Z. Wu and M. Palmer, Verbs semantics and lexical selection, Proceedings of the 32nd annual meeting on Association for Computational Linguistics -
DOI : 10.3115/981732.981751

. Stroudsburg, Associations for Computational Linguistics, pp.133-138

C. Leacock and M. Chodorow, Combining Local Context and WordNet Similarity for Word Sense Identification, 1998.

H. Nguyen and H. Mubaid, New ontology-based semantic similarity measure for the biomedical domain, 2006 IEEE International Conference on Granular Computing, pp.623-628, 2006.
DOI : 10.1109/GRC.2006.1635880

M. Sussna, Word sense disambiguation for free-text indexing using a massive semantic network, Proceedings of the second international conference on Information and knowledge management , CIKM '93, pp.67-74, 1993.
DOI : 10.1145/170088.170106

J. Zhong, H. Zhu, J. Li, and Y. Yu, Conceptual Graph Matching for Semantic Search, 10th International Conference on Conceptual Structures, ICCS2002. no. 2393 in LNCS, pp.92-106
DOI : 10.1007/3-540-45483-7_8

N. Seco, T. Veale, and J. Hayes, An intrinsic information content metric for semantic similarity in WordNet, Proceedings of ECAI 2004, the 16th European Conference on Artificial Intelligence, pp.1089-1090, 2004.

D. Lin, An information-theoretic definition of similarity, International Conference on Machine Learning, pp.296-304, 1998.

J. Jiang and D. Conrath, Semantic similarity based on corpus statistics and lexical taxonomy, Proc. of the International. Conf. on Research in Computational Linguistics, pp.19-33, 1997.

P. Lord, R. Stevens, A. Brass, and C. Goble, Investigating semantic similarity measures across the Gene Ontology: the relationship between sequence and annotation, Bioinformatics, vol.19, issue.10, pp.1275-1283, 2003.
DOI : 10.1093/bioinformatics/btg153

M. Warin, H. Oxhammar, and M. Volk, Enriching an ontology with wordnet based on similarity measures, MEANING-2005 Workshop, pp.1-6

M. Dupuch, L. Trinquart, I. Colombet, M. Jaulent, and N. Grabar, Exploitation of semantic similarity for adaptation of existing terminologies within biomedical area Lisbon: EKAW, Reuse and Adaptation of Terminologies and Ontologies (Workshop EKAW), pp.1-12

C. Pesquita, D. Faria, A. Falcão, P. Lord, and F. Couto, Semantic Similarity in Biomedical Ontologies, PLoS Computational Biology, vol.6, issue.7, p.1000443, 2009.
DOI : 10.1371/journal.pcbi.1000443.t006

D. Petiot, A. Burgun, L. Beux, and P. , Modelisation of a criterion of proximity: application to medical Thesauri, MIE, pp.149-52, 1996.

Y. Tsuruoka, Y. Tateishi, J. Kim, T. Ohta, J. Mcnaught et al., Developing a Robust Part-of-Speech Tagger for Biomedical Text, LNCS. LNCS, vol.3746, issue.3746, pp.382-392, 2005.
DOI : 10.1007/11573036_36

S. Aubin and T. Hamon, Improving term extraction with terminological resources in LNAI, pp.380-387, 2006.

G. Kleiber and I. Tamba, L'hyperonymie revisitée : inclusion et hiérarchie, Langages, vol.98, pp.7-32, 1990.

O. Bodenreider, A. Burgun, and T. Rindflesch, Lexically-suggested hyponymic relations among medical terms and their representation in the UMLS, Terminologie et Intelligence artificielle (TIA), pp.11-21, 2001.

N. Grabar and P. Zweigenbaum, Lexically-based terminology structuring, COLING-02 on COMPUTERM 2002 second international workshop on computational terminology -, pp.23-54, 2004.
DOI : 10.3115/1118771.1118774

C. Jacquemin, A symbolic and surgical acquisition of terms through variation, Connectionist, Statistical and Symbolic Approaches to Learning for Natural Language Processing, pp.425-438, 1996.
DOI : 10.1007/3-540-60925-3_64

B. Partee and . Compositionality, In Varieties of Formal Semantics Dordrecht: Foris, pp.281-312

C. Verspoor, C. Joslyn, and G. Papcun, The Gene Ontology as a source of lexical semantic knowledge for a biological natural language processing application, SIGIR Workshop on Text Analysis And Search for Bioinformatics, pp.51-56

P. Ogren, K. Cohen, G. Acquaah-mensah, J. Eberlein, and L. Hunter, THE COMPOSITIONAL STRUCTURE OF GENE ONTOLOGY TERMS, Biocomputing 2004, pp.214-225, 2004.
DOI : 10.1142/9789812704856_0021

T. Hamon and A. Nazarenko, Detection of synonymy links between terms, Recent Advances in Computational Terminology, pp.185-208, 2001.
DOI : 10.1075/nlp.2.10ham

URL : https://hal.archives-ouvertes.fr/hal-00009162

N. Yuen, D. Fram, D. Vanderwall, and J. Almenoff, Do standardized MedDRA queries add value to safety data mining?, ICPE, vol.2008, pp.1-2, 2008.

P. Nadkarni and J. Darer, Determining correspondences between high-frequency MedDRA concepts and SNOMED: a case study, BMC Medical Informatics and Decision Making, vol.124, issue.1, pp.66-66, 2010.
DOI : 10.1186/1472-6947-8-S1-S4

F. Mougin, M. Dupuch, and N. Grabar, Improving the Mapping between MedDRA and SNOMED CT, Proceedings of the 13th Conference on Artificial intelligence in Medicine. no 6747 in LNAI, pp.220-224
DOI : 10.1016/j.jbi.2009.03.003

URL : https://hal.archives-ouvertes.fr/hal-01135071

G. Declerck, C. Bousquet, and M. Jaulent, Automatic generation of MedDRA terms groupings using an ontology, MIE, pp.73-77

M. Dupuch, L. Dupuch, T. Hamon, and N. Grabar, Semantic distance and terminology structuring methods for the detection of semantically close terms, Proceedings of the 2012 Workshop on Biomedical Natural Language Processing (BioNLP'12). Stroudsburg: ACL, pp.109-117

D. Cruse, Lexical Semantics. Cambridge, 1986.

J. Bezdek, Pattern Recognition with Fuzzy Objective Function Algoritms, 1981.

C. Joslyn, S. Mniszewski, A. Fulmer, and G. Heaton, The Gene Ontology Categorizer, Bioinformatics, vol.20, issue.Suppl 1, pp.169-177, 2004.
DOI : 10.1093/bioinformatics/bth921

V. Luxburg and U. , A tutorial on spectral clustering, Statistics and Computing, vol.21, issue.1, pp.395-416, 2007.
DOI : 10.1007/s11222-007-9033-z