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Abstract

We show that an inflationary slow-roll potential can be derived as an IR limit of the non-perturbative 
exact renormalisation group equation for a scalar field within the mean-field approximation. The result 
follows without having to specify a Lagrangian in the UV, which we take to be somewhere below the Planck 
scale to avoid discussing quantum gravity effects. We assume that the theory contains a scalar mode with 
suppressed coupling to other fields, and that higher derivative couplings are suppressed. In this framework 
the exact RG equation becomes a one-dimensional Schrödinger equation, which we solve. The effective 
IR potential is then dominated by the eigen-states of the RG Hamiltonian with the highest eigenvalues. We 
find that these potentials can generically give rise to slow-roll inflation, which is fully consistent with recent 
observations. As an example of how the proposed renormalisation group procedure works, we perform an 
explicit calculation in the φ4 theory in an appendix.
© 2016 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

Inflation [1–3] is an exponentially fast expansion in the early universe that is claimed to re-
solve a number of problems of the standard Big Bang cosmology (e.g. the horizon, flatness, 
smoothness, relic problems). It also provides a mechanism for generation of the density pertur-
bations [4] that have left an imprint on the cosmic microwave background and grown into the 
observed large-scale structure of the universe [5]. Models of inflation are typically discussed 
within the slow-roll paradigm, where an inflaton field evolves along a nearly flat potential to its 
minimum, during which it sources a quasi-exponential growth of the cosmological scale factor. 
Hence, in the slow-roll regime, the spatial and time derivatives are negligible compared to the 
approximately constant vacuum energy.

Many potentials driving the inflationary fields have been proposed that are either phenomeno-
logical or inspired by various UV theories [6]. In this paper, we propose a different approach to 
deriving a scalar field theory suitable for the slow-roll inflation: We will argue that inflation can 
be understood as a very generic, non-perturbative prediction of the exact renormalisation group 
(ERG), in a way that is largely insensitive to the details of the UV physics which we take to be 
at a scale somewhere below the Planck scale, MUV < MPl , in order to ignore quantum gravity 
effects. We add that the observation that renormalisation group dynamics can produce experi-
mentally viable inflation scenarios has been noted in the literature before [7,8]. Moreover, exact 
RG has also been applied in the context of inflation before, see e.g. [9–11].

To have a valid potential for the description of inflation, we must ensure that the effective 
theory is valid below some scale M , where M is roughly on the order of the inverse Hubble 
radius at the start of inflation. This is the IR of our theory. Thus, 1/M4 will be approximately 
the volume of the patch of spacetime of the resulting effective theory, which we assume resides 
within the Hubble radius. We will assume that the UV theory at MUV >> M contains a scalar 
mode φ that couples very weakly to other fields. Hence, during the RG flow from MUV to M , 
the corrections to the effective potential of such a scalar from the couplings to other UV fields 
would remain small. In the RG analysis, φ can therefore be treated independently.

The second assumption will be the validity of the mean-field approximation (MFA) near the 
scale M .1 That is, we will treat the constant mode of the theory separately when we do our IR 
analysis. In the paper, we will give an argument for the plausibility of this assumption, given that 
a field can be expanded around its constant value. We work in the local potential approximation, 
where higher derivative couplings are ignored. The argument will then rely on the particular form 
of the ERG equation. As a result, we will only be interested in the constant mode of the theory, 
which will be sufficient to describe the effective potential. Without justification, this assumption 
may at first seem peculiar, but we note that for inflation to begin, the inflaton field has to be suf-
ficiently smooth to overcome the gradient energy preventing the exponential expansion. Indeed, 
the MFA is a common feature of many other inflationary scenarios, where the field is assumed 
constant at the scale where inflation begins [15].

Lastly, we will also ignore effects of gravity in the ERG. We start at a scale MUV somewhere 
below the Planck scale, so that quantum gravity effects can be ignored. For the most part of the 
RG flow, we are at an energy scale where the vacuum energy is negligible in comparison, and 
we can work in Minkowski space where gravitational effects are unimportant. Indeed, the de 
Sitter value of the vacuum energy of the universe is roughly comparable with the scale at which 

1 For other recent implementations of the ERG within the MFA, in particular in de Sitter space, see [12–14].
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inflation begins, which is where we end our flow. Flows beyond this point would require us to 
take gravitational effects into account [12–14].

After introducing the ERG equation relevant for our setup and justifying the validity of 
the MFA, we will show that the MFA of the ERG equation gives rise to a one-dimensional 
Schrödinger-type equation for the resulting effective theory, which can be solved exactly. This 
is similar to the stochastic approach of [16,17] as well as the study of renormalisation group 
in quantum mechanics [18]. In essence, we will solve a simple quantum mechanical problem 
in which the resulting “wave-function” will correspond to the effective theory, or potential, for 
the constant mode. Because in QFT the theories need not be normalisable functions of the field 
variable, we will only insist that the resulting potential is bounded from below. What is meant 
by normalisable and un-normalisable solutions will become clear below. Our analysis will then 
result in non-perturbative IR effective potentials with shapes suitable for inflation. It will give 
predictions that are fully consistent with current observations. We note that spectral methods 
have been applied in the context of ERG before, see e.g. [19–23] and references therein for more 
details.

At the end of the paper, we provide two appendices: Appendix A is devoted to an ERG anal-
ysis of scalar field theories, in particular the φ4-theory, which is an example of a normalisable 
theory. Appendix B is devoted to solving the Schrödinger equation in momentum space, where 
the solution takes a rather simple form.

2. Exact renormalisation group analysis

2.1. The ERG equation

Let us begin by considering a UV quantum field theory of the early universe that contains 
some set of fields at the UV scale MUV < MPl , including a scalar mode φ. By �, we collectively 
denotes the remaining UV fields. As the theory runs between MUV and the IR scale M , we 
assume that φ and � interact very weakly so that the IR theory for p < M takes the form,

Z =
∫
M

Dφ e−Sφ [φ]
∫
M

D�e−S�[�]. (1)

We can thus focus only on the decoupled renormalisation group flow for the scalar φ by following 
the procedure of the exact Wilsonian renormalisation group [24].2 The ERG equation for the 
decoupled scalar mode takes the form

∂tSφ =
∫
p

(
α(t) + 2p2

)[
δ2Sφ

δφpδφ−p

− δSφ

δφp

δSφ

δφ−p

+ φp

δSφ

δφp

]
, (2)

where α(t) depends on the choice of the cut-off and t ∼ 1/� denotes the RG time – an inverse 
of the cut-off scale �.3 From an inflationary standpoint it is also convenient to measure the 
dimensionless field φ in units of MPl , rather than MUV .4

2 For reviews on the exact renormalisation group, see [25–27].
3 Since we are only interested in solving the theory in the IR, we do not include the rescaling of the theory back to the 

original UV scale – blocking from MUV to M suffices.
4 Throughout this paper, we use the reduced Planck mass, MPl = 2.44 × 1018 GeV.
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The ERG equation (2) is a non-linear equation. However, if we instead consider the functional

� [φ] = e−Sφ [φ], (3)

then Eq. (2) becomes a linear Schrödinger-type equation,

∂t� [t, φ] = Ĥ� [t, φ] , (4)

with a Hamiltonian operator in position space,

Ĥ =
∫

d4x
(
α(t) − 2∂2

)(
δ2

δφ2
x

+ φx

δ

δφx

)
. (5)

This is the usual form of the Wilsonian ERG equation, written in terms of � . Similar equations 
have been derived in the literature, see e.g. [28,29]. Note that one common feature of these 
equations is that the Hamiltonian has a kinetic part δ2/δφ2, together with a divergence term 
φ δ/δφ.

2.2. Validity of the MFA

Before performing a detailed analysis of Eq. (4), we pause to discuss more precisely why the 
MFA is a valid approximation of the ERG equation when we are only interested in the potential 
of the theory for an approximately constant field. Working in the local potential approximation, 
we find that the kinetic modes decouple faster as we move towards the IR, and we integrate them 
out from the theory. This leaves us with an effective potential for the constant mode. We should 
also note that our conventions are such that all fields and coordinates will be dimensionless 
throughout the RG analysis.

We begin by expanding the functional � as

� [φ] = �0 [φ0] +
∫
p

φp�1
p [φ0] + 1

2

∫
{p,q}

φpφq�2
p,q [φ0] + . . . , (6)

where �1
0 = �2

0q = 0, and �2
p,q can be assumed to be symmetric in p and q . We ignore terms 

that are cubic or higher-order in momenta. This is closely related to the often used local potential 
approximation. From hereon, we will denote the constant mode as φ0 = x. Moreover,

�0[x] = e−S0(x), (7)

which gives the potential of the theory. Inserting this into Eq. (4), we can derive the following 
set of equations,

∂t�
0 = Ĥ0�

0 +
∫
q

(
α(t) + 2q2

)
�2

q,−q, (8)

∂t�
1
p = Ĥ0�

1
p +

(
α(t) + 2p2

)
�1

p, (9)

∂t�
2
p,q = Ĥ0�

2
p,q + 2

(
α(t) + p2 + q2

)
�2

p,q, (10)

where

Ĥ0 = α(t)
(
∂2
x + x∂x

)
. (11)

Eqs. (8) and (10) can then be put in the form
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∂t

(
�0

�2
p,q

)
=

(
Ĥ0 t̃r
0 Ĥp,q

)(
�0

�2
p,q

)
, (12)

where

Ĥp,q = Ĥ0 + 2
(
α(t) + p2 + q2

)
, (13)

while the trace t̃r is given by

t̃r(�2
p,q) =

∫
q

(
α(t) + 2q2

)
�2

q,−q . (14)

As t → ∞, we can assume that α(t) → α becomes constant [27]. The solution of (12), as t → ∞, 
is therefore given by the highest eigenvalue eigenmodes of the matrix

H =
(
Ĥ0 t̃r
0 Ĥp,q

)
. (15)

This matrix is upper-triangular, so the eigenmodes factor into the eigenmodes of Ĥ0 and Ĥp.q . 
In particular, the dominant term in the potential will be given by the highest eigenmode of Ĥ0.

For completeness, let us also consider what happens to the kinetic terms in the expansion (6)
as t → ∞. Note first that the term linear in φp , in Eq. (6), integrates to zero, and we will hence 
ignore it. Note also that in order for eigenmodes of Ĥ0 not to blow up at infinity, we will see 
below that the eigenvalue is required to be less than or equal to zero. Finally, note form (13) that 
the kinetic terms �2

p,q will blow up quicker than �0, and will hence integrate out sooner. This 
is true even for momenta close to zero due to the non-vanishing α. Ignoring higher-order kinetic 
terms, the action reads

S[φ] = − log(�0[x]) − 1

2

∫
{p,q}

φpφq�̃2
p,q [x] + . . . , (16)

where �̃2
p,q [x] = �2

p,q [x]/�0[x]. Note that in order to have a positive-definite kinetic term, we 
require �2

p,q [φ0] to be negative. If we also assume that �2
p,q saturates at the highest allowed 

mode, which is constant, i.e.

�2
p,q [φ0] = −Cp,q, (17)

then we can integrate out the momentum modes to get the effective action

S(x) = S0(x) + 1

2

∫
q

(
S0(x) + log(Cq,q)

)
. (18)

We thus see that the correction only ends up multiplying the potential with an overall constant 
and adding an irrelevant constant to the potential. Beyond that, the potential remains the same. 
Hence, we see that in the local potential approximation, we are justified in using the MFA and 
we will therefore ignore propagating modes for the remainder of the paper.

2.3. Solution of the RG flow

We can now use the MFA to solve the ERG equation (4) for the patch of the universe of the 
size of 1/M4, i.e. in the IR regime of the theory. In the UV, we wish to remain as general as 
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possible, so we do not specify the details of the theory. Let us then write the Euclidean partition 
function (1) with its initial theory specified in the UV as

Z =
∫

Dφ �UV [t, φ] . (19)

In the MFA, an eigenmode of the Hamiltonian Ĥ evolves under the ERG equation (4) as

�(t, x) = eEt�(x), (20)

where E are the eigenvalues of the RG time-independent equation

Ĥ� = E�. (21)

Note that we are using � ≡ �(x). In analogy with quantum mechanics, we assume that 
�UV (t, x) can be expanded as

�UV (t, x) =
∑

i

γie
Ei t�i(x), (22)

where �i have eigenvalues Ei . In the IR, where t → ∞, the dominant contribution will therefore 
come from the highest eigenvalue solution, �i with max [Ei], that has a non-trivial overlap with 
the UV theory. The contribution of other eigenvalue solutions will decay exponentially fast with 
RG time so we expect the highest eigenvalue solution to dominate even with little RG flow. Note 
that in Eq. (22), a functional integral over �i should be used instead of the sum when Ei are a 
continuous set.

In Appendix A, we show an example of how the decomposition in Eq. (22) can be performed 
in the mean-field approximation for a UV theory with a “normalisable”, finite (path) integral of 
�UV (x) over x. We use the simplest example of an interacting field theory: the φ4 theory. In 
general, however, such an explicit computation of γi may be extremely challenging, especially 
for potentials which give formally divergent integrals. Hereon, we will therefore only assume 
that such a decomposition is possible and that we can treat the most general solution for the 
“ground state” theory (one with max [Ei]) as the dominant theory in the IR. See Appendix A for 
definitions and further details.

It is convenient to introduce a new functional ψ so that

� ≡ e−x̂2/4ψ. (23)

The ERG eigenvalue equation in the MFA then becomes

Ĥψ = Eψ. (24)

In terms of the familiar quantum mechanical notation, we can use x̂ ≡ φ/MPl for our initial 
UV field φ, where x̂ is measured in units of MPl as is convenient for computations involving 
inflation. We also let p̂ ≡ −i∂x̂ , which gives the Hamiltonian operator Ĥ :

Ĥ = −
(

p̂2 + x̂2

4
+ 1

2

)
, (25)

where we have set α = 1 without loss of generality. It is important to note that the solutions to 
(21) and (24), i.e. �i and ψi , respectively, have the same eigenvalues, Ei . In the MFA, the two 



JID:NUPHB AID:13762 /FLA [m1+; v1.232; Prn:8/06/2016; 14:37] P.7 (1-20)

S. Grozdanov et al. / Nuclear Physics B ••• (••••) •••–••• 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47
Hamiltonians are related by

Ĥ = e−x2/4Ĥ ex2/4 = ∂2
x + x∂x . (26)

The form of Ĥ in Eq. (25) is highly reminiscent of the quantum harmonic oscillator in imag-
inary (Euclidean) time. Indeed, by defining the ladder operators

â = 1

2
x̂ + ip̂, (27)

â∗ = 1

2
x̂ − ip̂, (28)

the Hamiltonian takes the form

Ĥ = −(â∗â + 1). (29)

Eq. (29), which describes the renormalisation group evolution of the effective action thus only 
differs from the usual harmonic oscillator by an overall minus sign and the additive factor of 1 in 
place of 1/2.

For modes of ψ which tend to zero as x → ±∞, the operator a∗ is the adjoint of a, a∗ = a†. 
To see this, let α and β be modes that tend to zero at infinity and consider

(âα,β) =
∫

dx (âα)β∗ =
∫

dx α(â∗β)∗ = (α, â†β), (30)

where we have performed an integration by parts. Ĥ is negative definite for such modes, and the 
highest eigenvalue is the “vacuum energy”,

E0 ≡ E = −1, (31)

which corresponds to the vacuum of the theory, ψ0,

â ψ0 = 0. (32)

The corresponding re-scaled “original” theory reads

�0(x) = C0e
−x2/4ψ0(x)

= C0e
−x2/2, (33)

which precisely corresponds to the potential of a free theory. Besides the free theory, there exists 
a mode, ψ̃0, with the same eigenvalue (31),

ψ̃0(x) = D0e
−x2/4 erfi

(
x√
2

)
, (34)

�̃0(x) = D0e
−x2/4ψ̃0(x) = D0e

−x2/2 erfi

(
x√
2

)
, (35)

were erfi(x) denotes the imaginary error function. Note that while ψ̃0(x) diverges as x → ±∞, 
as expected for an un-normalisable mode of the harmonic oscillator, the re-scaled wave-function, 
�̃0, exhibits the correct behaviour and tends to zero at infinity. �̃0 leads to a bounded potential, 
as

Sφ [φ] = − log �̃0 = Ṽ0(φ)

M4
, (36)
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where

Ṽ0(φ) = M4
[

log (D0) + 1

2
x2 − log

[
erfi

(
x√
2

)]]
. (37)

In order to avoid considering theories of arbitrarily high eigenvalues, one reasonable assump-
tion is that the UV theory has no overlap with modes �i of which the eigenvalues would be 
higher than the “vacuum” energy E0, cf. Eq. (31). In physical terms, this means that we assume 
that the IR limit of �UV is connected to the free theory – the state �0.

In the absence of such a restriction, it is clear that the eigenstates of (24), and thus also � , 
could have arbitrarily high eigenvalues. However, we want our dominant IR theory, denoted 
temporarily by � = �E , with some eigenvalue E, to tend to zero as x → ±∞, as required by a 
stability condition that potentials need to be bounded from below. The eigenvalue equation (21)
then reads

Ĥ�E = E�E

= ∂2
x�E + x∂x�E . (38)

If we multiply this equation by �E and integrate over x, we get after integration by part,

E�E = −
∫
x

(∂x�E)2 − 1

2

∫
x

�2
E. (39)

The main point is that integration by parts can only be performed for �E that tend to zero at 
infinity. Since the integrands on the right-hand-side of (39) are negative-definite, it follows that 
theories with bounded potentials must have E < 0.

In the remainder of this work, we will focus on two classes of stable effective potentials: the 
IR effective theories with discrete and continuous spectra of Ei < 0. In the deep IR limit where 
t → ∞, the existence of a discrete spectrum with integral eigenvalues implies that the state with 
the highest eigenvalue, E0 = −1, will dominate the first class of theories. In the continuous case, 
theories with Ei close to 0 will dominate.

We can now restate the above results in the following way: By assuming that �UV has a 
non-zero overlap only with the states of integral eigenvalues E = −n for n ∈ N, the IR limit of 
the theory takes the generic form

�0(x) = e− 1
2 x2

[
C0 + D0 erfi

(
x√
2

)]
, (40)

where C0 and D0 are arbitrary constants. Importantly, the IR effective theory is continuously 
connected to the free Gaussian IR limit, as is often the case in perturbative RG.

If we lift the restriction of including the free Gaussian potential in our IR solution, then it 
becomes more natural to consider the second, continuous class of theories for which the Eq. (24)
(or Eq. (21)) gives

�(x) = e− 1
2 x2

[
C0 1F1

(
1 + E

2
; 1

2
; x2

2

)
+ D0 x

√
2

π
1F1

(
2 + E

2
; 3

2
; x2

2

)]
, (41)

where 1F1
(
a;b;x2/2

)
is the confluent hypergeometric function of the first kind. The solution in 

Eq. (41) is valid for all E and reduces to (40) at E = −1.
A simple complete set of orthogonal polynomials (the Hermite polynomials) can be formed 

from the �(x) functions in (41) by restricting the eigenvalues E to be negative integers, 
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E ∈ {−1, −2, −3, . . .}. In this way, we can form an infinite series of finite and “normalisable” 
contributions to the expansion of �UV in (22). Here, we define normalisable to mean that the 
integral over x of �(x) is finite for some choice of E:

∞∫
−∞

dx �E(x) = finite. (42)

As already noted above, we explore this possibility in detail in Appendix A where we use this 
basis to decompose the ERG flow of normalisable scalar theories, in particular the φ4 theory. 
However, in general, we expect that the integrals over �(x) need not converge to give us a 
physically acceptable effective potentials. In the remainder of this paper, we will study such 
“un-normalisable” theories, for which the integrals diverge:

∞∫
−∞

dx �E(x) → ∞. (43)

In particular, the potentials that we will use as candidates for inflation will be of the un-
normalisable type.

It is important to keep in mind that both MFA solutions, (40) and (41), can be non-perturbative 
in the coupling constants of the original UV theory. However, the dependence of the effective po-
tential on the couplings could only be computed if we had specified the UV theory and somehow 
computed the relevant overlap integrals that would reveal the true weights of �i in � . We will not 
pursue this direction in this work and will only consider IR effective potentials with unspecified 
coupling constant dependence.

Before we move on to considering the phenomenological implication of the two solutions, 
we note that our approach resembles that of the stochastic approach discussed in [16,17]. It is 
also similar to the approach of Halpern and Huang [30] and Periwal [31], where a linearisation 
of the ERG equation (2) was performed. Those works showed that there are non-polynomial 
deformations of the free Gaussian theory for which the Gaussian is IR-unstable. Such cases are 
also included in our analysis, within the MFA. Furthermore, this gives credence to the inclusion 
of the extra mode ψ̃0 in addition to the Gaussian when considering theories of eigenvalue −1. 
It also prompts us to consider in detail theories with eigenvalue greater than −1, which can be 
argued to be preferable over the free theory from the exact renormalisation group point of view.

Finally, we also note that our non-perturbative result differs from the conventional perturbative 
approach where the effective Lagrangian is expanded in the powers of the field suppressed by 
some mass scale. Our approach is also different to what is known as the Effective Field Theory 
of Inflation [32], where the background dynamics sourced by a potential is assumed as given and 
the effective theory refers to the fluctuations around that background.

3. Inflation

3.1. Inflationary potential

Having found solutions that are likely to dominate the non-perturbative IR regimes of scalar 
theories, we now turn our attention to studying the phenomenological implications of such the-
ories. In particular, we will show that solutions of Eq. (4) naturally lead to potentials capable 
of sustaining inflation in the early universe. The physical requirement in the patch of spacetime 
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Fig. 1. The dependence of the potential from Eq. (44) on the parameter c. Note that the shape does not change for 
c �O(1). Here, we choose E ∼ −10−3.

where inflation starts is that the temporal derivative of the field is small and the field is homo-
geneous [15,33]. To describe inflation, we are therefore primarily interested in the potentials for 
the constant mode of the theory, which given the argument in section 2.2 means that we can use 
our MFA results, where we effectively ignored the higher momentum modes in order to derive 
equation (24) and its solutions.

We begin by restating the un-normalisable solution with a continuous spectrum of Ei , i.e. Eq. 
(41), as an effective potential of φ. Restoring the mass dimensions,

V (φ)

M4
= 1

2

(
φ

MPl

)2

− log

[
1F1

(
1 + E

2
; 1

2
; 1

2

(
φ

MPl

)2
)

+ c

√
2

π

(
φ

MPl

)
1F1

(
2 + E

2
; 3

2
; 1

2

(
φ

MPl

)2
)]

+ C(c)

M4
, (44)

where MPl is the reduced Planck mass. The potential has an overall factor expressed in terms of 
some mass scale M . Furthermore, we have two integration constants c and C. Our universe has a 
very small cosmological constant, therefore the constant C needs to be fixed so that the vacuum 
energy at the minimum of the potential is zero, Vmin = 0. This constrains C to be a function of 
c, i.e. C(c).

At the minimum of the potential, the mass of the scalar field is independent of the shape 
parameter c,

∂2
φV (φmin) = −EM4

M2
P l

. (45)

When c � 1, the potential and its derivatives do not depend on c (see Fig. 1). Hence, the potential 
has a stable shape and the exact value of c for c �O(1) does not matter.

We are particularly interested in the cases that dominate the IR regime of the RG flow, where 
E → 0−. For small |E|, the plateau region of the potential is not only flat, but also small (see 
Fig. 1). Such a potential can support slow-roll inflation as well as result in small amplitude of the 
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scalar perturbations required by the observations, thus alleviating the fine-tuning of M (see next 
section).

Let us explore the plateau region. We can use the asymptotic expansion of the hypergeometric 
functions to obtain the leading behaviour that is logarithmic:

V (φ) ≈ M ′ 4
[

1 + α log

(
φ

MPl

)]
. (46)

This potential shape is reminiscent of the ‘Loop Inflation’ model5 where the logarithmic depen-
dence arises from the loop corrections that “spoil” the flatness of the inflationary potential (i.e. 
the η-problem). This has been studied in the context of the F - and D-term inflation.6

3.2. The slow-roll analysis in theories with a continuous spectrum of E

The background dynamics of the homogeneous scalar field in the FRW universe is governed 
by the continuity and Friedmann equations:

φ̈ + 3Hφ̇ + ∂φV = 0, (47)

H 2 = 1

3M2
P l

(
1

2
φ̇2 + V (φ)

)
. (48)

Here, H = ȧ/a is the Hubble parameter and a(t) is the scale factor that depends on time, not 
the RG time that we used in Sec. 2. It follows then that the accelerated expansion of the universe 
(ä/a > 0) is achieved when φ̇2 < V (φ), that is, the potential energy of the scalar field dominates 
over the kinetic energy. Sustaining the accelerated expansion for long enough also requires the 
second derivative of the field φ̈ to be small. These conditions can be encoded in the smallness of 
two potential dependent slow-roll parameters:

εV (φ) ≡ M2
P l

2

(
∂φV

V

)2

,

ηV (φ) ≡ M2
P l

(
∂2
φV

V

)
.

(49)

Inflation proceeds when εV � 1 and |ηV | � 1, and ends when εV (φend) ≈ 1. During the expan-
sion, the universe grows by a number of e-folds:

N(φ) ≡ log
(aend

a

)
=

tend∫
t

Hdt ≈
φ∫

φend

1√
2εV

dφ

MPl

. (50)

The Cosmic Microwave Background fluctuations are created about 40 to 60 e-folds before the 
end of inflation [34]. The precise value depends on the details of reheating, post-inflationary ther-
mal history and the energy scale of inflation. The integral constraint N(φcmb) ≈ 40–60 provides 
us with the field value when the CMB fluctuations are created. This in turn can be used to find 

5 Frequently termed ‘Spontaneously broken SUSY’ model.
6 For a review of these approaches, see Ref. [6] and references therein.
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Fig. 2. Predictions for the (ns , r) plane for −10−1 � E < 0 against the observations (Planck TT + lowP data).

the main observables related to the power spectrum of the fluctuations on the sky:

As ≈ V

24π2M4
P lεV

,

ns − 1 ≈ 2ηV − 6εV ,

r ≈ 16εV ,

(51)

where the scalar amplitude As , the scalar spectral index ns , and the tensor-to-scalar ratio r are 
evaluated at φcmb.

We see from Eqs. (49) and (51) that ns and r do not depend on the overall factor M4. Scanning 
the interesting parameter ranges, −10−1 � E < 0 and 0 ≤ c < ∞, the primordial tilt ns changes 
by at most 0.5% and the tensor-to-scalar ratio r by a couple of per cent. Thus the slow-roll results 
stemming from the potentials considered here are fairly universal as well as completely consistent 
with the current observational constraints coming from Planck [35]. We plot the predictions for 
the (ns, r) pair in Fig. 2.

On the plateau, the potential of the field is V ∼ |E|M4. As a result the amplitude of the 
scalar perturbations As ∼ M4|E|/M4

P l is degenerate in parameters E and M . Observationally, 
the amplitude is given by As ≈ 2.3 × 10−9. For the ranges of E and c considered here, M
can range from about two orders of magnitude below the GUT scale all the way to the Planck 
scale where our formalism breaks down as there is very little RG flow and gravitational effects 
become important. As a limiting case the potential in Eq. (44) gives the correct size of As for the 
combination M ∼ MPl and E ∼ −10−10.

3.3. The discrete case with E = −1

In the remainder of this paper, we will limit ourselves to the theory with E = −1 in Eq. (38). 
As argued above, this special choice of the eigenvalue corresponds to the IR theory that is 
connected to the free theory. In terms of our quantum mechanical problem, this is the un-
normalisable solution that contains the lowest-state normalisable mode with a discrete spectrum 
of integral eigenvalues. Eq. (40) now gives us the potential for φ, which is

V (φ)

M4
= 1

2

(
φ

MPl

)2

− log

[
1 + c

√
π

2
erfi

(
φ√

2MPl

)]
+ C(c)

M4
. (52)
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Fig. 3. The potential from Eq. (52) depending on the parameter c. Note that the shape doesn’t change for c �O(1) and 
that for small c a kink appears in the potential.

We expect the overall scale M to be low, as we are examining the dominant solution of the ERG 
in the IR. As in the general case, fixing the constant C makes the potential only depend on the 
overall scale parameter M and the shape parameter c.

Again, at the minimum of the potential, ∂φV (φmin) = 0, the mass of the scalar field is inde-
pendent of the shape parameter c,

∂2
φV (φmin) = M4/M2

P l. (53)

Furthermore, when c �O(1), the potential and its derivatives do not depend on c and the poten-
tial has a stable shape (see Fig. 3). The plateau of the potential and the quadratic behaviour near 
the minimum are also fairly independent of c. The parameter governs how sharp the transition is 
between the two regimes and where it happens. For smaller c the transition happens at higher φ. 
At c = 0 we restore the familiar quadratic potential of the free theory.

In the plateau region we use the asymptotic expansion of the error function,√
π

2
erfi

(
φ√
2

)
∼ eφ2/2

(
1

φ
+ . . .

)
, (54)

which is approximately valid for φ � 4MPl . As before, in Eq. (46), we recover the logarithmic 
behaviour reminiscent of the radiative corrections to a flat potential. In the special case considered 
here (E = −1), the corrections can be turned off for c = 0, when the free Gaussian theory is 
recovered.

The slow-roll predictions of our model are plotted in Fig. 4 against the observational con-
straints. The spectral index and the tensor-to-scalar ratio are independent of the overall scale M . 
For the given shape of the potential (i.e. fixed c) the values of ns and r are determined. Then M
is determined such that the amplitude of fluctuations matches the observations. Hence, the infla-
tionary model described by the potential in Eq. (52) would fall in the class of ‘One parameter’ 
models [6].

For the ‘theoretically preferred’ values of the shape parameter, c ∼O(1), we are in very good 
agreement with the observations. Parameter c measures the deformation of the potential away 
from the free theory (c = 0). For the small values (10−8 � c � 10−14) the scalar to tensor ratio r
can be reduced by several orders of magnitude while being consistent with the observations. This 
results in the further lowering of the scale of the potential, M , to about three orders of magnitude 
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Fig. 4. Predictions for the (ns , r) plane against the observations (Planck TT + lowP data) when E = −1.

below the GUT scale. This provides more room for the RG flow and adds to the validity of our 
analysis.

For the cases of small c the potential we study develops a kink (see Fig. 3) that introduces 
non-negligible derivatives of the field φ. This makes the slow-roll prediction less accurate. The 
transient violation of the slow-roll conditions in the potential can give rise to observable fea-
tures in the primordial power spectrum. This motivates further study with the exact integration 
of the inflationary background and perturbations together with the relaxation of the mean-field 
approximation in our derivation of the potential.

4. Conclusion

In this paper, we studied non-perturbative scalar field potentials derived as an IR limit of the 
exact renormalisation group equation within the mean-field approximation. We demonstrated 
that this approximation is valid when considering the potentials of an almost constant field. This 
setup is precisely what is required to start the exponential expansion of space-inflation. The po-
tentials we derived were capable of supporting slow-roll inflation with the values of the spectral 
index and tensor-to-scalar ratio fully consistent with the recent observations. Despite our very 
general treatment of the scalar field potentials, the slow-roll results are largely independent on 
the constants parameterising the potentials and thus result in fairly universal predictions. For the 
special case where we required that the IR theory was continuously connected to a free Gaussian 
fixed point, we identified a parameter range that led to transient violation of the slow-roll con-
ditions. Hence, this results in a possibly observable feature in the primordial power spectrum, 
which should be further studied in the future.
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Appendix A. Decomposition of the UV theory in the mean-field approximation for scalar 
theories

In this appendix, we consider in greater detail the decomposition of UV scalar theories in 
terms of the ERG equation basis presented in Eq. (22). We will assume the space-time deriva-
tives of φ to be very small, so that we can use the mean-field approximation in which we can 
treat φ as a constant real variable x. In this approximation, the path integral (19) becomes a 
one-dimensional integral

Z =
∫

Dφ �UV [φ] ≈
∞∫

−∞
dx e−S(x), (A.1)

where the Euclidean action S(x) equals the potential V (x) of the UV scalar theory.
In order for the expression (A.1) to be well-defined, we assume that the theory is normalisable, 

i.e. that the integral over x in (A.1) is finite, cf. Eq. (42). It is important to note that in a general 
quantum field theory, i.e. in the absence of a precise definition of the path integral, this need not 
be the case. All that is usually assumed is that the potential is bounded from below. As a simple 
example of a normalisable theory, we can think of the φ4 theory, which gives

Zφ4 =
∞∫

−∞
dx e− 1

2 m2x2− 1
4! λx4

=
√

3m2

λ
e

3m4
4λ K1/4

(
3m4

4λ

)
. (A.2)

In the expression, Kα(x) is the modified Bessel function of the second kind. In the small λ and 
m expansions,

Zφ4 =
√

2π

m
−

√
π

2

λ

4m5
+O

(
λ2/m9

)
, (A.3)

Zφ4 = �

(
1

4

)(
3

2λ

)1/4

+O
(
m2/λ3/4

)
, (A.4)

respectively. The expansions imply that at m = 0, a perturbative treatment around λ = 0 would 
be ill-defined as the partition function is divergent.

As an example of a well-known and well-defined QFT, which is “un-normalisable” from the 
point of view of our analysis, one can think of the Sine-Gordon potential. In this case,

ZSG =
∞∫

−∞
dx exp

{
m4

λ

[
cos

(√
λx

m

)
− 1

]}
(A.5)

is divergent and a more general approach would be needed to treat such theories in the MFA 
of the ERG. In such cases, the simple procedure of Eq. (A.1) is insufficient for computational 
purposes.
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To show how the computation of the ERG-basis decomposition (22) can be performed in 
simple example of scalar UV theories, we restrict our attention to normalisable theories with 
polynomial potentials and consider a single scalar field theory in the MFA with

S(x) = 1

2
m2x2 + U(x). (A.6)

We assume that S(x) gives a finite Z, as for example in the φ4 theory case computed in (A.2), 
for which U(x) = λx4/4!.

The general solution to the ERG equation (21) was presented in Eq. (41). For completeness, 
we restate it here:

�(x) = e− 1
2 x2

[
C0 1F1

(
1 + E

2
; 1

2
; x2

2

)
+ D0 x

√
2

π
1F1

(
2 + E

2
; 3

2
; x2

2

)]
. (A.7)

To form a complete set of functions out of (A.7), we will restrict ourselves to the basis of nor-
malisable solutions for which E are negative integers, i.e. E ∈ {−1, −2, −3, . . .}, with C0 = 0
for E ∈ {−2, −4, . . .} and D0 = 0 for E ∈ {−1, −3, . . .}. Since the first parameter of the hyper-
geometric function is now always an integer, it is useful to rewrite the confluent hypergeometric 
functions in terms of the Hermite polynomials:

1F1

(
−n; 1

2
; x2

2

)
= (−1)nn!

(2n)! H2n

(
x√
2

)
, (A.8)

√
2x 1F1

(
−n; 3

2
; x2

2

)
= (−1)nn!

(2n + 1)!H2n+1

(
x√
2

)
. (A.9)

The Hermite polynomials multiplied by exp{−x2/4}, i.e. the functions in the set of{
e−x2/4Hn

(
x√
2

)}
, n ≥ 0, (A.10)

form a complete orthonormal basis on the Hilbert space of L2-integrable functions on the entire 
real axis x ∈ (−∞, ∞). The completeness relation has the form7

∞∫
−∞

dx e−x2/2Hn

(
x√
2

)
Hm

(
x√
2

)
= √

2π2nn! δnm, (A.11)

where n, m ∈ {0, 1, 2, . . .}. Using the Hermite polynomial basis, we can now write the ERG flows 
of normalisable �UV theories as

�UV (t, x) =
∞∑

n=0

γne
−t (n+1)e− 1

2 x2
Hn

(
x√
2

)
. (A.12)

Note also that �UV (x) = �UV (t = 0, x). Using the completeness relation (A.11), we can express 
the coefficients γn of the �UV expansion (computed at t = 0) as

γn = 1√
2π2nn!

∞∫
−∞

dx �UV (x)Hn

(
x√
2

)
. (A.13)

7 For a detailed discussion of Hermite and Laguerre polynomials, their orthogonality relation and the proof of com-
pleteness, see Chapter V of the reference [36].
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In our prototypical example of the φ4 theory, for which �UV is even in x (and y), it is clear that 
only γn with even n contribute to �UV . Similarly, this would be true in any theory with an even 
U(x). To solve for the γn coefficients in such theories, it is particularly convenient to write the 
Hermite polynomials in terms of associated Laguerre polynomials,

H2n(y) = (−1)n22nn!L(−1/2)
n

(
y2

)
, (A.14)

H2n+1(y) = (−1)n22n+1n!L(1/2)
n

(
y2

)
, (A.15)

since they obey the recurrence relation

L
(α)
n+1

(
y2

)
=

(
2n + 1 + α − y2

n + 1

)
L(α)

n

(
y2

)
−

(
n + α

n + 1

)
L

(α)
n−1

(
y2

)
. (A.16)

Note that y = x/
√

2. Using Eq. (A.16) with α = −1/2 and α = 1/2, we can find the recurrence 
relations for all even and odd γn from the knowledge of (γ0, γ2) and (γ1, γ3), respectively:

γn+2 = 1

(n + 2)(n + 1)

[
∂γn

∂m2
+

(
n + 1

2

)
γn + 1

4
γn−2

]
. (A.17)

To see how this works on a specific example, let us again return to the case of the φ4 theory, 
for which

γ0 =
√

3m2

2πλ
e

3m4
4λ K1/4

(
3m4

4λ

)
, (A.18)

γ2 = 1

8

√
3π

m2λ3
e

3m4
4λ

[(
3m4 +

(
2 + m2

)
λ
)

I1/4

(
3m4

4λ

)

− m2
(

3m2 + λ
)

I−1/4

(
3m4

4λ

)
+ 3m4

(
I5/4

(
3m4

4λ

)
− I3/4

(
3m4

4λ

))]
. (A.19)

The rest of the coefficients γn can then be generated using (A.18). Note that Iα(x) is the modified 
Bessel function of the first kind. As a check on the results, we note that in the UV (at t = 0), 
we need to integrate over the entire real axis, x ∈ (−∞, ∞). In that case, only the n = 0 term 
contributes to the integral over the sum (A.12). In the extreme IR limit of t → ∞, the dominant 
contribution to the RG flow of �UV (t, x) comes from the n = 0 (or E = −1) term, i.e. the 
Gaussian effective action.

We note that the effective IR potential of the φ4 theory is not of the form we used to study 
inflation. This is because in this appendix we restricted ourselves to only the basis of hyper-
geometric functions for which the first parameter was an integer. In case of the φ4 theory and 
other normalisable theories, this is sufficient to decompose the entire theory and solve the RG 
flow. However, we expect that for more general theory, in particular those with un-normalisable 
potentials, this type of a decomposition would not suffice and a more general basis would be 
required.

Appendix B. Momentum space solution

In this appendix, we solve the system in momentum space, where the solution takes a much 
simpler form. We first recall the equation

∂t̃�(x) = Ĥ�(x) =
(
∂2
x + x∂x

)
�(x), (B.1)
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where t̃ is the appropriately rescaled RG time. Note that the Hamiltonian is symmetric in x, so 
that solutions decompose into symmetric solutions �s(x) and anti-symmetric solutions �a(x), 
respectively.

Let us go to momentum space and write

�(x) =
∫
p

�(p)eipx, (B.2)

where

∫
p

= 1

2π

∞∫
−∞

dp. (B.3)

Plugging this into Eq. (B.1), we find∫
p

(
∂t̃�(p) + p2�(p) − �(p)p ∂p

)
eipx = 0. (B.4)

This gives the RG equation in momentum space after an integration by parts on the last term,

∂t̃�(p) = −
(
p2 + 1 + p ∂p

)
�(p). (B.5)

Note that the equation is a first-order differential equation. Let us perform a redefinition of coor-
dinates,

p ∂p = ∂q, (B.6)

which is satisfied by

p = K eq , (B.7)

for some constant K . We can set K = 1 without loss of generality. The RG equation then reads

∂t̃�(q) = −
(
e2q + 1 + ∂q

)
�(q). (B.8)

Rescaling the theory as

�̃(q) = exp

(
1

2
e2q + q

)
�(q),

we find

∂t̃ �̃(q) = −∂q�̃(q). (B.9)

We can now expand �̃(q) as usual in a basis {ψk = e−Ekq},

�̃(q) =
∫
E

C(E)e−Eq . (B.10)

Note that �̃(q) is closely related to the Laplace transform of C(E). Indeed, we will see below 
that we need C(E) = 0 for E ≥ 0. The basis {ψk = e−Ekq} is orthogonal with respect to the inner 
product
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(ψ1,ψ2) = 1

2πi

i∞∫
−i∞

dq eq(E1−E2) = δ(E1 − E2). (B.11)

Note that in terms of p, restricting ourselves to E ∈ Z, the expansion (B.10) is just the regular 
Laurent expansion of �̃(p).

We can now solve the re-defined RG equation (B.9). That is, we assume that the UV theory 
has the expansion

�̃UV (p) =
∫
E

C(E)p−E. (B.12)

The solution of (B.9) then reads

�̃t (p) =
∫
E

C(E)etEp−E. (B.13)

The “eigen-theories” are therefore given by

�(p) = e− 1
2 p2

p1+E
. (B.14)

As t → ∞, we expect that the eigen-theories with largest E, for which C(E) �= 0, will dominate. 
Fourier transforming (B.14) back to position space and taking the symmetric part then gives

�s(x) ∝ e− 1
2 x2

1F1

(
1 + E

2
; 1

2
; x2

2

)
, (B.15)

while taking the anti-symmetric part gives

�a(x) ∝ x e− 1
2 x2

1F1

(
2 + E

2
; 3

2
; x2

2

)
, (B.16)

as expected. Moreover, we find that the inverse transform is ill-defined for E ≥ 0. That is, we 
require that the UV theory has C(E) = 0 for E ≥ 0.
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