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Abstract. We document the first version of the Centre Na-

tional de Recherches Météorologiques Earth system model

(CNRM-ESM1). This model is based on the physical core

of the CNRM climate model version 5 (CNRM-CM5) model

and employs the Interactions between Soil, Biosphere and

Atmosphere (ISBA) and the Pelagic Interaction Scheme for

Carbon and Ecosystem Studies (PISCES) as terrestrial and

oceanic components of the global carbon cycle. We describe

a preindustrial and 20th century climate simulation following

the CMIP5 protocol. We detail how the various carbon reser-

voirs were initialized and analyze the behavior of the car-

bon cycle and its prominent physical drivers. Over the 1986–

2005 period, CNRM-ESM1 reproduces satisfactorily several

aspects of the modern carbon cycle. On land, the model

captures the carbon cycling through vegetation and soil, re-

sulting in a net terrestrial carbon sink of 2.2 Pg C year−1.

In the ocean, the large-scale distribution of hydrodynamical

and biogeochemical tracers agrees with a modern climatol-

ogy from the World Ocean Atlas. The combination of bi-

ological and physical processes induces a net CO2 uptake

of 1.7 Pg C year−1 that falls within the range of recent esti-

mates. Our analysis shows that the atmospheric climate of

CNRM-ESM1 compares well with that of CNRM-CM5. Bi-

ases in precipitation and shortwave radiation over the tropics

generate errors in gross primary productivity and ecosystem

respiration. Compared to CNRM-CM5, the revised ocean–

sea ice coupling has modified the sea-ice cover and ocean

ventilation, unrealistically strengthening the flow of North

Atlantic deep water (26.1± 2 Sv). It results in an accumu-

lation of anthropogenic carbon in the deep ocean.

1 Introduction

Earth system models (ESMs) are now recognized as the cur-

rent state-of-the-art models (IPCC, 2013), expanding the nu-

merical representation of the climate system of the 4th As-

sessment Report (IPCC, 2007). They enable the representa-

tion of subtle nonlinear interactions and feedbacks of dif-

ferent magnitude and signs of various biogeochemical and

biophysical processes with the climate system. The latter

contribute, in addition to the atmospheric radiative proper-

ties and global climate dynamics, to determining the Earth’s

climate variability (Arora et al., 2013; Cox et al., 2000;

Friedlingstein and Prentice, 2010; Schwinger et al., 2014;

Wetzel et al., 2006).

Although there is no uniformly accepted definition, ESMs

generally bring together a global physical climate model and

land and ocean biogeochemical modules (Bretherton, 1985;

Flato, 2011). As such, they enable the representation of the

global carbon cycle. The models of this class have played

a larger role in the 5th IPCC report than in previous reports,
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primarily through their contribution to the concentration- and

emission-driven experiments that compose CMIP5.

Even if the concept of Earth system modeling is being ex-

tended to include further processes and reservoirs (e.g., nitro-

gen cycle, aerosols) (Hajima et al., 2014), there are still large

uncertainties in the representation of the carbon cycle and its

interactions with climate (Anav et al., 2013a; Friedlingstein

et al., 2013; Piao et al., 2013). To reduce them, there is a need

for improvements of both physical and ecophysiological pa-

rameterizations (Dalmonech et al., 2014), and for the de-

velopment of observation-based methods to constrain model

projections (Wenzel et al., 2014). But the reduction of car-

bon cycle–climate uncertainties also requires a greater num-

ber and diversity of ESMs. This path is promoted and fol-

lowed by various international initiatives like the Global Car-

bon Budget (http://www.globalcarbonproject.org/) that se-

quentially incorporate more and more models into their anal-

yses (Le Quéré et al., 2013, 2015).

This article documents the first IPCC-class ESM devel-

oped at Centre National de Recherches Météorologiques

(CNRM) and provides a basic evaluation of the model’s

skill. This model is based on the CNRM-CM5.1 climate

model jointly developed by CNRM and Cerfacs (Centre Eu-

ropéen de Recherche et de Formation Avancée en Calcul

Scientifique), which has contributed to the 5th phase of the

Coupled Model Intercomparison Project (CMIP5) (Voldoire

et al., 2013). CNRM-CM5.1 did not include a representa-

tion of the global carbon cycle but accounted for chemical–

climate interactions with an interactive stratospheric chem-

istry module (Cariolle and Teyssèdre, 2007). While this con-

figuration of CNRM-CM5 contributed to the CMIP5 results

publicly released, a first intermediate version of the CNRM

ESM was developed with the inclusion of the marine bio-

geochemistry model Pelagic Interaction Scheme for Carbon

and Ecosystem Studies (PISCES) (Aumont and Bopp, 2006).

This model version was evaluated against modern oceanic

observations (Séférian et al., 2013) and employed in vari-

ous studies (Frölicher et al., 2014; Laufkötter et al., 2015;

Schwinger et al., 2014; Séférian et al., 2014).

A terrestrial carbon cycle module has been under develop-

ment at CNRM since the 2000s (Calvet and Soussana, 2001;

Calvet et al., 2008, 2004; Gibelin et al., 2008, 2006), but it

has never been coupled to an atmosphere–ocean model. This

carbon cycle module evolved from the physically based In-

teractions between Soil, Biosphere and Atmosphere (ISBA)

model (Noilhan and Mahfouf, 1996; Noilhan and Planton,

1989) and is able to simulate the surface carbon fluxes and

the terrestrial carbon pools. The carbon fluxes module was

extensively tested over France and Europe (Sarrat et al.,

2007; Szczypta et al., 2012), and the carbon cycle module

was tested for temperate and high-latitude regions (Gibelin

et al., 2006, 2008) and was used more recently in studies of

carbon cycling over the Amazon basin (Joetzjer et al., 2015,

2014), permafrost regions (Rawlins et al., 2015) and at global

scale (Carrer et al., 2013b). In this work, this terrestrial car-

bon cycle module is coupled to a global climate model for

the first time.

Here, we present a first evaluation of the CNRM-ESM1.

In Sect. 2, we describe the model, focusing on the Earth sys-

tem’s components and aspects of the climate model that are

particularly relevant to the global carbon cycle. We describe

in Sect. 3 the preindustrial control and 20th century experi-

ments that we conducted, together with the forcings used and

how the experiments were initialized. In Sect. 4, we present

and discuss the results of these experiments. We summarize

the results in Sect. 5 and present conclusions.

2 CNRM-ESM components

2.1 The physical core

CNRM-ESM1 is based on the physical core of the CNRM-

CM5.1 atmosphere–ocean general circulation model exten-

sively described in Voldoire et al. (2013), which accounts for

the physical and dynamical interactions occurring between

atmosphere, land, ocean and sea ice.

The atmospheric component is based on version 6.1 of

the global spectral model ARPEGE-Climat, which corre-

sponds to an updated version of the atmospheric code used

in CNRM-CM5.1. This updated version of the atmospheric

code is derived from cycle 37 of the ARPEGE-IFS (inte-

grated forecast system) numerical weather prediction model

developed jointly by Météo-France and the European Center

for Medium-range Weather Forecast. In CNRM-ESM1, the

geometry, parameterizations and dynamics have been chosen

to match the choices made for CNRM-CM5.1. Thus, differ-

ences are mainly due to debugging and recoding. The atmo-

spheric physics and dynamics are solved on a T127 triangu-

lar truncation that offers a spatial resolution of about 1.4◦ in

both longitude and latitude. Consistent with CNRM-CM5.1,

CNRM-ESM1 employs a “low-top” configuration with 31

vertical levels that extend from the surface to 10 hPa in the

stratosphere. The layers are unevenly distributed with six lay-

ers below 850 hPa except in regions of high orography, nine

layers above 200 hPa and four layers above 100 hPa. The dy-

namical core of the model, the radiative scheme for long-

wave and shortwave, as well as the physical parameterization

for deep and shallow convection, are identical to those em-

ployed in CNRM-CM5.1. The reader is referred to Voldoire

et al. (2013) for the original description of the atmospheric

model parameterizations.

The land-surface component is an updated version of the

SURFface EXternalisée modeling platform (SURFEXv7.3)

(Masson et al., 2013b) associated with the total runoff inte-

grating pathways (TRIP) river routing model (Oki and Sud,

1997). SURFEX was designed so that the same code could be

run offline or coupled to a general circulation model (GCM),

allowing for easy transfer from offline improvements to the

Geosci. Model Dev., 9, 1423–1453, 2016 www.geosci-model-dev.net/9/1423/2016/
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coupled model and to be able to compare online and offline

runs.

This model prognostically computes the exchange of en-

ergy, water and carbon between the atmosphere and three

types of natural surfaces: land, free water bodies and oceans

or seas. The energy, water and carbon balances are calcu-

lated separately for each surface type and area averaged over

each atmospheric grid cell. The natural land surfaces are

represented by the module originally developed by Noilhan

and Planton (1989). This module solves the surface energy

and soil water budgets using the force–restore method and a

composite soil–vegetation–snow approach. The version used

here is the same as for CNRM-CM5.1; e.g., the soil hydrol-

ogy uses three vertical layers (Boone et al., 1999) while soil

temperature is solved using four vertical layers. In CNRM-

ESM1, land-surface albedo benefits from an improved spatial

representation derived from MODIS satellite measurements

(Carrer et al., 2013a) except for the area covered by snow

for which the albedo is prognostically computed following

Douville et al. (1995). Over water bodies and oceans, we use

the CNRM-CM5.1 parameterization for momentum and en-

ergy fluxes except for the sea-to-air turbulent fluxes that are

computed from the Coupled Ocean–Atmosphere Response

Experiment (COARE) scheme (Fairall et al., 2003). Interac-

tions between the land-surface energy and water budgets and

the terrestrial carbon cycle module are detailed in Sect. 2.3.1.

The ocean component uses version 3.2 of the Nucleus for

European Modelling of the Ocean (NEMO) model (Madec,

2008) in the ORCA1L42 configuration. This configuration

offers a horizontal resolution from 1 to 1/3◦ near the Equa-

tor and 42 levels in depth. The vertical discretization uses

a partial-step formulation (Barnier et al., 2006), which en-

sures a better representation of bottom bathymetry and thus

streamflow and friction at the bottom of the ocean. Ocean dy-

namics and physics is solved using a time step of 1 h. Vertical

physics relies on the parameterization chosen for the CNRM-

CM5.1 climate model. The mixed-layer dynamics is param-

eterized using a double diffusion process (Merryfield et al.,

1999), Langmuir cell (Axell, 2002) and account for the con-

tribution of surface wave breaking (Mellor and Blumberg,

2004). A parameterization of bottom intensified tidal-driven

mixing similar to Simmons et al. (2004) is used in combi-

nation with a specific tidal mixing parameterization in the

Indonesian area (Koch-Larrouy et al., 2010, 2007). Finally,

CNRM-ESM1 benefits from an improved turbulent kinetic

energy (TKE) closure scheme (Madec, 2008), based on the

Blanke and Delecluse (1993) TKE. This parameterization al-

lows for a fraction of surface wind energy to penetrate below

the base of the mixed layer ensuring a better coupling be-

tween surface wind and subsurface mixing. The main differ-

ence of the CNRM-CM5.1 ocean model is the explicit mod-

ulation of the radiative shortwave penetration into the ocean

by marine biota (Lengaigne et al., 2009; Mignot et al., 2013),

which is further detailed in Sect. 2.3.2.

The sea-ice model used in CNRM-ESM1 is Global

Experimental Leads and ice for ATmosphere and Ocean

(GELATO6). This model employs the same horizontal grid

as NEMO and solves sea-ice dynamics and thermodynamics

every 6 h. This model represents an updated version of the

former sea-ice model used in CNRM-CM5.1 (Voldoire et al.,

2013). In GELATO6, sea-ice dynamics is computed using

the elastic viscous–plastic scheme proposed by Hunke and

Dukowicz (1997) formulated on an Arakawa C-grid (Bouil-

lon et al., 2009). To simulate the response of sea ice to

convergence–divergence movements, GELATO6 employs a

redistribution scheme derived from Thorndike et al. (1975).

This scheme ensures the representation of the rafting phe-

nomenon for the slab of sea ice thinner than 0.25 m and

of ridging for the slab thicker than 0.25 m. GELATO6 in-

cludes a thermodynamic scheme that resolves the evolution

of four ice thickness categories (0–0.3, 0.3–0.8, 0.8–3 and

over 3 m). These four slabs of sea ice are modeled with 10

vertical layers unevenly distributed across the slab thickness.

An enhanced resolution at the top of the slab is used to

better represent the evolution of sea ice in response to the

high-frequency variability of the atmospheric thermal forc-

ing. Besides, all sea-ice slabs may be covered with one snow

layer. In GELATO6, the snow layer is considered to occult

the transfer of light across the snow–sea ice–ocean contin-

uum. This snow layer can age or form ice using the formula-

tion described in Salas y Mélia (2002). Since CNRM-CM5.1,

the coupling between NEMO and GELATO has been re-

vised in order to improve the conservation of water and salt.

In the previous model version, CNRM-CM5.1, there was a

large drift in salinity (−0.011 psu century−1) and in sea level

(−21 cm century−1). These were caused by (1) the melting of

land glaciers (other than Antarctic and Greenland) that was

not routed to the ocean and (2) an erroneous coupling be-

tween sea-ice and ocean models. The coupling did not take

into account the fact that sea ice is levitating over the ocean

in this version of NEMO. Although not severe, it resulted in

a loss of water in the model. These errors have been fixed in

CNRM-CM5-2 and CNRM-ESM1 and hence reducing the

residual drifts in salinity to +0.001 psu century−1 and in sea

level to +1.2 cm century−1.

In CNRM-ESM1, exchanges of momentum, water and en-

ergy between the atmosphere and the surface models occurs

every atmospheric time step (i.e., 30 min) because SURFEX

is a submodel of the atmospheric code. The coupling between

the atmosphere and the ocean models is handled by the OA-

SIS coupler (Valcke, 2013) and occurs every 6 h. In CNRM-

ESM1, the frequency of coupling between the ocean and at-

mosphere models has been increased compared to CNRM-

CM5 in order to better resolve the dynamics of the sea ice,

which is resolved at this time step (i.e., 6 h).

www.geosci-model-dev.net/9/1423/2016/ Geosci. Model Dev., 9, 1423–1453, 2016
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2.2 Atmospheric chemistry

The atmospheric chemistry scheme in CNRM-ESM1 con-

sists of an interactive linear ozone chemistry performed with

the MOdèle BIDImensionnel de Chimie (MOBIDIC, Cari-

olle and Teyssèdre, 2007) including a representation of the

three-dimensional atmospheric CO2 mixing ratio.

As in CNRM-CM5, the ozone mixing ratio is treated as a

prognostic variable with photochemical production and loss

rates climatology computed by a full chemistry scheme. That

is, the net photochemical production in the ozone continuity

equation is solved using a first-order Taylor series around the

local value of the ozone mixing ratio, air temperature and the

overhead ozone column. Ozone destruction terms are used

to parameterize the heterogeneous chemistry as a function

of the equivalent chlorine content prescribed for the actual

year. All Taylor coefficients of this linearized scheme were

determined using a two-dimensional chemistry scheme with

56 constituents, 175 chemical reactions, and 51 photoreac-

tions (Cariolle and Brard, 1985). Photochemical production

and loss rates of ozone rely on the main gas-phase reactions

driving the NOx , HOx , ClOx , BrOx catalytic cycles. In this

version, the gas-phase chemical rates were upgraded accord-

ing to the recommendations of Sander et al. (2006). While the

ozone mixing ratio is fully described across the atmospheric

column, the linear ozone scheme was especially designed to

resolve its evolution in the stratosphere for the sake of radia-

tive transfer calculation. Therefore, some tropospheric chem-

ical reactions are not taken into account in this scheme. The

reader is referred to an article by Eyring et al. (2013) for an

extensive evaluation of the linear scheme vs. the Total Ozone

Mapping Spectrometer (TOMS) satellite measurements and

intercomparison with other CMIP5 models.

In CNRM-ESM1, the atmospheric CO2 mixing ratio can

be treated as a prognostic tracer. It responds interactively to

natural CO2 exchange from land and ocean every 30 min and

6 h, respectively, while anthropogenic carbon emissions are

prescribed in this model version. The CO2 mixing ratio can

affect the physical climate by impacting the atmospheric ra-

diative transfer computations and both terrestrial and marine

carbon uptake. In the concentration-driven experiments pre-

sented here, the CO2 mixing ratio is, however, prescribed to

the global yearly average atmospheric concentrations accord-

ing to the CMIP5 protocol.

2.3 The biogeochemical components

2.3.1 Land biogeochemical model

In CNRM-ESM1, the interactions between climate and veg-

etation are handled by the ISBA scheme embedded in the

SURFEX (Surface Externalisée) model. The land biogeo-

chemical module in ISBA represents land-surface physics,

plant physiology, carbon allocation and turnover, and carbon

cycling through litter and soil (Calvet and Soussana, 2001;

Calvet et al., 1998; Gibelin et al., 2006, 2008). The land cover

is represented by nine plant functional types (PFT; given in

Fig. 1) and three non-vegetated surface types that are deter-

mined spatially by the ECOCLIMAP physiographic database

(Masson et al., 2013a).

ISBA uses a semi-mechanistic treatment of canopy photo-

synthesis and mesophyll conductance following the Jacobs et

al. (1996) and Goudriaan et al. (1985) photosynthesis model.

Mesophyll conductance in this framework corresponds to the

rate of photosynthesis under light-saturated conditions (Ja-

cobs et al., 1996). As such, this scheme does not explicitly ac-

count for Michaelis–Menten kinetics of the Rubisco enzyme

found in Farquhar et al. (1980) and Collatz et al. (1992) mod-

els. ISBA includes a representation of the soil water stress.

Key parameters of the photosynthesis model respond to the

soil water stress, permitting the representation of drought-

avoiding and drought-tolerant responses to drought. For low

vegetation and for trees, the response to drought is based on

the meta-analyses of Calvet (2000) and Calvet et al. (2004),

respectively.

The model simulates a ratio of intercellular CO2 to at-

mospheric CO2 that depends on leaf-to-air saturation deficit,

leaf temperature and soil moisture. Assimilation is calculated

from this ratio, air CO2 concentration, leaf temperature and

solar radiation considering plant photosynthetic pathways:

C3 or C4 (Calvet et al., 1998; Gibelin et al., 2006). Stomatal

conductance, which represents the vegetation control on gas

transfer (here, CO2 and water vapor) between the leaves and

the atmosphere, is finally deduced from the assimilation rate.

Leaf dark respiration is taken as a fraction of maximum CO2

limited rate of assimilation. Standard Q10 response func-

tions determine the temperature dependencies of mesophyll

conductance, CO2 compensation point, maximum photosyn-

thetic rate and, hence, photosynthesis and respiration.

ISBA simulates the evolution of six reservoirs of biomass

including leaf, wood and roots, and assumes the existence

of metabolic/structural reservoirs of biomass (Gibelin et al.,

2008). Vegetation biomass is simulated interactively based

on the carbon assimilated by photosynthesis, and decreased

by turnover and respiration. The autotrophic respiration com-

bines the respiration from all these reservoirs except the

woody reservoir that is supposed not to respire (Gibelin et

al., 2008). In this model, the vegetation phenology results di-

rectly from the carbon balance of the leaves. Therefore, phe-

nology is completely driven by photosynthesis and no grow-

ing degree-day model is used. A key advantage of this ap-

proach is that most of the soil and atmospheric drivers (the

abiotic drivers) of phenology are accounted for without any

additional parameters (Szczypta et al., 2014). Leaf area in-

dex (LAI) is determined from the leaf biomass and the spe-

cific leaf area index, which varies as a function of leaf nitro-

gen concentration and plant functional type (Gibelin et al.,

2006). ISBA uses an implicit nitrogen limitation parameter-

ization, which is based on the meta-analysis of leaf nitrogen

measurement under CO2 enrichment condition (Yin et al.,

Geosci. Model Dev., 9, 1423–1453, 2016 www.geosci-model-dev.net/9/1423/2016/
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Figure 1. Fraction of dominant vegetation type as prescribed in SURFEX. This fraction results from aggregation of the various ECO-

CLIMAP’s vegetation types at 1 km resolution over the T127 CNRM-ESM1 horizontal grid (∼ 1.4◦ nominal horizontal resolution).

2002). This simple implicit nitrogen limitation is based on

the nitrogen dilution hypothesis, which assumes that internal

nitrogen content of a plant decrease under rising CO2 due to

the accumulation of non-structural carbohydrates. It results

that nitrogen dilution occurs as soon as the increase in total

biomass of a plant under rising CO2 relative to growth under

ambient CO2 is greater than the corresponding increase in

total nitrogen. In current version of ISBA, a linear decrease

between specific leaf area index and nitrogen to carbon ra-

tio in leaves is used to mimic this mechanism (Calvet et al.,

2008), and hence to limit the net assimilation of atmospheric

CO2.

The soil organic matter and litter module in ISBA follows

the soil carbon part of the CENTURY model (Parton et al.,

1988). Four pools of litter are represented. They are differ-

entiated by their location above- or belowground and their

content of lignin. The litter pools are supplied by the fluxes

of dead biomass from each biomass reservoir (turnover) as

described in Gibelin et al. (2008). The three soil organic mat-

ter reservoirs (active, slow and passive) are characterized by

their resistance to decomposition with turnover times span-

ning from a few months for the active pool to 240 years for

the passive pool. Heterotrophic respiration and hence the flux

of CO2 released to the atmosphere is the sum of respiration

from the litter and soil organic matter reservoirs. The rate

of decomposition of organic matter is determined essentially

by soil moisture and temperature using a Q10 dependence

following the formulation of Krinner et al. (2005). The rate

of decomposition (by respiration) depends also on the lignin

fraction and the soil texture following Parton et al. (1988).

Changes in the carbon balance of the vegetation affect the

energy and water balance, and hence the climate, through

changes in stomatal conductance and LAI. Through its con-

trol on leaf transpiration, stomatal conductance affects latent

heat flux and the surface energy balance. LAI on the other

hand affects evapotranspiration because it is used to scale

leaf-level to canopy-level transpiration and evaporation from

the interception reservoir (water intercepted by leaves).

In CNRM-ESM1, except for crops, changes in LAI do not

affect the albedo of the land surface, as it is the case in some

other models. As mentioned earlier, albedo is derived from

satellite observations corrected in the presence of snow, but

does not depend on the changes in LAI calculated by the

model. This limits the biophysical feedback from vegetation

change to the atmosphere.

2.3.2 Ocean biogeochemical model

The ocean biogeochemical model of CNRM-ESM1 is

PISCES (Aumont and Bopp, 2006). This model simulates

the biogeochemical cycles of oxygen, carbon and the main

nutrients with 24 state variables. Macronutrients (i.e., nitrate

and ammonium, phosphate, silicate) and micronutrients (i.e.,

iron) ensure a better representation of the phytoplankton dy-

namics, because these five nutrients contribute to the nutri-

www.geosci-model-dev.net/9/1423/2016/ Geosci. Model Dev., 9, 1423–1453, 2016
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ent limitation process (Aumont et al., 2003). PISCES rep-

resents two size classes of phytoplankton (i.e., nanophyto-

plankton and diatoms). Dependence of growth on temper-

ature is parameterized according to Eppley et al. (1969).

Growth rate is also limited by the external availability in nu-

trients using the Michaelis–Menten relationships. Diatoms

differ from nanophytoplankton by their need in silicon, by

higher requirements in iron (Sunda and Huntsman, 1997) and

by higher half-saturation constants because of their larger

mean surface-to-volume aspect ratio. Zooplankton is repre-

sented by two size classes: microzooplankton and mesozoo-

plankton.

PISCES can be considered as a Monod model (Monod,

1942) since it does not represent the internal concentration

of nutrients in the cells. The ratios between carbon, nitrate

and phosphate are kept constant to the values proposed by

Takahashi et al. (1985) in all living and non-living pools of

organic matter. However, internal concentrations of iron in

both phytoplankton and of silicon in diatoms are prognosti-

cally simulated. They depend on the external concentration

of these nutrients, on the potential limitation by the other nu-

trients and on light availability.

Phytoplankton chlorophyll concentration is prognostically

simulated following Geider et al. (1998). PISCES simulates

semi-labile dissolved organic matter, small and big sinking

particles, which differ by their sinking speeds (i.e., 3 m d−1

and 50 to 200 m d−1, respectively). Only the internal con-

centrations of iron, silicon and calcite inside the sinking par-

ticles are prognostically simulated. In addition to exchange

with organic carbon, dissolved inorganic carbon is also al-

tered by the production and dissolution of calcite. Carbon

chemistry in seawater is computed from the distribution of

dissolved inorganic carbon and alkalinity. Calcite is prognos-

tically simulated following Maier-Reimer (1993) and Moore

et al. (2002). Alkalinity includes the contribution of carbon-

ate, bicarbonate, borate and water ions. Oxygen is prognosti-

cally simulated using two different oxygen-to-carbon ratios,

one accounting when ammonium is converted to or mineral-

ized from organic matter, the other when oxygen is consumed

during nitrification. For carbon and oxygen pools, air–sea ex-

change follows the Wanninkhof (1992) formulation. Impor-

tantly, to ensure conservation of nitrogen in the ocean, annual

total nitrogen fixation is adjusted to balance losses from den-

itrification following Lipschultz et al. (1990), Middelburg et

al. (1996) and Soetaert et al. (2000). For the other macronu-

trients, alkalinity and organic carbon, the conservation is en-

sured by tuning the sedimental loss to the total external input

from rivers and dust. Therefore, carbon and nitrogen cycles

are decoupled to a certain degree.

The boundary conditions account for nutrient supply from

three different sources: atmospheric dust deposition for iron

and silicon (Jickells and Spokes, 2001; Moore et al., 2004;

Tegen and Fung, 1995), rivers for carbon (Ludwig et al.,

1996) and sediment mobilization for sedimentary iron (de

Baar and de Jong, 2001; Johnson et al., 1999). In CNRM-

ESM1, riverine input of carbon has been revised from Lud-

wig et al. (1996) in accounting for the interannual variability

of runoff estimated with an offline SURFEX simulation over

the 1948–2010 period using the global atmospheric forcing

from Princeton University (PGF; Sheffield et al., 2006).

In CNRM-ESM1, the marine biophysical feedback is in-

duced by changes in the penetration of downward irradiance

in response to marine biota chlorophyll concentration. This

feedback mimics the fact that light absorption in the ocean

indeed depends on particle concentration and is spectrally

selective (Morel, 1988). The implementation of this mech-

anism is fully described in Lengaigne et al. (2006, 2009)

for an ocean forced configuration and Mignot et al. (2013)

for a current ocean coupled configuration. It is derived

from an accurate 61 spectral band formulation proposed

by Morel (1988) using three large wavebands: blue (400–

500 nm), green (500–600 nm) and red (600–700 nm). These

three bands correspond to the spectral domain of maximum

absorption for chlorophyll. The chlorophyll-dependent atten-

uation coefficients depend on the three-dimensional chloro-

phyll field predicted by PISCES. They are computed at each

time step from a power-law relationship fitting to the co-

efficients computed from the full spectral model of Morel

et al. (1988). This biophysical feedback represents a ma-

jor evolution from the ocean component used in Voldoire et

al. (2013) and Séférian et al. (2013).

3 Experimental setup

3.1 Spin-up strategy

The CMIP5 specification requires each model to reach its

equilibrium state before kicking off formal simulations, es-

pecially for long-term control experiments. To obtain the ini-

tial conditions for CNRM-ESM1 preindustrial steady state at

year 1850, we first initialize the various physical and biogeo-

chemical components of the model as described below and

perform a 400-year-long spin-up simulation using CNRM-

ESM1 with all 1850 external forcings (Taylor et al., 2009).

Initialization of the physical components of CNRM-ESM1

relies on previous model outputs from CNRM-CM5.1. This

latter model was first initialized from World Ocean Atlas

2005 observations for salinity and temperature (Antonov et

al., 2006; Locarnini et al., 2006) and spun up for 200 years.

The 801st year of the centennial-long CMIP5 preindustrial

run from CNRM-CM5.1 was employed as initial condition

for CNRM-ESM1 preindustrial state.

Marine biogeochemical reservoirs were initialized from

fields of a previous preindustrial simulation of CNRM-

CM5.1 coupled to PISCES. In this previous simulation,

PISCES state variables were initialized from World Ocean

Atlas 1993 observations for nitrate, phosphate, silicate and

oxygen (Levitus et al., 1993) and the Global Ocean Data

Analysis Project (Key et al., 2004) for alkalinity and prein-
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dustrial dissolved inorganic carbon (DIC). From this initial-

ization, this intermediate version of the ESM was integrated

online for 1100 years.

Land biogeochemical reservoirs were initialized from zero

and spun up using an acceleration approach for soil carbon

and wood during the first century of the spin-up simulation.

This approach consists in updating the wood growth, the lit-

ter and soil biogeochemistry modules several times per time

step with constant incoming carbon fluxes and physical con-

ditions allowing for the various reservoirs of carbon to fill

up much faster. As a result of this approach, soil carbon and

wood reservoirs were respectively spun up for 21 800 and

1200 years.

Finally, both physical and carbon cycle components of

CNRM-ESM1 benefit from an physical adjustment under

1850 preindustrial control conditions for 400 years. Sec-

tion 4.1 describes the residual drifts of the model at quasi-

equilibrium state.

3.2 CMIP5 preindustrial control and historical

simulations

Following CMIP5 specifications (Taylor et al., 2009),

CNRM-ESM1 has performed several CMIP5 long-term core

experiments and part of the tier-1 experiments.

The preindustrial control simulation, piControl, is inte-

grated for 250 years using constant external forcing pre-

scribed at year 1850 conditions and starting from the last year

of the online adjustment simulation. That is, atmospheric

concentrations of greenhouse gases are set to 284.7 ppmv,

790.9 ppbv and 275.4 ppbv for CO2, CH4 and N2O, respec-

tively. Those of chlorofluorocarbons (CFC-11 and CFC-12)

are set to zero. Influence of natural aerosols is prescribed us-

ing the optical depths of five types of tropospheric aerosols

(black carbon, sea salt, sulfate, dust and particle organic

matter) from a previous simulation of the coupled Climate-

Chemistry Model (LMDZ-INCA) forced with CMIP5 pre-

scribed emissions (Szopa et al., 2013). Stratospheric volcanic

aerosols are prescribed similarly but using a long-term av-

erage climatology from a last millennium simulation per-

formed with the NCAR Community Climate System Model

(Ammann et al., 2007).

The 20th century experiment, historical, is performed

from 1850 to 2005. This simulation starts from the CNRM-

ESM1 states of the last year of the online adjustment simu-

lation. The modern evolution of the external forcings of both

atmospheric greenhouse gases and incoming solar irradiance

follows the recommended yearly average observations (Tay-

lor et al., 2009). The monthly temporal and spatial variabil-

ity of the five tropospheric aerosols also rely on a LMDZ-

INCA simulation (Szopa et al., 2013) while those of strato-

spheric sulfate aerosol concentrations from explosive volca-

noes are derived from a 20th century reconstruction of the

NCAR Community Climate System Model (Ammann et al.,

2007).

Note there is no land-cover change related to anthro-

pogenic land use in the abovementioned simulations. The

fraction of vegetal cover is set to the present-day state using

the in-house ECOCLIMAP database (Masson et al., 2013a).

Therefore, changes in physical and biogeochemical proper-

ties of the vegetation due to actual land-cover changes are

excluded by design.

4 Results

4.1 Model equilibrium in the preindustrial control

simulation

To illustrate the stability of CNRM-ESM1 at the end of the

spin-up simulation, we show the global average values of a

few variables during the 250 years of the piControl simula-

tion (Fig. 2) and their drifts (Table 1).

In terms of energy balance, the global mean top-

of-atmosphere (TOA) net radiative balance is about

3.57± 0.23 W m−2, while the global mean net surface ra-

diation flux (NSF) is 0.87± 0.24 W m−2 (Fig. 2a). The

imbalance in the energy budget between the surface and

TOA (about 2.7 W m−2) is predominantly due to the non-

conservation of energy of the spectral atmospheric model

and, to a lesser extent, its coupling with the ocean model.

Taking apart this non-conservation offset in TOA net radi-

ation flux, there is no discernible deviation between year-

to-year fluctuation between the TOA and NSF net radiation

fluxes.

In terms of global-scale climate indices, the global

mean surface temperature (T2 m) and sea surface tempera-

ture (SST) over the piControl period are 12.52± 0.15 and

17.76± 0.1 ◦C, respectively (Fig. 2b). They both display al-

most no drift over the duration of the piControl simulation

(Table 1). We use soil wetness index (SWI) and sea sur-

face salinity (SSS) to evaluate the stability of the simulated

water cycle (Fig. 2c). These both have almost no drift (Ta-

ble 1), confirming that the water cycle is closed. Also, there

is no drift in both Northern Hemisphere and Southern Hemi-

sphere sea-ice volume (NIV and SIV, respectively) for which

long-term means are respectively 20.88 and 6.25× 103 km3

(Fig. 2d).

With regard to the simulated global carbon cycle, Fig. 2e

shows that the natural carbon cycle is stable over the pi-

Control simulation with terrestrial and oceanic carbon fluxes

of 0.75± 0.57 and −0.94± 0.13 Pg C year−1, respectively.

Both terrestrial and oceanic components of the simulated

carbon cycle exhibit drifts smaller than 10−3 Pg C year−1

demonstrating that soil and deep ocean carbon stocks have

reached a steady state. Deviation from zero in the terrestrial

carbon flux is essentially explained by missing perturbations

or processes in ISBA such as fire-induced CO2 emissions or

riverine-induced carbon transport from land to oceans (Bat-

tin et al., 2009; Regnier et al., 2013). Natural ocean carbon
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Figure 2. Time series of various climate indices along the 250-year-long control simulation. (a) Net radiative fluxes at the top of the

atmosphere (in red, left y axis) and surface (in blue, right y axis) are used to assess the stability of the climate energy flow in the model;

(b) near-surface global average temperature (in red, left y axis) and global-averaged sea surface temperature (in blue, right y axis); (c) soil

wetness index (in red, left y axis) and sea surface salinity (in blue, right y axis) are used as proxy of the hydrological cycle; (d) sea-ice volume

in the Northern Hemisphere (in red, left y axis) and in the Southern Hemisphere (in blue, right y axis) are used to evaluate the stability of the

cryosphere component in CNRM-ESM1; (e) global carbon fluxes over land (in red, left y axis) and over ocean (in blue, right y axis) are used

to assess the equilibration of the global carbon stock. For carbon fluxes, positive (negative) fluxes indicate an uptake (outgassing) of CO2 by

land or ocean.

outgassing falls within the upper range of ocean inverse esti-

mates (Jacobson et al., 2007; Mikaloff Fletcher et al., 2007).

4.2 Late 20th century climatology

4.2.1 Land physical drivers

In the following, we focus on the physical drivers of the

global carbon cycle. From a land perspective, surface temper-

ature (T2 m), precipitation (PR) and photosynthetically active

radiation (PAR) are the prominent factors controlling the rate

of photosynthetic activity as well as the rate of autotrophic

and heterotrophic respiration, and hence the net land–air ex-

change of carbon.

Compared to the CRUTV4 data set (Harris et al., 2013)

over the period 1986–2005, CNRM-ESM1 displays a global

annual-averaged bias of −3 ◦C in T2 m over continents. In

Northern Hemisphere winter (DJFM: December–January–

February–March; Fig. 3a) simulated T2 m is generally lower

than the observations except for some regions (e.g., north-

east Siberia, south of Australia and part of Argentina). The

mean bias over continents in boreal winter is about −4 ◦C

and can reach up to −6 ◦C over mountain regions. Fig-
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Figure 3. Biases in simulated near-surface temperature (T2 m) com-

pared to the CRUTV4 observations (Harris et al., 2013) averaged

1986–2005. Winter (a) and summer (b) periods are computed from

DJFM and JJAS months.

ure 3b shows that simulated summer (i.e., JJAS: June–July–

August–September) T2 m is also generally colder than the

observations (−0.8 ◦C in global average) over a large frac-

tion of the continents. Only the most northern domains of

the Northern Hemisphere display a warm bias that can reach

up to 3 ◦C in the north of Canada. The geographical struc-

ture of the T2 m bias compares well with those detailed in

Voldoire et al. (2013). Such an agreement in the bias struc-

ture for T2 m was expected since both models rely on the same

physical parameterizations for both the atmosphere and land-

surface physics. Small deviations between CNRM-CM5 and

CNRM-ESM1 mean state can be essentially attributed to the

land carbon cycle, which appears to amplify the global aver-

age annual cold bias of 0.8 ◦C (with seasonal differences be-

tween CNRM-ESM1 and CNRM-CM5 of −0.7 and −1 ◦C

in boreal winter and summer, respectively). This cooling is

due to the enhanced evapotranspiration by the interactive ter-

restrial biosphere compared to the fixed one in CNRM-CM5.

Figure 4 shows the regional structure of the PR bias of

CNRM-ESM1 with respect to the Global Precipitation Cli-

matology Project (GPCP) observations (Adler et al., 2003).

Over continents, CNRM-ESM1 slightly underestimates the

amount of the seasonal PR except over Asia, the western

www.geosci-model-dev.net/9/1423/2016/ Geosci. Model Dev., 9, 1423–1453, 2016



1432 R. Séférian et al.: Development and evaluation of CNRM Earth system model – CNRM-ESM1

Figure 4. Biases in simulated precipitation (PR) compared to the

GPCP observations (Adler et al., 2003) averaged over 1986–2005.

Winter (a) and summer (b) periods are computed from DJFM and

JJAS months.

coast of America and Australia. The major regional bias in

seasonal PR is found over Amazonia, where PR is underesti-

mated by 2 and 5 mm day−1 in boreal summer and winter,

respectively. Similar to state-of-the-art Earth system mod-

els, CNRM-ESM1 displays an excess of precipitation over

the oceans. This excess is especially strong in the southern

part of the tropical oceans and is associated with the overesti-

mated seasonal latitudinal migration of the Intertropical Con-

vergence Zone (ITCZ). The land biosphere biophysical cou-

pling induces small but noticeable changes in the global hy-

drological cycle between CNRM-CM5 and CNRM-ESM1.

Although weak, changes induced by the ISBA biophysical

coupling slightly affect the representation of the seasonal cy-

cle in PR over the vegetated regions (Fig. S1 in the Supple-

ment). These lead to improve the simulated PR in CNRM-

ESM1 compared to CNRM-CM5 over some vegetated re-

gions during the growing season (spring–summer). Between

30 and 60◦ N, the average error in simulated PR compared

to GPCP is reduced by 0.12 mm day−1 with CNRM-ESM1

compared to that of CNRM-CM5. Over the tropics (30◦ S–

30◦ N), simulated PR is also improved in CNRM-ESM1 but

to a lesser extent with a reduction of the average error by

0.06 mm day−1 with respect to GPCP. Although PR have

Figure 5. Biases in simulated photosynthetically available radi-

ation (PAR) compared to the Surface Radiation Budget (SRB)

satellite-derived observations (Pinker and Laszlo, 1992) averaged

over 1986–2005. Winter (a) and summer (b) periods are computed

from DJFM and JJAS months.

been improved over some regions, their geographical pattern

has been degraded in CNRM-ESM1 compared to CNRM-

CM5, especially during the winter.

Compared to Surface Radiation Budget (SRB) satellite-

derived observations (Pinker and Laszlo, 1992), CNRM-

ESM1 overestimates the PAR globally (Fig. 5). Major biases

are found over continents except for some regions in the trop-

ics. The magnitude of the seasonal biases is weaker in North-

ern Hemisphere winter than in summer when regional biases

reach up to 20–30 W m−2 over the western border of the con-

tinents. Regions where PAR is underestimated match reason-

ably well with those showing too intense precipitations com-

pared to the GPCP data set (Fig. 4). The general overestima-

tion in PAR is due to the substantial underestimation in low

cloud cover in CNRM-ESM1 consistent with CNRM-CM5.

Biases in PAR are also found over ocean upwelling system

and are linked with an underestimated fraction of stratocu-

mulus.

4.2.2 Ocean physical drivers

From an oceanic perspective, temperature is as important as

over land surface because it sets the marine biota’s growth
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R. Séférian et al.: Development and evaluation of CNRM Earth system model – CNRM-ESM1 1433

Figure 6. Annual bias patterns of simulated temperature T and salinity S averaged over 1986–2005 compared to the WOA2013 observations

(Levitus et al., 2013). Surface biases for sea surface temperature (a) and salinity (b) are represented using the same color bar. Vertical

structure of biases for temperature (c) and salinity (d) are estimated using zonal-average biases from WOA2013 across the Atlantic and

Pacific oceans.

rate, playing a large role in the biological-mediated processes

(e.g., export, soft tissue pump). In addition, both temperature

(T ) and salinity (S) control the solubility of CO2 into sea-

water and the chemical-mediated air–sea exchanges of car-

bon. The mixed-layer depth (MLD) and the sea-ice cover

(SIC) are also critical drivers of the ocean carbon cycle as

they both contribute to the nutrient-to-light limitation in the

high-latitude oceans (Sarmiento and Gruber, 2006). In the

following, we assess the representation of these drivers.

Compared to WOA2013 data products (Levitus et al.,

2013), CNRM-ESM1 realistically simulates both the mean

annual sea surface temperature and sea surface salinity, both

in terms of amplitude and spatial distribution, as shown in

Fig. 6a and b. Moderate positive biases in sea surface temper-

ature and sea surface salinity are found in the Southern Ocean

and in the eastern boundary upwelling systems. Strong biases

in sea surface salinity are found in the Labrador and Arctic

seas. While most of these biases are related to an overesti-

mated atmospheric surface heating, biases in the Labrador

Sea and in the Arctic are essentially due to erroneous rep-

resentation of the mixed-layer depth and the Arctic sea-ice

cover. These points will be further detailed below.

At depth, the vertical structures in simulated T and S dis-

play biases from those estimated from WOA2013 observa-

tions. T is underestimated by ∼ 2 ◦C within the first 1000 m

of the Atlantic and Pacific oceans, except in the deep water

formation zone (North Atlantic, North Pacific and Southern

Ocean), where the model displays positive biases. The largest

deviation in vertical structure of simulated S from that esti-

mated from WOA2013 are found in deep water formation

zones where haline biases of about ∼ 1 psu tend to compen-

sate for the warm bias in T , enabling deep convection of

water masses. Because of this compensating mechanism, the

flow of North Atlantic deep waters (NADW) fueling the At-

lantic meridional overturning circulation is about 26.1± 2 Sv

at 26.5◦ N in CNRM-ESM1 averaged over the 1850–2005

period. This value is stronger than the observations-derived

estimate of 18± 5 Sv (Talley et al., 2003) or the observa-

tions from RAPID-MOCHA monitoring array over 2004–

2007, estimating the flow at about 18.5± 4.9 Sv (Johns et

al., 2011). In the Southern Ocean, the flow of Antarctic bot-
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Figure 7. Composite of yearly extremum of mixed-layer depth over 1986–2005. Left panels represent the maximum mixed-layer depth

(MLDmax) for (a) observations (Sallée et al., 2010) and (b) CNRM-ESM1. Right panels represent the minimum mixed-layer depth (MLDmin)

for observations (c) and CNRM-ESM1 (d).

tom water (AABW) is about 11.6± 1 Sv in CNRM-ESM1

averaged over the 1850–2005 period. This flow of AABW is

in agreement with the deep flow of waters compared to the

observed estimate of 10± 2 Sv (Orsi et al., 1999). Conse-

quently, the flow of deep water masses in CNRM-ESM1 has

been improved with regards to that of CNRM-CM5, which

ranges between 3.4 and 6.2 Sv over the same period (Séférian

et al., 2013; Voldoire et al., 2013). As detailed in several in-

tercomparison studies (de Lavergne et al., 2014; Heuzé et

al., 2013; Sallée et al., 2013; Séférian et al., 2013), CNRM-

CM5 substantially underestimated the flow of AABW lead-

ing to an erroneous distribution of hydrodynamical and bio-

geochemical fields at depth. Here, although stronger than the

observation-based estimates, the flow of NADW and AABW

improves the deep ocean ventilation as well as the distribu-

tion of tracers at depth (Sect. 4.2.5).

As mentioned above, an accurate representation of spa-

tial and temporal MLD is essential for numerous ocean

biogeochemical processes. For example, winter mixing en-

trains carbon- and nutrient-rich deep waters to the surface,

which play an important role in the transfer of CO2 across

the sea-to-air interface. In summer, MLD contributes to the

nutrient-to-light limitation of the phytoplankton growth in

high-latitude oceans. The maximum and minimum mixed-

layer depth (hereafter, MLDmax and MLDmin) are respec-

tively used as a proxy of the winter and summer MLD since

mixing occurs randomly during seasons in response to nu-

merous environmental factors (wind, stratification, local in-

stability, etc.) that present a large spatiotemporal variabil-

ity. Figure 7 presents composites of yearly MLDmax and

MLDmin as simulated by CNRM-ESM1 in averaged over the

1986–2005 period and derived from observations (Sallée et

al., 2010). Figure 7a and b show that CNRM-ESM1 repro-

duces the main regional pattern of MLDmax compared to the

observation-derived estimates. However, the model tends to

simulate too large and too deep mixing sites in the North

Atlantic, the North Pacific and the Southern Ocean. In the

North Atlantic, the larger than observed mixed volume of

surface dense waters (combination of surface area and depth

of the mixing zone) is at the origin of the strong flow of

NADW simulated in CNRM-ESM1. In the Southern Ocean,

although open-ocean polynyas were observed from space in

the past decades (Cavalieri et al., 1996; Comiso, 1999), their

locations are erroneous in CNRM-ESM1 similarly to several

other CMIP5 Earth system models (de Lavergne et al., 2014).

CNRM-ESM1 simulates open-ocean polynyas in the Indian

basin and close to the Ross Sea but not in the Atlantic basin

as observed from space between 1974 and 1976.

Compared to the observation-derived estimates, CNRM-

ESM1 captures the main regional pattern of MLDmin but the

model fails at reproducing the deepest values of mixing in the

Southern Ocean and the tropics. This bias might be linked to
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Figure 8. Sea-ice cover (SIC) as simulated by CNRM-ESM1 averaged over 1986–2005. Top panels represent composite of September sea-ice

cover, while bottom panels are for March. Iso-15 % of SIC serves as comparison between model results and NSIDC observations (Cavalieri

et al., 1996) averaged over 1986–2005; model results and observations are indicated with dashed and solid black lines, respectively.

the current parameterization of the ocean mixing employed

in CNRM-ESM1 because previous model versions using this

parameterization also exhibited similar patterns of errors as

detailed in Séférian et al. (2013) and Voldoire et al. (2013).

Similarly to the MLD, SIC is an important driver of the

ocean carbon cycle. It constitutes a physical barrier for ex-

change of CO2 between the ocean and the atmosphere lead-

ing to an accumulation of carbon-rich waters below the sea

ice (Takahashi, 2009). It also plays a large role in the seasonal

timing of algal blooms (Wassmann et al., 2010). Compared to

the MLD, seasonal variations of sea ice are strongly and di-

rectly responsive to the seasonal fluctuations of atmospheric

forcing. Therefore, it matters that the model is able to accu-

rately capture the spatial distribution and timing of annual

minimal and maximal sea ice covers in both Hemispheres.

For this purpose, we evaluate differences between compos-

ites of simulated and observed SIC (Cavalieri et al., 1996) for

September and March over the 1986–2005 period (Fig. 8). In

the Arctic Ocean, CNRM-ESM1 underestimates SIC in the

Beaufort, Chukchi and eastern Siberian seas in September,

while too much sea ice tends to be present in the Barents Sea

(Fig. 8a). In March, SIC is largely overestimated in the Bar-

ents and Nordic seas, as well as in the Bering and Okhotsk

seas on the Pacific Ocean side, showing that the simulated

winter sea-ice edge spreads too far south and east in these re-

gions (represented with iso-15 % in Fig. 8c). On the contrary,

SIC is slightly underestimated in the Labrador Sea and Baf-

fin Bay in March (Fig. 8c). This too far north ice edge comes
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Figure 9. Taylor diagrams showing the correspondence between model results and observations for CNRM-ESM1 and CNRM-CM5.2.

Near-surface temperature (T2 m), precipitation (PR) and photosynthetically available radiation (PAR) are used to assess model performance

over land surface. Sea surface temperature (SST), sea surface salinity (SSS), mixed-layer depth (MLD) and precipitation (PR) are used to

assess model performance over ocean. Filled and empty symbols indicate skills for CNRM-ESM1 and CNRM-CM5.2, respectively. The size

of the symbols indicates whether statistics were computed from annual mean climatology or seasonal average (JFM, AMJ, JAS, OND) over

1986–2005.

along with positive SST biases in this region (Fig. 6a), and

explains why the simulated deep convection zone is too large

and shifted northward in CNRM-ESM1 as shown in Fig. 7.

In the Antarctic Ocean, Fig. 8b shows that the spatial

structures of SIC biases mirror somehow the model–data

mismatch in MLD as shown in Fig. 7b. That is, in austral

winter, CNRM-ESM1 underestimates SIC where erroneous

open-ocean deep convection zones are located, namely, off-

shore Wilkes Land in the Indian Ocean sector (Fig. 8b). Con-

versely, too much sea ice is simulated in the Atlantic Ocean

sector. As in CNRM-CM5.1, simulated summer Antarctic

SIC is strongly underestimated, with very little sea ice sur-

viving summer melt in the Weddell and Ross seas (Fig. 8d).

4.2.3 Comparison with previous model version

In the following, we compare the skill of CNRM-ESM1 to

the closest version of CNRM-CM5 climate model, called

CNRM-CM5.2. Figure 9 summarizes skill-assessment met-

rics for CNRM-ESM1 and CNRM-CM5.2 in terms of major

physical drivers of the global carbon cycle (field maps and

patterns of errors are presented in Figs. S2 to S7).

The Taylor diagram for land-surface physical drivers

clearly demonstrates that CNRM-ESM1 and CNRM-CM5

display comparable skills except for PR (Fig. 9a). Most of the

differences in skills are indeed not significant at a 95 % con-

fidence level; models differ solely in terms of PR for which

CNRM-ESM1 produces slightly weaker correlation coeffi-

cients.

Over the ocean, Fig. 9b shows further differences be-

tween both models. The weakest difference in skill concerns

SST for which both models display good agreement with

WOA2013. With regard to the MLD, CNRM-ESM1 dis-

plays a slightly better agreement than CNRM-CM5.2 with

observation-derived MLD (Sallée et al., 2010) in terms of

correlation but strongly underestimates the spatial varia-

tions of this field. Major differences are noticeable for SSS.

CNRM-ESM1’s skill is clearly lower than that of CNRM-

CM5.2. To investigate this difference, we have computed the

skill of PR over the ocean, since CNRM-CM5.2 contributes

to the spatiotemporal distribution of the SSS concomitantly

to the runoff and the sea-ice seasonal cycle. Skill in PR

over the ocean is similar for both models (blue diamonds on

Fig. 9b). A similar finding is noticed for simulated runoff

(not shown). Therefore, the difference in simulated SSS be-

tween the two models can be attributed to the revised water

conservation interface and erroneous distribution of sea-ice

cover. In addition, changes in coupling frequency (i.e., 24 to

6 h) might be at the origin of differences in skills between the

two models since it impacts sea-ice cover (Fig. 10).

From the small differences in skill between the two mod-

els, we can assume that the inclusion of the global carbon cy-

cle and the biophysical coupling have not noticeably altered

the simulated mean-state climate in CNRM-ESM1 compared

to that of CNRM-CM5.2.

4.2.4 Terrestrial carbon cycle

Now that the physical drivers of the global carbon cycle have

been evaluated, we assess the ability of CNRM-ESM1 to

replicate available modern observations of the terrestrial car-

bon cycle. We focus on gross primary productivity (GPP),

vegetation autotrophic respiration (Ra) and soil organic car-

bon content (cSoil) that control the net natural fluxes of
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Figure 10. Impact of coupling frequency on sea-ice cover (SIC) as simulated by CNRM-ESM1 averaged over 1986–2005. Top panels

represent composite of September sea-ice cover, while bottom panels are for March. Iso-15 % of SIC serves as comparison between model

results using a 6 h coupling frequency (dashed lines) and those using a 24 h coupling frequency (solid lines).

CO2 on land. Simulated budget of vegetation biomass and

total ecosystem respiration (TER; sum of autotrophic and

heterotrophic respirations) are evaluated against available

published estimates. While we can assess the capability of

CNRM-ESM1 to fix and emit carbon on land, it is important

to note that the CO2 fluxes due to land use changes are not

taken into account in this analysis.

To evaluate CNRM-ESM1 GPP, we rely on two streams

of data, namely, the FluxNet-Multi-Tree Ensemble (FluxNet-

MTE, Jung et al., 2011) and the MOD17 satellite-derived ob-

servations (Running et al., 2004). Figure 11 shows that the

annual mean GPP as simulated by CNRM-ESM1 is slightly

too strong compared to the observed estimates. The largest

model–data mismatch is found in the tropics between 10◦ N

and 20◦ S, where CNRM-ESM1 simulates erroneous patterns

of high GPP. Over Amazonia, CNRM-ESM1 fails to repro-

duce the zonal gradient of GPP. Regions of high GPP are in

association with overestimated PAR and, to a lesser extent,

underestimated PR in summer (Figs. 4 and 5, respectively;

see also Fig. S8). The geographical structure of simulated

GPP fits the observed over the African and Asian rain forest

but its amplitude is overestimated by about 3 gC m−2 day−1.

This regional overestimation impacts both the zonal and

global GPP budget, which are larger than the published esti-

mates except> 60◦ N (Table 2). This stronger-than-observed

GPP constitutes a systematic bias of the current version of

ISBA. In an offline simulation, Carrer et al. (2013b) showed

that ISBA forced with PGF overestimates global GPP by
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Figure 11. Annual-mean terrestrial gross primary production (GPP). Values are given for (a) observation-derived FluxNet-MTE (Jung et al.,

2011) averaged over 1986–2005, (b) satellite-derived observation from MODIS over 2000–2013 and (c) CNRM-ESM1 over 1986–2005.

60 Pg C year−1. Regional biases in GPP are partly compen-

sated by overestimated Ra (Fig. 12). Simulated Ra agrees

reasonably well with satellite-derived estimates except in the

tropics. This bias compensation between GPP and Ra is an-

alyzed in detail by Joetzjer et al. (2015). In this study, the

authors demonstrate that the current parameterizations of

Ra and water stress in ISBA are not adequate for tropical

broadleaf trees (Fig. 1). Considering that these results were

deduced from offline simulations forced with in situ observa-

tions, we can assume here that biases in GPP and Ra result

from a combination of erroneous ecophysiological parame-

terizations and biases in physical drivers in CNRM-ESM1.

Despite these biases, the global partitioning between veg-

etation biomass and soil carbon is realistic with 596.7 and

2105 Pg C compared to the observed estimates of 560± 94

(DeFries et al., 1999) and 1750± 250 Pg C (Houghton,
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Table 2. Regional and global budget of gross primary production (GPP) and terrestrial ecosystem respiration (TER) as simulated by the

CNRM-ESM1 and estimated from the FluxNet-MTE data product. Values in brackets indicate the ratio between the autotrophic respiration

(Ra) and TER. The uncertainties for the FluxNet-MTE data product derive from the regional partitioning of global mean uncertainties

published in Jung et al. (2011). GPP and TER fluxes are determined from a yearly average over 1986–2005.

Regions CNRM-ESM1 MTE-FluxNet CNRM-ESM1 MTE-FluxNet

GPP [Pg C year−1] TER [Pg C year−1]

High-latitude north (> 60◦ N) 2.6 4.8± 0.8 2.5 (38 %) 3.1± 0.8

Mid-latitude north (20–60◦ N) 37.9 34.8± 2.7 36.23 (52 %) 29.9± 2.7

Tropics (20◦ S–20◦ N) 73.2 62.3± 1.9 72.58 (72 %) 54.8± 1.9

Mid-latitude south (20–60◦ S) 16.1 9.3± 0.6 15.6 (56 %) 8.5± 0.6

Global 130.0 111.3± 6.0 126.9 (64 %) 96.4± 6.0

Figure 12. Annual-mean autotrophic respiration (Ra) as estimated from MODIS over 2000–2013 (a) and as simulated by CNRM-ESM1

(b) over 1986–2005. Panel (c) represents the zonal-cumulated Ra in function of latitude for both satellite-derived estimates (in blue) and

CNRM-ESM1 (in red).

2007), respectively. Furthermore, the geographical structure

of cSoil agrees well with Harmonized World Soil Database

(JRC, 2012) except in the Northern Hemisphere (Fig. 13).

Although several processes are missing in ISBA to accurately

simulate high-latitude carbon stock (e.g., permafrost dynam-

ics, bacterial degradation of the litter, fire-induced turnover),

a part of cSoil underestimation can be attributed to the sum-

mer warm bias in near-surface temperature (Fig. 3b). This

latter tends to enhance heterotrophic respiration of the soil,

reducing the soil organic matter (R > 0.6, Fig. S2).

Table 2 shows that CNRM-ESM1 overestimates globally

terrestrial ecosystem respiration (TER) when compared to

the up-scaled measurements of FluxNet-MTE. In the tropics,

simulated TER fluxes are 32 % higher than the FluxNet-MTE

estimates. As mentioned above, this bias is essentially due to

an unrealistic Ra, which amounts to 72 % of TER over the

sector in the model. Table 2 shows that the simulated TER is

126.9 Pg C year−1, larger than estimates published by Jung et

al. (2011) of 96.4± 6.0 Pg C year−1. Nevertheless, the simu-

lated net land carbon sink (LCS), which can be estimated

by subtracting TER from GPP, is 2.19 Pg C year−1 in aver-

age over the 1986–2005 period and remains within the range

of values estimated from various observation-based methods

(IPCC, 2007, 2013; Le Quéré et al., 2014).

4.2.5 Ocean carbon cycle

Compared to the terrestrial carbon cycle, the ocean carbon

cycle has already been implemented in previous versions of

CNRM-CM5 (Séférian et al., 2013). The modeled marine

biogeochemistry components have already benefited from

detailed evaluation against modern observations (Frölicher

et al., 2014; Séférian et al., 2013), analyses of future pro-

jections (Laufkötter et al., 2015) and sensitivity benchmark-

ing (Schwinger et al., 2014). The major difference between

CNRM-ESM1 and previous versions of CNRM-CM5 includ-

ing a marine biogeochemistry module lies in the represen-

tation of ocean tracers in the deep ocean. Figure 14 shows

that the representation of oxygen, phosphate, nitrate and sil-

icate fields was improved in CNRM-ESM1 at depth, except

around 1000 m where the strong flow of NADW tends to al-

ter the distribution of tracers. Below 1500 m, the tracer dis-

tribution is in reasonable agreement with the observations

with correlation coefficients ∼ 0.8. This represents a notice-

able improvement with respect to the CNRM-CM5 oxygen
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1440 R. Séférian et al.: Development and evaluation of CNRM Earth system model – CNRM-ESM1

Figure 13. Stocks of modern soil organic carbon (cSoil) as estimated from the FAO/IIASA/ISRIC/ISSCAS/JRC (2012) Harmonized World

Soil Database (a) and as simulated by CNRM-ESM1 (b) averaged over 1986–2005. Panel (c) represents the zonally cumulated soil organic

stock in function of latitude for both observation-based estimates (in blue) and CNRM-ESM1 (in red).
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Figure 14. Taylor diagrams showing the correspondence between model results and observations for CNRM-ESM1 and CNRM-CM5.2

(Séférian et al., 2013). Climatological distribution over 1986–2005 of simulated oxygen (O2), phosphate (PO4), nitrate (NO3) and silicate

(SiO2) concentrations are assessed against WOA2013 data product. Filled and empty symbols indicate skills for CNRM-ESM1 and CNRM-

CM5, respectively. The size of the symbols indicates the depth at which statistics have been computed.

distribution (R ∼ 0.4). In addition to nutrients, the vertical

distribution of carbon-related fields like dissolved inorganic

carbon has been substantially improved in CNRM-ESM1

compared to CNRM-CM5 (Fig. S9), showing a much bet-

ter agreement with Global Data Analysis Project (GLODAP)

observations (Key et al., 2004; Sabine et al., 2004).

In terms of carbon cycling into the ocean, Fig. 15 shows

the simulated mean annual sea–air CO2 fluxes from 1986
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Figure 15. Annual-mean ocean carbon fluxes (fgCO2) as estimated by the Takahashi et al. (2010) database (a) and as simulated by CNRM-

ESM1 averaged over 1986–2005 (b). Panel (c) represents the zonal-cumulated carbon fluxes in function of latitude for both observation-based

estimates (in blue) and CNRM-ESM1 (in red). Negative (positive) fluxes indicate an uptake (outgassing) of CO2.

to 2005 together with observation-based estimates by Taka-

hashi et al. (2010) using 2000 as a single reference year.

While the model broadly agrees with the observations in

terms of spatial variation for regions of carbon sink (i.e.,

North Atlantic, North Pacific and between 50 and 40◦ S),

it displays a too strong source of carbon to the atmosphere

in the equatorial Pacific and in the Southern Ocean. In the

equatorial Pacific, the model–data mismatch is likely related

to the decision of Takahashi et al. (2010) to exclude obser-

vations from El Niño years from their analysis. Since sur-

face ocean pCO2 of the eastern tropical Pacific during El

Niño events tends to be lower than the long-term mean,

the Lamont–Doherty Earth Observatory (LDEO) climatol-

ogy tends to underestimate outgassing of CO2 in the equa-

torial Pacific over the 1986–2005 period. This hypothesis is

validated when comparing model results against recent data

products derived from statistical Monte Carlo Markov chain

or neural network gap-filling methods (Landschützer et al.,

2014; Majkut et al., 2014, Fig. S10). In the Southern Ocean,

the model–data mismatch is especially pronounced south of

60◦ S. This bias in fgCO2 is associated with overestimated

mixing (Fig. 7), which tends to bring too much deep carbon-

rich water masses to the surface, enhancing the outgassing

of CO2. CNRM-ESM1 results display similar discrepan-

cies when compared to other recent observation-derived data

products, which coincide with regard to a moderate CO2 out-

gassing south of 60◦ S (Fig. S10). That said, simulated pat-

terns of sea-to-air carbon fluxes in this domain qualitatively

agree with the data, showing a combination of source and

sink regions.

The storage of anthropogenic CO2 by the oceans

(COANTH
2 , Fig. 16) provides a complementary view of the

ocean carbon fluxes by revealing the chronology of the ocean

CO2 uptake from preindustrial to modern state. Here, we

have chosen to stick to the available observation-derived esti-

mates (GLODAP), which use year 1994 as a single reference

year (Key et al., 2004; Sabine et al., 2004). In order to ac-

count for the interannual variability of the simulated fields,

we chose to analyze yearly average results from CNRM-

ESM1 over 1990–2005 (Fig. 16). Furthermore, computation

of COANTH
2 is not straightforward since natural and anthro-

pogenic pools of carbon are not treated separately in PISCES.

We approximate consequently COANTH
2 from the difference

between modern and preindustrial stocks of dissolved inor-

ganic carbon. Negative values were set to zero in the compu-

tation since they are essentially generated from differences

in simulated interannual variability. Ideally, this computa-

tion would have required a historical simulation with con-

stant preindustrial atmospheric CO2 for the sea-to-air CO2

fluxes. Figure 16 shows that the maximum COANTH
2 is con-

centrated in the North Atlantic region. This feature is linked

to the large-scale circulation in the surface layer of the ocean,

which converges in the North Atlantic, before being exported

to depth with the flow of NADW (Pérez et al., 2013). The

Southern Ocean also stores a large fraction of COANTH
2 in

association with the subduction of modal and intermediate

water masses (Sallée et al., 2012). Compared to this global

view, CNRM-ESM1 displays features that are broadly con-

sistent with the COANTH
2 estimates. However, the stronger

flow of NADW and AABW leads to a depletion of the stock

of COANTH
2 between 0 and 1200 m (Fig. 16c). This mecha-

nism leads to an increase in the stock of COANTH
2 at depth.

Over the 1850–1994 period, the model takes up a total of

100.8 Pg C, which is in agreement with the observations that

suggest a net uptake of 106± 17 Pg C over the same period

(Khatiwala et al., 2013; Sabine et al., 2004).
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Figure 16. Annual-mean zonal-average anthropogenic carbon (COANTH
2

) across the Atlantic and Pacific oceans as simulated by CNRM-

ESM1 averaged over 1990–2005 (a) and as estimated from the GLODAP database compiling data up to 1994 (b). Panel (c) represents the

mean-annual bias in zonal structures between model and observation-based estimates in COANTH
2

.

4.2.6 Ecosystem dynamics

In this section, we assess the performance of CNRM-ESM1

in terms of two ecosystem dynamics parameters, namely, the

peak leaf area index (LAImax) and the ocean surface chloro-

phyll (Chl). Both parameters have been monitored continu-

ously from space since the 1980s and the 1990s, respectively,

providing a suitable set of indirect observations to assess the

simplified ecosystem representation embedded in Earth sys-

tem models.

With regard to LAImax, Fig. 17 shows that the model

agrees well with satellite-derived observations (Zhu et al.,

2013) except over Africa and Asia with overestimated val-

ues. As such, this ecosystem parameter behaves similarly

to GPP and Ra, responding to biases in PR and PAR. In

the northern mid-latitudes, LAImax is slightly overestimated

compared to the satellite-derived observations but remains in

the low range of values simulated by other CMIP5 Earth sys-

tem models evaluated in Anav et al. (2013b). Using an offline

simulation forced with atmospheric reanalyzes (Szczypta et

al., 2014) shows similar biases in LAI over northern Eu-

rope as those noticed in CNRM-ESM1. It is thus likely that

missing processes like forest and crop management or fire-

induced disturbance might induce an overestimated LAImax.

With regard to ocean Chl, Fig. 18 shows that CNRM-

ESM1 displays a reasonable agreement with satellite-derived

observations (O’Reilly et al., 1998). Although regional pat-

terns of Chl concentrations were improved compared to that

of CNRM-CM5 (Séférian et al., 2013), major model dis-

crepancies are found in oligotrophic gyres and equatorial up-

wellings. Biases are more pronounced in the Southern Hemi-

sphere where the model fails to produce very low Chl in the

southern Pacific gyres. CNRM-ESM1 also fails at capturing

western border high Chl concentrations in relation with the

equatorial upwelling. Underestimated Chl concentrations in

upwelling systems are essentially due to biases in surface

wind forcing as well as to the coarse horizontal and ver-

tical resolution of the ocean model. This model limitation
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Figure 17. Composite of yearly maximum of leaf area index (LAImax) as estimated from AVHRR satellite observations of Zhu et al. (2013)

(a) and as simulated by CNRM-ESM1 (b) over 1986–2005. Panel (c) represents the zonal-average LAImax in function of latitude for both

observation-based estimates (in blue) and CNRM-ESM1 (in red).

Figure 18. Annual-mean surface chlorophyll concentrations (Chl) as estimated from SeaWiFS over 1997–2010 (a) and as simulated by

CNRM-ESM1 (b) over 1986–2005. Panel (c) represents the zonal-averaged Chl in function of latitude for both satellite-derived estimates (in

blue) and CNRM-ESM1 (in red).

partly explains why Chl concentrations are underestimated

in high-latitude oceans. In these domains, high coastal con-

centrations are captured from satellite sensors but cannot be

resolved by the model due to its coarse resolution.

4.3 Recent evolution of the climate system

In the present section, we analyze the transient response of

various climate indices to the recent climate forcing from

1901 to 2005. We focus on the near-surface temperature

(T2 m), the September Arctic sea-ice extent (SIE), the 0–

2000 m ocean heat content (OHC) as well as the land and

ocean carbon sinks (LCS and OCS, respectively). Over this

period, these climate indices are analyzed with their nom-

inal values except for T2 m and OHC that are represented

with respect to the 1961–1990 and the 1955–2005 periods,

respectively. Figure 19 illustrates how these various climate

indices evolve from 1901 to 2005 and Table 3 summarizes

their mean-state, interannual variability (IAV) and decadal

trends over the 1986–2005 period.

Figure 19 shows that the transient response of T2 m agrees

reasonably well with modern observations (Morice et al.,

2012). At the end of the last decades of the historical sim-

ulation (i.e., 1986–2005), CNRM-ESM1 overestimates the

T2 m increase, a discrepancy widely shared by other CMIP5

Earth system models (Huber and Knutti, 2014; Kosaka and

Xie, 2013; Meehl et al., 2011; Watanabe et al., 2013). The

amplitude of the simulated recent IAV is in line with the ob-

servations (Table 3). In particular, the model simulates strong

cooling followed by stronger warming after the 1991 mount

Pinatubo eruption. Contrasting with temperature, the sim-

ulated SIE poorly agrees with observation-based estimates

(Cavalieri et al., 1996; Comiso, 1999; Rayner et al., 2003).

Indeed, CNRM-ESM1 underestimates the mean-state SIE by

about 2× 106 km2 and overestimates not only the IAV but

www.geosci-model-dev.net/9/1423/2016/ Geosci. Model Dev., 9, 1423–1453, 2016
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Figure 19. Time series of various climate indices as monitored from available observations (blue solid line) and as simulated by CNRM-

ESM1 (red solid line) since 1901 with global near-surface temperature (a), September Arctic sea-ice extent (b), 0–2000 m ocean heat content

(c), land carbon flux (d) and ocean carbon flux (e). Hatching represents the ±2σ estimated from the ensemble deviation between the 100

members of the HadCRUT4 database (Morice et al., 2012) for near-surface temperature, the standard deviation between two National Snow

and Ice Data Center estimates (Fetterer et al., 2002; Comiso, 1999) and Hadisst (Rayner et al., 2003) databases, the pentadal variability of

the observed ocean heat content (Levitus et al., 2012) and spread between Global Carbon Project reconstructions for both land and ocean (Le

Quéré et al., 2014). For both OCS and LCS, positive (negative) fluxes indicate an uptake (outgassing) of CO2.

also the decadal decrease in extent (Table 3). Therefore, in

terms of Arctic sea ice, the skill of CNRM-ESM1 is simi-

lar to CNRM-CM5 as detailed in Massonnet et al. (2012).

A better agreement is found for OHC for which CNRM-

ESM1 results agree with observation-based estimates in term

of mean-state and decadal trends (Fig. 19, Table 3). Only the

recent IAV in OHC is underestimated by the model, but the

latter is poorly constrained by the observations with regard

to the small amount of data available below 1000 m (Levitus

et al., 2012, 2009; Willis et al., 2004).

The recent evolution of LCS and OCS agrees with the

range of observation-based and model-derived estimates (Le

Quéré et al., 2014; Takahashi et al., 2010) with an uptake

of CO2 of about 2.1 and 1.7 Pg C year−1 for land and ocean,
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Table 3. Modern mean-state, interannual variability (IAV) and decadal trends of various global climate indices: the near-surface temperature

(T2 m), Arctic September sea-ice extent (SIE), 0–2000 m ocean heat content (OHC) as well as the land and ocean carbon sinks (LCS and

OCS, respectively). For LCS and OCS, positive values indicate an uptake of CO2 by land and ocean. All metrics are computed over the

1986–2005 period for both model and observations. Decadal trends are estimated from linear regression over the 1986–2005 period. IAV is

estimated from the standard deviation of the detrended time series.

CNRM-ESM1 Observations

mean 0.43 0.30± 0.08 (Morice et al., 2012)

T2 m [◦C] IAV 0.13 0.10

trend 4.0× 10−2 2.6× 10−2

mean 4.68 6.70± 0.26 (Comiso, 1999; Fetterer et al., 2002; Rayner et al., 2003)

SIE [106 km2] IAV 1.14 0.46

decadal −16× 10−2
−6.8× 10−2

mean 3.34 3.50± 1.42 (Levitus et al., 2012)

OHC [1022 J] IAV 0.69 1.43

trend 0.44 0.50

mean 2.19 2.06± 1.0 [models] (Le Quéré et al., 2014)

2.19± 0.8 [residual land carbon sink] (Friedlingstein et al., 2010)

LCS [Pg C year−1] IAV 0.59 1.01

trend 0.3× 10−2 1.8× 10−2

mean 1.65 1.87± 0.4 [models] (Le Quéré et al., 2014)

2.15± 0.5 [obs.-models combination]

2.0± 0.7 (Takahashi et al., 2010)

OCS [Pg C year−1] IAV 0.09 0.14

trend 4.5× 10−2 1.8× 10−2

respectively (Table 3). Underestimation in mean-state OCS

is essentially due to the stronger river-induced offshore out-

gassing of CO2, which is about 0.9 Pg C year−1 in the model

and assumed to be of 0.45 Pg C year−1 in the observation-

derived estimates. Both OCS and LCS IAV are underesti-

mated in CNRM-ESM1 compared to the estimates. For OCS

IAV, this behavior is found in most ocean biogeochemical

models as shown in Wanninkhof et al. (2013). Indeed, sim-

ulated IAV from biogeochemical models substantially con-

trasts with the large IAV estimated from atmospheric inver-

sion, which also contributes to the mix of observations and

model reconstructions that compose the data (Le Quéré et

al., 2014). For the land carbon cycle, underestimated LCS

IAV may be related to the under-sensitivity of ISBA to cli-

mate variability in contrast with the over-sensitivity to the ris-

ing CO2, a behavior shared with other land-surface process-

based models (Piao et al., 2013). Note that differences in

phase between simulated and estimated LCS were expected

since the land sink of carbon is approximated from the dif-

ference between atmospheric growth rate, land use emissions

and ocean carbon sink (Friedlingstein et al., 2010).

5 Summary and conclusions

In this article, we evaluate the ability of the Centre National

de Recherches Météorologiques Earth system model version

1 (CNRM-ESM1) to reproduce the modern carbon cycle and

its prominent physical drivers. CNRM-ESM1 derives from

the atmosphere–ocean general circulation model CNRM-

CM5 (Voldoire et al., 2013) that has contributed to CMIP5

and to the fifth IPCC assessment report. This model em-

ploys the same resolution and components as CNRM-CM5

although it uses updated versions of the atmospheric model

(ARPEGE-CLIMAT v6.1), surface scheme (SURFEXv7.3)

and sea-ice model (GELATO6) in addition to a 6 h coupling

frequency. Several biophysical coupling processes are en-

abled in CNRM-ESM1 thanks to the terrestrial carbon cy-

cle module ISBA (Gibelin et al., 2008) and the marine bio-

geochemistry module PISCES (Aumont and Bopp, 2006).

They consist of the land biosphere-mediated evapotranspi-

ration feedback and the ocean biota heat-trapping feedbacks.

Since an earlier version of CNRM-CM5 including the ma-

rine biogeochemistry module PISCES was distributed and

used in several studies (Frölicher et al., 2014; Laufkötter et

al., 2015; Schwinger et al., 2014; Séférian et al., 2013), the

inclusion of the terrestrial carbon cycle module ISBA con-

stitutes the major advancement in the CNRM-ESM1 devel-

opment. Although the ISBA terrestrial carbon cycle module

was developed at CNRM in the 2000s, it had never been cou-

pled to an atmosphere–ocean model and run for long climate

simulations. Here, we show that ISBA embedded in CNRM-

ESM1 reproduces the general pattern of the vegetation and

www.geosci-model-dev.net/9/1423/2016/ Geosci. Model Dev., 9, 1423–1453, 2016
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Figure 20. Skill-score matrix based on (a) spatial correlation and (b) globally averaged root mean squared error for relevant fields of the

simulated carbon cycle from current generation Earth system models. Leaf area index (LAI), gross primary productivity (GPP), autotrophic

respiration (Ra), heterotrophic respiration (Rh) and soil carbon (cSoil) are used to assess model skill in terms of modern mean-state terrestrial

carbon cycle. Sea–air carbon flux (fgCO2), surface chlorophyll (Chl) and surface concentrations of oxygen (O2), nitrate (NO3), phosphate

(PO4) and silicon (Si) are used to evaluate the skill of the current models at replicate modern mean-state ocean carbon cycle. Both models and

observed fields are averaged over time from 1986 to 2005 to determine skill score metrics, except for cSoil, O2, NO3, PO4, Si observations

(only a modern mean-state climatology is available). Black squares indicate that models fields are not available (implying that these fields

are either not simulated by the model or not published on the Earth System Grid Federation, ESGF).

soil carbon stock over the last decades. Although the pho-

tosynthesis scheme in ISBA differs from the other state-of-

the-art process-based models (e.g., Dalmonech et al., 2014),

the model displays similar behavior. That is, it overestimates

both the land–vegetation gross primary productivity and the

terrestrial ecosystem respiration. The compensation between

these two fluxes leads to a correct land carbon sink over the

modern period that agrees with the most up-to-date estimates

(Friedlingstein et al., 2010; Jung et al., 2011; Le Quéré et

al., 2014). The largest model–data mismatch is found in the

tropics where the gross uptake of CO2 from the vegetation is

strongly compensated by an overestimated autotrophic res-

piration. Maybe apart from this compensating mechanism,

our analysis demonstrates that the terrestrial carbon cycle

module of CNRM-ESM1 displays similar performances as

other IPCC-class vegetation models (Figs. 20, S11 and S12;

Geosci. Model Dev., 9, 1423–1453, 2016 www.geosci-model-dev.net/9/1423/2016/
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see also details in Anav et al., 2013a, and Piao et al., 2013).

The future effort in development will be oriented towards a

better parameterization of the carbon absorption and respira-

tion by the vegetation in association with a better represen-

tation of ecophysiological processes as detailed in Joetzjer

et al. (2015). Further processes like fire-induced disturbance,

mortality or linked with permafrost will also be included in

order to improve the representation of the live biomass and

soil carbon pool.

With regard to the marine biogeochemistry component,

CNRM-ESM1 produces results in terms of biogeochemical

variables that are comparable to other IPCC-class ocean bio-

geochemical models (Fig. 20). The global distribution of bio-

geochemical tracers such as oxygen, nutrients and carbon-

related fields has been improved with respect to an earlier

model version presented in Séférian et al. (2013) (Figs. 14

and S9). This change is attributed to a stronger northward

flow of deep water masses from the Southern Ocean, which

improves the vertical distribution of biogeochemical tracers.

However, the strengthening of the meridional flow of deep

water masses has also distorted the vertical structure of some

carbon-related fields. Indeed, the unrealistic flow of North

Atlantic deep water of about 26.1 Sv tends to deplete the

stock of anthropogenic carbon storage between surface and

1200 m (Fig. 16c) and consequently to increase it at depth.

Since biases in anthropogenic carbon storage compensate

across the water column, the simulated anthropogenic car-

bon storage agrees with 1994 observation-based estimates.

With regard to the ocean carbon sink, CNRM-ESM1 simu-

lates a global ocean carbon sink that falls within the lower

range of the combination of observation and model estimates

over the recent years (Le Quéré et al., 2014). This slightly un-

derestimated carbon sink is attributed to larger outgassing of

natural CO2 induced by the riverine input, which fits the up-

per range of values documented in the fifth IPCC assessment

report (IPCC, 2013). Future development will target a bet-

ter representation of this flux of carbon in close relationship

with the recent development on the land-surface hydrology

(Decharme et al., 2013).

We show that CNRM-ESM1 displays results comparable

to those of CNRM-CM5 in spite of the inclusion of the global

carbon cycle and various biophysical feedbacks. Simulated

near-surface temperature, precipitation, incoming shortwave

radiation over continents as well as temperature, salinity and

mixed-layer depth over oceans broadly agree with observa-

tions or satellite-derived product. Except for the salinity and

the mixed-layer depth, CNRM-ESM1 display quite similar

skill at simulating physical drivers of the global carbon cycle

compared to CNRM-CM5. Such a comparison demonstrates

the reliability of this model to produce suitable simulations

for future climate change projection and impacts studies.

In addition to preindustrial control and historical simula-

tions discussed in this article, several other simulations were

performed with CNRM-ESM1 following both the Coupled

Model Intercomparison Project Phase 5 (CMIP5) and the

Geoengineering Model Intercomparison Project (GeoMIP)

experimental design. The CNRM-ESM1 model outputs (re-

ferred as “CNRM-ESM1”) are available for download on

Earth System Grid Federation (ESGF) under CMIP5 and Ge-

oMIP projects.

Code availability

A number of model codes developed at CNRM, or in collab-

oration with CNRM scientists, is available as open-source

code (see https://opensource.cnrm-game-meteo.fr/ and http:

//www.nemo-ocean.eu/). However, this is not the case for the

Earth system model presented in this paper. Part of its code

is nevertheless available upon request from the authors of the

paper.

The Supplement related to this article is available online

at doi:10.5194/gmd-9-1423-2016-supplement.
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