X. Tan, L. Wang, C. Cheng, X. Yan, B. Shen et al., Plasmonic MoO 3-x @MoO 3 nanosheets for highly sensitive SERS detection through nanoshell-isolated electromagnetic enhancement, Chem. Commun, pp.52-2893, 2016.

J. Anderson, A. Bisquert, and . Zaban, Combinatorial investigation and modeling of MoO3 hole-selective contact in TiO 2 /Co 3 O 4 /MoO 3 all-oxide solar cells, Adv. Mater. Interfaces, vol.3, p.1500405, 2016.

K. Banzai, S. Naka, and H. Okada, MoO 3 /Ag/MoO 3 anode for organic light-emitting diodes and its carrier injection property, Jpn J. Appl. Phys, pp.54-054102, 2015.

M. Wang and K. J. Koski, Nanoribbons through Zerovalent Metal Intercalation, ACS Nano, vol.9, issue.3, pp.3226-3233, 2015.
DOI : 10.1021/acsnano.5b00336

V. Kumar and P. S. Lee, Hollow Nanorods for Improved Pseudocapacitive Performance, The Journal of Physical Chemistry C, vol.119, issue.17, pp.9041-9043, 2015.
DOI : 10.1021/acs.jpcc.5b00153

T. Brezesinski, J. Wang, S. H. Tolbert, and B. Dunn, Ordered mesoporous ??-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors, Nature Materials, vol.15, issue.2, pp.146-151, 2010.
DOI : 10.1038/nmat2612

K. Zhou, W. Zhou, X. Liu, Y. Sang, S. Ji et al., Ultrathin MoO3 nanocrystalsself-assembled on graphene nanosheets via oxygen bonding as supercapacitor electrodes of high capacitance and long cycle life, Nano Energy, vol.12, pp.510-520, 2015.
DOI : 10.1016/j.nanoen.2015.01.017

K. Schuh, W. Kleist, M. Hoj, A. D. Jensen, P. Beato et al., Systematic study on the influence of the morphology of ??-MoO3 in the selective oxidation of propylene, Journal of Solid State Chemistry, vol.228, pp.42-52, 2015.
DOI : 10.1016/j.jssc.2015.04.011

. Park, Nanostructured electrodes prepared via hydrothermal process for lithium ion batteries, Int. J. Electrochem. Sci, vol.10, pp.4232-4240, 2015.

Q. Wang, J. Sun, Q. Wang, D. Zhang, L. Xing et al., Electrochemicalperformance of ?-MoO 3 -In 2 O 3 core-shell nanorods as anode materials for lithium-ion batteries, J. Mater

B. Ahmed, M. Shahid, D. H. Nagaraju, D. H. Anjum, M. N. Hedhili et al., Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes, ACS Applied Materials & Interfaces, vol.7, issue.24, pp.13154-13163, 2015.
DOI : 10.1021/acsami.5b03395

G. Zhao, C. Li, L. Zhang, J. Lv, Y. Niu et al., nanorod arrays as self-supported lithium ion battery anodes with enhanced rate capability and durability, J. Mater. Chem. A, vol.2, issue.45, pp.22547-22551, 2015.
DOI : 10.1039/C5TA07107K

F. Ma, A. Yuan, J. Xu, and P. Hu, /MWCNT Nanocomposite Synthesized via a Surfactant-Assisted Solvothermal Route as a Lithium-Ion-Battery High-Capacity Anode Material with Excellent Rate Capability and Cyclability, ACS Applied Materials & Interfaces, vol.7, issue.28, pp.15531-15541, 2015.
DOI : 10.1021/acsami.5b03953

S. Anderson and A. Magnelli, On the Crystal Structure of Molybdenum Trioxide., Acta Chemica Scandinavica, vol.4, pp.793-799, 1950.
DOI : 10.3891/acta.chem.scand.04-0793

L. Kihlborg, Studies on Molybdenum Oxides., Acta Chemica Scandinavica, vol.13, pp.954-962, 1959.
DOI : 10.3891/acta.chem.scand.13-0954

C. M. Julien, A. Mauger, A. Vijh, and K. Zaghib, Lithium batteries, science and technology, pp.120-124, 2016.

C. Julien and A. Yebka, Electrochemical features of lithium batteries based on molybdenum-oxide compounds. NATO-Science Ser, pp.263-277, 2000.

B. Gao, H. Fan, and X. Zhang, Hydrothermal synthesis of single crystal MoO3 nanobelts and their electrochemical properties as cathode electrode materials for rechargeable lithium batteries, Journal of Physics and Chemistry of Solids, vol.73, issue.3, pp.423-429, 2012.
DOI : 10.1016/j.jpcs.2011.11.019

V. M. Mohan, W. Chen, and K. Murakami, Synthesis, structure and electrochemical properties of polyaniline/MoO 3 nanobelt composite for lithium battery, Mater. Res. Bull, pp.48-603, 2013.

C. Feng, H. Gao, C. Zhang, Z. Guo, and H. Liu, Synthesis and electrochemical properties of MoO3/C nanocomposite, Electrochimica Acta, vol.93, pp.101-106, 2013.
DOI : 10.1016/j.electacta.2013.01.088

A. K. Prasad, D. J. Kubinski, and P. I. Gouma, Comparison of sol-gel and ion beam deposited MoO 3 thin film gas sensors for selective ammonia detection, Sens. Actuators B, pp.93-118, 2003.

C. Julien, O. M. Hussain, L. El-farh, and M. Balkanski, Electrochemical studies of lithium insertion in MoO 3 films. Solid State Ionics, pp.53-56, 1992.

P. M. Ette, P. Gurunathan, and K. Ramesha, Self-assembled lamellar alpha-molybdenum trioxide as high performing anode material for lithium-ion batteries, Journal of Power Sources, vol.278, pp.630-638, 2015.
DOI : 10.1016/j.jpowsour.2014.12.103

S. Asbrink and L. , A Study of the Crystal Symmetry and Structure of Orthorhombic Mo4O11 by Least-squares Techniques., Acta Chemica Scandinavica, vol.18, pp.1571-1573, 1964.
DOI : 10.3891/acta.chem.scand.18-1571

P. Cignini, M. Icovi, S. Panero, G. Pistoia, and C. Temperoni, Non-stoichiometric molybdenum oxides as cathodes for lithium cells, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.102, issue.3, pp.333-341, 1979.
DOI : 10.1016/S0022-0728(79)80461-1

M. Icovi, S. Panero, A. D-'agate, G. Pistoia, and C. Temperoni, Non-stoichiometric molybdenum oxides as cathodes for lithium cells, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.102, issue.3, pp.343-349, 1979.
DOI : 10.1016/S0022-0728(79)80462-3

G. Pistoia, C. Temperoni, P. Cignini, M. Icovi, and S. Panero, Non-stoichiometric molybdenum oxides as cathodes for lithium cells, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.108, issue.2, pp.169-180, 1980.
DOI : 10.1016/S0022-0728(80)80465-7

H. Ohtsuka and Y. Sakurai, Thin Films, Japanese Journal of Applied Physics, vol.40, issue.Part 1, No. 7, pp.4680-4683, 2001.
DOI : 10.1143/JJAP.40.4680

S. S. Sunu, E. Prabhu, V. Jayaraman, K. I. Gnanasekar, T. K. Seshagiri et al., Electrical conductivity and gas sensing properties of MoO31Dedicated to Prof. Adolf Mikula, University of Vienna on the occasion of his 60th birthday.1, Sensors and Actuators B: Chemical, vol.101, issue.1-2, pp.161-174, 2004.
DOI : 10.1016/j.snb.2004.02.048

L. Ben-dor and Y. Shimony, Crystal structure, magnetic susceptibility and electrical conductivity of pure and NiO-doped MoO2 and WO2, Materials Research Bulletin, vol.9, issue.6, pp.837-844, 1974.
DOI : 10.1016/0025-5408(74)90120-2

. Eskova, Studies of the lithium ion transport properties in electrolytic molybdenum oxides, Solid State Ionics, vol.169, pp.135-137, 2004.

C. Julien and G. A. , Transport properties of lithium-intercalated MoO3, Solid State Ionics, vol.68, issue.1-2, pp.111-116, 1994.
DOI : 10.1016/0167-2738(94)90245-3

Y. Zhao, Y. Zhang, Z. Yang, Y. Yan, and K. Sun, Synthesis of MoS 2 and MoO 2 for their applications in H 2 generation and lithium ion batteries: a review

S. B. Chikkannanavar, D. M. Bernardi, and L. Liu, A review of blended cathode materials for use in Li-ion batteries, Journal of Power Sources, vol.248, pp.91-100, 2014.
DOI : 10.1016/j.jpowsour.2013.09.052

M. M. Thakeray, C. S. Johnson, J. T. Vaughey, N. Li, and S. A. Hackney, Advances in manganese-oxide ???composite??? electrodes for lithium-ion batteries, Journal of Materials Chemistry, vol.6, issue.23, pp.15-2257, 2005.
DOI : 10.1039/b417616m

J. Gao and A. Manthiram, Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode by blending with other lithium insertion hosts, Journal of Power Sources, vol.191, issue.2, pp.644-647, 2009.
DOI : 10.1016/j.jpowsour.2009.02.005

M. K. Datta and P. N. Kumta, Silicon and carbon based composite anodes for lithium ion batteries, Journal of Power Sources, vol.158, issue.1, pp.557-563, 2006.
DOI : 10.1016/j.jpowsour.2005.09.016

K. Zaghib, M. Trudeau, A. Guerfi, J. Trottier, A. Mauger et al., New advanced cathode material: LiMnPO4 encapsulated with LiFePO4, Journal of Power Sources, vol.204, pp.177-181, 2012.
DOI : 10.1016/j.jpowsour.2011.11.085

H. Kitao, T. Fujihara, K. Takeda, N. Nakanishi, and T. Nohma, High-Temperature Storage Performance of Li-Ion Batteries Using a Mixture of Li-Mn Spinel and Li-Ni-Co-Mn Oxide as a Positive Electrode Material, Electrochemical and Solid-State Letters, vol.8, issue.2, pp.87-90, 2005.
DOI : 10.1149/1.1843792

N. Imachi, Y. Takano, H. Fujimoto, Y. Kida, and S. Fujitami, Layered Cathode for Improving Safety of Li-Ion Batteries, Journal of The Electrochemical Society, vol.154, issue.5, pp.412-416, 2007.
DOI : 10.1149/1.2709503

A. Mauger and C. M. Julien, Surface modifications of electrode materials for lithium-ion batteries: status and trends, Ionics, vol.5, issue.98, pp.751-787, 2014.
DOI : 10.1007/s11581-014-1131-2

URL : https://hal.archives-ouvertes.fr/hal-00991402

. Haro-poniatowski, Micro-Raman study of the m-MoO 2 to ?-MoO 3 transformation induced by cw-laser irradiation, Opt. Mater, vol.33, pp.480-484, 2011.

E. Canadell, M. H. Whangbo, C. Schlenker, and C. , Escribe-Filippini, Band electronic structure study of the electronic instability in the Magneli phase molybdenum oxide (Mo 4 O 11 ), Inorg. Chem, pp.28-1466, 1989.

P. Roman, A. Luque, and A. Aranzabe, Synthesis of oxides, oxocarbides and carbides of molybdenum by thermal decomposition of diethylenetriamine oxomolybdenum compounds, Thermochimica Acta, vol.223, pp.167-175, 1993.
DOI : 10.1016/0040-6031(93)80131-S

G. A. Nazri and C. Julien, Far-infrared and Raman studies of orthorhombic MoO 3 single crystal, Solid State Ionics, vol.53, pp.376-382, 1992.

M. Dieterle, G. Weinberg, and G. , Raman spectroscopy of molybdenum oxides, Physical Chemistry Chemical Physics, vol.4, issue.5, pp.812-821, 2002.
DOI : 10.1039/b107012f

M. Dieterle and G. , Raman spectroscopy of molybdenum oxides. Part II. Resonance Raman spectroscopic characterization of the molybdenum

J. S. Chen, Y. L. Cheah, S. Madhavi, and X. W. Lou, Fast synthesis of alpha-MoO 3 nanorods with controlled aspect ratios and their enhanced lithium storage capabilities, J. Phys

A. M. Hashem, H. Groult, A. Mauger, K. Zaghib, and C. M. Julien, Electrochemical properties of nanofibers ??-MoO3 as cathode materials for Li batteries, Journal of Power Sources, vol.219, pp.126-132, 2012.
DOI : 10.1016/j.jpowsour.2012.06.093

URL : https://hal.archives-ouvertes.fr/hal-00750700

T. Tsumura and M. Inagaki, Lithium insertion/extraction reaction on crystalline MoO3, Solid State Ionics, vol.104, issue.3-4, pp.183-189, 1997.
DOI : 10.1016/S0167-2738(97)00418-9

A. M. Hashem, M. H. Askar, M. Winter, J. H. Albering, and J. O. Besenhard, Two-phase reaction mechanism during chemical lithium insertion into ??-MoO3, Ionics, vol.18, issue.1, pp.3-8, 2007.
DOI : 10.1007/s11581-007-0065-3

J. O. Besenhard and R. Schollhorn, The discharge reaction mechanism of the MoO3 electrode in organic electrolytes, Journal of Power Sources, vol.1, issue.3, pp.267-276, 1976.
DOI : 10.1016/0378-7753(76)81004-X

F. Leroux, B. E. Loene, and L. F. Nazar, Electrochemical Lithium Intercalation into a Polyaniline/V[sub 2]O[sub 5] Nanocomposite, Journal of The Electrochemical Society, vol.143, issue.9, pp.143-181, 1996.
DOI : 10.1149/1.1837078

V. M. Mohan, W. Chen, and K. Murakami, Synthesis, structure and electrochemical properties of polyaniline/MoO 3 nanobelt composite for lithium battery, Mater. Res. Bull, pp.48-603, 2013.

M. C. Rao, K. Ravindranadh, A. Kasturi, and M. S. Shekhawat, Structural Stoichiometry and Phase Transitions of MoO 3 thin films for solid state micro-batteries, Research J. Recent Research, vol.2, pp.67-73, 2004.

J. Liu, X. Li, M. Cai, R. Li, and X. Sun, Ultrathin atomic layer deposited ZrO2 coating to enhance the electrochemical performance of Li4Ti5O12 as an anode material, Electrochimica Acta, vol.93, pp.195-201, 2013.
DOI : 10.1016/j.electacta.2012.12.141