D. Jain and J. P. Cooper, Telomeric Strategies: Means to an End, Annual Review of Genetics, vol.44, issue.1, pp.243-269, 2010.
DOI : 10.1146/annurev-genet-102108-134841

M. J. Giraud-panis, S. Pisano, A. Poulet, L. Du, M. H. Gilson et al., Structural identity of telomeric complexes, FEBS Letters, vol.48, issue.17, pp.3785-3799, 2010.
DOI : 10.1016/j.febslet.2010.08.004

J. Lingner, J. P. Cooper, and T. R. Cech, Telomerase and DNA end replication: no longer a lagging strand problem?, Science, vol.269, issue.5230, pp.1533-1534, 1995.
DOI : 10.1126/science.7545310

C. W. Greider and E. H. Blackburn, The telomere terminal transferase of tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity, Cell, vol.51, issue.6, pp.887-898, 1987.
DOI : 10.1016/0092-8674(87)90576-9

P. M. Lansdorp, Telomeres, stem cells, and hematology, Blood, vol.111, issue.4, pp.1759-1766, 2008.
DOI : 10.1182/blood-2007-09-084913

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2234038

L. Hayflick, The limited in vitro lifetime of human diploid cell strains, Experimental Cell Research, vol.37, issue.3, pp.614-636, 1965.
DOI : 10.1016/0014-4827(65)90211-9

C. B. Harley, A. B. Futcher, and C. W. Greider, Telomeres shorten during ageing of human fibroblasts, Nature, vol.345, issue.6274, pp.458-460, 1990.
DOI : 10.1038/345458a0

J. Campisi and F. Di-fagagna, Cellular senescence: when bad things happen to good cells, Nature Reviews Molecular Cell Biology, vol.441, issue.9, pp.729-740, 2007.
DOI : 10.1038/nrm2233

V. Lundblad and J. W. Szostak, A mutant with a defect in telomere elongation leads to senescence in yeast, Cell, vol.57, issue.4, pp.633-643, 1989.
DOI : 10.1016/0092-8674(89)90132-3

M. S. Singer and D. E. Gottschling, TLC1: template RNA component of Saccharomyces cerevisiae telomerase, Science, vol.266, issue.5184, pp.404-409, 1994.
DOI : 10.1126/science.7545955

F. Di-fagagna, P. M. Reaper, L. Clay-farrace, H. Fiegler, P. Carr et al., A DNA damage checkpoint response in telomere-initiated senescence, Nature, vol.426, issue.6963, pp.194-198, 2003.
DOI : 10.1038/nature02118

S. Enomoto, L. Glowczewski, and J. Berman, MEC3, MEC1, and DDC2 Are Essential Components of a Telomere Checkpoint Pathway Required for Cell Cycle Arrest during Senescence in Saccharomyces cerevisiae, Molecular Biology of the Cell, vol.13, issue.8, pp.2626-2638, 2002.
DOI : 10.1091/mbc.02-02-0012

A. S. Ijpma and C. W. Greider, Short Telomeres Induce a DNA Damage Response in Saccharomyces cerevisiae, Molecular Biology of the Cell, vol.14, issue.3, pp.987-1001, 2003.
DOI : 10.1091/mbc.02-04-0057

M. T. Teixeira, Saccharomyces cerevisiae as a Model to Study Replicative Senescence Triggered by Telomere Shortening, Frontiers in Oncology, vol.3, p.101, 2013.
DOI : 10.3389/fonc.2013.00101

M. J. Giraud-panis, M. T. Teixeira, V. Geli, and E. Gilson, CST Meets Shelterin to Keep Telomeres in Check, Molecular Cell, vol.39, issue.5, pp.665-676, 2010.
DOI : 10.1016/j.molcel.2010.08.024

URL : https://hal.archives-ouvertes.fr/ensl-00815741

D. Bonetti, M. Martina, M. Clerici, G. Lucchini, and M. P. Longhese, Multiple Pathways Regulate 3??? Overhang Generation at S. cerevisiae Telomeres, Molecular Cell, vol.35, issue.1, pp.70-81, 2009.
DOI : 10.1016/j.molcel.2009.05.015

M. Larrivee, C. Lebel, and R. J. Wellinger, The generation of proper constitutive G-tails on yeast telomeres is dependent on the MRX complex, Genes & Development, vol.18, issue.12, pp.1391-1396, 2004.
DOI : 10.1101/gad.1199404

H. Qi and V. A. Zakian, The Saccharomyces telomerebinding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha and the telomerase-associated est1 protein, Genes Dev, vol.14, pp.1777-1788, 2000.

P. Wu, H. Takai, and T. De-lange, Telomeric 3??? Overhangs Derive from Resection by Exo1 and Apollo and Fill-In by POT1b-Associated CST, Cell, vol.150, issue.1, pp.39-52, 2012.
DOI : 10.1016/j.cell.2012.05.026

R. E. Hector, R. L. Shtofman, A. Ray, B. R. Chen, T. Nyun et al., Tel1p Preferentially Associates with Short Telomeres to Stimulate Their Elongation, Molecular Cell, vol.27, issue.5, pp.851-858, 2007.
DOI : 10.1016/j.molcel.2007.08.007

M. Sabourin, C. T. Tuzon, and V. A. Zakian, Telomerase and Tel1p Preferentially Associate with Short Telomeres in S. cerevisiae, Molecular Cell, vol.27, issue.4, pp.550-561, 2007.
DOI : 10.1016/j.molcel.2007.07.016

M. Arneric and J. Lingner, Tel1 kinase and subtelomere-bound Tbf1 mediate preferential elongation of short telomeres by telomerase in yeast, EMBO reports, vol.19, issue.11, pp.1080-1085, 2007.
DOI : 10.1093/emboj/20.13.3544

A. Bianchi and D. Shore, Increased association of telomerase with short telomeres in yeast, Genes & Development, vol.21, issue.14, pp.1726-1730, 2007.
DOI : 10.1101/gad.438907

J. S. Mcgee, J. A. Phillips, A. Chan, M. Sabourin, K. Paeschke et al., Reduced Rif2 and lack of Mec1 target short telomeres for elongation rather than double-strand break repair, Nature Structural & Molecular Biology, vol.63, issue.12, pp.1438-1445, 2010.
DOI : 10.1038/nsmb.1947

L. K. Goudsouzian, C. T. Tuzon, and V. A. Zakian, S. cerevisiae Tel1p and Mre11p Are Required for Normal Levels of Est1p and Est2p Telomere Association, Molecular Cell, vol.24, issue.4, pp.603-610, 2006.
DOI : 10.1016/j.molcel.2006.10.005

C. J. Frank, M. Hyde, and C. W. Greider, Regulation of Telomere Elongation by the Cyclin-Dependent Kinase CDK1, Molecular Cell, vol.24, issue.3, pp.423-432, 2006.
DOI : 10.1016/j.molcel.2006.10.020

M. D. Vodenicharov and R. J. Wellinger, DNA Degradation at Unprotected Telomeres in Yeast Is Regulated by the CDK1 (Cdc28/Clb) Cell-Cycle Kinase, Molecular Cell, vol.24, issue.1, pp.127-137, 2006.
DOI : 10.1016/j.molcel.2006.07.035

S. Negrini, V. Ribaud, A. Bianchi, and D. Shore, DNA breaks are masked by multiple Rap1 binding in yeast: implications for telomere capping and telomerase regulation, Genes & Development, vol.21, issue.3, pp.292-302, 2007.
DOI : 10.1101/gad.400907

R. J. Michelson, S. Rosenstein, and T. Weinert, A telomeric repeat sequence adjacent to a DNA double-stranded break produces an anticheckpoint, Genes & Development, vol.19, issue.21, pp.2546-2559, 2005.
DOI : 10.1101/gad.1293805

C. Ribeyre and D. Shore, Anticheckpoint pathways at telomeres in yeast, Nature Structural & Molecular Biology, vol.13, issue.3, pp.307-313, 2012.
DOI : 10.4161/cc.7.4.5323

K. Finn, N. F. Lowndes, and M. Grenon, Eukaryotic DNA damage checkpoint activation in response to double-strand breaks, Cellular and Molecular Life Sciences, vol.451, issue.7177, pp.1447-1473, 2012.
DOI : 10.1007/s00018-011-0875-3

B. Khadaroo, M. T. Teixeira, P. Luciano, N. Eckert-boulet, S. M. Germann et al., The DNA damage response at eroded telomeres and tethering to the nuclear pore complex, Nature Cell Biology, vol.13, issue.8, pp.980-987, 2009.
DOI : 10.1093/nar/28.14.2690

P. Abdallah, P. Luciano, K. W. Runge, M. Lisby, V. Geli et al., A two-step model for senescence triggered by a single critically short telomere, Nature Cell Biology, vol.11, issue.8, pp.988-993, 2009.
DOI : 10.1016/j.jmb.2006.04.050

N. Grandin, A. Bailly, and M. Charbonneau, Activation of Mrc1, a mediator of the replication checkpoint, by telomere erosion, Biology of the Cell, vol.408, issue.10, pp.799-814, 2005.
DOI : 10.1042/BC20040526

B. J. Ballew and V. Lundblad, Multiple genetic pathways regulate replicative senescence in telomerase-deficient yeast, Aging Cell, vol.104, issue.4, pp.719-727, 2013.
DOI : 10.1111/acel.12099

S. Le, J. K. Moore, J. E. Haber, and C. W. Greider, RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase, Genetics, vol.152, pp.143-152, 1999.

Q. Chen, A. Ijpma, and C. W. Greider, Two Survivor Pathways That Allow Growth in the Absence of Telomerase Are Generated by Distinct Telomere Recombination Events, Molecular and Cellular Biology, vol.21, issue.5, pp.1819-1827, 2001.
DOI : 10.1128/MCB.21.5.1819-1827.2001

M. Azam, J. Y. Lee, V. Abraham, R. Chanoux, K. A. Schoenly et al., Evidence that the S.cerevisiae Sgs1 protein facilitates recombinational repair of telomeres during senescence, Nucleic Acids Research, vol.34, issue.2, pp.506-516, 2006.
DOI : 10.1093/nar/gkj452

J. Y. Lee, M. Kozak, J. D. Martin, E. Pennock, and F. B. Johnson, Evidence That a RecQ Helicase Slows Senescence by Resolving Recombining Telomeres, PLoS Biology, vol.264, issue.6, pp.1334-1344, 2007.
DOI : 10.1371/journal.pbio.0050160.sd001

D. H. Meyer and A. M. Bailis, Telomerase Deficiency Affects the Formation of Chromosomal Translocations by Homologous Recombination in Saccharomyces cerevisiae, PLoS ONE, vol.54, issue.10, p.3318, 2008.
DOI : 10.1371/journal.pone.0003318.t003

C. Lebel, E. Rosonina, D. C. Sealey, F. Pryde, D. Lydall et al., Telomere Maintenance and Survival in Saccharomyces cerevisiae in the Absence of Telomerase and RAD52, Genetics, vol.182, issue.3, pp.671-684, 2009.
DOI : 10.1534/genetics.109.102939

Y. H. Lin, C. C. Chang, C. W. Wong, and S. C. Teng, Recruitment of Rad51 and Rad52 to Short Telomeres Triggers a Mec1-Mediated Hypersensitivity to Double-Stranded DNA Breaks in Senescent Budding Yeast, PLoS ONE, vol.4, issue.12, p.8224, 2009.
DOI : 10.1371/journal.pone.0008224.s009

V. Lundblad and E. H. Blackburn, An alternative pathway for yeast telomere maintenance rescues est1??? senescence, Cell, vol.73, issue.2, pp.347-360, 1993.
DOI : 10.1016/0092-8674(93)90234-H

K. M. Miller, O. Rog, and J. P. Cooper, Semi-conservative DNA replication through telomeres requires Taz1, Nature, vol.119, issue.7085, pp.824-828, 2006.
DOI : 10.1038/nature04638

J. Ye, C. Lenain, S. Bauwens, A. Rizzo, A. Saint-leger et al., TRF2 and Apollo Cooperate with Topoisomerase 2?? to Protect Human Telomeres from Replicative Damage, Cell, vol.142, issue.2, pp.230-242, 2010.
DOI : 10.1016/j.cell.2010.05.032

URL : https://hal.archives-ouvertes.fr/hal-00527228

A. Sfeir, S. T. Kosiyatrakul, D. Hockemeyer, S. L. Macrae, J. Karlseder et al., Mammalian Telomeres Resemble Fragile Sites and Require TRF1 for Efficient Replication, Cell, vol.138, issue.1, pp.90-103, 2009.
DOI : 10.1016/j.cell.2009.06.021

A. S. Ivessa, J. Q. Zhou, V. P. Schulz, E. K. Monson, and V. A. Zakian, Saccharomyces Rrm3p, a 5' to 3' DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA, Genes & Development, vol.16, issue.11, pp.1383-1396, 2002.
DOI : 10.1101/gad.982902

S. Makovets, I. Herskowitz, and E. H. Blackburn, Anatomy and Dynamics of DNA Replication Fork Movement in Yeast Telomeric Regions, Molecular and Cellular Biology, vol.24, issue.9, pp.4019-4031, 2004.
DOI : 10.1128/MCB.24.9.4019-4031.2004

A. Chavez, V. George, V. Agrawal, and F. B. Johnson, Sumoylation and the Structural Maintenance of Chromosomes (Smc) 5/6 Complex Slow Senescence through Recombination Intermediate Resolution, Journal of Biological Chemistry, vol.285, issue.16, pp.11922-11930, 2010.
DOI : 10.1074/jbc.M109.041277

D. Branzei, Ubiquitin family modifications and template switching, FEBS Letters, vol.1, issue.18, pp.2810-2817, 2011.
DOI : 10.1016/j.febslet.2011.04.053

D. Branzei and M. Foiani, Interplay of replication checkpoints and repair proteins at stalled replication forks, DNA Repair, vol.6, issue.7, pp.994-1003, 2007.
DOI : 10.1016/j.dnarep.2007.02.018

V. Gangavarapu, S. Maria, S. R. Prakash, S. Prakash, and L. , Requirement of Replication Checkpoint Protein Kinases Mec1/Rad53 for Postreplication Repair in Yeast, mBio, vol.2, issue.3, pp.79-90, 2011.
DOI : 10.1128/mBio.00079-11

C. Hoege, B. Pfander, G. L. Moldovan, G. Pyrowolakis, and S. Jentsch, RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO, Nature, vol.78, issue.6903, pp.135-141, 2002.
DOI : 10.1074/jbc.275.18.13321

W. Xiao, B. L. Chow, S. Broomfield, and M. Hanna, The Saccharomyces cerevisiae RAD6 group is composed of an errorprone and two error-free postreplication repair pathways, Genetics, vol.155, pp.1633-1641, 2000.

I. Unk, I. Hajdu, A. Blastyak, and L. Haracska, Role of yeast Rad5 and its human orthologs, HLTF and SHPRH in DNA damage tolerance, DNA Repair, vol.9, issue.3, pp.257-267, 2010.
DOI : 10.1016/j.dnarep.2009.12.013

G. Liberi, G. Maffioletti, C. Lucca, I. Chiolo, A. Baryshnikova et al., Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase, Genes & Development, vol.19, issue.3, pp.339-350, 2005.
DOI : 10.1101/gad.322605

V. Gangavarapu, S. Prakash, and L. Prakash, Requirement of RAD52 Group Genes for Postreplication Repair of UV-Damaged DNA in Saccharomyces cerevisiae, Molecular and Cellular Biology, vol.27, issue.21, pp.7758-7764, 2007.
DOI : 10.1128/MCB.01331-07

A. Blastyak, L. Pinter, I. Unk, L. Prakash, S. Prakash et al., Yeast Rad5 Protein Required for Postreplication Repair Has a DNA Helicase Activity Specific for Replication Fork Regression, Molecular Cell, vol.28, issue.1, pp.167-175, 2007.
DOI : 10.1016/j.molcel.2007.07.030

F. Vanoli, M. Fumasoni, B. Szakal, L. Maloisel, and D. Branzei, Replication and Recombination Factors Contributing to Recombination-Dependent Bypass of DNA Lesions by Template Switch, PLoS Genetics, vol.104, issue.11, p.1001205, 2010.
DOI : 10.1371/journal.pgen.1001205.s014

R. Gonzalez-prieto, A. M. Munoz-cabello, M. J. Cabello-lobato, and F. Prado, Rad51 replication fork recruitment is required for DNA damage tolerance, The EMBO Journal, vol.86, issue.9, pp.1307-1321, 2013.
DOI : 10.1016/j.cell.2008.08.037

J. H. Barlow and R. Rothstein, Rad52 recruitment is DNA replication independent and regulated by Cdc28 and the Mec1 kinase, The EMBO Journal, vol.19, issue.8, pp.1121-1130, 2009.
DOI : 10.1128/MCB.20.9.3086-3096.2000

M. T. Hemann, M. A. Strong, L. Y. Hao, and C. W. Greider, The Shortest Telomere, Not Average Telomere Length, Is Critical for Cell Viability and Chromosome Stability, Cell, vol.107, issue.1, pp.67-77, 2001.
DOI : 10.1016/S0092-8674(01)00504-9

J. C. Jeyapalan, M. Ferreira, J. M. Sedivy, and U. Herbig, Accumulation of senescent cells in mitotic tissue of aging primates, Mechanisms of Ageing and Development, vol.128, issue.1, pp.36-44, 2007.
DOI : 10.1016/j.mad.2006.11.008

U. Herbig, M. Ferreira, L. Condel, D. Carey, and J. M. Sedivy, Cellular Senescence in Aging Primates, Science, vol.311, issue.5765, pp.311-1257, 2006.
DOI : 10.1126/science.1122446

Z. Kaul, A. J. Cesare, L. I. Huschtscha, A. A. Neumann, and R. R. Reddel, Five dysfunctional telomeres predict onset of senescence in human cells, EMBO reports, vol.58, issue.1, pp.52-59, 2011.
DOI : 10.1091/mbc.E04-03-0207

Z. Xu, K. Dao-duc, D. Holcman, and M. T. Teixeira, The Length of the Shortest Telomere as the Major Determinant of the Onset of Replicative Senescence, Genetics, vol.194, issue.4, pp.847-857, 2013.
DOI : 10.1534/genetics.113.152322

M. S. Longtine, A. I. Mckenzie, D. J. Demarini, N. G. Shah, A. Wach et al., Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae, pp.953-961, 1998.

K. Forstemann, M. Hoss, and J. Lingner, Telomerase-dependent repeat divergence at the 3' ends of yeast telomeres, Nucleic Acids Research, vol.28, issue.14, pp.2690-2694, 2000.
DOI : 10.1093/nar/28.14.2690

D. C. Amberg, D. J. Burke, and J. N. Strathern, Methods in Yeast Genetics, 2005.

G. M. Church and W. Gilbert, Genomic sequencing., Proc. Natl Acad. Sci. USA, pp.1991-1995, 1984.
DOI : 10.1073/pnas.81.7.1991

D. E. Gottschling, O. M. Aparicio, B. L. Billington, and V. A. Zakian, Position effect at S. cerevisiae telomeres: Reversible repression of Pol II transcription, Cell, vol.63, issue.4, pp.751-762, 1990.
DOI : 10.1016/0092-8674(90)90141-Z

C. Booth, E. Griffith, G. Brady, and D. Lydall, Quantitative amplification of single-stranded DNA (QAOS) demonstrates that cdc13-1 mutants generate ssDNA in a telomere to centromere direction, Nucleic Acids Research, vol.29, issue.21, pp.4414-4422, 2001.
DOI : 10.1093/nar/29.21.4414

N. Eckert-boulet, R. Rothstein, and M. Lisby, Cell Biology of Homologous Recombination in Yeast, Methods Mol Biol, vol.745, pp.523-536, 2011.
DOI : 10.1007/978-1-61779-129-1_30

S. Marcand, V. Brevet, and E. Gilson, Progressive cis-inhibition of telomerase upon telomere elongation, The EMBO Journal, vol.18, issue.12, pp.3509-3519, 1999.
DOI : 10.1093/emboj/18.12.3509

S. Marcand, E. Gilson, and D. Shore, A Protein-Counting Mechanism for Telomere Length Regulation in Yeast, Science, vol.275, issue.5302, pp.986-990, 1997.
DOI : 10.1126/science.275.5302.986

N. Iglesias and J. Lingner, Related Mechanisms for End Processing at Telomeres and DNA Double-Strand Breaks, Molecular Cell, vol.35, issue.2, pp.137-138, 2009.
DOI : 10.1016/j.molcel.2009.07.007

E. P. Mimitou and L. S. Symington, Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing, Nature, vol.207, issue.7214, pp.770-774, 2008.
DOI : 10.1038/nature07312

E. Johansson, P. Garg, and P. M. Burgers, The Pol32 Subunit of DNA Polymerase ?? Contains Separable Domains for Processive Replication and Proliferating Cell Nuclear Antigen (PCNA) Binding, Journal of Biological Chemistry, vol.279, issue.3, pp.1907-1915, 2004.
DOI : 10.1074/jbc.M310362200

L. Maloisel, F. Fabre, and S. Gangloff, DNA Polymerase ?? Is Preferentially Recruited during Homologous Recombination To Promote Heteroduplex DNA Extension, Molecular and Cellular Biology, vol.28, issue.4, pp.1373-1382, 2008.
DOI : 10.1128/MCB.01651-07

URL : https://hal.archives-ouvertes.fr/hal-00309963

J. Li, D. L. Holzschu, and T. Sugiyama, PCNA is efficiently loaded on the DNA recombination intermediate to modulate polymerase delta, eta, and zeta activities, Proc. Natl Acad. Sci. USA, pp.7672-7677, 2013.

G. I. Karras and S. Jentsch, The RAD6 DNA Damage Tolerance Pathway Operates Uncoupled from the Replication Fork and Is Functional Beyond S Phase, Cell, vol.141, issue.2, pp.255-267, 2010.
DOI : 10.1016/j.cell.2010.02.028

J. R. Lydeard, S. Jain, M. Yamaguchi, and J. E. Haber, Break-induced replication and telomerase-independent telomere maintenance require Pol32, Nature, vol.408, issue.7155, pp.820-823, 2007.
DOI : 10.1016/S1097-2765(03)00269-7

J. R. Lydeard, Z. Lipkin-moore, Y. J. Sheu, B. Stillman, P. M. Burgers et al., Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly, Genes & Development, vol.24, issue.11, pp.1133-1144, 2010.
DOI : 10.1101/gad.1922610

M. Martina, M. Clerici, V. Baldo, D. Bonetti, G. Lucchini et al., A Balance between Tel1 and Rif2 Activities Regulates Nucleolytic Processing and Elongation at Telomeres, Molecular and Cellular Biology, vol.32, issue.9, pp.1604-1617, 2012.
DOI : 10.1128/MCB.06547-11

N. Grandin and M. Charbonneau, Mrc1, a non-essential DNA replication protein, is required for telomere end protection following loss of capping by Cdc13, Yku or telomerase, Molecular Genetics and Genomics, vol.10, issue.6, pp.685-699, 2007.
DOI : 10.1007/s00438-007-0218-0

E. C. Minca and D. Kowalski, Multiple Rad5 Activities Mediate Sister Chromatid Recombination to Bypass DNA Damage at Stalled Replication Forks, Molecular Cell, vol.38, issue.5, pp.649-661, 2010.
DOI : 10.1016/j.molcel.2010.03.020

R. E. Johnson, S. T. Henderson, T. D. Petes, S. Prakash, M. Bankmann et al., Saccharomyces cerevisiae RAD5-encoded DNA repair protein contains DNA helicase and zinc-binding sequence motifs and affects the stability of simple repetitive sequences in the genome., Molecular and Cellular Biology, vol.12, issue.9, pp.3807-3818, 1992.
DOI : 10.1128/MCB.12.9.3807

T. Gatbonton, M. Imbesi, M. Nelson, J. M. Akey, D. M. Ruderfer et al., Telomere Length as a Quantitative Trait: Genome-Wide Survey and Genetic Mapping of Telomere Length-Control Genes in Yeast, PLoS Genetics, vol.19, issue.3, p.35, 2006.
DOI : 10.1371/journal.pgen.0020035.st001

J. M. Platt, P. Ryvkin, J. J. Wanat, G. Donahue, M. D. Ricketts et al., Rap1 relocalization contributes to the chromatin-mediated gene expression profile and pace of cell senescence, Genes & Development, vol.27, issue.12, pp.1406-1420, 2013.
DOI : 10.1101/gad.218776.113

E. K. Schwartz and W. D. Heyer, Processing of joint molecule intermediates by structure-selective endonucleases during homologous recombination in eukaryotes, Chromosoma, vol.5, issue.3, pp.109-127, 2011.
DOI : 10.1007/s00412-010-0304-7

S. Zeng, T. Xiang, T. K. Pandita, I. Gonzalez-suarez, S. Gonzalo et al., Telomere recombination requires the MUS81 endonuclease, Nature Cell Biology, vol.113, issue.24, pp.616-623, 2009.
DOI : 10.1126/science.1083430

L. Wu and I. D. Hickson, The Bloom's syndrome helicase suppresses crossing over during homologous recombination, Nature, vol.426, issue.6968, pp.870-874, 2003.
DOI : 10.1038/nature02253

F. B. Johnson, R. A. Marciniak, M. Mcvey, S. A. Stewart, W. C. Hahn et al., The Saccharomyces cerevisiae WRN homolog Sgs1p participates in telomere maintenance in cells lacking telomerase, The EMBO Journal, vol.20, issue.4, pp.905-913, 2001.
DOI : 10.1093/emboj/20.4.905

H. Cohen and D. A. Sinclair, Recombination-mediated lengthening of terminal telomeric repeats requires the Sgs1 DNA helicase, Proc. Natl Acad. Sci. USA, 98, pp.3174-3179, 2001.
DOI : 10.1073/pnas.061579598

P. Huang, F. E. Pryde, D. Lester, R. L. Maddison, R. H. Borts et al., SGS1 is required for telomere elongation in the absence of telomerase, Current Biology, vol.11, issue.2, pp.125-129, 2001.
DOI : 10.1016/S0960-9822(01)00021-5

N. Eckert-boulet and M. Lisby, Regulation of homologous recombination at telomeres in budding yeast, FEBS Letters, vol.42, issue.17, pp.3696-3702, 2010.
DOI : 10.1016/j.febslet.2010.05.037

J. M. Dewar and D. Lydall, Similarities and differences between ???uncapped??? telomeres and DNA double-strand breaks, Chromosoma, vol.168, issue.1, pp.117-130, 2011.
DOI : 10.1007/s00412-011-0357-2

D. Bonetti, M. Clerici, S. Anbalagan, M. Martina, G. Lucchini et al., Shelterin-Like Proteins and Yku Inhibit Nucleolytic Processing of Saccharomyces cerevisiae Telomeres, PLoS Genetics, vol.18, issue.5, p.1000966, 2010.
DOI : 10.1371/journal.pgen.1000966.s001

F. Wang, J. A. Stewart, C. Kasbek, Y. Zhao, W. E. Wright et al., Human CST Has Independent Functions during Telomere Duplex Replication and C-Strand Fill-In, Cell Reports, vol.2, issue.5, pp.1096-1103, 2012.
DOI : 10.1016/j.celrep.2012.10.007

S. J. Diede and D. E. Gottschling, Telomerase-Mediated Telomere Addition In Vivo Requires DNA Primase and DNA Polymerases ?? and ??, Cell, vol.99, issue.7, pp.723-733, 1999.
DOI : 10.1016/S0092-8674(00)81670-0

J. M. Tkach, A. Yimit, A. Y. Lee, M. Riffle, M. Costanzo et al., Dissecting DNA damage response pathways by analysing protein localization and abundance changes??during DNA replication stress, Nature Cell Biology, vol.327, issue.1, pp.966-976, 2012.
DOI : 10.1038/ncb2549

S. T. Henderson and T. D. Petes, Instability of simple sequence DNA in Saccharomyces cerevisiae., Molecular and Cellular Biology, vol.12, issue.6, pp.2749-2757, 1992.
DOI : 10.1128/MCB.12.6.2749

V. Gangavarapu, L. Haracska, I. Unk, R. E. Johnson, S. Prakash et al., Mms2-Ubc13-Dependent and -Independent Roles of Rad5 Ubiquitin Ligase in Postreplication Repair and Translesion DNA Synthesis in Saccharomyces cerevisiae, Molecular and Cellular Biology, vol.26, issue.20, pp.7783-7790, 2006.
DOI : 10.1128/MCB.01260-06

H. D. Ulrich and S. Jentsch, Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair, The EMBO Journal, vol.19, issue.13, pp.3388-3397, 2000.
DOI : 10.1093/emboj/19.13.3388

M. P. Longhese, D. Bonetti, N. Manfrini, and M. Clerici, Mechanisms and regulation of DNA end resection, The EMBO Journal, vol.9, issue.17, pp.2864-2874, 2010.
DOI : 10.1534/genetics.104.027904

A. Halas, A. Podlaska, J. Derkacz, J. Mcintyre, A. Skoneczna et al., The roles of PCNA SUMOylation, Mms2-Ubc13 and Rad5 in translesion DNA synthesis in Saccharomyces cerevisiae, Molecular Microbiology, vol.105, issue.3, pp.786-797, 2011.
DOI : 10.1111/j.1365-2958.2011.07610.x

A. Motegi, K. Kuntz, A. Majeed, . Smith, and K. Myung, Regulation of Gross Chromosomal Rearrangements by Ubiquitin and SUMO Ligases in Saccharomyces cerevisiae, Molecular and Cellular Biology, vol.26, issue.4, pp.1424-1433, 2006.
DOI : 10.1128/MCB.26.4.1424-1433.2006

I. D. Hickson and H. W. Mankouri, Processing of homologous recombination repair intermediates by the Sgs1-Top3-Rmi1 and Mus81-Mms4 complexes, Cell Cycle, vol.10, issue.18, pp.3078-3085, 2011.
DOI : 10.4161/cc.10.18.16919

B. Szakal and D. Branzei, Premature Cdk1/Cdc5/Mus81 pathway activation induces aberrant replication and deleterious crossover, The EMBO Journal, vol.157, issue.8, pp.1155-1167, 2013.
DOI : 10.1038/nature02253