K. Lonnroth, Towards tuberculosis elimination: an action framework for low-incidence countries, European Respiratory Journal, vol.45, pp.928-952, 2015.
DOI : 10.1183/09031936.00214014

Z. Jakab, C. D. Acosta, H. H. Kluge, and M. Dara, Consolidated Action Plan to Prevent and Combat Multidrug- and Extensively Drug-resistant Tuberculosis in the WHO European Region 2011???2015: Cost-effectiveness analysis, Tuberculosis, vol.95, pp.212-216, 2015.
DOI : 10.1016/j.tube.2015.02.027

Y. Zhang, THE MAGIC BULLETS AND TUBERCULOSIS DRUG TARGETS, Annual Review of Pharmacology and Toxicology, vol.45, issue.1, pp.529-564, 2005.
DOI : 10.1146/annurev.pharmtox.45.120403.100120

L. Ballel, R. A. Field, K. Duncan, and R. J. Young, New Small-Molecule Synthetic Antimycobacterials, Antimicrobial Agents and Chemotherapy, vol.49, issue.6, pp.2153-2163, 2005.
DOI : 10.1128/AAC.49.6.2153-2163.2005

A. I. Zumla, New antituberculosis drugs, regimens, and adjunct therapies: needs, advances, and future prospects, The Lancet Infectious Diseases, vol.14, issue.4, pp.327-340, 2014.
DOI : 10.1016/S1473-3099(13)70328-1

J. A. Maddry, Antituberculosis activity of the molecular libraries screening center network library, Tuberculosis, vol.89, issue.5, pp.354-363, 2009.
DOI : 10.1016/j.tube.2009.07.006

S. Ananthan, High-throughput screening for inhibitors of Mycobacterium tuberculosis H37Rv, Tuberculosis, vol.89, issue.5, pp.334-353, 2009.
DOI : 10.1016/j.tube.2009.05.008

R. C. Reynolds, High throughput screening of a library based on kinase inhibitor scaffolds against Mycobacterium tuberculosis H37Rv, Tuberculosis, vol.92, issue.1, pp.72-83, 2012.
DOI : 10.1016/j.tube.2011.05.005

U. H. Manjunatha and P. W. Smith, Perspective: Challenges and opportunities in TB drug discovery from phenotypic screening, Bioorganic & Medicinal Chemistry, vol.23, issue.16, pp.5087-5097, 2015.
DOI : 10.1016/j.bmc.2014.12.031

K. Andries, A Diarylquinoline Drug Active on the ATP Synthase of Mycobacterium tuberculosis, Science, vol.307, issue.5707, pp.223-227, 2005.
DOI : 10.1126/science.1106753

S. Ekins, J. S. Freundlich, I. Choi, M. Sarker, and C. Talcott, Computational databases, pathway and cheminformatics tools for tuberculosis drug discovery, Trends in Microbiology, vol.19, issue.2, pp.65-74, 2011.
DOI : 10.1016/j.tim.2010.10.005

S. Ekins, Enhancing Hit Identification in Mycobacterium tuberculosis Drug Discovery Using Validated Dual-Event Bayesian Models PLOSONE, p.63240, 2013.

S. Ekins, Bayesian Models Leveraging Bioactivity and Cytotoxicity Information for Drug Discovery, Chemistry & Biology, vol.20, issue.3, pp.370-378, 2013.
DOI : 10.1016/j.chembiol.2013.01.011

S. Ekins, J. S. Freundlich, J. V. Hobrath, L. White, E. Reynolds et al., Combining Computational Methods for Hit to Lead Optimization in Mycobacterium Tuberculosis Drug Discovery, Pharmaceutical Research, vol.8, issue.2, pp.414-435, 2014.
DOI : 10.1007/s11095-013-1172-7

B. D. Kana, P. C. Karakousis, T. Parish, and T. Dick, Future target-based drug discovery for tuberculosis?, Tuberculosis, vol.94, issue.6, pp.551-556, 2014.
DOI : 10.1016/j.tube.2014.10.003

M. Sarker, Combining Cheminformatics Methods and Pathway Analysis to Identify Molecules with Whole-Cell Activity Against Mycobacterium Tuberculosis, Pharmaceutical Research, vol.45, issue.131, pp.2115-2127, 2012.
DOI : 10.1007/s11095-012-0741-5

S. Ekins, Combining Metabolite-Based Pharmacophores with Bayesian Machine Learning Models for Mycobacterium tuberculosis Drug Discovery, PLOS ONE, vol.95, issue.25, p.141076, 2015.
DOI : 10.1371/journal.pone.0141076.s010

N. Lall and J. J. Meyer, In vitro inhibition of drug-resistant and drug-sensitive strains of Mycobacterium tuberculosis by ethnobotanically selected South African plants, Journal of Ethnopharmacology, vol.66, issue.3, pp.347-354, 1999.
DOI : 10.1016/S0378-8741(98)00185-8

N. Lall and J. J. Meyer, Antibacterial activity of water and acetone extracts of the roots of Euclea natalensis, Journal of Ethnopharmacology, vol.72, issue.1-2, pp.313-316, 2000.
DOI : 10.1016/S0378-8741(00)00231-2

N. Lall and J. J. Meyer, Inhibition of drug-sensitive and drug-resistant strains of Mycobacterium tuberculosis by diospyrin, isolated from Euclea natalensis, Journal of Ethnopharmacology, vol.78, issue.2-3, pp.213-216, 2001.
DOI : 10.1016/S0378-8741(01)00356-7

F. Van-der-kooy, J. J. Meyer, and N. Lall, Antimycobacterial activity and possible mode of action of newly isolated neodiospyrin and other naphthoquinones from Euclea natalensis, South African Journal of Botany, vol.72, issue.3, pp.349-352, 2006.
DOI : 10.1016/j.sajb.2005.09.009

A. Mahapatra, Activity of 7-methyljuglone derivatives against Mycobacterium tuberculosis and as subversive substrates for mycothiol disulfide reductase, Bioorganic & Medicinal Chemistry, vol.15, issue.24, pp.7638-7646, 2007.
DOI : 10.1016/j.bmc.2007.08.064

D. Dey, R. Ray, and B. Hazra, Antitubercular and Antibacterial Activity of Quinonoid Natural Products Against Multi-Drug Resistant Clinical Isolates, Phytotherapy Research, vol.316, issue.7, pp.1014-1021, 2014.
DOI : 10.1002/ptr.5090

T. Tran, Quinones as antimycobacterial agents, Bioorganic & Medicinal Chemistry, vol.12, issue.18, pp.4809-4813, 2004.
DOI : 10.1016/j.bmc.2004.07.015

S. Skouloubris, Targeting of Helicobacter pylori thymidylate synthase ThyX by non-mitotoxic hydroxy-naphthoquinones, Open Biol, vol.5, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01168931

T. Basta, Mechanistic and structural basis for inhibition of thymidylate synthase ThyX, Open Biology, vol.266, issue.32, p.120120, 2012.
DOI : 10.1021/bi00579a021

URL : https://hal.archives-ouvertes.fr/hal-00817165

S. Karkare, The Naphthoquinone Diospyrin Is an Inhibitor of DNA Gyrase with a Novel Mechanism of Action, Journal of Biological Chemistry, vol.288, issue.7, pp.5149-5156, 2013.
DOI : 10.1074/jbc.M112.419069

D. F. Warner, J. C. Evans, and V. Mizrahi, Nucleotide Metabolism and DNA Replication, Microbiology Spectrum, vol.2, issue.5, 2014.
DOI : 10.1128/microbiolspec.MGM2-0001-2013

H. Myllykallio, An Alternative Flavin-Dependent Mechanism for Thymidylate Synthesis, Science, vol.297, issue.5578, pp.105-107, 2002.
DOI : 10.1126/science.1072113

URL : https://hal.archives-ouvertes.fr/hal-00836930

E. M. Koehn, An unusual mechanism of thymidylate biosynthesis in organisms containing the thyX gene, Nature, vol.30, issue.7240, pp.919-923, 2009.
DOI : 10.1038/nature07973

H. F. Becker, Substrate interaction dynamics and oxygen control in the active site of thymidylate synthase ThyX, Biochemical Journal, vol.2, issue.1, pp.37-45, 2014.
DOI : --- Either first page or author must be supplied.

URL : https://hal.archives-ouvertes.fr/hal-01086044

D. Leduc, Flavin-Dependent Thymidylate Synthase ThyX Activity: Implications for the Folate Cycle in Bacteria, Journal of Bacteriology, vol.189, issue.23, pp.8537-8545, 2007.
DOI : 10.1128/JB.01380-07

URL : https://hal.archives-ouvertes.fr/hal-00195200

A. S. Fivian-hughes, J. Houghton, and E. Davis, Mycobacterium tuberculosis thymidylate synthase gene thyX is essential and potentially bifunctional, while thyA deletion confers resistance to p-aminosalicylic acid, Microbiology, vol.158, issue.2, pp.308-318, 2012.
DOI : 10.1099/mic.0.053983-0

J. H. Hunter, R. Gujjar, C. K. Pang, and P. K. Rathod, Kinetics and Ligand-Binding Preferences of Mycobacterium tuberculosis Thymidylate Synthases, ThyA and ThyX, PLoS ONE, vol.269, issue.5, p.2237, 2008.
DOI : 10.1371/journal.pone.0002237.t002

P. Sampathkumar, Structure of the Mycobacterium tuberculosis Flavin Dependent Thymidylate Synthase (MtbThyX) at 2.0?? Resolution, Journal of Molecular Biology, vol.352, issue.5, pp.1091-1104, 2005.
DOI : 10.1016/j.jmb.2005.07.071

M. Kogler, Synthesis and Evaluation of 6-Aza-2???-deoxyuridine Monophosphate Analogs as Inhibitors of Thymidylate Synthases, and as Substrates or Inhibitors of Thymidine Monophosphate Kinase in Mycobacterium tuberculosis, Chemistry & Biodiversity, vol.4, issue.3, pp.536-556, 2012.
DOI : 10.1002/cbdv.201100285

URL : https://hal.archives-ouvertes.fr/pasteur-00705897

V. Singh, The Complex Mechanism of Antimycobacterial Action of 5-Fluorouracil, Chemistry & Biology, vol.22, issue.1, pp.63-75, 2015.
DOI : 10.1016/j.chembiol.2014.11.006

A. Maxwell and D. M. Lawson, The ATP-Binding Site of Type II Topoisomerases as a Target for Antibacterial Drugs, Current Topics in Medicinal Chemistry, vol.3, issue.3, pp.283-303, 2003.
DOI : 10.2174/1568026033452500

S. Ekins, Analysis and hit filtering of a very large library of compounds screened against Mycobacterium tuberculosis, Molecular BioSystems, vol.51, issue.11, pp.2316-2324, 2010.
DOI : 10.1039/c0mb00104j

S. Ekins, A collaborative database and computational models for tuberculosis drug discovery, Molecular BioSystems, vol.322, issue.5, pp.840-851, 2010.
DOI : 10.1039/b917766c

S. Ekins, A. C. Casey, D. Roberts, T. Parish, and B. A. Bunin, Bayesian models for screening and TB Mobile for target inference with Mycobacterium tuberculosis, Tuberculosis, vol.94, issue.2, pp.162-169, 2014.
DOI : 10.1016/j.tube.2013.12.001

G. L. Abrahams, Pathway-Selective Sensitization of Mycobacterium tuberculosis for Target-Based Whole-Cell Screening, Chemistry & Biology, vol.19, issue.7, pp.844-854, 2012.
DOI : 10.1016/j.chembiol.2012.05.020

Y. Kumagai, Y. Shinkai, T. Miura, and A. K. Cho, The Chemical Biology of Naphthoquinones and Its Environmental Implications, Annual Review of Pharmacology and Toxicology, vol.52, issue.1, pp.221-247, 2012.
DOI : 10.1146/annurev-pharmtox-010611-134517

D. C. Schuck, Biological evaluation of hydroxynaphthoquinones as anti-malarials, Malaria Journal, vol.12, issue.1, p.234, 2013.
DOI : 10.1016/j.bbabio.2007.02.014

S. H. Wang, Synthesis and Biological Evaluation of Lipophilic 1,4-Naphthoquinone Derivatives against Human Cancer Cell Lines, Molecules, vol.20, issue.7, pp.11994-12015, 2015.
DOI : 10.3390/molecules200711994

G. M. Buyse, Efficacy of idebenone on respiratory function in patients with Duchenne muscular dystrophy not using glucocorticoids (DELOS): a double-blind randomised placebo-controlled phase 3 trial, The Lancet, vol.385, issue.9979, pp.1748-1757, 2015.
DOI : 10.1016/S0140-6736(15)60025-3

M. Erb, Features of Idebenone and Related Short-Chain Quinones that Rescue ATP Levels under Conditions of Impaired Mitochondrial Complex I, PLoS ONE, vol.10, issue.6, p.36153, 2012.
DOI : 10.1371/journal.pone.0036153.s005

J. Arpa, Triple Therapy with Darbepoetin Alfa, Idebenone, and Riboflavin in Friedreich???s Ataxia: an Open-Label Trial, The Cerebellum, vol.40, issue.5, pp.713-720, 2013.
DOI : 10.1007/s12311-013-0482-y

S. Iyer, Novel therapeutic approaches for Leber's hereditary optic neuropathy, Discov Med, vol.15, pp.141-149, 2013.

A. M. Clark, Open Source Bayesian Models. 1. Application to ADME/Tox and Drug Discovery Datasets, Journal of Chemical Information and Modeling, vol.55, issue.6, pp.1231-1245, 2015.
DOI : 10.1021/acs.jcim.5b00143

S. Karkare, F. Yousafzai, L. A. Mitchenall, and A. Maxwell, The role of Ca2+ in the activity of Mycobacterium tuberculosis DNA gyrase, Nucleic Acids Research, vol.40, issue.19, pp.9774-9787, 2012.
DOI : 10.1093/nar/gks704

J. C. Palomino, Resazurin Microtiter Assay Plate: Simple and Inexpensive Method for Detection of Drug Resistance in Mycobacterium tuberculosis, Antimicrobial Agents and Chemotherapy, vol.46, issue.8, pp.2720-2722, 2002.
DOI : 10.1128/AAC.46.8.2720-2722.2002

L. Collins and S. G. Franzblau, Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium, Antimicrob Agents Chemother, vol.41, pp.1004-1009, 1997.