduce the contention consideration in our study
we define different types of packets. Note that the extended framework can evaluate a wide set
of MPSoC configurations under several consistency protocols.

3 Experimental results

We studied two types of protocols: Baseline and Sliding-based protocols. The baseline protocol
refers to a directory-based cache consistency protocol [3] widely used for multicore architectures.
The Data Sliding protocol [1] is a cache cooperative approach where each core is allowed to
use its neighbor’s cache in order to lower load concentration in hot spots. The mass-spring [2]
sliding-based protocol is an N-chance forwarding protocol with a variable migration radius using
the mass-spring physical model.

3.1 Network contention and sliding radius analysis

Network contention evaluation mainly depends on the ability of the system to replay consistency
protocol data and control messages in the NoC simulator with realistic timings. This is a
problematic issue because messages are generated by the Cache Validator tool without timings:
There only exists a causal dependency relation between them. However, the NoC simulator
is able to replay timed messages. We therefore propose to partition the set of messages (in a
contiguous way), each subset being sequentially fired, and all messages within a subset being
fired in parallel. Partitioning can describe different parallelism levels: from a full sequential
trace (one message in each subset) to a full parallel trace (all messages in a single subset).
Table 1 gives the contention rates corresponding to different parallelism levels for the Sliding
protocol with a radius of migration equals to 1. We observe that the parallelism level generates
more contention for simple traces (workloads 1 to 3). More complex traces (workloads 4 and
5) generate, even when triggering messages sequentially, network contention close to hot spots
and key nodes.

Workloads - Para. level 0% 25% 50% 75% 100%
Workload 1 39% 39% 28% 45% 57%
Workload 2 83% 88% 93% 89% 95%
Workload 3 80% 76% 87% 87% 89%
Workload 4 66% 76% 73% 80% 66%
Workload 5 97% 81% 71% 78% 92%

Table 1: Contention rate for different parallelism levels from 0% (full sequential) to 100% (full parallel).

A Fast Evaluation Approach of Data Consistency Protocols within a Compilation Toolchain Cudennec et al.

2299



 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

B
as

el
in

e

Sl
id

in
g_

M
in

Sl
id

in
g_

av
r

Sl
id

in
g_

M
ax

M
as

s_
sp

ri
ng

L
at

en
cy

(c
yc

le
s)

Protocols

0% 25% 50%

(a) Workload 1

 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 100000

B
as

el
in

e

Sl
id

in
g_

M
in

Sl
id

in
g_

av
r

Sl
id

in
g_

M
ax

M
as

s_
sp

ri
ng

L
at

en
cy

(c
yc

le
s)

Protocols

0% 25% 50%

(b) Workload 2

 0
 100000
 200000
 300000
 400000
 500000
 600000
 700000
 800000
 900000

B
as

el
in

e

Sl
id

in
g_

M
in

Sl
id

in
g_

av
r

Sl
id

in
g_

M
ax

M
as

s_
sp

ri
ng

L
at

en
cy

(c
yc

le
s)

Protocols

0% 25% 50%

(c) Workload 3

 0
 200000
 400000
 600000
 800000
 1e+06

 1.2e+06
 1.4e+06
 1.6e+06
 1.8e+06

 2e+06
 2.2e+06

B
as

el
in

e

Sl
id

in
g_

M
in

Sl
id

in
g_

av
r

Sl
id

in
g_

M
ax

M
as

s_
sp

ri
ng

L
at

en
cy

(c
yc

le
s)

Protocols

0% 25% 50%

(d) Workload 4

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

B
as

el
in

e

Sl
id

in
g_

M
in

Sl
id

in
g_

av
r

Sl
id

in
g_

M
ax

M
as

s_
sp

ri
ng

L
at

en
cy

(c
yc

le
s)

Protocols

0% 25% 50%

(e) Workload 5

Figure 1: Access latency comparison between different workloads using several consistency protocols and different
parallelism levels (0, 25 and 50%). Lower is better.

3.2 A comparative study of cache management protocols

In this section, we evaluate 5 protocol configurations for the 5 workloads, with 3 levels of paral-
lelism. Protocols are: the 4-state MESI baseline, the Data sliding with radius set to minimum
(1-hop), average (7-hop) and maximum (14-hop), and the Mass-spring protocol. Results are
given in Figure 1. First, we observe that there is a notable difference between results obtained
using the (0%) sequential simulation (close to pure analytical evaluation) and the parallel simu-
lations. This is particularly true for the first workload in which severe contention is highlighted
for the baseline protocol and not for the others. In some situations, such a difference can clearly

A Fast Evaluation Approach of Data Consistency Protocols within a Compilation Toolchain Cudennec et al.

2300



modify the choice of the consistency protocol in the compilation toolchain. Second, we observe
that the protocols perform differently depending on the complexity of the workloads. For a
simple workload (Figure 1a), the Data sliding and Mass-spring protocols perform far better
than the Baseline protocol. When increasing the complexity of the workloads, we can observe
that the Data sliding protocols are not efficient, the Baseline is undecided (it depends on the hot
spots localization), and the Mass-spring always provides good performance. These information
are then used to decide what consistency protocols the system should use or not. We notice, for
example, in figure 1a corresponding to the less stressed workload that the cooperative sliding
based protocols are more efficient than the baseline one. Moreover, the mass-spring proto-
col that defines dynamically the migration radius of each data provides a better performance.
Whereas, the figure 1e shows that both of the baseline and mass-spring protocols are more
efficient than fixed-radius sliding protocols. This means that for workload 5 these protocols are
not the best choice.

4 Conclusion

The main contribution of this paper is a method to evaluate network contention within a
compilation toolchain for data consistency protocol decision. The model relies on a configurable
TLM-based NoC platform that generates several performance evaluation metrics such as the
number of cycles needed to perform remote memory accesses. Despite the lower accuracy of
such an analysis process compared to a full execution of the application onto the targeted
platform, the proposed approach gives tangible clues to choose and configure cache consistency
protocols. Processing times are also kept within reasonable bounds in order to be integrated
within the multi-protocol compilation platform.

References

[1] Safae Dahmani, Löıc Cudennec, and Guy Gogniat. Introducing a data sliding mechanism for
cooperative caching in manycore architectures. Proceedings of the 18th International Workshop on
High-Level Parallel Programming Models and Supportive Environments, pages 335–344, 2013.

[2] Safae Dahmani, Löıc Cudennec, Stéphane Louise, and Guy Gogniat. Using the spring physical
model to extend a cooperative caching protocol for many-core processors. Proceeding of the IEEE
International Symposium on Embedded Multicore/Many-core, 2014.

[3] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. The
directory-based cache coherence protocol for the DASH multiprocessor, volume 18. ACM, 1990.

[4] C.K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V.J. Reddi, and
K. Hazelwood. Pin: building customized program analysis tools with dynamic instrumentation. In
ACM SIGPLAN Notices, volume 40, pages 190–200. ACM, 2005.

[5] Jussara Marandola, Stéphane Louise, Löıc Cudennec, Jean-Thomas Acquaviva, and David Bader.
Enhancing Cache Coherent Architectures with Access Patterns for Embedded Manycore Systems.
In International Symposium on System-on-Chip 2012 (SoC 2012), Tampere, Finlande, October
2012. Tampere University of Technology, Department of Computer Systems, IEEE.

[6] Johanna Sepúlveda, M Strum, and JC Wang. A tlm-based network-on-chip performance evaluation
framework. In Proc. 3rd Symposium on Circuits and Systems, Colombian Chapter, pages 54–60,
2007.

A Fast Evaluation Approach of Data Consistency Protocols within a Compilation Toolchain Cudennec et al.

2301


