
HAL Id: hal-01332334
https://hal.sorbonne-universite.fr/hal-01332334v1

Submitted on 15 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Molecular profiling of complete congenital stationary
night blindness: a pilot study on an Indian cohort

Sivasankar Malaichamy, Parveen Sen, Ramya Sachidanandam, Tharigopala
Arokiasamy, Marie-Elise Lancelot, Isabelle Audo, Christina Zeitz, Nagasamy

Soumittra

To cite this version:
Sivasankar Malaichamy, Parveen Sen, Ramya Sachidanandam, Tharigopala Arokiasamy, Marie-Elise
Lancelot, et al.. Molecular profiling of complete congenital stationary night blindness: a pilot study
on an Indian cohort. Molecular Vision, 2014, 20, pp.341-351. �hal-01332334�

https://hal.sorbonne-universite.fr/hal-01332334v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Congenital stationary night blindness (CSNB) is a group 
of clinically and genetically heterogeneous nonprogressive 
retinal disorders. CSNB is caused by mutations in genes that 
are involved in the phototransduction cascade or in retinal 
signaling from photoreceptors to bipolar cells (second-order 
neurons). Many patients with CSNB experience a strong 
visual disability during night time when artificial light is 
limited. CSNB is also associated with other ocular features 
such as myopia, nystagmus, and strabismus without striking 
fundus abnormalities [1,2]. Based on full-field electroretino-
gram (ERG), CSNB can be distinguished into two types, the 
Riggs type and the Schubert-Bornschein type. In the Riggs 
type [3], rod adaptation is present, although it is slower, and 
cone responses are normal. This type may be inherited in 
an autosomal dominant (AD) or autosomal recessive trait 
[4-7]. The Schubert-Bornschein type is characterized by a 

negatively shaped dark-adapted ERG response to a bright 
flash in which the amplitude of the a-wave is normal but 
larger than that of the b-wave [8]. This type is divided into 
two sub-types, complete CSNB (cCSNB or CSNB1), associ-
ated with a drastically reduced rod b-wave response and a 
peculiar square a-wave with relatively preserved amplitudes 
in response to a standard flash under photopic conditions 
indicating ON bipolar dysfunction, and incomplete CSNB 
(icCSNB or CSNB2), which is associated with a reduced rod 
b-wave and substantially reduced cone responses indicating 
ON and OFF bipolar dysfunction [9]. The mode of inheritance 
of the Schubert-Bornschein type is X-linked recessive [10-14], 
autosomal recessive (AR) [15-26], or autosomal dominant 
[27].

CSNB does not usually show fundus abnormalities, 
except for myopic changes; however, there are two other 
variants of CSNB with distinctive fundus abnormalities, 
Oguchi disease and fundus albipunctatus. Oguchi disease 
is characterized by a golden or diffuse gray-white fundus 
discoloration. After prolonged dark adaptation of 2–3 h, the 
discoloration of the fundus returns to normal, and normal 
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Purpose: Congenital stationary night blindness (CSNB) is a non-progressive retinal disorder that shows genetic and 
clinical heterogeneity. CSNB is inherited as an autosomal recessive, autosomal dominant, or X-linked recessive trait and 
shows a good genotype–phenotype correlation. Clinically, CSNB is classified as the Riggs type and the Schubert-Born-
schein type. The latter form is further sub-classified into complete and incomplete forms based on specific waveforms 
on the electroretinogram (ERG). There are no molecular genetic data for CSNB in the Indian population. Therefore, we 
present for the first time molecular profiling of eight families with complete CSNB (cCSNB).
Methods: The index patients and their other affected family members were comprehensively evaluated for the pheno-
type, including complete ophthalmic evaluation, ERG, fundus autofluorescence, optical coherence tomography, and color 
vision test. The known gene defects for cCSNB, LRIT3, TRPM1, GRM6, GPR179, and NYX, were screened by PCR direct 
sequencing. Bioinformatic analyses were performed using SIFT and PolyPhen for the identified missense mutations.
Results: All eight affected index patients and affected family members were identified as having cCSNB based on their 
ERG waveforms. Mutations in the TRPM1 gene were identified in six index patients. The two remaining index patients 
each carried a GPR179 and GRM6 mutation. Seven of the patients revealed homozygous mutations, while one patient 
showed a compound heterozygous mutation. Six of the eight mutations identified are novel.
Conclusions: This is the first report on molecular profiling of candidate genes in CSNB in an Indian cohort. As shown 
for other cohorts, TRPM1 seems to be a major gene defect in patients with cCSNB in India.
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function of rod cells is resumed [28,29]. The fundus of 
patients with fundus albipunctatus shows numerous small 
white or yellow flecks spread throughout the retina, and these 
patients show recovery of scotopic responses after prolonged 
dark adaptation [30]. Oguchi disease and fundus albipunc-
tatus are inherited in an autosomal recessive trait [28-30].

Thus far, 17 genes have been identified as associated with 
CSNB, Oguchi disease, and fundus albipunctatus and show 
a good genotype–phenotype correlation. Mutations in NYX 
(MIM: 300278) lead to X-linked recessive cCSNB whereas 
mutations in CACNA1F (MIM: 300110) cause X-linked reces-
sive icCSNB [10-14]. GRM6 (MIM: 604096), TRPM1 (MIM: 
603576), GPR179 (MIM: 614515), and LRIT3 (MIM: 615004) 
are implicated in autosomal recessive cCSNB [15,16,19-26], 
while CABP4 (MIM: 608965) mutations cause autosomal 
recessive icCSNB [17]. Of note, CACNA2D4 (MIM: 608171) 
mutations were identified in a patient with icCSNB, which 
showed upon reinvestigation as autosomal recessive cone 
dystrophy [18]. However, SLC24A1 (MIM: 603617) mutations 
have been reported in autosomal recessive CSNB with the 
Riggs type [7]. Autosomal dominant CSNB with the Riggs 
type are due to mutations in RHO (MIM: 180380), GNAT1 
(MIM: 139330), and PDE6B (MIM: 180072) [4-6]. Recently, 
homozygous mutations in GNAT1 in a consanguineous 
Pakistani family were reported, indicating involvement of 
GNAT1 in autosomal recessive CSNB as well [31]. Oguchi 
disease is caused by mutations in GRK1 (MIM: 180381) 
and SAG (MIM: 181031) [28,29] whereas the gene thus far 
predominantly identified in fundus albipunctatus is RDH5 
(MIM: 601617) [30], although two other genes RPE65 (MIM: 
180069) and RLBP1 (MIM: 180090) have also been associ-
ated with fundus albipunctatus [32-34]. There are no data on 
the mutation prevalence of patients with CSNB in the Indian 
population. Here we report molecular genetic data from a 
preliminary study of eight families with cCSNB from India.

METHODS

Research procedures were conducted in accordance with 
Institutional Review Board guidelines of Vision Research 
Foundation and the Declaration of Helsinki. Thirteen patients 
from eight unrelated Indian families were recruited and 
twelve patients underwent complete ophthalmic examination, 
which included refraction, full-field ERG, optical coherence 
tomography (OCT), fundus autofluorescence (FAF), color 
fundus photography, and color vision test (D15 test).

Full-field ERG was recorded using VERIS Science 5.1 
(Electro-Diagnostic Imaging, EDI; San Mateo, CA) following 
the guidelines by the International Society for Clinical 
Electrophysiology of Vision (ISCEV) after pupil dilation 

with the use of a bipolar Burian Allen electrode with a gold 
cup electrode attached to the earlobe as a ground electrode 
[35]. In four of the eight families, more than one member 
were affected (men and women; Family 2, Family 4, Family 
6, Family 7), in one family a single index patient (female; 
Family 3) was affected, while in three families, only the index 
male patient was affected (Family 1, Family 5 and Family 8).

After informed consent was obtained, 10 ml of heparin 
blood samples of the index patients along with their affected 
and unaffected sibs and parents were collected. The samples 
were stored at 4 ºC prior to extraction. The DNA was extracted 
using the NucleoSpin Blood XL kit (Macherey-Nagel, Duren, 
Germany) according to manufacturer’s protocol. The index 
patients were screened for mutations in the coding regions of 
the genes underlying autosomal recessive cCSNB, namely, 
LRIT3, TRPM1, GPR179, GRM6, and NYX, underlying 
X-linked recessive by Sanger sequencing. Primer sequences 
for these genes were obtained from published articles 
[16,23,24,26]. Primers for NYX were designed by us using 
the Primer3 online tool [36]. PCR was performed using 50 
ng genomic DNA in a 12.5 μl reaction consisting of 5 μM 
primers (Shrimpex Biotech, Chennai, India), 250 μM dNTPs 
(Applied Biosystems, Foster City, CA), and 0.1 U of Taq DNA 
polymerase (GeNei, Merck, Mumbai, India) as described 
below. PCR for genes LRIT3, TRPM1, GPR179, and GRM6 
was performed as following, an  initial denaturation of 5 min 
at 94 °C, 35 cycles of denaturation at 94 °C for 20 s, annealing 
for 20 s and extension at 72 °C for 45 s followed by a final 
extension at 72 °C for 7 min. The annealing temperature 
for different amplicons varied and the conditions were as 
described in the publications [16,23,24,26]. PCR for NYX was 
done using an initial denaturation of 5 min at 94 °C, 35 cycles 
of denaturation at 94 °C for 20 s, annealing at 58 °C for 20 s 
and extension at 72 °C for 45 s followed by a final extension 
at 72 °C for 7 min.

Purified (Exo-SAP E. coli exonuclease I and Fast Alka-
line phosphatase, Thermo Scientific, Vilnius, Lithuania) PCR 
products were bidirectionally sequenced using a reaction kit 
(Big Dye Terminator v3.0 Ready, Applied Biosystems) and 
passed on a sequencer (ABIPRISM 3100- or 3730 Avant 
Genetic Analyzer, Applied Biosystems). The sequences were 
compared with the reference (LRIT3 - ENSG00000183423, 
TRPM1 - ENSG00000134160, GPR179 - ENSG00000260825, 
GRM6 - ENSG00000113262, and NYX - ENSG00000188937). 
Cosegregation analysis was performed on the DNA of avail-
able family members. Control screening was done using PCR-
based direct sequencing or allele-specific PCR (ASPCR). 
SIFT [37] and PolyPhen [38] analyses were performed to 
predict the possible impact of amino acid substitution on the 
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structure and function of the protein and the conservation 
of a particular amino acid across closely related species. 
One hundred and twenty controls were taken from samples 
collected as part of epidemiological studies conducted at our 
hospital (Medical Research Foundation), underwent complete 
ophthalmic examination, and had no retinal abnormalities 
[39,40].

RESULTS

Clinical characteristics: The clinical data for each affected 
index patient and affected siblings from the eight families 
were analyzed. Based on full-field ERG waveforms, the 
patients were all classified as having cCSNB showing elec-
tronegative waveforms. The full-field ERG traces of patients 
with TRPM1, GRM6, and GPR179 mutations along with a 
normal ERG trace are shown in Figure 1.

All patients carrying mutations showed typical post-
photoreceptoral dysfunction on full-field ERG: The b-wave 
was absent in response to a dim flash under dark-adapted 
conditions; the response to a bright flash under the same 
conditions had the typical electronegative waveform. The 
oscillatory potentials were undetected. Clinical details of the 
affected family members are given in Table 1. Comparison 
of the ERG amplitude and implicit time values between the 
TRPM1, GRM6, and GPR179 mutation-positive patients and 
the normal controls are given in Table 2 and Table 3, respec-
tively. The autofluorescence and OCT examinations did not 
reveal any obvious abnormality. The color vision test was 
normal in all.

Candidate gene screening: First, the recently identified 
LRIT3 gene in autosomal recessive cCSNB was screened in 
all eight patients. No pathogenic variation was found in this 
gene in any of the patients. This was followed by screening 
the most frequently mutated gene underlying autosomal 
recessive cCSNB, TRPM1 [19]. We identified six mutations: 
c.1870C>T p.(R624C), c.3326_3327dupC p.(P1110Tfs*39), 
c.416G>T p.(G139V), c.398C>A p.(A133D), c.2783G>A

p.(R928Q), and c. 857C>T p.(S286L) in TRPM1 in six 
families. Five of the mutations identified are novel. The muta-
tion, predicted change in protein, consanguinity, details of 
segregation analysis, and results of the SIFT and PolyPhen 
analyses are given in Table 4. Five of the six families showed 
homozygous mutation, while the sixth family had compound 
heterozygous mutations (Figure 2A–F).

The two index patients with no mutation in the TRPM1 
gene were screened for GPR179, which underlies another 
form of autosomal recessive cCSNB. We identified a novel 
missense variation, in patient 3 of family 3, a homozygous 
c.1811C>T leading to p.(P604L) change in exon 9. The parents 
and unaffected sister were heterozygous carriers of the muta-
tion (Figure 2G).

NYX was screened in patient 8. He was the only male 
patient affected with cCSNB with no mutation in LRIT3, 
TRPM1, and GRP179. No pathogenic variation was found. 
Thus, this index patient was screened for GRM6. A reported 
missense mutation [41], homozygous c.2267G>A, was identi-
fied leading to a p.(G756D) change in exon 10 (Figure 2H). 
None of the eight mutations were seen in the more than 110 
controls screened. In addition, none of the identified missense 

Figure 1. Electroretinogram traces. 
Full-field electroretinogram (ERG) 
trace of a normal, TRPM1, GRM6, 
and GRP179 mutation-positive 
patient, respectively. The wave-
form of single flash rod response, 
combined rod-cone response, oscil-
latory potentials, single flash cone 
response, and response to 30-Hz 
flicker are represented.

http://www.molvis.org/molvis/v20/341
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Table 1. CSNb CliNiCal parameTerS

Family/Patient Age/Sex Gene Spherical equivalent 
(Diopter) BCVA in logMAR

Fundus Findings
Myopic 

tessellated 
fundus

Disc

Family 1/ Patient 1 31/M TRPM1 OD: −8.38 OS: −7.88 OD: 0.2 OS: 0.2 YES Tilted disc
Family 2/ Patient 2 46/F TRPM1 OD: −3.75 OS: −7.50 OD: 0.8 OS: 0.5 YES Titled disc
Affected daughter 
of patient 2 from 
Family 2

25/F TRPM1 OD: −2.00 OS: −2.25 OD: 0.5 OS: 1.3 YES Tilted disc

Family 4/ Patient 4 32/M TRPM1 OD: −6.50 OS: −6.13 OD: 0.5 OS: 0.5 YES Myopic disc
Family 5/ Patient 5 30/M TRPM1 OD: −2.50 OS: −1.25 OD: 0.2 OS: 0.4 YES Tilted disc
Family 6/ Patient 6 20/F TRPM1 OD: −8.50 OS: −7.50 OD: 1.0 OS: 0.6 YES Tilted disc

Affected sib of 
patient 6 from 
Family 6

24/M TRPM1 OD: −5.00 OS: −9.50 OD: 1.3 OS: 0.8 YES

OD: Hypotonic Disc and 
Macula, 0.4 CDR, Post 

Trabeculectomy OS: 
Tilted Disc with 0.7 CDR

Family 7/ Patient 7 34/F TRPM1 OD: −6.00 OS: −6.25 OD: 0.6 OS: 0.6 YES Tilted disc
Affected daughter 
of patient 7 from 
Family 7

14/F TRPM1 OD: −5.50 OS: −5.75 OD: 0.6 OS: 0.5 YES Tilted disc

Affected son of 
patient 7 from 
Family 7

9/M TRPM1 OD: −5.50 OS: −5.50 OD: 0.5 OS: 0.5 YES Myopic disc

Family 8/ Patient 8 49/F GRM6 OD: −5.00 OS: −4.50 OD: 0.3 OS: 0.5 YES Tilted disc
Family 3/ Patient 3 17/F GPR179 OD: −6.25 OS: −6.63 OD: 0.3 OS: 0.2 YES Tilted disc

RXT – Right exotropia, LXT – Left exotropia, AXT – Alternate exotropia, CDR- Cup disc ratio, OD – Oculus dexter (right eye), OS – 
Oculus sinister (left eye)

Table 2. erG ampliTudeS.

Amplitude (µv)
CASES

CONTROLS (n=20)
TRPM1 Gene (n=10) GPR179 GRM6

Rod b-wave 10.2±5.9* 8.8 4.6 296.0±72.6
Combined a-wave 198.5±38.8 133.8 193.6 219.8±54.9
Combined b-wave 79.2±26.6* 84.5 74.5 480.6±94.2

Cone a-wave 30.0±10.8 24.7 34.4 29.4±6.5
Cone b-wave 89.4±29.4 57.4 96.9 106.7±27.7

Flicker b-wave 57.6±16.3 40.4 58.2 67.7±17.9

Comparison of ERG amplitudes of each wave among the TRPM1, GRP179 and GRM6 mutation positive 
patients with that of normal controls. *p<0.05 (Independent t test) was noted in b-wave of single flash rod 
and combined responses in TRPM1 gene group. Statistical analysis was not done for GPR179 and GRM6 
genes as only one patient was present in those groups.

http://www.molvis.org/molvis/v20/341
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mutations are reported either in the 1000 Genomes database 
or the Exome Variant Server database.

DISCUSSION

This is the first report on the mutation profile of CSNB from 
India. In this pilot study, we screened eight families with 
cCSNB. Patients with CSNB exhibit a defect in the genes 
that code for proteins involved in signal transmission from 
photoreceptors to adjacent bipolar cells or in the phototrans-
duction pathway. Since all eight patients recruited showed 
ERG waveforms typical of cCSNB, known genes for this 
form of CSNB, TRPM1, GPR179, GRM6, LRIT3, and NYX, 
were screened.

We identified eight mutations in the eight families; six 
are novel. The missense variations were predicted to be “not 
tolerated” and “probably pathogenic” by SIFT and Poly-
Phen analyses, and the amino acid residues were conserved 
across species. Cosegregation analysis and control screening 
confirmed the pathogenicity of the mutations as they were 
segregated among the family members and absent in more 
than 110 healthy control samples (i.e., 220 chromosomes).

Based on the published putative transmembrane regions 
of the TRPM1 protein [19], the missense mutations p.(A133D), 
p.(G139V), p.(S286L), and p.(R624C) observed in this study 
are predicted to localize in the intracellular N-terminal region 
of the protein. Generally, changes in the N- and C-terminal 
regions may lead to mislocalization or misfolding of the 
protein or can lead to altered function [42-46]. A previous 
study showed R624C causes a failure in localization of the 
mutant protein to the dendritic tips of ON bipolar cells, thus 
affecting the channel function of TRPM1 [23]. The observed 
missense mutation p.(R928Q) is present in transmembrane 
domain 3. Similarly, we speculate that these mutations 

contribute to altered or nonfunctional TRPM1 channel 
activity. The duplication, c.3326_3327dupC, observed was 
found to code for the extracellular loop connecting the trans-
membrane domains 5 and 6 of the protein. This duplication is 
predicted to cause a frameshift leading to a truncated protein 
p.(P1110Tfs*39) devoid of transmembrane 6 and the intracel-
lular C-terminal region, possibly affecting its structure and 
function. Alternatively, nonsense-mediated mRNA decay 
may take place, leading to cCSNB.

GPR179 belongs to the G-protein coupled receptor 
subfamily of proteins and is reported to be localized in ON 
bipolar cells. The p.(P604L) missense mutation in GPR179 
is predicted to be in the extracellular loop connecting the 
sixth and seventh transmembrane domains of the protein 
[24,25]. The GRP179 protein localizes to the dendritic tip 
of ON bipolar cells. Wild-type GRP179 has been shown 
to localize on the cell surface as well as intracellularly in 
the endoplasmic reticulum and Golgi apparatus. However, 
localization studies of the previously reported mutant vari-
ants, p.(Y220C), p.(G455D), and p.(H603Y), revealed the 
absence of cell surface staining and showed only intracellular 
staining. Interestingly, the novel mutation identified in this 
study, p.(P604L), is adjacent to the reported p.H603Y muta-
tion and may thus also lead to mislocalization of the mutant 
GRP179 protein [47].

GRM6 is a member of the group III metabotropic 
glutamate receptor (mGluR) family and is a transmembrane 
protein in ON bipolar dendrites. The p.(G756D) mutation 
identified in one of our patients is predicted to be located in 
the transmembrane 5 of the protein. To date, many cCSNB 
mutations in GRM6 and more specifically one in the trans-
membrane domain have been shown to cause mislocalization 
of the mutant, which is retained in the endoplasmic reticulum 
and not trafficked to the cell surface as the wild-type protein 

Table 3. erG impliCiT TimeS.

Implicit time (ms)
CASES

CONTROLS (n=20)
TRPM1 Gene (n=10) GPR179 GRM6

Rod b-wave 68.2±5.9* 67.5 80.0 64.6 ± 3.7
Combined a-wave 20.0±1.7* 20.0 23.0 17.3±0.6
Combined b-wave 39.6±1.5* 40.0 47.0 44.8 ± 1.8

Cone a-wave 20.1±1.9* 19.0 22.5 16.3±0.8
Cone b-wave 29.3±1.0* 30.5 34.5 27.4±1.1

Flicker b-wave 25.6±0.8 (0.604) 26.0 28.5 25.3±1.2

Comparison of ERG implicit times of each wave among the TRPM1, GRP179 and GRM6 mutation posi-
tive patients with each other and with that of normal controls. *p<0.05 (Independent t test) was noted for 
all parameters except b-wave of 30 Hz flicker response in TRPM1 gene group. Statistical analysis was not 
done for GPR179 and GRM6 genes as only one patient was present in those groups.
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[48]. Thus, we hypothesize that the mutation identified in this 
study, which is also present in the transmembrane domain, 
results in mislocalization of the protein.

Transient receptor potential cation channel, subfamily 
M, member 1 (also known as melastatin) (TRPMI), G protein 
coupled receptor 179 (GPR179), and metabotropic glutamate 
receptor 6 (mGluR6) (GRM6), and NYX all play a key role 
in ON bipolar cell depolarization that leads to the rise of 
b-wave after light stimulation. Loss of function of these 
genes results in impairment of signal mediation between 
photoreceptors and ON bipolar cells, presenting as a loss 
of the scotopic b-wave in ERG and night vision disturbance 
[15,16,19-25,49,50].

Furthermore, immunohistological studies have shown 
the localization of the respective proteins specific to retinal 
ON bipolar cells suggesting their role in retinal signaling 
from photoreceptors to bipolar cells [22,25,49-53]. Studies 

on animal knockout or mutant models of these genes have 
revealed a similar absence of the b-wave under dark-adapted 
conditions and no abnormalities in the retinal structure, 
differentiation, and synapse formation similar to presentation 
in patients with CSNB [25,53,54].

Six families (patients) had mutations in TRPM1 while 
mutations in GRP179 and GRM6 were seen in one family 
each. Molecular profiling has confirmed or identified that 
the disease is autosomal recessive in all the families studied. 
The confirmation or identification of the pattern of inheri-
tance also helps in genetic counseling for patients and their 
families.

In summary, in our study, we identified mutations in 
TRPM1, GPR179, and GRM6. All patients showed typical 
genotype–phenotype correlation, in which the ERG data 
identified them as cCSNB and the molecular profiling 
confirmed. Although our analyzed group is small, we 

Figure 2. Pedigree, sequence chromatogram traces and conserved amino acid residues of the eight cCSNB families. The squares and the 
circles in the pedigree represent men and women, respectively, and the filled-in squares and circles represent affected men and women, 
respectively. The red line above the individuals in the pedigree indicates genotype data are available. The sequence chromatogram trace 
shows the region of the mutation as seen in the affected individuals. M1–M8 represent the eight mutations identified in the eight families. 
A–F: Families with mutations in the TRPM1 gene. G: The pedigree and the sequence chromatogram of the index patient with a mutation 
in GRP179 are shown. H: The pedigree and the mutation identified in the index patient with GRM6 are shown. The wild-type sequence 
chromatogram trace is shown adjacent to the mutant chromatogram trace. The conservation of the wild-type amino acid codon across the 
vertebrates is also shown for the missense mutations.
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confirm that TRPM1 as suggested by other cohorts [19-23] 
is also a major gene defect in India. However, a larger Indian 
cohort must be screened to deliver a more accurate prevalence 
of the mutations in various forms of CSNB.
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