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Towards Deep Developmental Learning
Olivier Sigaud, Alain Droniou

Abstract—Deep learning techniques are having an undeniable
impact on general pattern recognition issues. In this paper, from
a developmental robotics perspective, we scrutinize deep learning
techniques under the light of their capability to construct a
hierarchy of meaningful multimodal representations from the
raw sensors of robots. These investigations reveal the differences
between the methodological constraints of pattern recognition
and those of developmental robotics. In particular, we outline the
necessity to rely on unsupervised rather than supervised learning
methods and we highlight the need for progress towards the
implementation of hierarchical predictive processing capabilities.
Based on these new tools, we outline the emergence of a new
domain that we call deep developmental learning.

Index Terms—deep learning, developmental robotics, sensori-
motor contingencies, affordances, hierarchical predictive process-
ing

I. INTRODUCTION

Consider a mug on a table. You can recognize it from
any perspective. You distinguish it more or less quickly from
other mugs, from a cup, from a glass, etc., though you also
immediately perceive similarities to these other objects. You
would probably recognize it in the dark just by touching it
with your fingers. You know how it feels in your hand and
how heavy it is. You know the proper way to handle it, you
can grasp it in many ways for different purposes (move it
somewhere else, give it to someone else, put it upside down
or drink from it). You know what it is designed for, you know
that you can pour some liquid into it, but you also know that
you could put it on some paper before a gust of wind blows the
paper away. You know whether it would break if you threw
it down. You know that it is an everyday object, you know
that the name of this object is “mug”, you know where you
can purchase another one, etc. And you still know much more
about this mug, more than could be said in a research paper.

Endowing an artificial system with this kind of human-like
knowledge is the central concern of Artificial Intelligence (AI),
a discipline that has initially focused in modeling abstract
knowledge at the “symbol level” [1]. However, designing
artificial symbol systems that were processing some data
into computers was soon criticized through Searle’s Chinese
Room argument [2]. Searle convincingly argued that symbols
processed in this way were meaningless for the computer,
because they were essentially disconnected from the world.
This critique was reformulated as the “Symbol Grounding
Problem” [3] who pointed that the symbols manipulated by
these disembodied AI systems should be grounded into some
sensorimotor interaction with the world. Actually, a good deal
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of the kind of rich knowledge listed above is about perception
and about action. So, if we want an artificial system to use such
kind of knowledge, this system must perceive and act from its
own perspective in the world, it must have several sensors
giving access to different modalities, it must be endowed with
interaction capabilities, in a word it must be a robot [4], [5].

With the standard AI methods and tools, one could already
design experiments where a robot which is asked to bring a
coffee builds a plan, finds a mug in its immediate environment,
pours some coffee in it and brings it to the user. This can be
achieved by designing ontologies and symbolic rules such as
“to bring coffee to the user, pour it in a mug”. The elementary
entities of these ontologies and rules, such as “mug”, “coffee”
and “user”, are represented by simple tokens or symbols, that
must be recognized through dedicated perception modules
using predetermined sets of visual features. For elementary
actions like “pour”, the engineer must build dedicated motor
programs. In a way, these approaches solve a weak version
of the symbol grounding problem. Indeed, the symbol “mug”
and other symbols are connected to what is perceived in the
environment through the ad hoc vision and motor modules.

However, a key aspect of our intelligence that is overlooked
by such attempts is that the richness of our sensorimotor
and sub-symbolic knowledge about everyday objects plays a
central role in the flexibility and adaptivity of our behavior.
Extending the above approach to better account for this rich
knowledge would require a larger engineering effort to build
a richer ontology and more robust perception and actions
capabilities. Though impressive results have been obtained
with this line of research, e.g. [6], engineering in this way
all the behaviors that would be required to display general
human level intelligence is out of reach.

From this perspective, the point is that most of our rich
sensorimotor knowledge about an object has been acquired
through direct physical interaction with this object and with
others, thus this knowledge is learned and essentially depends
on our history of interaction with the world. Developmental
robotics is a principled approach to AI in robotics that relies on
this evidence. Its main endeavor consists in endowing a robot
with the capability to build by itself the rich knowledge about
everyday objects described above and to use this knowledge
appropriately in any context.

The key idea is that, instead of engineering the perception
and action capabilities themselves, roboticists should design
the necessary learning mechanisms to let the robot build its
own perceptive and behavioral repertoire, through its interac-
tions with its physical and social environment. As a result,
the developmental approach to intelligence strives to endow
robots with all the learning capabilities that may be necessary
to build rich and flexible sensorimotor representations from
the sensorimotor to the symbolic level [7], [8], [9].



IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT 2

One source of information about the learning capabilities
that are required to build knowledge from interaction with the
world is developmental psychology [10], [11], [12]. By ob-
serving child development, one may understand the necessary
conditions for an artificial system to build such knowledge
from its basic interaction capabilities [13], [14], [15].

A psychological notion that is not intrinsically developmen-
tal but plays an important role in developmental robotics is the
notion of affordance [16]. Quickly stated, affordances of an
object for an agent are actions that this agent immediately
recognizes as applicable to this object, together with some
knowledge of the effect of these actions, but without neces-
sarily identifying the object itself.

Affordances are important because they provide a solid
ground for interacting with objects to solve everyday problems.
In particular, their focus on the effect of actions makes
them appropriate for planning or higher level reasoning about
interactions with the corresponding objects. For instance, if I
see a sheet of paper about to be blown away and if I know that
putting a mug-like object on a paper prevents it from being
blown away, then I can decide to put the mug on the paper,
without even recognizing it as a mug. Based on this view
of affordances, many researchers address higher level issues,
such as the capability to generalize affordances across similar
objects, learning inter-objects affordances [17], or solving the
bootstrapping problem, where lower level affordances should
be used by the architecture to build higher level affordances,
without giving this hierarchical structure in advance [17], [18].

With this new perspective, learning affordances replaces the
endless effort of building ontologies and writing rules while
endowing the robot with similar problem solving capabilities.
This may lead to a large reduction of the aforementioned
engineering effort. So, is the problem solved? Clearly not: The
general capability to manipulate unforeseen objects and tools
has not yet been demonstrated on a robot or in simulation with
this approach. Why is this? There are two issues.

First, the developmental route to autonomous robots being
long and difficult, there is a strong temptation to use shortcuts
by engineering into the robot some of the competences that
it should discover by itself. This temptation is particularly
obvious at the lowest levels of sensory processing. Indeed,
learning affordances is understood mainly as learning the
effects of actions on objects. As a first approach, this can
be implemented by defining an effect space with a set of
dedicated features and clustering this space into a discrete
set of effects. For instance, by using a “speed of movement”
feature, one can easily determine that some objects move when
they are pushed and some others do not. This approach is taken
in many state-of-the-art research works [19], [20], [21]. This
is very clearly illustrated for instance in [22], where the first
box in the architecture is labeled “compute basic features” and
outputs sizes, shapes, etc. With this perspective, the engineer’s
expertise is required twice: to determine the features of the
effect space and to provide dedicated perceptual modules
that acquire the value of these features. As a consequence,
most proof-of-concept experiments in affordance-based devel-
opmental robotics seem to suffer from similar restrictions as
the ontology-based ones.

The second issue is deeper. The point is that affordances
themselves are often represented as abstract symbolic entities
in higher level processes such as planning and reasoning.
According to the embodied cognition perspective, this is
unsatisfactory because higher level cognition is not just a
matter of manipulating abstract symbols. According to the
embodied cognition perspective, “conceptual representations
that constitute our knowledge are grounded in sensory and
motor experiences, and processed at this sensorimotor level,
rather than being represented and processed abstractly in an
amodal conceptual system” [23]. If we take this perspective
seriously, solving the symbol grounding problem is not only
a matter of learning the mapping from the sensorimotor flow
to a level of abstract symbols. The conceptual representations
we manipulate for planning or reasoning being modal, not
to say multimodal, there should be no modal-to-abstract dis-
continuity between the lowest level sensorimotor information
processing modules and those which manipulate higher level
representations.

From these insights, it appears that the crucial element that
is missing to build the kind of rich sensorimotor knowledge we
have about objects is a flexible, general purpose mechanism
starting from the multimodal sensorimotor flow of the robot
and building the embodied, sub-symbolic representations that
are necessary to predict, reason and plan at all levels of
our cognitive capabilities so as to finally solve the symbol
grounding problem.

The primary goal of this paper is to investigate whether
the so-called deep neural networks and the corresponding
deep learning techniques may provide such mechanisms and
representations. Deep learning is a fast growing trend in
machine learning that has attracted a lot of attention by
outperforming all other techniques in visual, auditory, speech
and text pattern recognition tasks [24], [25]. It consists in
training neural networks with several layers in such a way
that the input data is accurately encoded by building more
and more complex features as the activation signal goes higher
and higher into the layers. Since they start from raw sensory
signal and flexibly learn relevant features by themselves, the
basic intuition is that deep neural networks might provide at
all levels the adequate representations of the rich knowledge
developmental robotics should be looking for.

However, the methodological constraints of pattern recogni-
tion differ from those of developmental robotics. In particular,
a supervised learning step is generally used in pattern recogni-
tion, whereas labeling the data might turn out to be difficult in
developmental robotics. Thus, even if the perception of robots
can readily be improved using the current state-of-the-art deep
learning techniques, further requirements should be pursued
to address the development of hierarchical representations in
robots with these techniques. As a consequence, a secondary
goal of this paper is to identify in the deep learning literature
the tools that are the most adequate under the developmental
robotics constraints, giving rise to the emergence of a new
domain built on these tools that we call deep developmental
learning.

Less technically, this paper also provides an opportunity
to revisit central concepts of developmental robotics with
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new conceptual tools, which may result in a new general
perspective on the development of cognition, of interest not
only to developmental roboticists, but also to all researchers
interested in computational models of cognitive development,
e.g. [26], [27], [28].

The paper is organized as follows. In Section II, we give
a broad overview of deep neural networks and the related
learning techniques. In Section III, we highlight the immediate
respects in which deep learning techniques may help cir-
cumvent the limitations of standard approaches to perception
in developmental robotics. We show that they provide the
adequate tools for building flexible and hierarchical repre-
sentations, starting from the raw multimodal information a
robot gets from its sensors and building towards higher level
representations that are needed to adequately interact with the
world. In Section IV, we examine limitations of standard deep
learning research when developmental robotics applications
are considered. First, we highlight the necessity to rely on
unsupervised rather than supervised learning methods and
describe preliminary attempts in this direction. Second, we ad-
vocate for a stronger focus on methods able to predict temporal
information on-line and to deal with hierarchical predictive
processing and temporal chunking issues. In Section V, we
also reconsider issues such as behavior optimization, action
selection, curiosity or life-long learning, under the light of
deep learning techniques. Finally, as a conclusion, we outline
the need for more computational power for embedding deep
learning in robots, we sketch the role of “dreams” under this
perspective, and we outline the long way that still has to be
travelled before true human-like symbolic intelligence issues
can be addressed.

II. DEEP NEURAL NETWORKS IN A NUTSHELL

A neural network implements a generally non-linear func-
tion between some input and output data through weights
connecting computational units called neurons. It is used as a
flexible representation for capturing regularities between the
input and the output. When the connection graph between
neurons contains cycles, the neural network is said recurrent
and can capture dynamical regularities over multiple times
steps. Otherwise, it is said feed-forward and is generally
organized into layers. It is well known that, even with a single
hidden layer, a neural network can approximate any continuous
function with arbitrary precision [29]. However, when the
input dimensionality increases, when the function becomes
more irregular or when the desired precision increases, the
number of required hidden units grows exponentially. A nice
property of deep neural networks comes from the fact that
using multiple levels of hidden layers decreases the number
of units required for representing a large set of functions
(from exponential to linear complexity [30]) by factorizing
representations.

Among early attempts to benefit from this property, some
deep neural network architectures dedicated to pattern recog-
nition in images obtained very good performance [31]. These
architectures were inspired from the structure of the visual
cortex and could be trained with a standard error back-
propagation algorithm. However, applying this algorithm to

more general deep architectures proved difficult. This is due to
the so-called “vanishing or exploding gradient problem” [32],
[33], [34], resulting from the fact that these networks easily
reach a solution domain where the gradient goes to zero or
diverges.

To overcome this issue, a breakthrough consisted in training
each layer in sequence to “reconstruct” its own input as
output [35]. This unsupervised training process, also called
“pre-training” benefits from the immediate availability of a
reconstruction error which is a distance between the output
and the input. Once a layer correctly reconstructs its input,
another layer can be added or stacked on top of it and
pre-trained to do the same with the hidden layer or the
reconstructed output of the previous layer as input. Once the
overall architecture is trained in this way, it can be fine-tuned
for achieving a more specific task. This latter fine-tuning stage
can be done according to either a similar reconstruction error
cost on the input data set or a task specific cost function
(e.g. [36]). Another possibility is to stack a classical supervised
algorithm, e.g. a Support Vector Machine [37] on top of the
network, using as input the activity of the top layer of the
deep network [38].

Pre-training proved efficient at initializing the weights of
the network to avoid getting stuck in flat gradient landscapes,
leading to a surge of interest in networks with many lay-
ers [39]. In the following years, the resulting deep neural
networks outperformed state-of-the-art results in many pattern
recognition tasks [40], [41], [42], which made these methods
extremely popular [25].

There are many general reviews on deep neural net-
works [24], [25]. However, the domain is evolving very fast
and questions so fundamental as why pre-training techniques
work well in practice are still incompletely understood. As
a consequence, this is the matter of intensive research and
debates between several competing explanations [43], [44],
[45]. Furthermore, the general assumption that training each
layer with an input reconstruction stage plays a key role in the
performance of deep neural networks is itself questioned e.g.
by [46] who obtained a similar performance without this input
reconstruction stage using a second order gradient (Hessian-
free) technique. Other works also suggest that given enough
time and computational power, it is possible to outperform
pre-trained networks with a standard, carefully tuned back-
propagation algorithm applied to the whole network [47], [48].

Thus, in this section, rather than striving to give a technical
account of the domain that would be outdated even before
publication, we only briefly describe four families of deep
neural networks, namely Convolutional Neural Networks [31],
Auto-Encoders [49], Restricted Boltzmann Machines [50] and
Gated Networks [51], that can be used as building blocks or
starting points for many state-of-the-art deep neural networks
architectures.

A. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are an early family
of deep learning architectures inspired from the human vision
system that proved particularly efficient for image processing
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Fig. 1. Most popular regularization methods for auto-encoders. The bottleneck technique consists in encoding data over a small number of neurons. The
weight tying technique consists in using the same weight matrix for encoding and decoding. For the denoising technique, data are first corrupted (for instance
by setting some of the input neurons to 0), before being encoded and decoded. The dropout technique, finally, consists in setting to 0 a portion of hidden
neurons before decoding.

applications [31]. As clearly illustrated in Fig. 2 of [52], they
are generally composed of 6 or 7 layers of neurons, where
filtering or convolutional layers alternate with feature map
or pooling layers. A surprising and still unexplained fact is
that these quite deep architectures do not seem to require
an unsupervised training step to perform well, in contrast
with many other deep architectures [24]. A crucial aspect
for the perspective of this paper is that these architectures
generally require some labeled data to perform supervised
learning, which is inadequate from a developmental robotics
perspective. However, there are some exceptions, such as [53].

B. Auto-Encoders
Auto-Encoders are the simplest deep architectures that can

be pre-trained with unsupervised learning. To learn an accurate
representation of their input, they are trained to minimize the
reconstruction error of input data by back-propagating it from
the output layer to hidden layers. However, if the goal was just
to reproduce the input as output, the simplest model would be
the identity function. In order to prevent this from happening
and get representation with good generalization capabilities,
several regularization techniques have been proposed, among
which (see Fig. 1):

• The bottleneck approach [45] consists in enforcing di-
mensionality reduction into the hidden layer by having
fewer neurons in the hidden layer than in the input layer.

• Denoising auto-encoders (DAEs) [54]: the input is first
corrupted with noise (e.g. randomly setting some input
units to zero), and the reconstruction error is measured
either compared to the non-corrupted input, or to the same
input corrupted with independent noise.

• Dropout [55], [56]: the hidden layer is corrupted with
noise (here again, randomly setting some units to zero,

often about 50% of them), which constrains the dif-
ferent neurons to learn independent features. The noise
is removed after training and some renormalization is
necessary to take into account the fact that the signal
is better propagated when noise is removed.

• Weight tying: weights for encoding and decoding are tied.
Actually, this last mechanism does not prevent one from
using the identity function as model, so it should be used
in conjunction with another mechanism.

Two other techniques are not represented in Fig. 1:
• Contractive auto-encoders (CAEs) [57]: a penalty cost is

added to penalize the Jacobian of the hidden layer with
respect to the input. This aims to contract the learned
representation along the relevant dimensions to represent
the input. Higher-order contractive auto-encoders [58]
also penalize higher-order derivatives.

• Sparse auto-encoders [59]: a sparsity constraint is added
to the hidden layer activity so that most units stay
inactive.

C. Restricted Boltzmann Machines

Restricted Boltzmann Machines (RBMs) [60] are a subclass
of Boltzmann machines [61] which are themselves a specific
instance of Probabilistic Graphical Models [62]. They consist
of two layers, the visible layer corresponding to the input, and
the hidden layer corresponding to an internal representation
of the underlying source of the input data. At first glance, the
connection between RBMs and auto-encoders is weak. While
auto-encoders are deterministic models trained to reconstruct
their input as output, RBMs are stochastic models whose
function is to model the distribution of their input data through
the activity of their hidden layer, which is usually binary
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Fig. 2. General view of a gated auto-encoder and simplified notation. In the
bottom-up use of the network, given two input x and y, their projections
through Wx and Wy are multiplied in an intermediate factors layer, before
being projected on the hidden layer z. Such connections are useful to learn
representation of multi-dimensional relations between different variables. The
role of the three external layers can be exchanged, making it possible to
compute a reconstruction of y given x and z, and vice versa: the two input
are projected on the factors layer, and the resulting factors are projected on
the third layer. The simplified notation is reused in Fig. 3 and 4.

(though real-valued hidden layers are possible, see e.g. [63]).
As such, RBMs are generative models (see [26] for a tutorial
introduction). This is in contrast with CNNs and standard auto-
encoders which are only discriminative, i.e. the information
flow is oriented from the input to the output, thus they can
only infer the output corresponding to an input [52].

However, a deeper analysis of RBMs and auto-encoders
under the light of energy-based models (see [64], [65] for
a technical presentation) reveals that, under some conditions,
they are not so dissimilar. In particular, DAEs can be analyzed
as generative, stochastic models which locally characterize
the distribution over input data. Those models received an
increasing interest recently because, being deterministic, they
benefit from a simpler training procedure than RBMs [66], [67].

The same regularization techniques used for auto-encoders
can also be used for RBMs (bottleneck, dropout, etc.). Never-
theless, the need for regularization is weaker in RBMs, because
the random sampling of neuron activities in RBMs exerts
a strong regularization constraint. Actually, they have been
shown to have good generalization capabilities even with high
dimensional inputs [68].

Finally, RBMs themselves are not deep networks, but they
are the key building block of Deep Belief Networks (DBNs),
a popular family of deep neural networks which are usually
trained layer per layer in an unsupervised way, exactly as for
auto-encoders.

D. Gated Networks

A more recent family of generative models is the factored
and/or gated networks family, that connect three or more layers
together instead of two. Gated RBMs were introduced in [69]
whereas Gated Auto-Encoders (GAEs), illustrated in Fig. 2,
were proposed in [70].

The general idea behind these networks is that the rela-
tionship between two layers is multiplicatively gated by the
activity of the third layer into an intermediate factor layer.
The network shown in Fig. 2 can combine bottom-up and
top-down interactions corresponding to different ways to use
it. First, given the lower left layer (labeled “x”) and the lower
right layer (labeled “y”), the network can infer the higher level

layer (labeled “z”) in a bottom-up way. Second, given the “x”
layer and some top-down information about the “z” layer, the
“y” layer can be predicted. Several networks using GAEs are
introduced later in this paper. See [71] for a more detailed
presentation.

III. IMPACT OF DEEP LEARNING ON DEVELOPMENTAL
ROBOTICS ISSUES

As put forward in the introduction, developmental robotics
is missing a representational framework for sub-symbolic
knowledge and the mechanisms to learn it from the sen-
sorimotor information a robot receives. In this section, we
examine what deep learning techniques can immediately bring
to address this issue. We highlight that they are adequate to
start from raw sensorimotor information and build hierarchical
and relevant representations while dealing with the curse
of dimensionality and combining bottom-up and top-down
information processes. Additionally, the outstanding pattern
recognition capabilities of deep learning techniques can pro-
vide adequate tools for developmental robotics in more specific
sub-domains such as natural language related processes and
human robot interaction.

A. Starting from raw sensorimotor information

To avoid engineering features as outlined in the introduction,
the representations learned by a robot should be built directly
from the multimodal flow of information it receives from all
its sensors (e.g. visual, auditory, tactile, proprioceptive, etc.),
i.e. the raw sensations of the robot [72]. The structure of
these sensations obey certain rules that are called sensorimotor
contingencies and that may help us recognize the different
modalities we experience [72].

Some of these rules are independent of the objects the
agent is interacting with, such as the fact that moving forward
generates a visual flow expanding from the center of vision.
Such rules are characteristic of modal sensations. Other rules
are characteristic of the experience of perceptions, when
they are related to some perceptive attributes of objects. For
instance, when touching an object, the specific tactile feedback
we experience depends on the object itself but also on our
way of touching. This tactile feedback can be interpreted as
the effect of touching this object in this way. It is often the
case that sensorimotor contingencies correspond to regularities
in the coupling between sensations or perceptions and actions.
Thus, from many examples given in [72], it is clear that actions
in the world such as head movements are necessary to turn
raw sensations into a perception, because these actions reveal
the underlying structure of the coupling between sensations
and actions, i.e. the sensorimotor contingencies. Moreover,
from this perspective, the perception or recognition of the
object can be considered as the effect of acting on this object.
Thus learning sensorimotor contingencies accounts at a very
elementary level for a phenomenon that is foundational to
learning affordances, i.e. the recognition of the object through
consequences of our actions on it.

The fact that our sensations and perceptions obey certain
rules defines sensorimotor contingencies as regularities over
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these domains, or as manifolds where sensory or perceptive
data is concentrated into the underlying. A key feature of deep
learning techniques is that they are good at extracting such
manifolds, and they can be applied to large spaces such as the
sensory space of a robot, thus they look adequate for extracting
sensorimotor contingencies into the first layers of a hierarchy
of representations built by a robot [73], [74].

B. Building sensorimotor representations that make sense

In a deep architecture, each layer is extracting a set of
features to encode the information provided by the previous
layer. By stacking a set of layers onto each other, deep neural
networks naturally extract features hierarchically from the
input signal. Actually, it has been shown that the features
extracted in such a way generally make sense to the external
observer. For instance, a network trained on a data set contain-
ing pictures of faces, airplanes, chairs and bikes learned Gabor-
like features at the lowest level, which were progressively
combined into more complex features, such as eyes, wings
and wheels in intermediate layers, towards global prototypes of
each class in the top layer [53]. Other examples can be found
in natural language processing, speech processing or machine
translation, where the study of the encoding performed by deep
neural networks reveals that related concepts are classified
in a meaningful way (see e.g. [75]). There are now many
techniques to extract different views of the representations a
deep neural network has learned [26].

Thus, deep learning techniques are endowed with the right
properties for the implementation of hierarchical sensorimotor
representations, since they extract the adequate features from
raw data to build a hierarchy of useful sub-symbolic repre-
sentations that make sense for the external observer and for
higher level processing modules.

C. Dealing with the curse of dimensionality

If we want a robot to build its own representations from
raw sensations rather than from features dedicated to a specific
task, the corresponding learning techniques should be able to
face the curse of dimensionality [76], because the raw sensory
space of any human-like robot is potentially huge.

Starting from raw input, deep neural networks are able to
reduce the dimensionality of data by representing only the
relevant manifolds. A such, they offer the adequate premises
for dealing with raw sensors, because they can address very
high dimensional input spaces, provided enough computational
power.

Moreover, the hierarchical nature of representations plays
a key role in dimensionality reduction because it allows the
factorization, reuse and transfer of knowledge at all levels and
in various domains (e.g. the concept of ”eye” can be learned
from human faces and transferred to dogs, cats, etc.) [39],
exactly as we do [77]. This is also a key to knowledge
transfer from one domain to another. Finally, the hierarchical
representations built in deep neural networks progressively
shrink the input dimensionality while carrying more and more
semantic representations, as already outlined in Section III-B.

D. Building multimodal representations

Multimodal information processing has been recognized
as a central concern in developmental psychology and de-
velopmental robotics [78]. Actually, it is well-known that,
for interpreting the continuous flow of information arising
from our sensors, we are using both monomodal correlations,
i.e. correlations between informations coming from the same
sensor, and multimodal correlations, i.e. correlated information
coming from different sensory modalities, such as touch,
vision or audition. We generally benefit from multimodality
to interpret our current situation, but multimodal processing
can also be revealed by maladaptive effects that it generates.
For instance, in the McGurck effect [79], the perception of
a syllable differs depending on the presence of visual only,
auditory only, or both visual and auditory stimulus. The rubber
hand effect [80] is another example, where a coupling between
visual and tactile stimuli modifies the perceived body. These
examples show that multimodal fusion is not only a high
level process, but that different modalities are processed in an
intertwined manner even at the lowest levels of perception.
An advantage of using a unified low level sensorimotor
representation is that it facilitates this multimodal integration.

In that respect, an important property of deep neural net-
works is that their internal processes are agnostic about the
nature of the input data. Thus, the raw data coming from very
different sensors can be treated with the same mechanisms and
merged into higher level representations. As a consequence,
these networks can be very naturally endowed with multimodal
information processing capabilities. There exist several ap-
proaches to multimodality in deep learning and developmental
robotics. We refer the reader to [81] for a survey of these
works.

E. Combining bottom-up and top-down information processes

Combining bottom-up and top-down information processes
is mandatory from the developmental robotics standpoint. In
one way, high level signals such as natural language have
a top-down influence on the structuring of our low level
representations of the world. But, in the other way, the bottom-
up structuring of our sensorimotor representations plays a key
role in the acquisition of referential tools such as language.
More generally, bottom-up and top-down information pro-
cesses influence each other and their interplay is crucial for
the structuration of our representations and the development
of higher level processing capabilities [82].

Thus, it is crucial from the developmental robotics perspec-
tive that some of the standard generative approaches to deep
learning such as RBMs and GAEs readily combine bottom-
up and top-down interactions. As generative models, RBMs
can combine bottom-up and top-down information processes
because their learning and inference processes involve a flow
of information from the visible to the hidden layer and vice
versa [26]. In Section IV, our focus is more on GAEs than on
RBMs, because these tri-partite networks allow to combine the
bottom-up and top-down flow with a third direction, namely
the temporal flow of information.
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F. Natural language related and socially oriented learning

A learning robot should build representations of its interac-
tions with its physical environment, but more socially oriented
learning processes should also be considered.

Many of these processes are related to natural language. In
developmental robotics research, a lot of effort is dedicated
to language acquisition, speech and text understanding, the
development of writing capabilities and other language related
processes [7]. Deep learning techniques have shown their
efficiency at dealing with many of these language related
issues [83], [84]. Thus, they should naturally contribute to
the developmental robotics research effort dedicated to them.
However, they should do so within a conceptual framework
that is compatible with the requirements of developmental
robotics, rather than based on supervised learning methods
and labeled data, as is mostly the case in this literature.
Furthermore, such processes should be integrated into the
more global concern of building high level representations of
interactions with the world, since they play a key role in the
top-down restructuring of these representations.

A closely related concern where deep learning techniques
can have a large impact is human-robot interaction. Learning
to interact with a caregiver is fundamental for the developmen-
tal process of infants. This issue is being taken more and more
seriously in developmental robotics. Some of these interactions
are conveyed through natural language, but others are more
related to non-verbal signals, such as posture or gesture, etc.
Here again, a lot of effort is dedicated to these concerns in
the deep learning literature, with the same methodological
limitations as above [85], [86].

G. Summary

To conclude this section, a nice thing about deep learn-
ing techniques is that they have the right properties for
learning sensorimotor contingencies from the raw multimodal
and sensorimotor signal and building hierarchical represen-
tation of higher level regularities from this flow. Actually,
extracting hierarchical regularities in large spaces is exactly
what deep neural networks are good at. Additionally, more
specific pattern recognition capabilities in image, speech or
human gesture recognition can be beneficial to developmental
robotics research by providing concrete means to improve the
interaction and learning capabilities of robots.

Thus, a first interest of deep learning for developmental
robotics is that the appealing properties of deep neural net-
works can readily be imported into the design of percep-
tion and representational systems for robots, resulting in an
immediate improvement in the flexibility of their sensory
representations. However, a deeper perspective is possible, that
we present in the next section.

IV. BETTER TOOLS FOR DEEP DEVELOPMENTAL ROBOTICS

In the previous section, we outlined what the outstanding
pattern recognition capabilities of deep learning techniques
can bring to developmental robotics. However, while doing
so, we overlooked two important limitations of most of the
deep learning techniques reviewed so far.

First, they generally call upon some supervised learning
step. Using supervised learning is legitimate in domains like
text or speech processing where a lot of labeled data is
available. By contrast, it is much more questionable in the
developmental robotics context where labeling the sensorimo-
tor experience of an autonomous robot is hardly feasible.

Second, deep learning techniques generally focus on static
patterns, whereas robots are intrinsically engaged in dynamic
interactions with their environment. One may build robotics
architectures that take these static patterns as input, but this ap-
proach would prevent cognitive operators that deal with these
patterns to emerge from the information processes themselves.
Our deeper view of developmental robotics is that the cognitive
processes and operators themselves should be learned into the
same representational substrate as the manipulated representa-
tions, which implies that such representations are themselves
dynamical.

In this section, we investigate two complementary lines of
research dedicated to addressing both limitations above. In
Section IV-A, we describe a recent effort to learn symbolic
representations from high dimensional data by relying exclu-
sively on unsupervised learning mechanisms. We show that
the corresponding work addresses many of the requirements
listed in the previous section, though it does not address all
developmental robotics constraints. In Section IV-B, we survey
various attempts to design deep architectures that can deal
hierarchically with temporal information in order to predict
what will happen next, as we consider this as crucial for deep
developmental robotics.

A. Learning symbols from high dimensional data
As already outlined in Section III-C, starting from the

raw sensorimotor data of a robot to build hierarchical rep-
resentations raises a major dimensionality problem. The work
presented in [81] can be seen as a direct attempt to address
it while combining two complementary requirements: perform
dimensionality reduction by learning along meaningful mani-
folds, and rely exclusively on unsupervised learning methods.

As for the first requirement, an important assumption in
pattern recognition is that input data is generally concentrated
in the vicinity of non-linear sub-manifolds of much lower
dimensionality than the input space. Actually, the higher
the dimensionality of the input space, the most likely this
assumption [87], [88], [57]. Thus, rather than performing
dimensionality reduction by projecting input data into a lower
dimensional space, one may tune the parameters of the repre-
sentation so that it preferably represents areas in the original
space where the data density is high [89], [90]. This can be
achieved by applying a contractive operator that concentrates
the output where the input data lies [49].

As for the second requirement, the critical point of most
standard unsupervised learning algorithms is the definition of
a suitable metric that is used to cluster the samples according
to their relative distance. Most of these algorithms [91] are
variants of the K-MEANS [92], hierarchical clustering [93] or
Kohonen-like networks [94]. They all rely explicitly on the
complex definition of a metric that usually depends on the
addressed task.
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Fig. 3. Gated network for unsupervised classification (adapted from [81]). The
network aims at clustering input data at the softmax layer using the W matrix.
Based on this clustering, a gated network learns to represent the underlying
manifold. Gated connections make it possible to share features Wv and Wh

between all classes and reduce the number of parameters to learn. The hidden
layer(s) are intended to implement a standard deep neural network to handle
high-dimensional, raw perception as input.

An important step towards removing the necessity of super-
vision in deep neural networks was achieved by sharing fea-
tures in the gated architecture described in Section II-D [69],
[51]. The presence or absence of each learned feature was
indicated by Boolean variables in a hidden layer. For k hidden
units, the authors demonstrated that their model was equivalent
to a mixture of 2k logistic classifiers with shared weights. They
reported that sharing features improved the classification per-
formance of the system compared to an unsharing approach.

The architecture illustrated in Fig. 3 was an extension to the
factored gated networks of [69], [51]. It was meant to extract
classes from sensory data, together with some properties
that characterize different instances of these classes. The key
idea was to design an architecture performing dimensionality
reduction by learning along meaningful manifolds, but rep-
resenting these manifolds in such a way that it would result
in a simple metric to efficiently apply unsupervised learning
methods. The central assumption was that the position of an
instance along the sub-manifold corresponding to its class
could appropriately characterize its properties. This assump-
tion provides a natural definition of categories and concepts
and was shown to be efficient to reduce the complexity of
algorithms in [88].

Concretely, the set of classes was learned with a softmax
layer and the set of parameters with a softplus layer. The
softmax layer ensured that only one class was active for a
given input, whereas the softplus layer was appropriate for
learning a continuous parametric space. For a given input
point, the obtained class corresponded to the manifold on
which this point was lying, and the obtained parameters
corresponded to the location of that point on that manifold.
Using unsupervised learning to learn other layers on top
of the obtained representation would be more natural with
this architecture because the split between the discrete set of
manifolds and the parametrized position of a point over the
manifold simplifies the definition of the appropriate metric.
However, this further stage was not studied in [81].

A further requirement of the architecture was to endow the
system with multimodal learning capabilities [81]. To ensure

such capabilities, the architecture was extended as illustrated
in Fig. 4 with several networks learning a representation
in each modality that were then combined by sharing the
softmax and softplus layers. The factored gated connections
helped learning compact representations of multi-dimensional
relations between different variables.

This architecture was applied to learning to classify a set
of concepts, such as numbers represented as small images
in the MNIST data set [95]. The modalities were the images
themselves, the auditory signal corresponding to uttering the
number and, more interestingly, the joint position of the iCub
robot drawing the number in a kinesthetic teaching mode.
The results showed that multimodal learning considerably
improved the robustness of the learning process (see [81] for
details).

So, to what extent does this work contribute to deep devel-
opmental robotics? In a way, it can be seen as a step towards
solving the symbol grounding problem, by extracting token-
like representations out of raw multimodal sensory data, while
relying exclusively on unsupervised learning. However, it also
suffers from severe limitations. First, the image data set (nor-
malized images of white numbers on a black background) was
designed for the specific task at hand (representing numbers),
which severely contrasts with the standard developmental
robotics methodology. Second, the number of concepts was
predetermined and corresponded to the number of classes in
the classification layer. Finally, it was unclear how to build
a hierarchy of higher and higher level symbols by stacking
several similar networks on top of each other. A preliminary at-
tempt to better comply with developmental robotics constraints
was published in [96], but the corresponding work does not
address all requirements yet.

Thus, the representational elements described in this section
may play a role in some attempts to build a deep developmen-
tal robotics architecture, but they are still preliminary and a
lot of effort is required to design better technical tools in this
direction.

B. Hierarchical Prediction and Temporal Clustering

There are many deep learning works dealing with tempo-
rally organized information in speech, text or videos.

However, their approach to the recognition of patterns in
the corresponding flow of information is essentially the same
as for static data: the network is tuned to recognize the pattern
into a larger space where time is an additional dimension
(e.g. [97], [98]). In this section, we advocate for an alternative
perspective where the network is tuned to predict future data
and we describe some works that are more in line with this
perspective.

Many approaches to cognition agree on the fact that reactive
sensorimotor information processing should be coupled with a
predictive internal loop that has been termed in many different
ways: the ideomotor principle [99], anticipatory processes
[100], [101], internal simulation [102], predictive processing
[103], [104], etc. As a matter of fact, many developmental
psychology results show without ambiguity that infants are
able to foresee the consequences of their actions before making
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Fig. 4. The architecture depicted in Fig. 3 generalizes to an arbitrary number of modalities by duplicating the input layers while sharing the same softmax
and softplus layers (Modality 1 has been separated for clarity only, all modalities are equivalent in the network). This constrains the network to learn a joint
representation of different modalities, which have to be clustered into a single space (one softmax unit active at one time), but the network can allocate
different softplus units to one or several modalities, according to their correlations and the number of available units.

a choice, and such anticipatory capabilities are considered
central to intelligence in many theories, e.g. [105], [106],
[107].

A consequence of the predictive framework for pattern
recognition is that the incoming stimuli are interpreted in
the context of internally generated predictions [108]. With
this perspective, ”a perceptual process does not start with the
stimulus; rather, the stimulus is an END of the process, like
the last piece of a jig-saw puzzle, which fits in its place only
because all the other pieces have been placed in a particular
way. [...] A stimulus is present only if there is an organization
into which it can be fitted” [109].

To support internal simulation, it is necessary to learn
representations of what will happen next given the current
context, eventually including some memory from the past. But
it is most probably not the case that we mentally simulate all
the instants from the current situation to the desired state. We
certainly make profit of a hierarchically organized temporal
structure to skip many unnecessary details in this mental
simulation process [102]. So, on top of the lowest level of basic
entities such as sensorimotor contingencies or the sensory
effect of actions on objects, the knowledge of a robot should
be endowed with a hierarchical structure not only over its
representational content, but also over time. This hierarchical
prediction issue has received a lot of attention recently, see
e.g. [110], [104] and the corresponding capabilities have been
named “hierarchical predictive processing” [103].

A second issue is that, even at the lowest level of the
hierarchy, the elementary entities are not static patterns, they
have a temporal extension. For instance, when you are pushing
an object, it may roll away from your finger, it may move in
contact with it, it may fall aside or it may even not move
at all if it is fixed or too heavy [22]. Figuring out these
effects requires observing over time. Furthermore, the action
of pushing itself must last long enough for perceiving these
effects. Recognizing these various effects requires clustering
over some undetermined interval of time, since these effects
and the corresponding actions are not instantaneous. We call

this the temporal clustering issue.
Both issues, hierarchical prediction and temporal clustering,

are key challenges for developmental robotics. So, given the
focus of this paper on the contribution of deep learning tech-
niques to developmental robotics, we refer to deep learning
techniques that we believe should contribute to solving these
issues.

To approach the temporal clustering issue, one can consider
that, when what happens immediately next is predictable, there
some internal coherence into the temporal data, so it pertains
to the same temporal unit [111], [112]. Additionally, in order
to predict the next pattern from the current situation, instead
of learning a large set of associations between successive
patterns, one should learn the transformations from given
patterns to their successors. So, one may solve the temporal
clustering issue by learning transformations from a sensation
to the next and considering that the flow of sensorimotor
information pertains to the same temporal unit as long as the
transformation is the same.

A first deep learning attempt to learn such transformations
between images was based on the network illustrated in Fig. 2
[51]. A feature sharing property was introduced, as explained
in Section II-D, leading to a degenerate case of the network
first published in [69]. In order to learn transformations with
this network, the “x” layer is associated to the current pattern,
the “y” layer to the next pattern and the “z” layer to the trans-
formation between the two. The transformations themselves
are coded as a finite repertoire where each neuron in the “z”
layer conveys a binary latent variable that corresponds to a
components of the transformation.

A further improvement to this approach consisted in cus-
tomizing the structure and learning mechanisms of the ar-
chitecture so that it would preferentially extract orthogonal
transformations [113]. An important property of orthogonal
transformations is that there is no information loss between
the initial and the final data. This is the case for instance for
rotation of images. So, a loss of orthogonality in a sequence
of input data can be interpreted as a meaningful change in
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the content represented by the data. Therefore, detecting this
change might be used to perform temporal clustering.

The second ingredient to perform hierarchical prediction
consists in storing temporally extended entities through some
kind of internal memory. One line of research in the deep
learning literature in this domain results from the augmentation
of the RBM architecture to deal with time. A first approach was
the CRBM architecture, which consisted of RBMs with addi-
tional input from the previous time frame [114]. The gated,
transformation-based architectures described in Section II-D
are indirect descendants of this approach through a series
of evolutions [115], [116]. Another approach was the TRBM
architecture [97] which was composed of a succession of
RBMs for successive time frames, the bias on hidden units of
the next RBM being a function of the hidden activation at the
previous time frame. However, this model was suffering from
an inefficient inference process and was later improved with
the RTRBM, where the dependency between two time frames
can be represented in practice with a recurrent connection [63].
For more recent work along this line, see [117].

However, even if these approaches could in principle model
regularities over many time steps, in practice they were only
successful over a limited time window, due to the vanishing or
exploding gradient problem [33]. In the context of recurrent
neural networks (), this problem was specifically preventing
from learning long term dependencies in a sequence of input.

The Long-Short Term Memory (LSTM) approach was de-
signed specifically to remove this limitation [118]. The idea
of the LSTM architecture was to include into the network
some units dedicated to maintaining an appropriate amount of
error back-propagation. Then, those units had to be isolated
from the standard gradient back-propagation flow with an
“input gate” and an “output gate” whose opening and closing
dynamics was learned. This made the network able to learn
long term sequential problems much better than most previous
approaches. A “forget gate” was then added to deal with the
necessity of reinitializing the content of the internal state when
the context was changing [119]. This successful architecture
is the starting point of a large body of work where sequences
are learned. Among other things, the initially purely forward
learning mechanism was replaced by a bidirectional learning
mechanism to improve performance in contexts where the
overall sequence is stored and accessible in advance, such
as in text or speech processing [120], [121]. Furthermore,
hierarchical stacking of several LSTMs improved the capability
to learn complicated sequences [122].

Another, fast growing line of research has been initiated
with “Multiplicative ” [123], which combine with the kind of
gating architecture described in Section II-D, and benefit from
Hessian-free optimization [46].

In the same domain, an even more recent line of research
emerged with two different architectures. One is based on a
set of “clocks” constraining the dynamics of recurrent units at
different frequencies [124], with competitive performance with
respect to the works presented above. The second implements
a similar idea using different decay rates in the activity of
recurrent units [125].

To conclude this section, it seems that some deep learning

techniques offer a few of the required properties to address hi-
erarchical prediction and temporal clustering, but the concrete
way to combine the ingredients described above to actually
build hierarchies of temporal representations is still the focus
of very intensive research [126], [98], [127].

V. BEHAVIOR OPTIMIZATION, INTRINSIC MOTIVATIONS
AND LIFE-LONG LEARNING

All the work we have surveyed so far was dedicated
to endowing developmental robotics architectures with the
elaborated sub-symbolic representations they are missing. But
learning representations is not enough. A developmental robot
must act in its environment and improve its behavior along
time. By improving, we mean that, with more experience, it
should minimize some implicit or explicit cost function.

In this section, we investigate a family of mechanisms that
should play a role in experience-based improvement, still from
the dual perspective of the impact of deep learning techniques
on those mechanisms and of the impact of those concerns on
the future of deep learning research.

A. Optimizing control and actions

Like robotics perception, robotics behavior is subject to
the curse of dimensionality. Indeed, complex robots such as
humanoids have many degrees of freedom. Learning to act or
behave can be cast as an optimization problem that is generally
very expensive in the size of the search space. So, trying to
learn the appropriate behaviors by directly searching the huge
space of all possible movements is deemed to fail. Given this
complexity, it has been recognized that the data corresponding
to useful actions lies in some limited sub-manifolds of the
motor space [128]. Indeed, an autonomous robot should often
reproduce the same patterns of movements in many everyday-
life contexts and this limited set of movements should only
cover a small portion of the space it can actually reach.

In the standard robot control learning literature, this recog-
nition has favored the emergence of an approach based on
the optimization of movement primitives, i.e. mathematical
abstractions that define specific movements in small spaces. A
popular example of such primitives are Dynamic Movement
Primitives (DMPs) [129], [130].

A DMP generates a movement from a starting point to
a goal. In order to circumvent the curse of dimensionality,
it is generally parametrized only with time. As such, it can
be seen as a way to realize a unique instance of a motor
primitive that works only in very specific circumstances [131].
In order to increase its expressive power, it can be augmented
into a contextual DMP. Contextual DMPs are DMPs whose
representation has been extended with additional parameters
such as the goal, the starting point, some waypoints or any
contextual constraints that can be exerted on a movement
[132]. Learning a contextual DMP means learning its rep-
resentation for different values of the contextual parameters
and then relying on the generalization capability of some
regression algorithm [133] to provide a correct behavior, even
for contexts in which the system was not trained. There
are several representations for contextual DMPs [134], [135],
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[131], but their common feature is that the dimensionality
grows quickly with the number of contexts that have to be
distinguished. As a consequence, optimizing contextual DMPs
after learning them from demonstrations faces the curse of
dimensionality again. And the parameters of a contextual DMP
have to be determined by the designer, which contradicts the
requirements of developmental robotics.

As we outlined in Section IV-A, some deep learning tech-
niques are readily endowed with the capability to focus on
the relevant sub-manifolds of a large domain. Thus they may
provide the adequate tools for learning to cover the parts
of the sensorimotor domain corresponding to useful postures
or behaviors without the need for the engineer-based pre-
structuring provided by DMPs.

Along this line, deep learning techniques were used in a
simulated race cars driving experiment to compactly encode
the state space of a control problem using sparse auto-
encoders [136], [137]. A more recent example in the same
domain used CNNs (see Section II-A) for the same purpose
[138].

Apart from structuring a continuous state-action domain,
deep learning techniques can also be used to learn an accurate
model of a performance function, the value function, that is
at the heart of Reinforcement Learning (RL) algorithms [139].
Reinforcement Learning addresses the problem of improving
the behavior of a system based on some external cost or reward
function. For a given state, the value function tells you how
good it is to be in that state, so it helps you choosing the next
state you should reach. When the action domain is continuous,
as is the case when controlling robots, choosing the best
action becomes a costly optimization problem. In principle,
the value function helps reducing this cost, but the standard
linear methods suffer from the difficulty to approximate it with
linear approximation tools over a continuous domain [140]. As
a consequence, RL for robotics control evolved towards pure
black-box, stochastic optimization methods, that do not strive
to approximate the value function [141], [131].

So far, most attempts to combine RL with deep neural net-
works have been applied in domains that have few to do with
developmental robotics. A survey of those attempts is provided
in [142]. But the situation is evolving quickly. Actually, deep
learning techniques can approximate the value function of an
RL algorithm much more accurately than standard method
because they find the adequate features for doing so. This
insight led to a first breakthrough when a CNN was combined
with a slightly modified version of the standard Q-LEARNING
algorithm [139] to get impressive results in a large set of
challenging video game problems [143]. Then, very recently,
the method was applied to twenty continuous action problems
in an actor-critic architecture [144] and should result in the
revival of attempts to approximate the value function of RL
algorithms into developmental robotics problems.

Another line of research consists in applying guided policy
search techniques [145] to learn a high-level, decision policy
from raw image data, giving rise to “end-to-end” learning of
visuomotor policies using CNNs [146]. Intuitively, the capabil-
ity of deep learning techniques to build hierarchical represen-
tations plays a crucial role in such attempts to integrate control

and decision into a unified framework. A new line of research
now consists in combining this policy improvement issue
with the issue of dealing with sequential data as outlined in
Section IV-B. Such combinations are important steps towards
the emergence of cognitive operators, as we outlined in the
introduction of this section.

B. From intrinsic motivations to curriculum learning

Like infants during their development, developmental robots
should face a complex, continuously changing environment,
with a huge space of opportunities for perceiving, acting
and learning. In such a space, choosing what to learn next
is itself a hard problem that should not be solved through
ad hoc engineering methods, but rather in a principled way.
Such a principled approach relies on intrinsic motivations and
artificial curiosity (see [147] for a survey).

Intrinsic motivations stand for the fact that, rather than
learning what to do next based directly on some external or
extrinsic reward signal, we learn based on some internal or
intrinsic motivational system that is only indirectly related to
the external reward signal. One specific intrinsic motivation is
curiosity. The curiosity motivation stands for the tendency of
infants to spend a lot of time exploring the outcome of their
activities in a way that may seem random at first glance [78],
but that is in fact organized so as to maximize their global
learning speed.

When transposed to robotics or software agents, all the
Intelligent Artificial Curiosity (IAC) architectures share a
common principle: given a discrete repertoire of potential
actions, the IAC process selects the action that maximizes the
progress measurement of the robot or agent, i.e. the action
for which an approximation of the performance derivative is
maximal.

Several computational models have been proposed to im-
plement IAC, e.g. [148], [149], [150]. In all these models,
the perceptive space of the agent has to be clustered into do-
mains where the performance progress is measured. In [151],
this clustering is performed hierarchically. Thus the learning
progress measurement processes of IAC may benefit from
the outstanding hierarchical clustering capabilities of deep
learning techniques. Reciprocally, deep learning techniques
may benefit for the increased learning speed of IAC1. To our
knowledge, such a combination has not been attempted so far.

In direct connection with this issue, Piaget showed how
the development of infants is structured into stages, though
the exact order of the learning stages is specific to each
infant [152]. In particular, infants seem to first learn easy
things and progressively turn towards harder activities as
they acquire more complex representations and capacities.
Accounting for this developmental trajectory and explaining
the increasing complexity of the problems an agent can address
through its lifetime is the central concern of the so-called “life-
long learning” research domain. Furthermore, the dynamics

1Actually, using typical developmental processes such as IAC to improve
deep learning techniques should give rise to developmental deep learning
rather than deep developmental learning, but we do not cover this potential
line of research any further here.
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of this complexity growth should be partly conditioned by
maturational constraints related to the biological growth of
the agent, as put forward in [153], [151].

In the deep learning literature, these issues have started
being investigated under the label “curriculum learning” [154],
but a lot remains to be studied (see Section 9.1.4 of [24] for
an overview).

VI. CONCLUSION AND PERSPECTIVES

Starting from the fact that a lot of engineering is still
required to extract features for the representation of affor-
dances, we outlined that it would be straightforward to use
deep learning techniques for the perception of robots and
use some other techniques for behavioral learning based on
the obtained perceptive representations. However, such an
approach would maintain a questionable split between the
perceptive, decisional and behavioral capabilities of the robot.
Despite numerous criticisms against this deeply rooted split
[155], [72], [156], a satisfactory alternative is still missing.

In this paper, through a survey of deep learning techniques
that may be used in developmental robotics, we have tried
to investigate some foundations towards such a satisfactory
alternative. We have investigated the potential impact of deep
learning techniques on building representations for robots
based on pattern recognition methods. We have also examined
diverse issues related to behavior optimization, as well as
natural language and other socially oriented learning pro-
cesses. From a more methodological standpoint, finally, we
have outlined the necessity to rely on unsupervised learning
and hierarchical predictive processes.

Some of the elements described in this paper may be used to
build better foundations for developmental robotics. However,
many issues remain to be addressed. As a final word, we focus
on two of them: the current technical difficulty of running deep
learning algorithms onto robots, and the need for a general
architecture combining all the building blocks we studied
separately so far.

A. Towards deep learning embedded in robots

Though survey paper dedicated to deep learning techniques
generally mention robotics as a potential application domain,
so far there are surprisingly few papers where deep learning
techniques are actually used in a robotics context, despite a
few prominent and recent exceptions, e.g. [146], [157], [28].

One reason for this situation is that, in practice, deep
architectures are usually computationally expensive to train
and tune. Actually, to get some of the most impressive non-
robotics pattern recognition results, very large clusters of
computers were used (e.g. [158]). Thus, embedding enough
computational power on a robot to process on-line all raw
sensory information with the deep learning techniques de-
scribed throughout this paper is probably still out of reach
[159]. However, from the purely computational point of view,
the situation should improve quickly because deep networks
are highly parallelizable and make good use of computing
resources, and better and better GPU resources become avail-
able.

Nevertheless, in most robotics experiments, data is pro-
cessed offline, which may seem incompatible with the in-
cremental and on-line learning requirements of developmental
robotics. As outlined in Section II-B, deep neural networks are
generally trained layer per layer, often reusing the same input
data for training the added layers in sequence. One may argue
that this training process contradicts the requirements of devel-
opmental robotics because, according to the life-long learning
perspective, the learner should be trained by the incoming data
arising from its own experience rather than through successive
training steps managed by the experimenter.

A complementary perspective on that issue is that pro-
cessing everything on-line is not mandatory. In humans and
animals, some learning takes place during sleep [160] based
on some experience replay mechanism [161], [162] and may
involve some internal reorganization of the input flow. Thus, it
is not so unrealistic to unsupervised layer-per-layer training of
a deep network so as to implement “representational redescrip-
tion” of sensorimotor data. This redescription of data acquired
during “day-time” may happen during “night-time”, when the
robot is available for batch processing. This does not eliminate
the need for purely immediate, on-line learning during the
activities of the robot, but this provides a solution to implement
the most expensive representation learning processes in a batch
or mini-batch way. This approach is under current investigation
in the DREAM project [163] which supports some work
described in this paper.

B. Step towards a general architecture

How can we put together all the building blocks we have
described separately so far?

First, the architecture should extract from the sensorimotor
flow of a robot a set of sensorimotor contingencies, as outlined
in Section III-A, that would correspond to transformations of
raw sensations in this flow, building on techniques described
in Section IV-B. Taking these sensorimotor contingencies
as input, it should then implement hierarchical predictive
processes. We outlined in Section IV-B that a lot of research
is still necessary to endow a robotic system with the cor-
responding capabilities. This approach might be considered
successful if the robot could prove capable of building sub-
symbolic representations for affordances, objects, actions and
effects into a hierarchy corresponding to the kind of sub-
symbolic knowledge we have outlined in the introduction.
Note that, at this stage, the role in this perspective of the
conceptual clustering processes over manifolds, described in
Section IV-A, is not clear yet and also deserves significantly
more research.

A second and even more challenging stage would then
consist in integrating the behavior optimization and curiosity
mechanisms described in Section V. These mechanisms are
required to improve the realization of actions, the choice of
an action or the activation of an affordance in a given context.
But they can also contribute to “sculpting” the sensorimotor
and sub-symbolic representations by orienting the selection of
features towards those that are useful for efficient behavior.
Here, the unsupervised learning processes that are responsible
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for extracting a hierarchy of features should be reconsidered
so that the features they choose are those that best support the
improvement of behavior.

But, if we come back to the mug example presented in the
introduction, the sensorimotor and sub-symbolic representa-
tions we would obtain would account for part of the example,
such as the knowledge of how it feels to lift it or the proper
way to handle it, but it may not be enough to account for
more symbolic aspects such as naming the object or eventually
knowing where to purchase one.

Building symbolic knowledge on top of the sensorimotor
and sub-symbolic representations as well as learning cognitive
operators to manipulate temporal information are still open
research questions. Natural language acquisition and human-
robot interaction processes should definitely come into play,
because cultural, external representations are most probably
necessary to reach this stage [164], and language and interac-
tion are the appropriate media to learn about these external rep-
resentations. Learning such representation might be supported
by dedicated processes, given the specific educational effort it
takes to a child to learn them. But an architecture including
them might not be strictly hierarchical, given the impact of top-
down processes in the organization of the hierarchy of features
and operators. In particular, these processes may contribute to
endowing a developmental robotics architecture with reasoning
and planning capabilities beyond what hierarchical prediction
processes may offer. They may also help to build more abstract
cognitive capabilities on top of embodied cognition, shifting
from the representations of concepts that clearly have some
modal correlates to more abstract notions such as “liberty” or
“institution”.

So, beyond the mere integration of various deep learning
“modules” dedicated to specific capacities such as image
processing, multimodal fusion, natural language understanding
or social signal processing, what is required is a deeper
integration of basic machine learning capabilities into a set of
well chosen deep learning tools, so that all the above capacities
emerge from the sub-symbolic representations learned with
these tools. This is this ambitious research program that we
called deep developmental learning, and that should result in
the definition of a deep developmental robotics architecture.
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