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Abstract

In the context of supersymmetric models where the gauginos may have both Majorana and Dirac masses
we investigate the general constraints from flavour-changing processes on the scalar mass matrices. One
finds that the chirality-flip suppression of flavour-changing effects usually invoked in the pure Dirac case
holds in the mass insertion approximation but not in the general case, and fails in particular for inverted
hierarchy models. We quantify the constraints in several flavour models which correlate fermion and scalar
superpartner masses. We also discuss the limit of very large Majorana gaugino masses compared to the
chiral adjoint and Dirac masses, where the remaining light eigenstate is the “fake” gaugino, including the
consequences of suppressed couplings to quarks beyond flavour constraints.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Supersymmetric extensions of the Standard Model are arguably still the most plausible ways
to deal with the various mysteries of the Standard Model. The absence of a new physics signature
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at LHC for the time being suggests, however, that we should seriously (re)consider non-minimal
extensions compared to the minimal supersymmetric extension (MSSM) in all its various forms.
Furthermore, it has been known since the early days of low-energy supersymmetry that flavour-
changing processes set severe constraints on the flavour structure of the superpartner spectrum in
the MSSM. For example, the simplest models based on a single abelian flavoured gauge group,
although providing an approximate alignment mechanism for scalar mass matrices, still require
scalar partners heavier than at least 100 TeV. Both collider and flavour constraints encourage
us to search for non-minimal extensions with suppressed collider bounds and flavour-changing
transitions. Supersymmetric extensions with a Dirac gaugino sector [1–36] enter precisely into
this category.

Originally motivated by the preserved R-symmetry, which allows simpler supersymmetry
breaking sectors [1,2], and the possible connection with extra dimensions and N = 2 supersym-
metry [6], it was subsequently noticed that Dirac gaugino masses have many phenomenological
advantages over their Majorana counterparts. For example, the Dirac mass is supersoft [5,37–39],
which naturally allows somewhat heavy gluinos compared to the squarks [40–42]. Furthermore,
it was argued later on that in this case flavour-changing neutral current (FCNC) transitions are
suppressed due to protection from the underlying R-symmetry that lead to a chirality flip suppres-
sion [8]. It was also proved that the collider signatures of superpartner production are suppressed
compared to the MSSM case due to the heaviness of the Dirac gluino and the absence of several
squark decay channels [43–46]. The main goal of this paper is to understand the most gen-
eral bounds from flavour physics when we allow Dirac gaugino masses in addition to Majorana
masses.

We begin the paper in Section 2 by giving the general expressions for the meson mixing
(�F = 2, i.e. a change of two units of flavour) FCNC processes in models with both Dirac and
Majorana gluino masses. We also introduce the notation used in the remainder of the paper.

In much of the literature where flavour constraints are discussed, in an attempt to provide rela-
tively model-independent bounds, scalar mass matrices are treated in the so-called mass insertion
approximation, in which scalars are almost degenerate with small off-diagonal entries. Indeed,
where flavour constraints in Dirac gaugino models have been considered, the mass insertion ap-
proximation was also used [8,47]. Hence we first provide an updated discussion of this case in
Section 3, with in addition bounds for differing ratios of Dirac and Majorana gluino masses, with
no restrictions provided by the R-symmetry.

However, in particular in light of bounds on superpartner masses, the mass insertion approxi-
mation is actually rather difficult to realise in any flavour model. We are therefore led to consider
general flavour models/scenarios which go beyond this approximation in Section 4. An important
result is that, surprisingly, we find that the dramatic chirality-flip suppression of [8] is at work
only in a small number of cases, whereas in the general case the suppression is much milder
and in certain cases the Majorana case is less constrained. Our main working assumption is that
the flavour symmetry explaining the fermion masses and mixings governs simultaneously the
superpartner spectrum. We find that the simplest single U(1) flavour models do still need heavy
scalars. For the case of two U(1)’s we find the unusual feature that, in some regions of parameter
space, Dirac models are more constrained than their Majorana counterparts, due to cancellations
occurring in the latter case. We also investigate the inverted hierarchy case and one example of
nonabelian flavour symmetries, discuss the K (and B meson constraints in Appendix C) and
compare them with their MSSM counterpart models.

As a refreshing aside, in Section 5 we consider also the unusual case where the lightest adjoint
fermions couple in a suppressed way to the quarks, due to their very little gaugino component.
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This happens when the Majorana gaugino mass is much bigger than the Dirac and the adjoint
fermion masses. This can occur for relatively light squarks and gluinos or for intermediate scale
values. In both cases light adjoint fermions have suppressed couplings to quarks, a case we refer
to as “fake gluino”.1 The first case can lead to the unusual feature of experimentally accessible
squarks, but long-lived (fake) gluinos. The intermediate scale case is interesting from the view-
point of gauge coupling unification. In this case, radiative corrections lead to heavy scalars and
therefore the scenario is similar in spirit to split supersymmetry [49], but with suppressed “fake
gluino/gaugino” couplings to quarks and to higgs/higgsinos. Since the radiative stability of this
scenario requires some particular high-energy symmetries, it has specific features distinguish-
ing it from standard split supersymmetry and other related scenarios [6,50,51] which we shall
discuss.

Finally, as a note to the concerned reader, in this paper we largely only discuss �F = 2
constraints arising from box diagrams involving gluinos. In principle, there are also diagrams
that contribute at two loops from processes involving the octet scalar partners of the Dirac gluino,
which were discussed in [10] and shown to be small; similarly we do not include subdominant
contributions to the box diagrams coming from electroweak gauginos/higgsinos because they
do not add qualitatively to the discussion. In addition, there are also constraints coming from
�F = 1 processes such as b → sγ , μ → eγ and electric dipole moments. These have been
discussed in the context of the MRSSM and the mass insertion approximation [8,47]. However,
with the exception of b → sγ these are all dependent on the Higgs structure of the theory, and
not only on the squark/quark mass matrices, since the Dirac gaugino paradigm allows many
possible Higgs sectors [4,5,8,21,33,36]. For example, if we insist that the model preserves an
exact R-symmetry, then these processes are suppressed so much as to be negligible; but they
become relevant if we allow the Higgs sector to break R-symmetry [33]. Thus it is not possible
to describe bounds on these in a model-independent way, and we refrain from attempting to do
so. For the case of b → sγ , the constraints are generically weaker than the �F = 2 case, and
moreover the expressions are the same in both the Majorana and Dirac cases, since they do not
involve a chirality flip; they are thus irrelevant for this paper.

2. Neutral meson mixing in supersymmetry with Dirac gauginos

In recent years, very precise measurements of observables in flavour violation processes have
been made [52] while the Standard Model contribution to some of these processes is now be-
ing known with reasonable accuracy [53]. This results in very strong restrictions on the flavour
structure of theories beyond the SM.

Some of the strongest constraints arise from neutral meson mixing systems, in particular the
neutral K-, Bd -, Bs - and D-meson systems [54]. An exact theoretical computation of these pro-
cesses is particularly difficult due to unresolved non-perturbative, strong-interaction effects. The
general strategy is to compute the amplitude between the valence quarks in the full perturbative
theory, then match the amplitude to an effective theory of four-fermion contact interactions. Con-
tact with neutral meson mixing is achieved by estimating the matrix elements between initial and
final states, typically by use of PCAC [55] and lattice QCD techniques.

1 We acknowledge K. Benakli and P. Slavich for suggesting the name during collaboration on a related work [48].
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2.1. Effective Hamiltonian

Within the context of MSSM, the dominant contribution to neutral meson mixing comes from
gluino–squark box diagrams (see e.g. Fig. 6 for the Kaon system). In the following, we expand
the standard computation (see Appendix A) to include both Majorana and Dirac gluino masses.
In particular

L ⊃ −1

2

(
Mλaλa + Mχχaχa + 2mDχaλa + h.c.

)
− √

2gs

[
d̃∗
LxiT

a
xyλ

aαdLyiα − d̃RxiT
a∗
xy λaαdc

Ryiα

] + h.c., (2.1)

where λa
α is the Majorana gaugino, χa

α its Dirac partner and T a
xy , dLi , d̃Li are the SU(3) gener-

ators, the quarks and the squarks of generation i respectively.2 The mass matrix is diagonalised
by performing an orthogonal transformation and then a phase shift to render the masses positive,(

λa

χa

)(
ψa

1

ψa
2

)
. (2.2)

In basis ψi , Eq. (2.1) becomes

L′ ⊃ −1

2

(
M1ψ

a
1 ψa

1 + M2ψ
a
2 ψa

2 + h.c.
) − √

2gs

[
d̃∗
LxiT

a
xy

(
R11ψ

aα
1 + R12ψ

aα
2

)
dLyiα

− d̃RxiT
a∗
xy

(
R11ψ

aα
1 + R12ψ

aα
2

)
dc
Ryiα

] + h.c. (2.3)

The four-fermion effective action is given by [57,58]

HK =
5∑

i=1

CiQi +
3∑

i=1

C̃iQ̃i , (2.4)

where the conventionally chosen basis of the dimension six operators is (now in Dirac notation)

Q1 = dxγ
μPLsxdnγμPLsn,

Q2 = dxPLsxdnPLsn,

Q3 = dxPLsndnPLsx,

Q4 = dxPLsxdnPRsn,

Q5 = dxPLsndnPRsx, (2.5)

Q̃1,2,3 are the R-projection analogues of Q1,2,3 and

C1 = ig4
s W1KW1L

(
11

36
|R1r |2|R1q |2Ĩ4 + 1

9
MrMqR∗2

1r R2
1qI4

)
W

†
K2W

†
L2,

C2 = ig4
s

17

18
W4KW4LI4W

†
K2W

†
L2 MrMqR2

1rR
2
1q,

C3 = −ig4
s

1

6
W4KW4LI4W

†
K2W

†
L2MrMqR2

1rR
2
1q,

2 Our conventions are the ones from [56].
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C4 = ig4
s W1KW4L

(
7

3
MrMqR∗2

1r R2
1qI4 − 1

3
|R1r |2|R1q |2Ĩ4

)
W

†
K2W

†
L5

− ig4
s

11

18
W1KW4LĨ4W

†
K5W

†
L2|R1r |2|R1q |2,

C5 = ig4
s W1KW4L

(
1

9
MrMqR∗2

1r R2
1qI4 + 5

9
|R1r |2|R1q |2Ĩ4

)
W

†
K2W

†
L5

− ig4
s

5

6
W1KW4LĨ4W

†
K5W

†
L2|R1r |2|R1q |2, (2.6)

C̃1 = ig4
s W4KW4L

(
11

36
|R1r |2|R1q |2Ĩ4 + 1

9
MrMqR2

1rR
∗2
1qI4

)
W

†
K5W

†
L5,

C̃2 = ig4
s

17

18
W1KW1LI4W

†
K5W

†
L5MrMqR∗2

1r R∗2
1q,

C̃3 = −ig4
s

1

6
W1KW1LI4W

†
K5W

†
L5MrMqR∗2

1r R∗2
1q, (2.7)

where the Feynman integrals3 are I4 = I4(M
2
r ,M2

q ,m2
K,m2

L), Ĩ4 = Ĩ4(M
2
r ,M2

q ,m2
K,m2

L) and
summation over r, q = 1,2 and K,L = 1, . . . ,6 is implied. WIJ is the unitary matrix that diag-
onalises the down squark mass-squared matrix m2

d̃
in a basis where the down quark mass matrix

is diagonal. Matrix W is given in terms of the squark diagonalising matrix Z and the quark
diagonalising matrices VL, VR by

W =
[

V
†
LZLL V

†
LZLR

V
†
RZRL V

†
RZRR

]
(2.8)

as detailed in Appendix A.1.
In the simple case that the mass of the gaugino is Dirac-type (M = Mχ = 0), we obtain

M1 = M2 = mD , R11 = −iR12 = 1√
2

, so that
∑ |R1r |2|R1q |2Ĩ4 = Ĩ4 and

∑
MrMqR∗2

1r R2
1qI4 =∑

MrMqR2
1rR

2
1qI4 = ∑

MrMqR∗2
1r R∗2

1qI4 = 0. The effective coefficients simplify to

C1 = ig4
s

11

36
W1KW1LĨ4W

†
K2W

†
L2, C2 = 0, C3 = 0,

C4 = −ig4
s

1

3
W1KW4LĨ4W

†
K2W

†
L5 − ig4

s

11

18
W1KW4LĨ4W

†
K5W

†
L2,

C5 = ig4
s

5

9
W1KW4LĨ4W

†
K2W

†
L5 − ig4

s

5

6
W1KW4LĨ4W

†
K5W

†
L2,

C̃1 = ig4
s

11

36
W4KW4LĨ4W

†
K5W

†
L5, C̃2 = 0, C̃3 = 0, (2.9)

The derivation of the effective action for the mixing between the other neutral mesons is the
same as above. Therefore, the corresponding effective actions are given by simple substitution:

HBd
=HK(s → b,2 → 3,5 → 6),

HBs =HK(d → s, s → b,1 → 2,2 → 3,4 → 5,5 → 6),

HD0 =HK

(
d → u, s → c,W → Wu

)
. (2.10)

3 See Appendix A.3 for explicit definitions.
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2.2. Flavour-violation observables

Flavour violation in the Kaon mixing system is typically parametrised by the real and imagi-
nary part of the mixing amplitude. These two are related to the mass difference between KL and
KS and the CP violating parameter as

�mK = 2 Re
〈
K0

∣∣HK

∣∣K0〉, |εK | =
∣∣∣∣ Im〈K0|HK |K0〉√

2�mK

∣∣∣∣, (2.11)

which have both been experimentally measured with great accuracy [52]. Their size sets strict
bounds on the amount of flavour violation allowed by new physics. In order to compute these
observables we need to extract the hadronic matrix elements of the operators in (2.4). They are
first derived in the Vacuum Saturation Approximation (VSA),

〈
K0

∣∣Q1
∣∣K0〉

VSA = 1

3
mKf 2

K,

〈
K0

∣∣Q2
∣∣K0〉

VSA = − 5

24

(
mK

ms + md

)2

mKf 2
K,

〈
K0

∣∣Q3
∣∣K0〉

VSA = 1

24

(
mK

ms + md

)2

mKf 2
K,

〈
K0

∣∣Q4
∣∣K0〉

VSA =
[

1

24
+ 1

4

(
mK

ms + md

)2]
mKf 2

K,

〈
K0

∣∣Q5
∣∣K0〉

VSA =
[

1

8
+ 1

12

(
mK

ms + md

)2]
mKf 2

K. (2.12)

Since only strong interactions are involved, we get identical expressions for the ‘R-projection’
version of the first three operators. The ratio of the exact over the VSA result for each of the five
operators above is parametrised by the “bag” factors Bi , i = 1, . . . ,5 (see Appendix D), that are
typically extracted by numerical techniques. In comparing with the SM contribution, the usual
parametrisation used is

Re〈K0|HK |K0〉
Re〈K0|HSM

K |K0〉 = C�mK
,

Im〈K0|HK |K0〉
Im〈K0|HSM

K |K0〉 = CεK
. (2.13)

Flavour violation in Bq meson systems is parametrised in a similar way, by the modulus and
the phase of the mixing amplitude:

〈B0
q |HBq |B0

q〉
〈B0

q |HSM
Bq

|B0
q〉 = CBq e

2iφBq , (2.14)

where the Bq -meson hadronic matrix elements are obtained by Eq. (2.12) by substitution
(mK,fK,ms,md) → (mBq , fBq ,mb,mq) and the corresponding bag factors (see Appendix D).
Finally, there exists a similar parametrisation of the D-meson mixing CP conserving and violat-
ing parameters (as in e.g. [59]) which we do not explicitly describe here, and will be mentioned
in the appropriate place in Section 4.
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2.3. Flavour patterns

The stringent experimental bounds on flavour violation processes require that contributions
from extensions of the Standard Model be highly suppressed. This is typically achieved by em-
ploying particular patterns for the flavour structure of the BSM theory. In the following we
describe how flavour violation is parametrised in the patterns that will appear throughout the
paper.

2.3.1. Degeneracy – mass insertion approximation
One way to suppress flavour violation is to assume that the masses of the squarks are almost

degenerate, m2
I = m2

q̃
+ δm2

I , where m2
I are the squark mass eigenvalues and δm2

I are small

enough deviations from an “average” squark mass-squared m2
q̃
, I = 1, . . . ,6. Expansion of the

loop integrals in δm2
I and use of the unitarity of the W matrices delivers (for I 	= J , L 	= N )

WIKWLMI4
(
m2

K,m2
M

)
W

†
KJ W

†
MN = m2

IJ m2
LNI6

(
m2

q̃ ,m2
q̃ ,m2

q̃ ,m2
q̃

) + · · · (2.15)

where m2 is the squark squared mass matrix in the basis where the quark mass matrix is diagonal.
Flavour violation in this scheme is parametrised by the small ratio of the off-diagonal elements
m2

IJ over the average squark mass δ
L(R)L(R)
ij ≡ m−2

q̃
m2

i(i+3) j (j+3).

2.3.2. Hierarchy
A slightly different notation is used in the case of hierarchical squark masses where the

squarks of first and second generation are much heavier than those of the third so that their
contribution to the box diagrams is negligible. Further below we will consider such flavour pat-
terns, in the simpler case of absent left–right mixing. In this case, one can parametrise flavour
violation processes by δ̂L

ij ≡ WL
i 3 W

L†
3 j , δ̂R

ij ≡ WR
i 3 W

R†
3 j , where WL

ij and WR
ij are the block di-

agonal matrices of (2.8). The reasoning behind this choice can be illustrated by the following
example [60]. Let us assume that b̃L is much lighter than the other squarks. Then

W1KW1LI4
(
m2

K,m2
L

)
W

†
K2W

†
L2 � (

δ̂L
12

)2
I4

(
m2

b̃L
,m2

b̃L

)
where

(
δ̂L

12

) = WL
13W

L†
32 . (2.16)

2.3.3. Alignment
An alternative to degeneracy or hierarchy for the suppression of flavour violating processes is

to consider that the squark mass-squared matrix is simultaneously diagonalised with the quark
mass matrix [61]. In this “alignment” flavour pattern, the suppression appears because WL

ij =
V

L †
ik ZLL

kj ∼ δij and WR
ij = V

R †
ik ZRR

kj ∼ δij . In this framework, we can take the squark masses to
be of the same order mq̃ but not degenerate. If we ignore left–right mixing, we obtain e.g. for the
left sector

WL
1iW

L
1j I4

(
m2

i ,m
2
j

)
W

L†
i2 W

L†
j2 � (

δ̃L
12

)2
I4

(
m2

q̃ ,m2
q̃

)
where δ̃L

12 = max
k

(
WL

1kW
L†
k2

)
(2.17)

and similarly for δ̃R
12.

3. Bounds in the mass insertion approximation

In the following we present the bounds for representative points in the gluino parameter space
(M,mD,Mχ). We focus on near degenerate squarks; hierarchical and alignment flavour patterns
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are discussed in Section 4. In this approximation, coefficients (2.6) and (2.7) of the general
effective action for the Kaon mixing system become

C1 = − α2
s

m2
q̃

(
11

36
|R1r |2|R1q |2f̃6 + 1

9
√

xrxqR∗2
1r R2

1qf6

)(
δLL

12

)2
,

C2 = −17

18

α2
s

m2
q̃

√
xrxqR2

1rR
2
1qf6

(
δRL

12

)2
,

C3 = 1

6

α2
s

m2
q̃

√
xrxqR2

1rR
2
1qf6

(
δRL

12

)2
,

C4 = − α2
s

m2
q̃

[(
7

3
√

xrxqR∗2
1r R2

1qf6 − 1

3
|R1r |2|R1q |2f̃6

)
δLL

12 δRR
12

− 11

18
|R1r |2|R1q |2f̃6δ

LR
12 δRL

12

]
,

C5 = − α2
s

m2
q̃

[(
1

9
√

xrxqR∗2
1r R2

1qf6 + 5

9
|R1r |2|R1q |2f̃6

)
δLL

12 δRR
12

− 5

6
|R1r |2|R1q |2f̃6δ

LR
12 δRL

12

]
,

C̃1 = − α2
s

m2
q̃

(
11

36
|R1r |2|R1q |2f̃6 + 1

9
√

xrxqR2
1rR

∗2
1qf6

)(
δRR

12

)2
,

C̃2 = −17

18

α2
s

m2
q̃

√
xrxqR∗2

1r R∗2
1qf6

(
δLR

12

)2
,

C̃3 = 1

6

α2
s

m2
q̃

√
xrxqR∗2

1r R∗2
1qf6

(
δLR

12

)2
, (3.1)

while for the Bd and Bs system we replace δ12 → δ13 and δ12 → δ23 accordingly. In the expres-
sions above, xk = M2

k /m2
q̃

with Mk the gluino mass eigenstate and we have replaced, according

to Appendix A.3 notations with mass scale m2
q̃
,

I6
(
M2

r ,M2
q ,m2

q̃ ,m2
q̃ ,m2

q̃ ,m2
q̃

) = i

16π2m8
q̃

f6(xr , xq,1,1,1) = if6

16π2m8
q̃

,

Ĩ6
(
M2

r ,M2
q ,m2

q̃ ,m2
q̃ ,m2

q̃ ,m2
q̃

) = i

16π2m6
q̃

f̃6(xr , xq,1,1,1) = if̃6

16π2m6
q̃

. (3.2)

The bounds on d ↔ s transitions from the Kaon system are proven to be the most restrictive
and therefore we will focus on them; we discuss the comparison of bounds in Appendix C.
We allow the SUSY contribution to �mK to be as large as the experimental bound; however,
the contribution to εK is restricted by the SM calculation [53]. Our analysis takes into account
NLO corrections to the effective Hamiltonian [62]; as for the parameter inputs, they are given in
Appendix D.4

4 Higher order terms in B4 and B5 of (2.12) have been dropped [63].
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Table 1

Majorana gluino bounds for Mg̃ = 1500 GeV. By δAB we denote
√

|Re(δAB
12 )2|

and c

√
| Im(δAB

12 )2|.
mq̃ [GeV] δLL 	= 0 δLL = δRR 	= 0 δLR = δRL 	= 0

750 0.211 0.002 0.004
1500 0.180 0.002 0.014
2000 0.157 0.003 0.008

Table 2

Majorana gluino bounds for Mg̃ = 2000 GeV. By δAB we denote
√

|Re(δAB
12 )2|

and c

√
| Im(δAB

12 )2|.
mq̃ [GeV] δLL 	= 0 δLL = δRR 	= 0 δLR = δRL 	= 0

750 0.192 0.002 0.005
1500 0.374 0.003 0.011
2000 0.240 0.003 0.019

3.1. Majorana gluino

In Tables 1 and 2, we update the bounds on flavour violation parameters for the MSSM with
a Majorana gluino, for an average gluino mass of 1.5 TeV and 2 TeV. The results are identical
for Re(δ2) and c2 Im(δ2), with5 c � 25. As seen in the tables, the K–K system sets powerful
constraints in the size of flavour violation. For example, for mq̃ = 2Mg̃ = 3 TeV the best case is√

Re δ2 � 8%, while
√

Im δ2 is around 25 times smaller.

3.2. Dirac gluino

As has already been mentioned in the introduction, flavour violation for quasi-degenerate
squarks is suppressed if the gluino is of Dirac type, especially in the large gluino mass limit. This
is true both because of the absence of the chirality-flip processes and because we are allowed to
increase a Dirac gluino mass over the squark masses without affecting naturalness as much as
in the Majorana case. These properties lead to a significant relaxation of the bounds from �mK

and εK , as seen in Fig. 1 for representative values of δAB .
However, despite the order of magnitude (or better) improvement over the Majorana case,

the bounds on εK still require a relatively high flavour degeneracy or that the flavour violating
masses in the squark matrix be real. For example, for a 6 TeV gluino and average squark mass of

1 TeV,
√

| Im(δLL
12 )2| can be as high as ∼1%.

In Section 4 we will explore flavour bounds on models with Dirac gauginos beyond the mass
insertion approximation. We will see that there exist flavour models where a Dirac gluino can
satisfy even the εK bounds for reasonable values of gluino and squark masses. We will also
notice that in many other flavour models, Dirac gauginos do not enjoy the suppression of flavour
violation with respect to Majorana ones that is seen here.

5 Saturating the 2σ deviation in εSM.

K
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Fig. 1. Contour plots in parameter space mq̃ - mD for purely Dirac gluino (M = Mχ = 0). Left: δLL = δRR = δ,

δLR = δRL = 0. Right: δLL = δRR = δLR = δRL = δ. Along the contours �mK = �m
exp
K

(for δAB =
√

|Re(δAB
12 )2|)

and εK = ε
exp
K

(for δAB = c

√
| Im(δAB

12 ) 2|).

Table 3

“Fake” gluino bounds for Mg̃ = 1500 GeV. By δAB we denote
√

|Re(δAB
12 )2|

and c

√
| Im(δAB

12 )2|.
mq̃ [GeV] δLL = δRR 	= 0 δLR = δRL 	= 0

750 0.013 0.028
1500 0.014 0.029
2000 0.014 0.030

Table 4

“Fake” gluino bounds for Mg̃ = 2000 GeV. By δAB we denote
√

|Re(δAB
12 )2|

and c

√
| Im(δAB

12 )2|.
mq̃ [GeV] δLL = δRR 	= 0 δLR = δRL 	= 0

750 0.017 0.037
1500 0.018 0.038
2000 0.018 0.039

3.3. Fake gluino

The mass terms of Eq. (2.1) allow for non-standard gluinos, when all M , mD and Mχ are
non-zero. One such scenario is when M � Mχ,mD and corresponds to the interesting case of
a light gluino with a suppressed squark–quark vertex, which we call “fake gluino”. In Section 5
we explore this possibility in more detail.

In this limit we obtain much lower bounds on flavour violation parameters with respect to
MSSM with Majorana gluino. In order to illustrate the point, we consider mD = Mχ = M/10.
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Even for an order of magnitude difference between M and mD , Mχ , we obtain no restrictions for
the size of flavour violation from effective operator Q1, where δLL 	= 0, δRR = δLR = δRL = 0.
For other combinations, we obtain results given in Tables 3 and 4.

In this case, the quark/squark coupling of the fake gluino is suppressed with respect to the
standard one by R12 ∼ mD

M
= 0.1 as can be seen in Eq. (2.3). So if the contribution to the box di-

agram is dominated by the lightest eigenstate, we should expect the box diagram to be suppressed
by R4

12 for the same lightest gluino mass, leading to bounds reduced by R2
12 ∼ 0.01. However,

we observe from the bounds in Tables 3 and 4 that the suppression is much less dramatic, of the
order 0.1. The reason is that it is not the light but actually the heavy eigenstate that dominates
the box integral!

This can be seen by comparing, for example, the loop integral contribution from the chirality-
flip process:

√
xrxqR∗2

1r R2
1qf6(xr , xq)

� x1f6(x1, x1) + x2

(
x2

x1

)2

f6(x2, x2) + 2
√

x1x2

(
x2

x1

)
f6(x1, x2)

= x

y
f6(x/y, x/y) + xy2f6(x, x) + 2xy

√
yf6(x/y, x) (3.3)

where x1 � 100x, x2 � x with x ≡ M2
g̃
/m2

q̃
, y ≡ x2

x1
(for the lightest gluino eigenstate) and we

have replaced R11 � 1, R2
12 � x2

x1
. Since f6(x/y, x) ∼ y2 logy,f6(x/y, x/y) ∼ y2

6x2 , the domi-
nant contribution comes from the heavy gluino term x1f6(x1, x1) and is given by

√
xrxqR∗2

1r R2
1qf6(xr , xq) � 1

6x

M2
D

M2
. (3.4)

The parametric scaling of the bound on δAB is then

|δAB
Majorana|

|δAB
fake gluino|

∼ M

mD

(3.5)

which is much less than the naive scaling of M2

m2
D

.

4. Beyond the mass insertion approximation

Having established in the previous section that the bounds from εK do not allow flavour-
generic models at LHC-accessible energies even in the case of Dirac gaugino masses, we are led
to the conclusion that it is likely that we either require an accidental suppression of the mixing
between the first two generations or we must impose some additional structure on the squark
mass matrices. It is therefore important to consider flavour models. However, in doing so we
invariably find that the mass insertion approximation is no longer valid: in fact, it is hard to find
any models in which it would actually apply. Hence, in this section we shall investigate the con-
sequences – and the general bounds – when we go beyond the mass insertion approximation in
the context of Dirac gauginos.

One of the most important things that we find in the general case is that the much-vaunted
suppression of �F = 2 FCNC processes is in general much less marked; in fact, for certain
specific cases the Majorana case is actually less suppressed! We explain this in Section 4.1.
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In the remainder of the section we then discuss specific flavour models to illustrate the different
types of behaviour. We shall consider:

• The simple case of non-degenerate but same order of magnitude squark masses, where align-
ment applies.

• A simple flavour model realising such a spectrum.
• The general case of an inverted hierarchy between the first two squark generations and the

third, à la Ref. [60]. In addition to changing the gluino masses to Dirac type, we will update
the bounds with the latest flavour data and also take into account the LHC bounds on squark
and gaugino masses.

• Models where in addition to the first two generations of squarks, the third generation of
right-handed squarks is also heavy. These models provide a minimum of extra coloured
particles available to the LHC.

• A flavour model realising the above, as given in [64] but with Dirac gaugino masses. This
model highly restricts the allowed flavour violation by imposing additional symmetries upon
the first two generations.

In the following, we ignore left–right squark mixing and define WL
ij = Wij and WR

ij =
Wi+3 j+3 for i, j � 3. We also define

f̃ AB = WA
1iW

B
1j Ĩ4

(
m2

D,m2
Ai,m

2
Bj

)
W

A†
i2 W

B†
j2 , (4.1)

where A = L,R. Then the effective action (2.4) can be written as

HDirac
K = C1Q1 + C̃1Q̃1 + C4Q4 + C5Q5 (4.2)

where the Dirac coefficients (2.9) are written as

C1 = 11

36
ig4

s f̃
LL, C̃1 = 11

36
ig4

s f̃
RR,

C4 = −1

3
ig4

s f̃
LR, C5 = 5

9
ig4

s f̃
LR (4.3)

4.1. Dirac versus Majorana

In Ref. [8], it was argued that the absence of chirality-flip processes in the case of Dirac
gluinos leads to a suppression in the contribution to the box diagram by a factor x ≡ M2

g̃
/m2

q̃
as the Dirac mass becomes larger than the squark masses. In the following we show that this is
generally not true beyond mass insertion approximation and even when it is, the flavour bounds
are often relaxed by a factor of few rather than being parametrically reduced.

This can be immediately seen by taking the large x limit in the loop functions that appear in
the coefficients (2.6) of the general expression (2.4) for �F = 2 FCNC processes. Taking for
simplicity equal masses mq̃ for the squarks in the loop, these functions are (see Appendix A.3):

M2
g̃ I4

(
M2

g̃ ,M2
g̃ ,m2

q̃ ,m2
q̃

) ≡ i

16π2m2
q̃

xf4(x) = i

16π2m2
q̃

[
2x(x − 1) − x(x + 1) ln(x)

(1 − x)3

]
,

Ĩ4
(
M2

g̃ ,M2
g̃ ,m2

q̃ ,m2
q̃

) ≡ i

16π2m2
f̃4(x) = i

16π2m2

[
x2 − 2x ln(x) − 1

(1 − x)3

]
. (4.4)
q̃ q̃
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Fig. 2. Loop diagrams in the effective theory where the gaugino has been integrated out. In figure (a) the mass insertions
are shown, whereas in figure (b) the mass-insertion approximation is inappropriate.

Function f̃4(x) appears in both Dirac and Majorana cases while xf4(x) appears only in the
Majorana case, corresponding to the chirality-flip process. Notice that xf4(x) is always positive,
and f̃4(x) always negative; moreover they have broadly similar values except near x = 0; for
example f4(1) = 1/6, f̃4(1) = −1/3. As x → ∞ the ratio between them tends to − ln(x) + 2,
which is not the aforementioned enhancement by a factor of x.

This can be understood in the following way. Following the reasoning of [8], integrating out
the heavy gluino generates effective operators

1

Mg̃

d̃∗
Rs̃∗

LdRsL,
1

M2
g̃

d̃L∂μs̃∗
LdLγ μsL, (4.5)

the first of these being the chirality-flip process forbidden in the Dirac case. In the mass insertion
approximation, the flavour changing loop diagram is then as in Fig. 2(a) and gives (Qi refers to
the four-fermion effective operators of Section 2)

Leff ⊃ Qi

(m2
12)

2

M2
g̃

∫
d4q

1

(q2 − m2
q̃
)4

∼ Qi

δ2
12

M2
g̃

(4.6)

for the chirality-flip case and

Leff ⊃ Qi

(m2
12)

2

M4
g̃

∫
d4q

q2

(q2 − m2
q̃
)4

∼ Qi

m2
q̃

M4
g̃

δ2
12 (4.7)

in the same chirality case, in line with the claim in [8]. The insertion of operators of the form
m2

12q̃
∗
1 q̃2 as effective vertices is of course only valid in the limit m2

12 � m2
q̃
; however, as we shall

see below in Section 4.2, the above behaviour of the integrands can also arise in certain cases
beyond mass insertion approximation, where there is approximate unitarity of a submatrix of
the squark rotations leading to cancellations between diagrams. However, in all other cases we
instead have diagrams like that of Fig. 2(b), which gives

Leff ⊃ Qi

W 2
12

M2
g̃

Mg̃∫
d4q

1

(q2 − m2
q̃
)2

∼ Qi

W 2
12

M2
g̃

ln
M2

g̃

m2
q̃

(4.8)

in the chirality-flip case and

Leff ⊃ Qi

W 2
12

M4

Mg̃∫
d4q

q2

(q2 − m2)2
∼ Qi

W 2
12

M2
(4.9)
g̃ q̃ g̃
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in the same chirality case, where we needed to use the cutoff of Mg̃ in the integrals.6 This is
exactly the behaviour that we find born out in the amplitudes and explains why in generic flavour
models the Dirac case will not provide a parametric suppression of the flavour-changing bounds.

The logarithmic, instead of a linear suppression for the Dirac amplitude has then striking
consequences. In the case that the contribution from same-chirality and chirality-flip amplitudes
is comparable for reasonable values of x, the flavour bounds on Dirac gluinos can be proven
more strict than those on Majorana, because in the latter there can exist cancellations between
the same- and flipped-chirality amplitudes. Let us consider the impact that this has on bounds,
by taking the ratio between the value of the Wilson coefficients Ci for purely Majorana gauginos
CM

i and for purely Dirac CD
i . For a given contribution to the integrand (i.e. for the same values

of K,L) in Eq. (2.6) and taking for simplicity equal masses for the squarks in the loop (while
neglecting left–right mixing) we find:

CM
1

CD
1

= 1 + 4

11

xf4(x, x,1)

f̃4(x, x,1)
= − 4

11
ln(x) + 19

11
+O

(
x−1 ln2(x)

)
,

CM
4

CD
4

= 7 ln(x) − 13 +O
(
x−1 ln2(x)

)
,

CM
5

CD
5

= −1

5
ln(x) + 7

5
+O

(
x−1 ln2(x)

)
. (4.10)

For arbitrarily large values of x the Majorana case will have a larger contribution, but for reason-
able values, up to x = O(100), only C4 is actually enhanced compared to the Dirac case (for C1

we would require gluinos about 40 times heavier than squarks to obtain a relative suppression).
Finally, we note that the cancellation between the amplitudes can also be relevant when the

linear enhancement of the chirality-flip contribution applies, i.e. when f AB and f̃ AB are propor-

tional to
(∼)

I6. This is the case when squarks are quasi-degenerate but also in certain cases beyond
the mass insertion approximation for very particular squark matrix configurations as we shall
find below. In this case, for moderate values of x the cancellation plays a role:

CM
1

CD
1

→ 1 + 4

11

xf6(x, x,1)

f̃6(x, x,1)
= 1

11

(
47 − 2x − 12 ln(x)

) +O
(
x−1 ln2(x)

)
,

CM
4

CD
4

→ 7x

2
− 62 + 21 lnx +O

(
x−1 ln2(x)

)
,

CM
5

CD
5

→ 1

10
(28 − x − 6 lnx) +O

(
x−1 ln2(x)

)
(4.11)

We observe that the Majorana contribution is smaller than the Dirac for C1(x � 5) and
C5(x � 15) while the Dirac is only suppressed by a factor of 10 for C1(x � 50) and C5(x � 100).

6 Note that if we define m2
q̃K

= m2
q̃
(1 + δK), sum the integrals of the above form (4.8) and (4.9) over

W1KW∗ W1LW∗ we and expand to leading order in δK we recover (4.6) and (4.7).
2K 2L
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4.2. Alignment

In the previous section we examined how flavour constraints in the mass insertion approxi-
mation are affected by a generalised gluino spectrum. However, flavour models often do not lead
to a near degeneracy of the squarks’ masses but to different flavour patterns such as alignment
or hierarchy, as mentioned in Section 2.3. Moreover, one expects non-degeneracy to arise from
running: there will always be a split between at least the first two generations and the third due
to the larger Yukawa couplings. It therefore makes sense to consider models that can suppress
flavour constraints even without requiring degeneracy of the squarks’ masses.

4.2.1. Alignment in the left sector
Alignment is typically obtained in flavour models of additional horizontal U(1) symmetries

[65]. In a minimal representative of such models there is only one horizontal U(1) symmetry,
under which the quark superfields are charged with charges X as

X[Qi] = (3,2,0), X[Ui] = (3,1,0), X[Di] = (3,2,2). (4.12)

If we neglect D-term contributions to the squark masses, the order of magnitude structure of the
squark mass matrices (before any quark rotations) is7

m2
d̃L

∼ m2
F

⎛
⎝ 1, ε, ε3

ε 1 ε2

ε3 ε2 1

⎞
⎠ , m2

d̃R
∼ m2

F

⎛
⎝1 ε ε

ε 1 1

ε 1 1

⎞
⎠ , (4.13)

where ε is a small number, the parameter of U(1) symmetry breaking. Throughout this section,
ε = λ, where λ � 0.22 is the Cabibbo angle. In this flavour model, the quark diagonalising
matrices have the same structure

V d
L ∼

⎛
⎝ 1 ε ε3

ε 1 ε2

ε3 ε2 1

⎞
⎠ , V d

R ∼
⎛
⎝1 ε ε

ε 1 1

ε 1 1

⎞
⎠ , (4.14)

and the squark diagonalising matrices (in the basis where the quarks are diagonal) are approx-
imated by WL ∼ V

d †
L and WR ∼ V

d †
R . Therefore, with this particular choice of U(1) charges,

the left-squarks sector exhibits alignment while the right-squarks sector does not.
We can estimate flavour violation in �mK in the leading order in ε, by focusing at

f̃ LR = ε2[(m2
R1 − m2

R2

)(
Ĩ5

(
m2

L1,m
2
R1,m

2
R2

) − Ĩ5
(
m2

L2,m
2
R1,m

2
R2

))

+ (
m2

L2 − m2
L1

)
Ĩ5

(
m2

L1,m
2
L2,m

2
R3

)] +O
(
ε4) ∼ i

16π2

ε2

m2
q̃

f̃5(x), (4.15)

f̃ LL = ε2(m2
L1 − m2

L2

)2
Ĩ6

(
m2

D,m2
L1,m

2
L2

) +O
(
ε4) ∼ i

16π2

ε2

m2
q̃

f̃6(x),

f̃ RR = ε2
[∑

i

Ĩ4
(
m2

Ri,m
2
Ri

) − 2Ĩ4
(
m2

R1,m
2
R2

) − 2Ĩ4
(
m2

R1,m
2
R3

) + 2Ĩ4
(
m2

R2,m
2
R3

)]

+O
(
ε4) ∼ i

16π2

ε2

m2
q̃

f̃4(x), (4.16)

7 In all flavour abelian models in what follows, ∼ means order of magnitude only and not a precise number.
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where x = m2
D/m2

q̃
and in approximating, we have required that all squark masses are of the

same order mq̃ but not degenerate. In the limit of Dirac gluinos much heavier than mq̃ we obtain

〈K0|Heff |K0〉
�mK(exp)

�
(

αs

0.1184

)2(15 TeV

mD

)2

e2iφK , (4.17)

which is much too large: in order to meet the bounds from εK we would need mD ∼O(100) TeV.
Here, we might have expected Dirac gaugino masses to soften the bounds with respect to Ma-
jorana masses. However, this is not the case. Since the strongest constraint comes from operator
Q̃1, according to Eq. (4.10) we have a bound about 5 times stronger for Dirac masses than
Majorana ones when x = 100.

4.2.2. Alignment in both left and right sectors
As we have seen above, since the constraints are severe for Kaon mixing, models that sup-

press the elements WL
12 and WR

12 are then most attractive (since f̃ AB obtains largest contribution

from WA
11W

A†
12 ∼ WA

12 and WA
21W

A†
22 ∼ WA

21). However, retrieving the correct form for the CKM
matrix leads to large flavour rotation for the up-quark matrix. Therefore, apart from checking that
B-meson constraints are satisfied, one must as well consider constraints from D-meson mixing.

Since both down and up squark sectors are involved in the following discussion, we restore
the corresponding superscripts in the W matrices, so that W

qA

ij is the matrix that diagonalises the
A-handed squarks in the q-type sector, with A = L,R and q = u,d .

Defining 〈Wq
ij 〉 ≡

√
W

qL

ij W
qR

i,j we can place approximate bounds in this framework

W
dL

12 ,W
dR

12 � 2 × 10−3,
〈
Wd

12

〉
� 4 × 10−4,

W
dL

13 ,W
dR

13 � 0.1,
〈
Wd

13

〉
� 0.2,

W
dL

23 ,W
dR

23 � 0.4,
〈
Wd

23

〉
� 0.5,

W
uL

21 ,W
uR

21 � 0.03,
〈
Wu

21

〉
� 0.04, (4.18)

where all of these should be multiplied by (
mq̃

2 TeV )
√

| 1/3
f̃4(x)

|. The constraints8 in the left column

of (4.18) come from operators of the type Q1, Q̃1, whereas the ones in the right column come
from Q4, Q5.

Of these bounds, it is the D-meson constraint that proves problematic for alignment models,
as typically suppressing the Wd

12 element will require Wu
21 ∼ λ. However, the problem is not

particularly severe: it can either be remedied by having somewhat heavy first two generations, or
by allowing a small degeneracy between the first two generations.

To explore this, consider as a representative example a model with two abelian symmetries
U(1)1 × U(1)2 under which the quark superfields have charges [65]

Q D U

(3,0) (−1,2) (−1,2)

(0,1) (4,−1) (1,0)

(0,0) (0,1) (0,0)

(4.19)

8 These approximate bounds include bag factors but no NLO corrections (no magic numbers) (in plots we include all
available data including magic numbers).
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Other examples of models with alignment can be found, e.g., in [66,67]. The symmetry breaking
parameters, coming from flavon fields of charges (−1,0) and (0,−1), are ε1 ∼ λ and ε2 ∼ λ2

respectively. The diagonalising matrices are given by

W
dL

ij ∼
⎛
⎝ 1 λ5 λ3

λ5 1 λ2

λ3 λ2 1

⎞
⎠ , W

dR

ij ∼
⎛
⎝ 1 λ7 λ3

λ7 1 λ4

λ3 λ4 1

⎞
⎠ ,

W
uL

ij ∼
⎛
⎝ 1 λ λ3

λ 1 λ2

λ3 λ2 1

⎞
⎠ , W

uR

ij ∼
⎛
⎝ 1 λ6 λ5

λ6 1 λ

λ5 λ 1

⎞
⎠ , (4.20)

which are generically challenged by the bounds given above via D-meson mixing. However,
those bounds are derived under the assumption that the amplitude is well dominated by a single
contribution. We find that, in practice, they are overly conservative. Indeed, in order for this to be
the case there has to actually be a substantial hierarchy between the squark masses, and then since
there is a minimum mass for the second generation via LHC bounds we will find that the model
will be less constrained than feared. Considering this model, the constraint essentially comes
from the Q1 operator for D-meson mixing. Moreover, if we were to suppress the amplitude by
O(λ2) then we would easily meet the constraints; hence we must only suppress the leading order
contribution in λ, which we find to be:

f̃ LL = λ2[Ĩ4
(
m2

L1,m
2
L1

) + Ĩ4
(
m2

L2,m
2
L2

) − 2Ĩ4
(
m2

L1,m
2
L2

)] +O
(
λ4)

= λ2(m2
L1 − m2

L2

)2
Ĩ6

(
m2

L1,m
2
L2

) +O
(
λ4). (4.21)

Clearly if the first two generations are quasi-degenerate then this will vanish sufficiently to satisfy
the constraints. Indeed, particular UV models could have them degenerate up to O(λ2) [68],
which would give a much greater suppression of the FCNC processes than necessary to avoid
current bounds. However, it is actually not necessary to have so much degeneracy; for example
taking m2

L1 = 3m2
L3,m

2
L2 = 2m2

L3 and taking mD = mL2 the amplitude is suppressed by a factor
of 0.02 compared to simply taking f̃4(1), which is enough to satisfy the bounds for squark at
gluino masses of O(2 TeV).

To illustrate this, we show plots in Fig. 3 of the allowed lightest squark mass versus gaugino
mass for this model with randomly chosen entries of the above form. In order to harden the
bounds we must introduce a large hierarchy between the squark masses. We take three different
hierarchies: m2

L1 = 1.5m2
L2 = 3m2

L3, m2
L1 = 5m2

L2 = 10m2
L3 and m2

L1 = 25m2
L2 = 100m2

L3 (the
same hierarchies for both up- and down-type squarks) and calculate the bounds showing the
gluino mass against the lightest squark mass using NLO corrections and taking into account all
�F = 2 constraints. In practice, the D-meson constraint is dominant: we insist that |�mD0 | is
less than the experimental value of 7.754×10−15 GeV (since this is approximately three standard
deviations from zero, and moreover the standard model value is known to much less accuracy).

The results of Fig. 3 agree with our discussion in the end of Section 4.1. The cancellation
between the chirality-flip and the same chirality process suppresses the contribution in the Ma-
jorana case for moderate x even if the enhancement over the Dirac case is linear in x. Since
the flavour bounds for mL3 � 0.8–1 TeV are obeyed already at low x, a Majorana gluino is less
constrained than a Dirac one. Another feature of this model is that, due to the suppression in the
unitary rotations, the main FCNC effects come from the first two generations, even if they are
heavier than the third one. Hence, one should bear in mind that the relevant squark mass for the
loop diagrams is heavier than the mL3 shown on the abscissa.
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Fig. 3. Constraints on the model described in Section 4.2. The dashed lines correspond to exactly Dirac gauginos, while
the solid lines are purely Majorana. We take the same hierarchies for up- and down-type squarks, with m2

L1 = 1.5m2
L2 =

3m2
L3 for the red plots; m2

L1 = 5m2
L2 = 10m2

L3 for the green curves and m2
L1 = 25m2

L2 = 100m2
L3 for the blue.

4.3. Inverted hierarchy

4.3.1. Decoupling the first two generations
A particularly attractive scenario in light of the strong LHC bounds on the first two generations

of squarks and the desire for “natural supersymmetry” is to have an inverted hierarchy, where
the first two generations of squarks are substantially heavier than the third. This can be simply
accommodated in flavour models, as we shall discuss below.

One approach, following [60], is to decouple the first two generations. In this case, the effec-
tive action is given by (4.2) with f̃ AB of (4.1) given by

f̃ AB = δ̂A
12 δ̂B

12 Ĩ4
(
m2

D,m2
A3,m

2
B3

)
(4.22)

in the inverted hierarchy limit, as we have described in Section 2.3. Here mL3,mR3 are the
masses of the ‘left-handed’ and ‘right-handed’ sbottoms. The reader should be careful with the
“hat” notation however: since δ̂A

12 ≡ WA
13W

A
23 we expect the δ̂A

12 to be small, coming from two
small rotations rather than (in the generic case) one – indeed if the rotations come from the
squark mass-squared matrices M2

A ij themselves (rather than from quark rotations) so that WA
13 �

−M2
A 13/m2

A1 then we expect δ̂A
12 < m2

A3/m2
A1.

For m2
D � m2

L3,m
2
R3 we find (we discuss the limits from B-meson mixing in Appendix C)

〈K0|Heff |K0〉
�mK(exp)

= 3 × 103 ×
(

αs

0.1184

)2(2000 GeV

mD

)2

× (
0.3

(
δ̂L

12

)2 + 0.3
(
δ̂R

12

)2 − 2.6 δ̂L
12δ̂

R
12

)
(4.23)

and hence√∣∣Re
(
δ̂L

12

)2∣∣ < 3 × 10−2
(

mD

2000 GeV

)
,

√∣∣Im(
δ̂L

12

)2∣∣ < 9 × 10−4
(

mD

)
, (4.24)
2000 GeV
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which are not much weaker than the limits from [60] despite the larger gaugino mass and the
change from Majorana to Dirac gauginos. The reason is that the flavour data have been updated
and the limits scale only inversely proportional to the gaugino mass, since there is no further sup-
pression of the Dirac case relative to the Majorana case, as described in Section 4.1. In fact, since
the limits are derived from the constraints on C1, C̃1 without the mass insertion approximation,
for moderate values of the ratio of gluino to third generation squark masses, the Dirac version of
this model is actually more constrained than the Majorana one.

4.3.2. Including the first two generations
The above discussion assumed that we could completely decouple the first two generations.

However, we know that we cannot make them arbitrarily massive compared to the third gener-
ation without the two-loop RGEs leading either to tachyons or substantial fine-tuning to avoid
them. Typically a factor of m1/m3 ∼ 10–15 is the maximum that is allowed. Given this, we must
still worry about flavour-changing effects from the first two generations.

For example, let us suppose that the heavy eigenstates are not degenerate, but have masses
m1 � m2. In the limit where m1 is much larger than mD , one of the contributions to f̃ LR of (4.1)
can be written as

−16π2if̃ LR ∼ WL
12W

R
12

m2
1

.

Under the reasonable assumption that there are no accidental cancellations between the different
contributions, for m1 ∼ 10 TeV the constraint from εK requires WL

12W
R
12 � 10−6 which is clearly

highly restrictive for any flavour model. Therefore we must impose restrictions upon the heavy
squarks.

Let us determine the condition for neglecting the contribution from the first two generations in
the approximation that the first two generations of left- and right-handed squarks are degenerate
to leading order with masses mL1,mR1 respectively, with the third generation masses mL3,mR3.
Then, there are corrections δA

12m
2
1, δA

13m
2
1, δA

23m
2
1 to the off-diagonal elements of the squark mass-

squared matrix, with δA
ij defined similar to the mass insertion approximation flavour parameter

described in Section 2.3: δA
ij = m−2

1 (mA
ij )

2, A = L,R. In this case, Eq. (4.1) is expressed as

f̃ AB � δ̂A
12δ̂

B
12Ĩ4

(
m2

A3,m
2
B3

)
+ δA

12δ̂
B
12m

2
A1

∂

∂m2
A1

[
Ĩ4

(
m2

A1,m
2
B3

) − Ĩ4
(
m2

A1,m
2
B1

)] + (A ↔ B)

+ δA
12δ

B
12m

2
A1m

2
B1

∂2Ĩ4(m
2
A1,m

2
B1)

∂m2
A1∂m2

B1

, (4.25)

where we have neglected subleading terms in δ̂
A,B
12 . If we further take mA1 = mB1 = m1, mA3 =

mB3 = m3, then this simplifies to

−16π2if̃ AB = δ̂A
12δ̂

B
12

1

m2
3

f̃4

(
m2

D

m2
3

)
+ δA

12δ
B
12

1

m2
1

f̃6

(
m2

D

m2
1

)

−
[
δA

12δ̂
B
12

1

m2
1

f̃5

(
m2

D

m2
1

,
m2

3

m2
1

)
+ (A ↔ B)

]
, (4.26)

where
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f̃5

(
m2

D

m2
1

,
m2

3

m2
1

)
= log

m2
D

m2
1

+
2m4

D − 3m2
Dm2

3 + m4
3

(
1 + log

m2
3

m2
D

)
(m2

3 − m2
D)2

+O
(
m−2

1

)
. (4.27)

Assuming that mD � m1, in order to neglect the contribution of the first two generations we
require δ12 � δ̂12

m1
m3

. Since, as explained above, we expect m1
m3

� 10–15, we see that only certain
flavour models will actually allow this.

4.3.3. Concrete realisations
In order to realise a model with heavy first two generations of squarks with suppressed mixing

between them, we could consider models with a large D-term for an extra abelian gauged flavour
symmetry under which only the first two generations are charged, and obtain a natural super-
symmetric spectrum [69]. These D-term contributions were argued to be naturally generated (at
least) in effective string models [70], to be positive and, in certain circumstances, to be dominant
over the F-term contributions. It is then clear from (B.3) and (B.4) that precisely because the first
generations of fermions are lighter than the third one, the corresponding scalars are predicted
to be heavier. While such models would be one approach to realising the scenario of the pre-
vious subsection, there is currently no extant example that solves the FCNC problem of mixing
between the first two generations (owing to the need to have degeneracy between them).

Another class of flavour models adds extra symmetry between the first two generations [71,
72]. In this case, we can effectively take the squark mass matrix to be diagonal, with flavour-
changing processes only induced by the quark rotations combined with the (possibly small)
non-degeneracies in the squark matrix (of course, if the squarks were degenerate then the super-
GIM mechanism would lead to vanishing of the flavour-changing effects).

Taking the model of [64] for m2
L1 = m2

L2 = m2
1 � m2

L3, m2
R1 = m2

R2 = m2
1 � m2

R3 as an illus-
trative example of this scenario (see Appendix B.2 for more details), we have approximately

f̃ LR � i

16π2
WL

13W
L†
32 WR

13W
R†
32

m2
1 − m2

3R

m4
1

f̃5

(
m2

D

m2
1

,
m2

L3

m2
1

)
, (4.28)

where f̃5 is given in (4.27) and the diagonalising matrices are given in terms of parameters of the
model:

WL
13W

L†
32 WR

13W
R†
32 = −s2

d

md

ms

∣∣V d
23

∣∣2
e−2iα̃12 , (4.29)

with sd and V d
23 that take values s2

d � 0.2 and V d
23 � 0.04 in the best fit of one of the models

in [64].
The bounds on �mK are easily satisfied by this model, so we focus directly on the bounds

on εK . We obtain, allowing CεK
∈ [0.66,1.73] at 99% confidence level:

|�εK |
|εK(SM)|0.73

� 4.25

0.73 × 2.04 × 10−3

1

3

mKf 2
K

m2
1

√
2�mK(exp)

∣∣V d
23

∣∣2 md

ms

s2
d sin 2α̃12

∣∣m2
d̃R

− m2
b̃R

∣∣
m2

1

f̃5

= 0.07 ×
( |V 2

23|
0.04

)2( s2
d

0.2

)(
sin 2α̃12√

)(∣∣m2
d̃R

− m2
b̃R

∣∣
1 TeV2

)(
10 TeV

m2

)2(
f̃5

1.1

)
(4.30)
3/2 1
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Fig. 4. Contour plots for the model of Section 4.3.3. Along the contour, |�εK | = �εK(exp). The dashed lines correspond
to exactly Dirac gauginos, while the solid lines are purely Majorana, as in the original model of [64]. In the left plot, the
left-handed sbottom mass is set equal to that of the gluino; in the right plot, the left-handed sbottom is fixed at 1 TeV. The
two lines correspond to m2

d̃R
− m2

b̃R
= (1.5,4 TeV)2. The remaining parameters are chosen as |V d

23| = 0.04, sin(α12) =
0.5 and s2

d
= 0.2.

where we have used mD = 2 TeV, mL3 = m
b̃L

= 1 TeV, m1 = 10 TeV to evaluate f̃5. The results
from [64] are compatible with the 95% confidence level bound CεK

∈ [0.77,1.41] and we show
the comparison in Fig. 4.

In this model, the Dirac gluino offers an improvement by roughly a factor of four over the Ma-
jorana case. Again, this is in agreement with Section 4.1 since the dominant contribution comes
from C4 where the chirality-flip process adds to the same-chirality one instead of cancelling it.

5. A diversion: how to fake a gluino

We saw previously that large suppression of FCNC and production of coloured particles can
be obtained in two different ways:

• Large Dirac mass mD � M,Mχ , due to the underlying R-symmetry, in the mass insertion
approximation.

• Large Majorana mass M � mD,Mχ , due to small couplings of the light “fake gaugino”
fermion to quarks/squarks.

The second case can be realised in two distinct ways.
(i) We can have a scenario with a very moderate hierarchy and without a see-saw mass: we

can take for example Mχ ∼ TeV, M ∼ 10 TeV, 1 TeV � mq̃ � 5 TeV and an arbitrarily small
Dirac mass. In particular, we need only consider the gluino as being so heavy (the other gaug-
inos could be somewhat lighter). In this case, all of the masses would be generated by F-term
supersymmetry-breaking. The Dirac mass is then automatically suppressed, as can be checked
by writing explicitly the Dirac mass term with the help of a chiral spurion superfield. Alterna-
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tively, there can be also a small D-term which would explain the smallness of the Dirac mass.
Here R

g̃

12 ∼ mD/M , so the mixing between the gauginos and the fake gaugino could be almost
arbitrarily small.

(ii) A second way is by having a large, intermediate scale gluino mass. A theoretical motiva-
tion for this case is gauge coupling unification. According to [73], MSSM with additional adjoint
chiral fields leads to a good unification of couplings at the string scale for adjoint masses around
1012 GeV. In the case they considered, the low-energy effective theory is just the MSSM. From
the gauge unification viewpoint however, we can switch the masses of the gauginos/gluinos with
those of the chiral adjoint fermions, keeping the scalar adjoint masses heavy. This switch will not
affect gauge coupling unification at one-loop, whereas it will significantly change phenomenol-
ogy, which we call “fake split SUSY” for obvious reasons in what follows. In this section we
therefore consider in more detail this scenario and comment on its qualitative phenomenological
consequences.

Case (i) is clearly easy to justify. Before discussing phenomenological implications, let elab-
orate more about case (ii). The obvious question is the stability of the hierarchy M � mD,Mχ

under radiative corrections. For this, we need to consider the effective theory when we integrate
out the gauginos and the sfermions. The adjoint fermion χ (the “fake gaugino”) has no tree-level
renormalisable couplings to the squarks and sleptons, but it does couple via the gauge current to
the gaugino λ and the adjoint scalar Σ : the relevant terms are

L ⊃ −
(

M

2
λaλa + Mχ

2
χaχa + 1

2
BΣΣaΣa + i

√
2gf abcΣaλbχc + h.c.

)
− m2

ΣΣaΣa

− (
mDΣa + mDΣa

)2 − (
mDλaχa + c.c.

)
. (5.1)

On the second line we included the terms coming from the Dirac gaugino mass term, which
necessarily also generates the term (mDΣa + mDΣa)2. We do not absorb these into mΣ,BΣ

because these corrections are RGE invariant and therefore apply at any renormalisation scale
[37–39]. Instead we define

B̂Σ ≡ BΣ + 2m2
D, m̂2

Σ ≡ m2
Σ + 2|mD|2. (5.2)

Since we are making the logical assumption that the adjoint scalars are at least as massive as the
other scalars in the theory, we can integrate them out along with the gaugino λ: at one loop we
generate a term Mχ of

Mχ = 2g2C2(G)B̂ΣM

∫
d4p

(2π)4

p2

((p2 + m2
D)2 + M2p2)((p2 + m̂2

Σ)2 − B̂2
Σ)

, (5.3)

which gives to leading order in BΣ/m2
Σ,mD/M

Mχ = 2C2(G)g2

16π2
×

⎧⎪⎨
⎪⎩

B̂Σ

M

(
1 − log M2

m̂2
Σ

)
, M � m̂Σ,

B̂Σ

m̂2
Σ

M, m̂Σ � M.
(5.4)

This clearly prevents an arbitrary hierarchy between M and Mχ . We might consider simply ig-
noring B̂Σ ; however, it will always have a D-term contribution from the Dirac mass, so that
without tuning we can say |B̂Σ | � |mD|2. More honestly, we should look if there can be a sym-
metry preventing the generation of such a term. Indeed this is the case: If we rotate the adjoint
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field Σ then this prevents both Mχ and BΣ , but also prevents the Dirac mass mD . However, if
we break this symmetry with the vev of a field φ such that φ/Mhigh ≡ ε then we generate

mD ∼ εM, Mχ ∼ ε2M, BΣ ∼ ε2M2 ∼ m2
D (5.5)

and thus the above contribution is irrelevant: the see-saw (and direct) masses for the “fake” gluino
are of order m2

D/M where the scale is controlled by the parameter ε. We also note that since this
hierarchy is protected by the approximate symmetry, it is not affected by renormalisation group
running from above the SUSY-breaking scale9

δMχ ∼ ε2 g2
s

16π2
M,

δBΣ ∼ MMχ

g2

16π2
log

(
Λ

M

)
∼ ε2 g2

16π2
M2 log

(
Λ

M

)
. (5.6)

Taking M ∼ mq̃ ∼ mΣ ∼ 1012 GeV and assuming that the “fake” gluino mass is of or-
der Mχ ∼ 1 TeV, this fixes the parameter ε to be of order 10−4 (so that we could take
〈φ〉 ∼ M,Mhigh ∼ MGUT). Hence we get the following masses

M ∼ 1012 GeV �mΣ � mD,
√

BΣ ∼ 108 GeV � Mχ ∼ 1 TeV. (5.7)

If the switch of masses is also performed for the wino/bino ↔ fake wino/bino, the resulting
low-energy effective theory in this case is different compared to standard split SUSY. Indeed, we
should consider whether there are any light higgsinos remaining in the spectrum: in split SUSY,
there is an R-symmetry that protects the mass of the higgsinos, whereas we have broken this, and
we would expect the higgsinos to obtain a mass through diagrams similar to the one considered
above:

μ � 1

4
2g2

Y MBμĨ4
(
m2

h,m
2
H ,M2

B̃1 ,M
2
B̃2

) + 3

4
2g2

2MBμĨ4
(
m2

h,m
2
H ,M2

W̃ 1,M
2
W̃ 2

)
, (5.8)

where M
B̃i , M

W̃i with i = 1,2 are the masses for the bino and wino eigenstates respectively
(before electroweak symmetry breaking) and mh (mH ) are the light (heavy) mass parameters in
the Higgs sector,

m2
h � m2

hu
m2

hd
− B2

μ

m2
hu

+ m2
hd

, m2
H � m2

hu
+ m2

hd
. (5.9)

In writing (5.8) we neglected Mχ in the loop. In this case, a more compact form for the integrals
is, for example

Ĩ4
(
m2

h,m
2
H ,M2

W̃ 1,M
2
W̃ 2

) =
∫

d4p

(2π)4

p2

(p2 + m2
h)(p

2 + m2
H )[(p2 + m2

D)2 + M2
W̃

p2] .

(5.10)

Whereas the general expression is rather involved, in the limit M � mH and (for simplicity) with
equal gaugino mass parameters for SU(2) and U(1) factors M

W̃
= M

B̃
� M , it simplifies to

9 In terms of the parameter B̂Σ defined in (5.2), we find δB̂Σ ∼ (MMχ − m2 )
g2

2 log( Λ ).

D 16π M
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μ � g2
Y + 3g2

2

32π2

Bμ

M − m2
H /M

log
m2

H

M2
. (5.11)

However, this can be repaired in a similar fashion: we can suppose that the Higgs fields are
charged under the same U(1) symmetry that the adjoints are charged under. This would sup-
press the μ and Bμ terms, and also prevent any superpotential couplings between the adjoints
and the higgsinos. We would have μ ∼ ε2M,Bμ ∼ ε2M2 so we would have Bμ � |μ|2 and
the heavy Higgs scalars would be parametrically heavier than the electroweak scale. In this sce-
nario we effectively take infinite tanβ and require the down-quark and lepton Yukawa couplings
non-holomorphic and generated in the high-energy theory (see e.g. [20,74]).10

Then, in split SUSY the effective Lagrangian contains higgs/higgsino/gaugino couplings

Leff ⊃ −H †

√
2

(
g̃uσ

aW̃ a + g̃′
uB̃

)
H̃u − HT ε√

2

(−g̃dσ aW̃ a + g̃′
dB̃

)
H̃d . (5.12)

In usual split SUSY, g̃u = g sinβ , g̃d = g cosβ , g̃′
u = g′ sinβ , g̃′

d = g′ cosβ; however, in our case
these couplings will be strongly suppressed by the fake gaugino/bino compositions R12, R′

12.
If the adjoint superpotential couplings W ⊃ λSHdSHu + 2λT HdT Hu had not been suppressed,
then they would have provided couplings of the same form. Instead, the absence of such cou-
plings at low-energy could be therefore a signature of a remote N = 2 supersymmetric sector,
instead of a more conventional split SUSY spectrum.

Finally, in the absence of couplings λS,T , the model has difficulties to accommodate a good
dark matter candidate, due to the small couplings of the fake electroweakinos to quarks and
leptons.

5.1. Phenomenological consequences

In the context of split SUSY, where squarks are very heavy compared to the gluino, one strik-
ing experimental signature is the long lifetime of the gluino and associated displaced vertices or
(for even heavier squarks) gluino stability. Indeed the lifetime of the gluino could be sufficiently
long to propagate on macroscopic distances in detectors [75–77]. This lifetime, in the standard
split SUSY context, can be estimated in an approximate manner according to [77] as follows

τg̃ = 4 s

N
×

(
mq̃

109 GeV

)4

×
(

1 TeV

M

)5

, (5.13)

where N is a quantity varying with M and mq̃ but of order one for our range of masses.
As we saw in the previous sections, the fake gluino couplings are altered by the diagonal-

isation of the gluino mass matrix and contain a tiny contribution of the original gluino gauge
coupling, proportional to R

g̃

12 ∼ mD/M . In case i) above, the mixing between the gauginos and
the fake gaugino could be almost arbitrarily small by having mD � TeV, meaning that the fake
gluino could still have displaced vertices without requiring large mass scales. Particularly inter-
esting is the case where the usual gluinos are not accessible (they are heavier than say 5 TeV),
whereas some of the squarks are. Displaced vertices /long lifetime for the fake gluino with light
squarks would be a direct probe of a high-energy N = 2 supersymmetric spectrum. Pair pro-
duction of faked gluinos in this case lead to displaced vertices, since although some squarks

10 There is another solution, where instead we extend the Higgs sector by another pair of doublets. These could be
consistent with unification at any scale; this is being explored in another work [48].



656 E. Dudas et al. / Nuclear Physics B 884 (2014) 632–671
could be light, their small couplings to the fake gluino suppresses such processes. On the other
hand, direct squark production is possible, but subsequent squark decays to quarks/neutralinos
go dominantly through the Higgsino components and corresponding Yukawas couplings. They
are therefore unsuppressed only for third generation squarks (and eventually third generation
sleptons if similar arguments are applied to the other gauginos). Of course, the heavier the usual
gluino, the bigger the fine-tuning needed in order to keep a squark to be light. Some fine-tuning,
moderate for gluino mass below 10 TeV or so, is unavoidable for such a scenario to be realised in
nature. However, its very different phenomenological implications could be worth further study.

In case (ii) above, the fake gluino couplings to quarks/squarks are proportional to gsR12 �
gs

mD

M
∼ ε and encodes the small gluino composition of the lightest fermion octet. According to

our numerical choice of masses we get R12 ∼ ε ∼ 10−4. This affects therefore the fake gluino
lifetime, which has to be modified according to

τχ = 4 × 1028 s

N
×

(
10−4

R
g̃

12

)2(10−4

R
χ0

12

)2

×
(

mq̃

1012 GeV

)4

×
(

1 TeV

Mχ

)5

∼ 1021 yr (5.14)

where we define Rg̃ and R
χ0

12 to be the rotation matrices for the gluino and neutralino respectively.
For the scales given, this lifetime is hence longer than the age of the universe, and so we should
make sure that fake gluinos are not produced in the early universe.11

We could also consider different moderate hierarchies with interesting low-energy impli-
cations. For example, let us suppose that Mχ ∼ mD ∼ TeV and gluino and squark masses
M ∼ mq̃ ∼ 100 TeV, while the higgsinos remain light; in split SUSY gluino decays are prompt

inside the detector, but in our “fake split SUSY” case, now R
g̃

12 ∼ 10−2 and we can take R
χ0

12 ∼ 1.
The gluino propagation length is increased by a factor of 104 and the vertex starts to become dis-
placed. Although the squarks are still very heavy, they could produce testable CP violating FCNC
effects in the Kaon system (εK ).

6. Conclusions

Flavour physics sets severe constraints on supersymmetric models of flavour. In models in
which the scale of mediation of supersymmetry breaking is similar or higher than the scale
of flavour symmetry breaking, fermion masses and mixing hierarchies are correlated with the
flavour structure of superpartners. In the MSSM constructing a fully successful flavour model
of this type is difficult and usually requires the simultaneous presence of several ingredients
like abelian and non-abelian symmetries. At first sight, flavour models with Dirac gauginos are
simpler to build, due to the flavour suppression argued in the literature in their R-symmetric
pure Dirac limit, for gluinos heavier than squarks. In this paper, we found that this suppression is
only strong in the near-degeneracy (mass insertion approximation) limit, whereas in most flavour
models this approximation is not valid.

We analysed the simplest Dirac flavour models with abelian symmetries realising various de-
grees of alignment of fermion and scalar mass matrices and for non-abelian symmetries realising
a natural supersymmetric spectrum with heavy first two generations. We found only a moder-
ate improvement in the flavour constraints over the MSSM case. We also showed in an explicit

11 For more discussion of this issue we refer the reader to [48].
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example in Section 4.2 that due to cancellations in the Majorana case, it is even possible that a
Dirac model is for some parts of the parameter space more constrained than its MSSM cousin.

We also considered generalised Lagrangians with both Majorana and Dirac masses, by not
imposing an R-symmetry in the UV. We considered, in particular, the case in which the gluino
Majorana mass is very large compared to that of the chiral octet fermion and the Dirac mass
M � Mχ,mD . This led to the scenario dubbed “fake gluino” in which the light adjoint fermions
are not the N = 1 partners of the gauge fields, but the other fermions in the N = 2 gauge mul-
tiplets. In this case, couplings of the light “fake gluino” to quarks are suppressed parametrically
by the ratio mD/M . This leads to a potentially new exotic phenomenology in which squarks
can be light and accessible experimentally, while the light adjoint fermions can be long-lived
and generate displaced vertices or escape detection. Experimental discovery of a squark and si-
multaneously of long-lived light gluinos would be spectacular evidence of such a spectrum. An
extreme case with heavy gluinos and light adjoint fermions is obtained by pushing a Majorana
gluino mass and squark masses to an intermediate scale M ∼ 1012 GeV, which leads to good
gauge coupling unification. The outcome is similar in spirit to split supersymmetry, with how-
ever light adjoint fermion couplings to quarks and (for electroweakinos) to higgs/higgsino which
are highly suppressed compared to split supersymmetry.
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Appendix A. K and B meson mixing in supersymmetry

A.1. From the Lagrangian to Feynman rules

In MSSM, the dominant contribution to K and B meson mixing comes from a box diagram
with squarks and gluinos propagating in the loop. Starting from the superfield Lagrangian, we
have

LMSSM ⊃
∫

d4θQ†e2gsV
aT a

Q + D†e−2gsV
aT a∗

D

⊃ −√
2gs

[
d̃∗
LxiT

a
xyλ

aαdLyiα − d̃RxiT
a∗
xy λaαdc

Ryiα

] + h.c., (A.1)

where gs is the strong coupling constant, i = 1,2,3, is the flavour index, T a
xy are the SU(3)

generators and λaα is the gluino Weyl fermion. Also, the fermion in the chiral superfield D is
denoted by dc

Rxiα = (dRxi)
c
α and describes the charge conjugate of the right-handed down quark

field. Its scalar superpartner is d̃∗ .
Rxi
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After adopting four-component notation

d =
(

dLα

dc
R

α̇

)
; g̃a =

(
λa

α

λa α̇

)
, (A.2)

and using identities

Ψ c
iΓIΨ

c
j = −(−1)AgIJ Ψ jΓJ Ψi (A.3)

where ΓI = {I, γ 5, γ μγ 5, γ μ,Σμν,Σμνγ 5}, gIJ = diag(1,1,1,−1,−1,−1) and (−1)A =
+1 (−1) for a commuting (anticommuting) Ψi , (A.1) can be written as

−√
2gsT

a
xy

[
d̃∗
Lxi g̃

aPLdyi − d̃∗
Rxi g̃

aPRdyi

] + h.c. (A.4)

This last expression can also be written using charge conjugated fields

−√
2gsT

a
xy

[
g̃aPRdc

xi d̃Lyi − g̃aPLdc
xi d̃Ryi

] + h.c. (A.5)

Before writing down the Feynman rules for couplings (A.4) and (A.5), we switch to the squark
mass eigenstate basis.

Going first to the basis where the down quark mass matrix and the gluino–squark–quark cou-
pling are diagonal, one can write

dL → VLdL, dc
R → VRdc

R. (A.6)

The down squark mass matrix is now denoted by m2
d̃

Lm
d̃
= −d̃†m2

d̃
d̃, d̃ =

(
d̃Li

d̃Ri

)
(A.7)

and can be diagonalised by the unitary matrix ZIJ

d̃Li = ZiI D̃I , d̃Ri = Zi+3I D̃I (A.8)

such that

Lm
d̃
= −D̃∗

I m2
I D̃I , m2 = Z†m2

d̃
Z (A.9)

where D̃I with I = 1, . . . ,6 is the squark mass eigenstate, i = 1,2,3, is the flavour index and
m2 = diag(m2

I ) is the diagonal matrix of the mass eigenstates. Then, (A.4) and (A.5) are written

as (we denote (W †)IJ ≡ Z
†
IJ )

−√
2gsT

a
xy

[
D̃∗

IxW
†
I i g̃

aPLdyi − D̃∗
IxW

†
I i+3g̃

aPRdyi

] + h.c. (A.10)

and

−√
2gsT

a
xy

[
g̃aPRdc

xiWiI D̃Iy − g̃aPLdc
xiWi+3I D̃Iy

] + h.c., (A.11)

where W is defined by

W =
(

V
†
LZLL V

†
LZLR

V
†
RZRL V

†
RZRR

)
. (A.12)

The corresponding Feynman rules for the vertices are (Fig. 5)

V a
xy = −i

√
2gsT

a
xy

(
W

†
I iPL − W

†
I i+3PR

)
,

Ga
xy = −i

√
2gsT

a
xy(WiIPR − Wi+3IPL). (A.13)
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Fig. 5. Feynman rules for gluino–squark–quark vertices.

Fig. 6. The four box diagrams (denoted M1,2,3,4 from top left to bottom right) that contribute to K–K mixing. The fields
sw , dx , dl and sn have 4-momenta p1,2,3,4.

A.2. From the amplitude to the effective action

The amplitudes of the diagrams in Fig. 6 are (we neglect external momenta) [57]

iM1 = −
∫

d4p

(2π)4

i

p2 − m2
I

i

p2 − m2
J

dxG
b
xy

i(/p + Mg̃)

p2 − M2
g̃

V b
mnsndlG

a
lm

i(/p + Mg̃)

p2 − M2
g̃

V a
ywsw

iM2 =
∫

d4p

(2π)4

i

p2 − m2
I

i

p2 − m2
J

dxG
b
xy

i(/p + Mg̃)

p2 − M2
g̃

V b
mwswdlG

a
lm

i(/p + Mg̃)

p2 − M2
g̃

V a
ynsn

iM3 =
∫

d4p

(2π)4

i

p2 − m2
I

i

p2 − m2
J

dxG
b
xy

i(/p + Mg̃)

p2 − M2
g̃

Gb
lmdc

l s
c
nV

a
mn

i(/p + Mg̃)

p2 − M2
g̃

V a
ywsw

iM4 = −
∫

d4p

(2π)4

i

p2 − m2
I

i

p2 − m2
J

dlG
b
ly

i(/p + Mg̃)

p2 − M2
g̃

Gb
xmdc

xs
c
nV

a
mn

i(/p + Mg̃)

p2 − M2
g̃

V a
ywsw

where dx , sw , etc., now denote commuting spinors. The total amplitude is simplified by using
SU(3) generator identities

T a
xyT

a
mnT

b
lmT b

yw = 1
(δxwδnl + 21δxnδlw);
36
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T a
xyT

a
nmT b

mlT
b
yw = 1

36
(10δxwδnl − 6δxlδnw) (A.14)

as well as the Fierz identities such as

Ψ 1PLΨ2Ψ 3PRΨ4 = 1

2
Ψ 1PLγ μΨ4Ψ 3PRγμΨ2

Ψ 1PLγ μΨ2Ψ 3PLγμΨ4 = −Ψ 1PLγ μΨ4Ψ 3PLγμΨ2 (same for PR)

Ψ 1PRΨ2Ψ 3PRΨ4 = 1

2
Ψ 1PRΨ4Ψ 3PRΨ2 − 1

8
Ψ 1Σ

μνPRΨ4Ψ 3ΣμνΨ2. (A.15)

We can identify an effective Lagrangian that delivers this total amplitude. In our case we use [58]

i

g4
s

LKK
eff = W1KW1L

(
11

36
Ĩ4 + 1

9
M2

g̃ I4

)
W

†
K2W

†
L2dxγ

μPLsxdnγμPLsn

+ W4KW4L

(
11

36
Ĩ4 + 1

9
M2

g̃ I4

)
W

†
K5W

†
L5dxγ

μPRsxdnγμPRsn + W1KW4L

×
(7M2

g̃
I4 − Ĩ4

3
dxPLsxdnPRsn +

M2
g̃
I4 + 5Ĩ4

9
dxPLsndnPRsx

)
W

†
K2W

†
L5

+ M2
g̃W1KW1LI4W

†
K5W

†
L5

(
17

18
dxPRsxdnPRsn − 1

6
dxPRsndnPRsx

)

+ M2
g̃W4KW4LI4W

†
K2W

†
L2

(
17

18
dxPLsxdnPLsn − 1

6
dxPLsndnPLsx

)

+ W1KW4LĨ4W
†
K5W

†
L2

(
−11

18
dxPLsxdnPRsn − 5

6
dxPLsndnPRsx

)
. (A.16)

A.3. Loop integrals

The following loop functions are being used throughout the main part of this work.

In

(
m2

1, . . . ,m
2
n−1,m

2
n

) ≡
∫

d4p

(2π)4

1

(p2 − m2
1)(p

2 − m2
2) · · · (p2 − m2

n−1)(p
2 − m2

n)

≡ i

16π2m2n−4
n

fn(x1, x2, . . . , xn−1)

Ĩn

(
m2

1, . . . ,m
2
n−1,m

2
n

) ≡
∫

d4p

(2π)4

p2

(p2 − m2
1)(p

2 − m2
2) · · · (p2 − m2

n−1)(p
2 − m2

n)

≡ i

16π2m2n−6
n

f̃n(x1, x2, . . . , xn−1)

with xi ≡ m2
i

m2
n

. Here we collect useful relations related to functions I4,5,6 and Ĩ4,5,6:

(∼)

I4
(
M2,M2,m2,m2) = i

(∼)

f4 (x, x,1)

16π2m4 (2)

(∼)

I5
(
M2,M2,m2,m2,m2) = i

(∼)

f5 (x, x,1,1)
16π2m6 (4)
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(∼)

I6
(
M2,M2,m2,m2,m2,m2) = i

(∼)

f6 (x, x,1,1,1)

16π2m8 (6)

where

f4(x, x,1) = 2x − 2 − (x + 1) ln(x)

(1 − x)3

f̃4(x, x,1) = x2 − 1 − 2x ln(x)

(1 − x)3

f5(x, x,1,1) = −x2 − 4x + 5 + 2(1 + 2x) ln(x)

2(1 − x)4

f̃5(x, x,1,1) = −5x2 + 4x + 1 + 2x(2 + x) ln(x)

2(1 − x)4

f6(x, x,1,1,1) = −x3 + 9x2 + 9x − 17 − 6(3x + 1) ln(x)

6(1 − x)5

f̃6(x, x,1,1,1) = x3 + 9x2 − 9x − 1 − 6x(1 + x) ln(x)

3(1 − x)5

The limits for x → 0 and x → ∞ are

lim
x→0

f4(x, x,1) = − ln(x) − 2 +O
(
x ln(x)

)
,

lim
x→∞f4(x, x,1) = ln(x)

x2
− 2

x2
+O

(
x−3 ln(x)

)
lim
x→0

f̃4(x, x,1) = −1 − 2x ln(x) +O(x),

lim
x→∞ f̃4(x, x,1) = − 1

x
+O

(
x−2 ln(x)

)

lim
x→0

f5(x, x,1,1) = ln(x) + 5

2
+O

(
x ln(x)

)
,

lim
x→∞f5(x, x,1,1) = − 1

2x2
+O

(
x−3 ln(x)

)

lim
x→0

f̃5(x, x,1,1) = 1

2
+ 2x ln(x) +O(x),

lim
x→∞ f̃5(x, x,1,1) = ln(x)

x2
− 5

2x2
+O

(
x−3 ln(x)

)

lim
x→0

f6(x, x,1,1,1) = − ln(x) − 17

6
+O

(
x ln(x)

)
,

lim
x→∞f6(x, x,1,1,1) = 1

6x2
+O

(
x−3)

lim
x→0

f̃6(x, x,1,1,1) = −1

3
− 2x ln(x) +O(x),

lim
x→∞ f̃6(x, x,1,1,1) = − 1

3x2
+O

(
x−3 ln(x)

)
and
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f4(x = 1) = 1

6
, f̃4(x = 1) = −1

3
,

f5(x = 1) = − 1

12
, f̃5(x = 1) = 1

12
,

f6(x = 1) = 1

20
, f̃6(x = 1) = − 1

30
.

Appendix B. Models of flavour

B.1. Abelian models

An inverted hierarchy was invoked some time ago in the literature [69,78,79] in order to ease
the FCNC and CP constraints in supersymmetric models. To our knowledge, the first class of
models in which the inverted hierarchy is really predicted are supersymmetric generalisations
of abelian flavour models of the Froggatt–Nielsen type [80]. These models contain an additional
abelian gauge symmetry U(1)X under which the three fermion generations have different charges
(therefore the name horizontal or flavour symmetry), spontaneously broken at a high energy scale
by the vev of (at least) one scalar field Φ , such that ε = 〈Φ〉/Λ � 1, where Λ is the Planck scale
or more generically the scale where Yukawa couplings are generated. Quark mass matrices for
example, in such models are given, order of magnitude wise, by

hU
ij ∼ εqi+uj +hu, hD

ij ∼ εqi+dj +hd , (B.1)

where qi (ui, di, hu,hd ) denote the U(1)X charges of the left-handed quarks (right-handed up-
quarks, right-handed down-quarks, Hu and Hd , respectively). Quark masses and mixings in the
simplest models are given as

mu

mt

∼ εq13+u13,
mc

mt

∼ εq23+u23,
md

mb

∼ εq13+d13 ,
ms

mb

∼ εq23+d23 ,

sin θ12 ∼ εq12 , sin θ13 ∼ εq13 , sin θ23 ∼ εq23 . (B.2)

A successful fit of the experimental data requires larger charges for the lighter generations

q1 > q2 > q3, u1 > u2 > u3, d1 > d2 > d3, (B.3)

one simple example being for example [81]

q1 = 3, q2 = 2, q3 = 0, u1 = 5, u2 = 2, u3 = 0,

d1 = 1, d2 = 0, d3 = 0. (B.4)

Scalar soft masses in abelian flavour models are typically of the form

m2
ij = Xiδij 〈D〉 + cij ε

|qi−qj |(m̃F )2, (B.5)

where Xi〈D〉 are D-term contribution for the scalar of charge Xi , whereas the second terms
proportional to (m̃F )2 describe F-term contributions. In the case where D-terms are smaller or
at most of the same order than the F-term contributions, the order or magnitude estimate of the
FCNC in the mass insertion approximation is completely determined by U(1) charges to be(

δ
u,d
ij

)
LL

∼ ε|qi−qj |,
(
δd
ij

)
RR

∼ ε|di−dj |,
(
δu
ij

)
RR

∼ ε|ui−uj |. (B.6)

If two charges are equal (this is the case for right-handed d quarks above d2 = d3), mass insertion
approximation is however not valid anymore.
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Table 5
Flavour group representations of the model.

10a 103 5̄a 5̄3 Hu Hd φa χ

SU(2) 2 1 2 1 1 1 2 1
U(1) X10 0 X5̄ X3 0 0 Xφ −1

B.2. Non-abelian extension

We present here in some details the model used in Section 4.3.3. The model was proposed in
[64] and is a flavour model based on a G × U(1)local horizontal symmetry, where G is a discrete
nonabelian subgroup of SU(2)global. Whereas the discrete nonabelian symmetry is preferable
over the continuous SU(2)global for theoretical reasons, for low-energy flavour physics it was
argued in [64] that there is no major difference between the discrete and the continuous case.

The simplest choice for the flavour charges is to consider an SU(5) invariant pattern X10 and
X5, with Higgses uncharged. We need a minimum number of two flavons, an SU(2) doublet φ

with charge Xφ and an SU(2) singlet χ with charge −1. The total field content is summarised in
Table 5. The zero U(1) charge of the 3rd generation ten-plet takes account of the large top quark
Yukawa coupling, whereas X3 is left free, in order to accommodate different values of tanβ .

The relevant part of the superpotential is given by

W = hu
33HuQ3U3 + hu

23QaU3Hu

φa

Λ

(
χ

Λ

)X10+Xφ

+ hu
32Q3UaHu

φa

Λ

(
χ

Λ

)X10+Xφ

+ hu
12HuQaUbε

ab

(
χ

Λ

)2X10

+ hu
22QaUbHu

φa

Λ

φb

Λ

(
χ

Λ

)2X10+2Xφ

+ hd
33HdQ3D3

(
χ

Λ

)X3

+ hd
23QaD3Hd

φa

Λ

(
χ

Λ

)X10+X3+Xφ

+ hd
32Q3DaHd

φa

Λ

(
χ

Λ

)X5̄+Xφ

+ hd
12HdQaDbε

ab

(
χ

Λ

)X10+X5̄ + hd
22QaDbHd

φa

Λ

φb

Λ

(
χ

Λ

)X10+X5̄+2Xφ

. (B.7)

We have imposed here that all exponents are non-negative

X10 ≥ 0, X3 ≥ 0, X10 + Xφ ≥ 0,

X5̄ + Xφ ≥ 0, X10 + X5̄ ≥ 0. (B.8)

The h’s are complex O(1) coefficients, Λ is a high flavour scale and a, b are the SU(2) indices.
In the leading order in small parameters, the structure of the Kähler potential does not affect the
predictions in the fermion sector. Using the flavon vevs

〈
φa

〉 = εφΛ

(
0
1

)
, 〈χ〉 = εχΛ, (B.9)

one can calculate masses and mixings in terms of the original parameters.
The Yukawa matrices turn out to be given by
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Yu =
⎛
⎝

0 hu
12ε

′
u 0

−hu
12ε

′
u hu

22ε
2
u hu

23εu

0 hu
32εu hu

33

⎞
⎠ , (B.10)

Yd =
⎛
⎝

0 hd
12ε

′
uεd/εu 0

−hd
12ε

′
uεd/εu hd

22εuεd hd
23ε3εu

0 hd
32εd hd

33ε3

⎞
⎠ , (B.11)

with

εu ≡ εφε
X10+Xφ
χ , εd ≡ εφε

X5̄+Xφ
χ , ε′

u ≡ ε2X10
χ , ε3 ≡ εX3

χ . (B.12)

Imposing that the charges are integers then gives a series of possibilities. A particularly simple
possibility, which turns out to be the most successful from the flavour protection viewpoint is for

εχ ∼ εφ ∼ 0.02, X10 = X5̄ = X3 = −Xφ = 1, tanβ = 5. (B.13)

The main features of the model are as follows:

• The model has U(1)X D-term contributions which are dominant over the F-term ones
〈D〉 � m2

F .
• The squark mass matrices are almost diagonal in the flavour basis, with rotation matrices Z

which are very close to the identity, compared to the analogous ones for the quarks U . In
this case, the matrices appearing in the gluino couplings are determined by quark rotations
W � U†.

• Due to the SU(2) original symmetry only broken by the small parameter εφ , the first two
generation squarks, both left and right-handed, are essentially degenerate with mass given
by m2

L1,m
2
L2 = 〈D〉, with non-degeneracies (provided by the flavour breaking) which are

negligible.
• The main splitting is between the first two and the third generation. For left squarks, there is

an hierarchy mL1 � m3L since the third generation is uncharged under U(1)X and therefore
gets only F-term contributions m3L ∼ mF . This is also true for the right-handed up-type
squarks.

• The right-handed down-type squarks are charged and get D-term contributions. In the sim-
plest example we consider here, the third generation is almost degenerate with the first two,
m2

3R = m2
Rh + δm2

3R , where δm2
3R ∼ m2

F .

The most constraining operator is as usual Q4, from εK . For models of the type described
above, the corresponding coefficient in the leading approximation is given by

C4 = α2
s

3
V L

32V̄
L
31V

R
32V̄

R
31

m2
3R − m2

1

m4
1

f̃5

(
m2

3L

m2
1

,
m2

D

m2
1

)
. (B.14)

The relevant rotations are given in the leading approximation by

V L
32 ∼ εu, V̄ L

31 ∼
√

md

ms

εu,

V R
32 ∼ sin θd, V̄ R

31 ∼
√

md

ms

sin θd, (B.15)

where
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tan θd ≡ |hd
32|εd

|hd
33|ε3

(B.16)

is a free parameter of order one fixed to tan θd = 0.5 in order to correct the ratio Vub/Vcb . The
product of rotations is therefore given at the leading order in the flavon parameters by

V L
32V̄

L
31V

R
32V̄

R
31 ∼ md

md

ε2
u sin2 θd . (B.17)

Notice that the right-handed rotations in (B.15) are large. Because of this lack of suppression,
right-handed sbottom has to be heavy. The charge assignment (B.13) is then the most advanta-
geous one and realises the minimal implementation of the natural SUSY spectrum.

Appendix C. B-meson mixing constraints

As discussed in Section 2, the bounds from B-meson mixing can be calculated in the same
way as Kaon mixing, using the translations in Eq. (2.10) but taking the values in Table 8. These
give us equations of the form

Ce2iφ = 1 + (x + iy)e−2iβ . (C.1)

We have limits on C, φ although they are correlated and it is difficult to use that information.
Hence the most conservative bounds that we can set are simply to make sure that C, φ always lie
within their 3σ ranges. These lead to

|xd | < 0.87, |yd | < 0.77, |xs | < 0.3, |ys | < 0.31, (C.2)

where

xq ≡ 2 Re〈B0
q |HBq |B0

q〉
�mBq (SM)

, yq ≡ 2 Im〈B0
q |HBq |B0

q〉
�mBq (SM)

(C.3)

These limits are unlikely to change substantially over the next 20 years: the projected improve-
ment in sensitivity from SuperKEKB with 50 ab−1 is from ±0.7 to ±0.15 in CBd

[82] (more or
less the same as the current UTFIT value), from ±0.1 to ±0.03 in φBd

[82] (an improvement of
about 2 over the UTFIT present value) while LHCb with 50 fb−1 will improve the uncertainty
on φBs to ±0.007 [83] – a factor of 5 improvement.

We typically find that the bounds from B-meson mixing are subdominant to those from
Kaon mixing; we shall explore this in the mass-insertion approximation and heavy-first-two-
generations scenarios below. In this section we shall specialise for clarity to the exactly Dirac
gaugino case.

C.1. Mass insertion approximation

In the mass insertion approximation, defining

A ≡
(

αs

0.1184

)2(20002 GeV2

m2
D3

)(
f̃6(1)

−1/30

)
(C.4)

we find

xd + iyd = 42 × A × [
0.27

[
δLL

13 δLL
13 + δRR

13 δRR
13

] − 2.1δLR
13 δRL

13 − 0.13δLL
13 δRR

13

]
xs + iys = 2 × A × [

0.27
[
δLLδLL + δRRδRR

] − 2.2δLRδRL − 0.13δLLδRR
]
. (C.5)
23 23 23 23 23 23 23 23
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These can be simply translated into bounds using Eq. (C.2). However, if we compare with the
bounds from Kaon mixing we have

�MK(SUSY)

�MK(exp)
= 280 × A × [

0.18
[
δLL

12 δLL
12 + δRR

12 δRR
12

] − 16δLR
12 δRL

12 − 4.1δLL
12 δRR

12

]
|εK(SUSY)|
|εK(SM)|0.73

= 6.7 × 104 × A × ∣∣Im(
0.18

[
δLL

12 δLL
12 + δRR

12 δRR
12

]

− 16δLR
12 δRL

12 − 4.1δLL
12 δRR

12

)∣∣. (C.6)

We see clearly that the bounds from �MK and, in particular, εK are much more stringent than
those from the B meson oscillations.

C.2. Decoupled first two generations

We expect that the B-meson mixing bounds should be most relevant in the limit that the first
two generations are heavy; here we shall consider that case. For these purposes we can ignore
mixing between the first two generations à la [60] and thus have

m2
D3

α2
s

LDirac = δ̂LL
i3 δ̂LL

i3
11

36
Q1 + δRR

i3 δRR
i3

11

36
Q̃1 + δ̂LL

i3 δ̂RR
i3

(
5

9
Q5 − 1

3
Q4

)
(C.7)

where i = 1 for Bd , 2 for Bs .
These lead to (taking the bag factors into account from Table 9)

xd + iyd = 2260 ×
(

αs

0.1184

)2(20002 GeV2

m2
D3

)

× [
0.27

[
δ̂LL
i3 δ̂LL

i3 + δ̂RR
i3 δ̂RR

i3

] − 0.13δ̂LL
i3 δ̂RR

i3

]

xs + iys = 95 ×
(

αs

0.1184

)2(20002 GeV2

m2
D3

)

× [
0.27

[
δ̂LL
i3 δ̂LL

i3 + δ̂RR
i3 δ̂RR

i3

] − 0.14δ̂LL
i3 δ̂RR

i3

]
. (C.8)

These lead to bounds∣∣Re
(
δ̂LL

13 δ̂LL
13

)∣∣ < 2.6 × 10−3,
∣∣Im(

δ̂LL
13 δ̂LL

13

)∣∣ < 2.3 × 10−3,∣∣Re
(
δ̂LL

23 δ̂LL
23

)∣∣ < 2.1 × 10−2,
∣∣Im(

δ̂LL
23 δ̂LL

23

)∣∣ < 2.1 × 10−2. (C.9)

Hence the stronger B-meson bounds come from the Bd data rather than Bs , but εK still provides
the strongest constraint on the model parameter space, given in Eq. (4.24). These bounds are
much weaker than the those from [60], presumably due to the Dirac mass and the factor of 10
increase in the gaugino mass that we are now required to take. Note that, since there is no square
root here, changing the gaugino mass by a factor of ten weakens the bound by a factor of a
hundred; whereas in the εK case it is only a factor of ten (even for Dirac gauginos). Hence as we
make the gauginos heavier we further weaken the relevance of the B-mixing compared to εK .

Appendix D. Input

In Tables 6–9 we collect the Bag factors and B-meson mixing data that we have used in setting
bounds. In addition we use bag factors and magic numbers given in [53,62,84] that we have not
reproduced here.
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Table 6
Input used for Kaon bounds.

Parameter Value Ref.

αs(MZ) 0.1184 [52]

fK 0.1598 GeV [52]

mK 0.497672 GeV [52]

ms(2 GeV) 0.095 GeV [52]

md(2 GeV) 0.0048 GeV [52]

�m
exp
K

(3.484 ± 0.006) × 10−15 GeV [52]

|εexp
K

| (2.228 ± 0.011) × 10−3 [52]

|εSM
K

| (2.04 ± 0.19) × 10−3 [53]

Table 7
Bag numbers for Kaons [63].

Parameter Value

B1 0.60
B2 0.66
B3 1.05
B4 1.03
B5 0.73

Table 8
Data for B-meson bounds, taken from UTFIT website [53] and [85]
(for the meson decay constants).

Parameter Value

�mBd
(SM) 3.36 ± 0.03 × 10−13 GeV

βBd
(SM) 0.426 ± 0.031

�mBs (SM) 117 ± 0.16 × 10−13 GeV

βBs (SM) 0.0187 ± 0.0007

CBd
1.07 ± 0.17

φBd
−0.035 ± 0.056

CBs 1.066 ± 0.083

φBs 0.010 ± 0.035

mBd
5279.58 ± 0.17 MeV

mBs 5366.77 ± 0.24 MeV

mb 4.18 ± 0.03 GeV (MS)

ms 95 ± 5 MeV

md 4.8+0.5
−0.3 MeV

fBd
186 ± 4 MeV

fBs 224 ± 5 MeV( mBd
mb+md

)2 1.59( mBs
mb+md

)2 1.64
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Table 9
Bag numbers for B mesons from [86].

Parameter Value

Bd
1 0.87(4)

Bd
2 0.79(2)

Bd
3 0.92(6)

Bd
4 1.15(3)

Bd
5 1.72(4)

Bs
1 0.87(2)

Bs
2 0.80(1)

Bs
3 0.93(3)

Bs
4 1.16(2)

Bs
5 1.75(3)
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