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Abstract
Introduction

In France, rates of hospital admissions increase at the peaks of influenza epidemics. Pre-

dicting influenza-associated hospitalizations could help to anticipate increased hospital

activity. The purpose of this study is to identify predictors of influenza epidemics through the

analysis of meteorological data, and medical data provided by general practitioners.

Methods

Historical data were collected fromMeteo France, the Sentinelles network and hospitals’

information systems for a period of 8 years (2007–2015). First, connections between meteo-

rological and medical data were estimated with the Pearson correlation coefficient, Principal

component analysis and classification methods (Ward and k-means). Epidemic states of

tested weeks were then predicted for each week during a one-year period using linear dis-

criminant analysis. Finally, transition probabilities between epidemic states were calculated

with the Markov Chain method.

Results

High correlations were found between influenza-associated hospitalizations and the vari-

ables: Sentinelles and emergency department admissions, and anti-correlations were

found between hospitalizations and each of meteorological factors applying a time lag of:

-13, -12 and -32 days respectively for temperature, absolute humidity and solar radiation.

Epidemic weeks were predicted accurately with the linear discriminant analysis method;

however there were many misclassifications about intermediate and non-epidemic weeks.

Transition probability to an epidemic state was 100% when meteorological variables were

below: 2°C, 4 g/m3 and 32W/m2, respectively for temperature, absolute humidity and solar

radiation. This probability was 0% when meteorological variables were above: 6°C, 5.8g/m3

and 74W/m2.
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Conclusion

These results confirm a good correlation between influenza-associated hospitalizations,

meteorological factors and general practitioner’s activity, the latter being the strongest pre-

dictor of hospital activity.

Introduction
In France, rates of hospitalizations depend primarily on admissions from hospital emergency
departments. Anticipating the flux in the number of hospitalizations is usually done daily and
contextually based on empiric evidence [1]. Among the hypotheses considered to explain the
observed fluctuations, two major factors appear to be the climate and epidemics. Indeed, an
increase in hospitalizations is observed during epidemic peak periods of certain viral infections
[2,3]. This phenomenon is observed particularly for outbreaks of influenza that occur season-
ally, peaking during the winter season in temperate regions. Although benign, influenza repre-
sents a public health problem with an important morbidity and mortality rate in high risk
individuals [4–7]. Despite gains in clinical knowledge and the existence of vaccines, influenza
reappears every year as a seasonal epidemic with variable duration and intensity [8,9]. This
phenomenon is in part explained by the characteristic of the virus: it is an enveloped RNA
virus that is member of the Orthomyxoviridae family and genus influenzae of which there are
three types A, B and C, and the first two are found in humans. These viruses are very unstable
because of gene mutations that prevent a permanent immunization of infected individuals
[10–12]. Virus A (H1N1 and H3N2) and B are primarily active during epidemics [13].

In order to explain the seasonality of the flu, two other hypotheses have been made. The
first, the seasonal variation of the host’s immune status may be linked to sun exposure and the
photosynthesis of vitamin D. Vitamin D plays a role in regulating acquired immunity and in
reinforcing the innate immune system [14–16].

The second hypothesis is that both temperature and humidity may contribute to the trans-
missibility and viability of the virus. In their study on domestic guinea pigs, Lowen et al [17]
have shown that viral transmission increases at temperatures below 5°C and in low humidity
conditions. The formation and stability of air-born droplet nuclei that contain the virus are
favoured in this environmental context [18]. Other studies on flu epidemic modeling and pre-
diction have confirmed the role of temperature and absolute humidity (AH) in the spread of
the virus on outpatients [19–24].

Based on these findings, the purpose of this study is to predict an influenza epidemic hospi-
tal status. This is achieved by identifying the strongest predictors, and establishing the time lags
required to have an effect on hospital epidemic outbreak. To this end, two approaches may be
used: the Linear Discriminant Analysis (LDA) including meteorological and outpatient data,
and the Markov Chain method to calculate the transition probability from an epidemic state to
another. Using these methods as predictive tools would allow a better management at a hospi-
tal level. This study was undertaken in France in the department of the Loire (Rhône-Alpes
region, in East-central France), and represents a first step in the prediction of operational man-
agement of hospital emergency services.

Materials and Methods

Source Data
All data were collected during the period spanning the 1st week of 2007 to the 8th week of 2015
and in a geographically confined territory: the southern part of the department of the Loire
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located in the Rhône-Alpes region of France, with 750 000 inhabitants. The average distance
from the two main hospitals of the studied area is about 20 km [25]. Data were collected in
aggregated form (patient number per week) and did not require approval from an ethics
committee.

Meteorological Data. Data were taken from the Andrézieux Station managed byMétéo
France [26]. Variables considered were temperature in degrees Celsius (°C) and relative humid-
ity in percent measured as a daily average, as well as the daily solar duration time in minutes.

Epidemic Data. Data for this study were obtained from the European network Sentinelles
[27]. Sentinelles is a network of 1300 private practice doctors and volunteers, spread across
Metropolitan France, that collects information on an on-going basis on eight health indicators,
including influenza, that are encountered in daily practice. Information includes the age, sex,
immunization status of patients presenting influenza-like symptoms who are seen during con-
sultations with general practitioners. Forty-two general practitioners, dispersed evenly over the
territory concerned, were involved in the collection of data. The total weekly incidence rate of
influenza-like-illness (ILI) over the territory was calculated using the adjustment method for
the usual general population of the Sentinelles network.

Hospital Data. Patient data were provided by the health record systems of the two main
hospitals in the geographical zone concerned: The University-Hospital of Saint Etienne and
Firminy Hospital. Previously anonymized using the official national French insurance encryp-
tion software [28,29], they were extracted in an aggregated form (weekly data). The data col-
lected were age, sex and diagnosis coded according to the 10th revision of the International
Classification of Diseases (ICD-10). Three groups of patients were established:

• Influenza-associated hospitalizations (IAH): Hospitalized patients with a diagnosis of viral
influenza or ILI as a primary or accompanying diagnosis, for a length of stay of less than a
week. Codes and decision-making algorithms used to characterize this state were based on a
previous study [30].

• Hospitalized patients admitted by emergency departments for all causes (ED admission).

• Patients who visited emergency departments, but who were not subsequently hospitalized
(ED visit)

Variables Transformation. To coincide with the available weekly data of Sentinelles net-
work, meteorological data were aggregated into weekly averages.

Furthermore, the absolute humidity in g/m3 was calculated using relative humidity accord-
ing to the Clausius-Clapeyron equation [20], and solar radiation was converted to W/m2 using
the Angström equation [31].

The hospital epidemic threshold was characterized for each week by taking the quartiles of
hospitalizations associated to the influenza variable (IAH). A categorical variable was consti-
tuted taking the value 0 or non-epidemic state for case volumes below the first quartile, the
value 1 or intermediate state (volumes between the 1st and 2nd quartile), and the value 2 or epi-
demic state (volumes above the 3rd quartile).

Data Analysis
Statistical analyses were used to assess the average value and variances of each of data set. The
year 2009 was excluded from the analyses described below as it was a pandemic year: this study
focused only on epidemic influenza. The relationship between influenza-associated hospitaliza-
tions (IAH) and other variables (meteorological, emergency departments and Sentinelles) was
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assessed by the Pearson correlation coefficient applying a time lag corresponding to the latent
influence of meteorological and epidemic factors on hospitalizations: assuming that explicative
variables effects on IAH’s are not immediate time lags have been tested to improve correlations.
The Kruskal-Wallis test was used to verify the comparability between each group according to
the weekly epidemic states, and according to age groups.

A principal component analysis (PCA) identified some common groups in the data and cor-
relations between the variables. The n individuals correspond to the weeks (from the 1st week
of 2007 to the 8th week of 2015); the p variables correspond to the meteorological, Sentinelles,
and hospital data.

Two methods of classification: Ward’s hierarchical clustering then the k-means classifica-
tion, where performed to obtain the maximal similarity of n individuals within clusters, and
maximal dissimilarity of individual profiles between clusters [32].

The Ward’s method consists in aggregating two clusters such that the growth of within-
inertia is minimum at each step of the algorithm. The within-inertia characterizes the homoge-
neity of a cluster. The hierarchy is represented by a dendrogram which is indexed by the gain
of within-inertia. The hierarchical clustering here is performed onto the principal components.
The partition obtained from the cut of the hierarchical dendrogram, is introduced as the initial
partition of the K-means algorithm.

The K-means algorithm is a partitioning classification algorithm which iteratively regroups
into K clusters a set of n individuals characterized by m variables. Each cluster is centred
around a point, called the cluster centroid, which represents the average coordinate of the clus-
ter’s elements. Centroids are recalculated at each iteration and these steps are repeated until the
centroids no longer move.

Predictive analysis
A Fisher’s linear discriminant analysis (LDA) made it possible to define discriminant functions
and then to predict the membership group of the weeks (epidemic, intermediate or non-epi-
demic) based on predictor variables [33].

LDA builds j = min(k-1,p) discriminant functions that estimate discriminant scores (D ji)
for each of i = 1,. . .,n individuals classified into k groups, from p linearly independent predictor
variables (X) as

Dji ¼ wi1X1iþ wi2X2iþ � � � þ wipXpi

[i = 1,. . .,n and j = 1,. . .,min(k−1,p)]
Discriminant weights (w ij) are estimated by ordinary least squares so that the ratio of the

variance within the k groups to the variance between the k groups is minimal. The classification
function is:

Cji ¼ cj0þ cj1X1iþ cj2X2iþ � � � þ cjpXpi

Each of the j = 1,. . .,k groups can therefore be constructed from the discriminant scores.
The coefficients of the classification function for the jth group are estimated from the within
sum of squares matrixes (W) of the discriminant scores for each group and from the vector of
the p discriminant predictors means in each of the classifying groups (M) as C j =W − 1M
with cjo = logp − 12/CjMj

The prediction was tested on each year using as training sample the remaining six years.
Then the confusion matrix determined the number of successful recognitions, and identified
the incorrect match confused with another word. In general, for N number of words, the
framework will generate an N ×N confusion matrix (Table 1).
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For all i = j, the value of pij indicates the number of correct recognitions, while for i 6¼j, the
value of pij indicates the confusion trend.

Finally, to predict the probability of transition from one epidemic state to another, a Markov
chain model was used. This method aims to specify a system of transitions, yielding probabilis-
tic trajectories connecting current and previous or future states [34]. Identifying the transition
as a random process, the Markov dependency theory emphasizes "memoryless property" i.e.
the next state of any process strictly depends on its current state but not its past sequence of
states noticed over time:

PðXnþ 1 ¼ xnþ 1=X1 ¼ x1;X2 ¼ x2; . . .Xn ¼ xnÞ ¼ PðXnþ 1 ¼ xnþ 1=Xn ¼ xnÞ

The Markov chain method was used for winter weeks (in December, January and February),
and for different meteorological conditions. The thresholds established to classify the meteoro-
logical variables were the quartiles of their values during the winter period.

Data processing and analysis were performed using R 3.1.2 software.

Results

Description of the Data
Between 2007 and 2015, there were 11,389 IAH with a minimum of 3 IAH /week and a maxi-
mum of 104 IAH/week (Table 2), the number of hospitalizations varied according to the years
and seasons (Fig 1) with a weekly average of 31 IAH in the winter and 19 IAH for the remain-
der of the year, and according to age groups with a considerably larger number of people over
65 (p<0.001); During the same period the average values of temperature, absolute humidity
and solar radiation were respectively 11.33°C (95% CI: 10.69–11.98), 7.68 g/m3 (95% CI: 7.43–
7.94) and 185.80 W/m2 (95% CI: 173.54–198.06) in the department of the Loire (Table 2 and
Fig 2).

We found a negative correlation between IAH and meteorological factors (p<0.001), which
increases when taking into account a time lag of -13 days for temperature, -12 days for absolute
humidity and -32 days for solar radiation (Table 3). We also observed a close correlation

Table 1. Confusion matrix.

TRUE VALUES

PREDICTED VALUES P11 P12 . . . P1N

PREDICTED VALUES P21 P22 . . . P2N

PREDICTED VALUES . . . . . . . . . . . .

PREDICTED VALUES PN1 PN2 . . . PNN

doi:10.1371/journal.pone.0157492.t001

Table 2. Descriptive statistics of epidemic andmeteorological variables.

Mean (%IC) Min max

IAH 26.73 (25.55–27.92) 3 104

ED admissions 393.5 (388.86–398.20) 258 542

ED visits 1129 (1119.48–1138.42) 887 1595

Sentinelles data 87.02 (71.61–102.54) 0 1009

Temperature (°C) 11.33 (10.69–11.98) -7.89 26.34

Absolute humidity (g/m3) 7.68 (7.43–7.94) 1.71 14.29

Solar radiation(W/m2) 185.80 (173.54–198.06) 2.52 532.59

doi:10.1371/journal.pone.0157492.t002
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between IAH and two clinical variables: hospital emergency intakes (0.53 p<0.001) and the
Sentinelles data particularly when these lag by -1 week (0.70, p<0.001), (Table 3).

The Kruskal Wallis test results showed that, among IAH cases, the 65+ age group is signifi-
cantly more frequent than other age groups (p<0.001). In contrast, for influenza cases treated
by general practitioners (Sentinelles data), people under 65 are significantly more preponder-
ant (p<0.001) (Fig 3). Our analysis also showed a notable difference in the relation between
the meteorological data and the presence or absence of an epidemic state in a hospital: the mea-
sured values for each meteorological variable are significantly lower during the weeks that are
considered as epidemic (p<0.001).

PCA results: the first two PCA factorial axes explain 69.5% of the information and 55.03%
from axis 1 with a larger contribution from temperature and absolute humidity meteorological
data (Table 4). The variables projection on the planes of the first two PCA factorial axes indi-
cates an anti-correlation between the meteorological variables and the clinical variables (IAH,
Sentinelles data and emergency data). There is no correlation between short stays and the other
variables and, a non-correlation between short stays and meteorological variables (Fig 4).

Using Ward’s clustering method and K-means cluster analysis the subjects could be orga-
nized into three groups (Fig 5). These groups are essentially differentiated by the temperature
factor: the first group is defined by epidemic weeks with an average temperature of 2.62°C; the
second group corresponds to weeks of intermediate epidemic state with an average

Fig 1. Evolution of Influenza-Associated Hospitalizations (IAH) and Sentinelles data from the first
week of 2007 to 8th week of 2015

doi:10.1371/journal.pone.0157492.g001
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Fig 2. Evolution of meteorological variable values from the first week of 2007 to 8th week of 2015

doi:10.1371/journal.pone.0157492.g002

Table 3. Correlationmatrix (delays in parentheses when applied).

IAH Sentinelles
data

Sentinelles
(-7days)

ED
visits

ED
admissions

Temperature
(-13days)

Absolute
humidity
(-12days)

Solar radiation
(-32days)

IAH 1 0.68 p<0.001 0.70 p<0.001 -0.01
p = 0.9

0.53 p<0.001 -0.63 p<0.001 -0.61 p<0.001 -0.55 p<0.001

Sentinelles data 0.68 1 0.91 p<0.001 0.02
p = 0.9

0.29 p<0.001 -0.61 p<0.001 -0.55 p<0.001 -0.50 p<0.001

Sentinelles
(-7days)

0.70 0.91 1 -0.01
p = 0.9

0.27 p<0.001 -0.59 p<0.001 -0.55 p<0.001 -0.48 p<0.001

ED Visits -0.01 0.02 -0.01 1 0.06 p = 0.9 -0.01 p = 0.9 -0.04 p = 0.9 0.00 p = 0.9

ED admissions 0.53 0.29 0.27 0.06 1 -0.39 p<0.001 -0.38 p<0.001 -0.34 p<0.001

Temperature
(-13days)

-0.63 -0.61 -0.59 -0.01 -0.39 1 0.93 p<0.001 0.73 p<0.001

Absolute Humidity
(-12days)

-0.61 -0.55 -0.55 -0.04 -0.38 0.93 1 0.70 p<0.001

Solar radiation
(-32days)

-0.55 -0.50 -0.48 0.00 -0.34 0.73 0.70 1

doi:10.1371/journal.pone.0157492.t003
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temperature of 7.62°C; and the third group corresponding principally to non-epidemic weeks
with an average temperature of 17.47°C.

Prediction Methods
Linear discriminant analysis. For each year predicted, the rate of prediction error varied

from 11% to 19%. The best results were obtained when the prediction was tested during 2014.
The coefficients of explanatory variables on the two LDA axes for each year, are represented

in Table 5, which shows that the variable with the larger coefficient is the incidence of influenza
(Sentinelles data). LDA provides correct predictions of epidemic weeks: only two epidemic
weeks were wrongly classified as intermediate epidemic week in 2011 and 2012. However,
according to the predicted year, misclassification numbers varied between six and ten: they cor-
responded in most cases to non-epidemic and intermediate epidemic weeks, in addition, for all
the years considered, ten intermediate epidemic weeks, were classified as epidemic week
(Table 6).

Fig 3. A: Influenza-Associated Hospitalizations (IAH) boxplot according to age groups; B: Boxplots of influenza incidence values (from Sentinelles
network) by age groups.

doi:10.1371/journal.pone.0157492.g003

Table 4. PCA—Contribution of variables in PCA first five dimensions.

Dim.1 Dim.2 Dim.3 Dim.4 Dim.5

Temperature 0.91 0.01 0.24 0.18 0.2

Absolue humidity 0.89 -0.01 0.25 0.21 0.28

Solar radiation 0.8 0.04 0.22 0.25 -0.49

Sentinelles -0.75 -0.09 -0.03 0.59 0.03

ED admissions -0.56 0.19 0.75 -0.26 -0.01

ED visits -0.02 0.98 -0.15 0.1 0.02

IAH -0.84 -0.03 0.26 0.3 0.02

doi:10.1371/journal.pone.0157492.t004
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Markov Chain Prediction. Our data analysis showed that during the winter all three states
can occur (epidemic, intermediate or non-epidemic) but with lower probabilities of changing
to a non-epidemic week or remaining non-epidemic (Fig 6A). Probabilities of transitioning
from one epidemic state to another change with the weather conditions. When the three
weather variables are very low, respectively below 32 W/m2, 2°C and 4 g/m3 for solar radiation,
temperature and absolute humidity, the probability of changing from a non-epidemic to an
epidemic week, or remaining non-epidemic is 1 (Fig 6B). When these variables are above the
highest threshold, respectively 74W/m2, 6°C and 5.8g/m3 for solar radiation, temperature and
absolute humidity, the probability of changing to an epidemic week becomes nil (Fig 6C).

Discussion
This study, carried out in France in a continental climate, reports on a new statistical method
allowing to characterize the links between meteorological factors, incidence of influenza treated
in non-hospital settings and hospital visits for influenza or its effects. This innovative approach

Fig 4. Projection of variables on the first two PCA factorials. IAH = Influenza-Associated Hospitalizations;
ED = Emergency Department; AH = Absolute Humidity; SR = Solar Radiation; T = Temperature.

doi:10.1371/journal.pone.0157492.g004
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based on previously published findings [17,20,35] proposes an interesting predictive method to
anticipate hospital management of influenza.

The high correlation between the number of cases of influenza treated by general practition-
ers and the fluctuating rates of hospital emergency services entries due to influenza confirms
the important role of anticipation in the management of flu epidemics. Hospitals are becoming
more and more overcrowded by an influx of patients, particularly in winter and their

Fig 5. Ward’s clustering method (dendrogram) consolidated by k-means classification (colored
individuals)

doi:10.1371/journal.pone.0157492.g005

Table 5. LDA—Coefficients of discriminant factor son the two discriminant function axes, for each year predicted.

Predicted year 2007 2008 2010 2011 2012 2013 2014

[,1] [,2] [,1] [,2] [,1] [,2] [,1] [,2] [,1] [,2] [,1] [,2] [,1] [,2]

Intercept -0.021 -0.001 0.01 0.02 -0.03 -0.07 -0.03 -0.02 -0.01 -0.01 -0.08 0.02 -0.02 -0.00

Temperature -0.60 -0.59 -0.38 -0.45 -0.50 -0.76 -0.64 -1.14 -0.44 0.86 -0.61 1.50 -0.43 -0.87

Solar radiation -0.11 0.91 -0.09 1.03 -0.13 0.99 -0.07 1.03 0.01 0.39 0.08 -0.21 -0.17 0.91

Absolute humidity 0.03 0.92 -0.11 0.66 -0.08 0.96 0.04 1.17 0.08 0.01 -0.01 -0.34 -0.16 1.09

Sentinelles data 0.94 0.90 1.03 0.87 0.89 0.81 0.92 0.72 1.19 0.79 0.92 0.76 0.81 0.86

doi:10.1371/journal.pone.0157492.t005
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management requires a growing number of tools to facilitate prediction of patient numbers so
that the necessary human and technical resources can be adapted [36]. While the Sentinelles
network’s aim is to characterize an epidemic state in the general population in France, this
study proposes a novel method of prediction to allow characterization of an epidemic state
within hospitals.

Table 6. Predictive LDA- Confusion matrix, for each predicted year.

True Error rate

Predicted Non-epidemic Intermediate Epidemic

2007 Non-epidemic 37 2 0 15.4%

2007 Intermediate 5 7 0

2007 Epidemic 0 1 0

2008 Non-epidemic 34 3 0 17.3%

2008 Intermediate 3 6 0

2008 Epidemic 0 2 4

2010 Non-epidemic 32 5 0 19.2

2010 Intermediate 5 9 0

2010 Epidemic 0 0 1

2011 Non-epidemic 28 4 0 17.3%

2011 Intermediate 0 8 1

2011 Epidemic 0 4 7

2012 Non-epidemic 19 1 0 15.4

2012 Intermediate 4 13 1

2012 Epidemic 0 2 12

2013 Non-epidemic 26 3 0 15.4%

2013 Intermediate 5 9 0

2013 Epidemic 0 0 9

2014 Non-epidemic 39 0 0 11.3%

2014 Intermediate 5 4 0

2014 Epidemic 0 1 4

doi:10.1371/journal.pone.0157492.t006

Fig 6. Markov Chain—A-Probability of transition for different winter epidemic states, 0 = non-epidemic, 1 = intermediate, 2 = epidemic; B—When
the values of meteorological variables are below the lower thresholds: solar radiation < 32W/m2, temperature < 2°C and AH < 4 g/m3; C- When the
values of meteorological variables are above the upper threshold: solar radiation>74W/m2, temperature > 6°C and AH > 5.8 g/m3.

doi:10.1371/journal.pone.0157492.g006
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As described earlier, the effects of meteorological factors on flu epidemic in non-hospital
and in hospital settings happen with a clinically and scientifically coherent delay. A lag of
thirty-two days between sunny weather and the number of influenza-associated hospitalization
can be explained by the time required for photosynthesis to occur and the release of vitamin D
into the blood stream [14,37]. As to temperature and absolute humidity, these act on the virus
viability and transmissibility. Even considering an incubation time of 48 hours and a latency
period of a few days before consulting a physician, both related to the clinical progression of
influenza, the 13 and 12 day intervals before hospitalization that were observed for these two
factors appear high. However, IAH’s occur mainly among seniors (65 years and older). For this
category of patients, influenza occurs later with higher risks of complication, requiring hospi-
talization [4,5,38]. This hypothesis is supported by the better correlation we observed when the
outpatient treatment data provided by the Sentinelles network precede the IAH data by a week
(Pearson correlation = 0.70, Table 3).

With the objective of predicting IAH, a first approach was to use a linear discriminant anal-
ysis at specific time intervals in order to predict the epidemic state in future weeks based on the
values of explanatory variables. This method shows a good predictive accuracy to indicate epi-
demic weeks. The second approach examined, using Markov chains, aimed at predicting tran-
sitional states (epidemic/intermediate/non-epidemic) which are the most interesting to
anticipate in terms of health planning. This method showed higher probabilities when the
weather conditions are considered in the analysis; this demonstrates the usefulness of close
interactions with Meteorological centres for predicting hospitalizations for hospital manage-
ment purposes.

The use of these approaches is indeed possible, especially as the different data producers
(Météo France and Sentinelles network) operate in such a way that each variable is provided
within a time frame compatible with the application of this method. In addition, taking into
consideration the week delay for Sentinelles network data supports the predictive role of such a
model. Based on our results, it is possible to consider designing computerized tools for hospital
use. However, this process depends on the timely availability of hospital data which remains
slow in relation to the required prediction timelines and might limit the software’s effective-
ness. The implementation of an individual billing plan in health establishments known as “Fac-
turation Individuelle Des Etablissement de Santé” (FIDES) in France [39] that will soon be
adapted to hospital stays, opens up the prospect of using such tools in real time.

This study has some limitations. It covers only seven epidemic events, integrating more years
would reinforce the reliability of the model and provide better hindsight into the data analyses.
Each year a predominant virus type may affect the clinical virulence and it would be interesting
to take the virus type into consideration. In addition, other factors that could also be linked to
epidemics have not been tested, including the behavioural variables such as mode of transporta-
tion, place and type of work, hand washing or immunization status of the individuals [40,41].
These elements, while difficult to collect, affect the spread of an epidemic and could reinforce the
predictive accuracy of the proposed model at a population level rather than individual.

Conclusion
The results described here highlight the delays between IAH outbreak, meteorological changes
and the activities of medical practitioners. As the first phase of this study is conclusive, other
studies aiming to predict the intensity and duration of epidemics by a quantitative approach
can be considered. The final phase would be to propose a probabilistic model geared for hospi-
tals which would serve as a tool to help manage anticipated fluctuations of admissions to emer-
gency services.
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