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Abstract

Gene regulatory circuits must contend with intrinsic noise that arises due to finite numbers
of proteins. While some circuits act to reduce this noise, others appear to exploit it. A striking
example is the competence circuit in Bacillus subtilis, which exhibits much larger noise in
the duration of its competence events than a synthetically constructed analog that performs
the same function. Here, using stochastic modeling and fluorescence microscopy, we show
that this larger noise allows cells to exit terminal phenotypic states, which expands the
range of stress levels to which cells are responsive and leads to phenotypic heterogeneity
at the population level. This is an important example of how noise confers a functional bene-
fitin a genetic decision-making circuit.

Author Summary

Fluctuations, or “noise”, in the response of a system is usually thought to be harmful. How-
ever, it is becoming increasingly clear that in single-celled organisms, noise can sometimes
help cells survive. This is because noise can enhance the diversity of responses within a cell
population. In this study, we identify a novel benefit of noise in the competence response
of a population of Bacillus subtilis bacteria, where competence is the ability of bacteria to
take in DNA from their environment when under stress. We use computational modeling
and experiments to show that noise increases the range of stress levels for which these bac-
teria exhibit a highly dynamic response, meaning that they are neither unresponsive, nor
permanently in the competent state. Since a dynamic response is thought to be optimal for
survival, this study suggests that noise is exploited to increase the fitness of the bacterial
population.
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Introduction

Snapshots of bacterial populations often reveal large phenotypic heterogeneity in the gene
expression states of its composite individuals. Such phenotypic heterogeneity in a clonal popu-
lation of bacterial cells in a single environment has significant consequences for how well the
organisms can adapt and survive. On the one hand, a population with little or no heterogeneity
may allow for all cells to take advantage of certain optimal conditions to which the population
is exposed. In this case, heterogeneity is suboptimal and therefore detrimental to fitness. On
the other hand, numerous recent studies have shown that heterogeneous populations allow for
cells to account for uncertainty in future environmental conditions [1-6]. In this case, hetero-
geneity is beneficial to fitness. A straightforward way to maintain high phenotypic heterogene-
ity is for each cell to exhibit a dynamic response. This allows each cell in its turn to transition
among the various states of the population, e.g. via switching, pulsing, or oscillatory dynamics.
The heterogeneity is intrinsically encoded in each cell, and is often enhanced by, or even
entirely due to, stochasticity, or “noise”, at the molecular level [2-4, 6].

The ability of molecular noise to cause stochastic phenotype changes has been demonstrated
in a number of biological systems. In the context of enzymes, several studies have explored
how intrinsic noise due to low numbers of molecules, or even a single molecule, can have dra-
matic effects through the amplified actions of a few enzymes [7, 8]. Moreover, studies of bacte-
rial operons, including in the context of bacterial persistence, have suggested that stochasticity
could be encoded in the interactions between genes in a genetic regulatory network by ensuring
that certain operon states are exposed to low numbers of molecules [9-11]. Recently, a theoret-
ical study has demonstrated the conditions for when deterministic approaches to modeling
genetic circuit dynamics break down, due to amplified effects of rare events caused by a small
number of regulators [12]. Together, these works suggest that phenotypic heterogeneity could
be rooted in low-molecule-number noise, and that this noise could in turn be encoded in the
architecture of genetic regulatory networks.

The competence response of the gram-positive bacterium Bacillus subtilis provides a strik-
ing example of dynamically maintained phenotypic heterogeneity. Under stress, B. subtilis
undergoes a natural and transient differentiation event, termed competence, that allows the
organism to incorporate exogenous genes into its genome. Previous studies have shown that
entry into the competent state is controlled by a genetic circuit that that can be tuned to one of
three dynamical regimes [13]: an excitable regime at low stress levels, where cells rarely and
transiently enter the competent state; an oscillatory regime at intermediate stress, where cells
oscillate in and out of the competent state; and a mono-stable regime at high stress, where cells
remain in the competent state. Importantly, oscillatory (and repeatably excitable) dynamics
lead to phenotypic heterogeneity, since cells are dynamically transitioning in and out of the
competent state (see Fig 1 A). This heterogeneity is especially important to the survival of B.
subtilis: if no cells respond, competence is not exploited, and the population may succumb to
the stress. On the other hand, if all cells are permanently in the competent state, this can also
be fatal to the population, since competence has been shown to reduce the cell growth rate and
prevent cell division due to the inhibition of FtsZ [14, 15]. Therefore, maintaining a dynamic
competence response, and therefore a heterogenous population, is thought to be crucial to sur-
vival under stress.

The competence circuit includes a negative feedback loop, which is known to play a critical
role in controlling the exit from competence [15], the duration of competence [13], the vari-
ability of the duration of competence [16], and the integration of signals into competence that
permit the existence of a transient competent state [17]. However, the effects of noise on the
dynamics of the competence response are only partially understood. Previous work has shown
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Fig 1. Schematic illustrating phenotypic heterogeneity and the effects of noise. (A) When all cells in a population exhibit either no response (left) or a
high response (right), then the population is homogenous. In contrast, if individual cells exhibit a dynamic response (middle), this leads to a heterogenous
population, with a fraction f of cells in the responsive state at any given time. (B) Intrinsic noise affects the dynamics of the response. Without intrinsic noise,
the viable stress level response range is narrow as indicated by the black dashed lines since it is limited to deterministic dynamics. However, for the B.
subtilis competence response, we find in this study that noise expands the viable response range: the range of stress levels over which f remains neither 0
nor 1. This expansion is illustrated by the blue dashed lines indicating the extent where f, solid blue line, remains between 0 and 1. f permits a heterogeneous

population when between 0 and 1.

doi:10.1371/journal.pcbi.1004793.g001

that noise can trigger excitations into the competent state when the circuit is tuned to the excit-
able regime [15]. This transition into the competent state was shown to be governed by intrin-
sic noise rather than extrinsic noise [18]. Later work showed further that these excitations have
a high variability in their duration, and that this variability is directly linked to the architecture
of the competence circuit [16]. In particular, this work employed an analogous synthetic excit-
able circuit, termed SynEx, to provide evidence that the duration variability is due to intrinsic
noise from low molecule numbers in the native circuit. Additionally, a similar strain, SynEx-
Slow, was created that had a mean competence duration comparable to the native strain at the
cost of additional complexity in order to reduce the efficiency of a proteolytic negative feedback
loop [16]. However, the ability of this intrinsic noise to trigger sustained or repeatable excita-
tions has not yet been quantified. Moreover, the generic effects of intrinsic noise on the three
dynamic regimes, and how these effects translate to the physiological function of B. subtilis at
the population level, are unknown.

Here, using stochastic modeling and quantitative fluorescence microscopy, we study the
effects of intrinsic noise on the competence dynamics and the ensuing population heterogene-
ity of B. subtilis. We uncover a novel effect of noise that goes beyond architecture-dependent
stochastic effects in a single cell. Specifically, we find that at both low and high stress levels,
noise prevents cells from becoming unresponsive or indefinitely responsive to the stress, and
instead allows cells to respond dynamically. These effects expand the range of stress levels over
which the population of cells maintains a heterogeneous response distribution, which is critical
to the population viability (see Fig 1B). The use of efficient numerical methods and stochastic
simulation at several levels of model complexity allows us to elucidate the mechanisms behind
these effects. A central prediction from our modeling is that these effects are rooted in noise
arising from low numbers of molecules. We verify this prediction using quantitative
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fluorescence microscopy by comparing the population response of native B. subtilis with that
of synthetic mutants harboring the less-noisy SynExSlow circuit. Taken together, these results
constitute a fundamental example of how noise can increase the functionality of a phenotypic
response.

Results

Entry of B. subtilis cells into the competent state occurs at high expression levels of the ComK
protein. This protein activates a set of downstream genes allowing for the uptake of DNA [15].
ComK is typically expressed at a basal level, and stress in the environment alters the level of
expression. In our genetic circuit design, as described below, increasing the stress level is mim-
icked by inducing comK expression using an increasing amount of a lactose analogue, Isopro-
pyl B-D-1-thiogalactopyranoside (IPTG), in the environment.

In the native competence circuit, ComK activates its own expression, and represses the
expression of another protein, ComS. ComS and ComK compete to be rapidly degraded by the
MecA protein complex [15] (see Fig 2A, bottom). Therefore, high concentrations of ComS hin-
der the degradation of ComkK, effectively providing positive feedback to ComK by allowing
ComK levels to build up. These interactions are summarized in Fig 2A (top). Intrinsic fluctua-
tions in comK mRNA have been shown to be another possible source of variations in ComK
proteins [18].

In the SynEx circuit, as described in [16], the repression of ComS by ComK is removed by
gene knockout. Then, the expression of MecA is placed under the control of ComK. This causes
ComK to activate MecA, which in turn represses ComK via active protein degradation (see

A Native circuit B Synthetic circuit (SynEx)

(\omK ComS Qorr{\MecA
N

comS  Bw kqh ComK B Kms P Q |MecA

'\
— iy, e

Competitive degradation

Fig 2. Architectures and model parameters of the native and SynEx circuits. The top row summarizes the regulatory interactions, while the bottom row
depicts the model details. (A) In the native circuit, ComK is produced with the induction rate a, and activates its own expression with Hill function parameters
Bx, ki, and h. ComS is expressed at the basal rate as and is repressed by ComK with Hill function parameters S, ks, and p. ComK and ComS are degraded at
rates A, and A, respectively, and, additionally, both compete for binding to the degradation enzyme MecA. MecA degrades ComK and ComS with maximal
rates 0, and Js, respectively, and with Michaelis-Menten constants I', and T's, respectively. (B) In the SynEx circuit, ComK is produced with the induction rate
ax and activates its own expression with Hill function parameters By, kx, and h. MecA is expressed at the basal rate a,,, and is activated by ComK with Hill
function parameters B, km, and p. ComK and MecA are degraded at rates A, and A, respectively, and MecA enzymatically degrades ComK with rate 6.

doi:10.1371/journal.pcbi.1004793.9002
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Fig 2B, bottom). These interactions are summarized in Fig 2B (top). Note that in the native cir-
cuit, ComK represses its own activator (ComS), while in the SynEx circuit, ComK activates its
own repressor (MecA).

Both the native and SynEx circuits have architectures characteristic of molecular oscillators.
Therefore we expect both circuits to allow for a dynamic response of each individual in a popu-
lation. However, the main difference is that in the native circuit, when ComK levels are high,
ComS levels are low, which leads to large amounts of intrinsic noise. In contrast, in the SynEx
circuit, when ComK levels are high, MecA levels are also high, corresponding to less intrinsic
noise. Previous work showed that this difference in architecture causes the native circuit to dis-
play a broad range of competence durations, whereas the SynEx circuit displays a relatively
narrow range of competence durations [16]. However, the effects of noise and architecture on
the ranges of dynamic response and the ensuing population heterogeneity in these systems
remained unknown.

Noise expands the response range

To elucidate the effects of noise in each of the native and SynEx circuits (Fig 2), we develop a
stochastic model of each circuit, which includes noise, and then compare each to its determin-
istic analog, which does not include noise. As described in Materials and Methods, we develop
the stochastic models at several levels of complexity to investigate the robustness of our find-
ings to our modeling assumptions, and we solve each model using a combination of efficient
numerical solution and stochastic simulation. We first describe the behavior of the determin-
istic models. As shown in Fig 3A, a standard linear stability analysis of the deterministic model
for each circuit reveals three dynamical regimes, depending on the value of the control parame-
ter, the ComK induction rate oy. At low induction, each circuit is excitable, resulting in a tran-
sient differentiation event into and out of the competent (high-ComK) state. At intermediate
induction, each circuit is oscillatory, periodically entering and exiting the competent state. At
high induction, each circuit is mono-stable, staying in the competent state indefinitely; relaxa-
tion to the non-competent state does not occur. These three dynamical regimes have been con-
firmed in experimental studies of the native competence circuit [13].

We find that these deterministic dynamics are reflected in the steady-state solutions to the
minimal stochastic models. As shown in Fig 3B, the three types of dynamics correspond to
three shapes of steady-state probability distributions of ComK levels. Excitable dynamics corre-
spond to a distribution confined to low ComK molecule numbers, oscillatory dynamics corre-
spond to a distribution mixed between low and high molecule numbers, and mono-stable
dynamics correspond to a distribution centered at high molecule numbers. As described in
Materials and Methods, we calculate the fraction f of the distribution in the high-molecule-
number state (see the shaded regions in Fig 3B). Within our model, f represents the fraction of
time a single cell spends in the competent state, or equivalently, the fraction of an isogenic pop-
ulation of cells found in the competent state at a given time. Importantly, fis the indicator of
population heterogeneity, since unresponsive (f = 0) or fully competent (f= 1) populations are
homogeneous, while mixed populations (0 < f < 1) are heterogeneous. We define the range of
induction rate oy for which 0 < f < 1 as the viable response range, since unresponsive cells
(f=0) do not benefit from competence, while long-term competence (f= 1) is known to have a
detrimental effect on growth rate and cell division [14, 15].

In Fig 3C, we compare the viable response range of the stochastic model with the boundaries
between dynamical regimes predicted by the deterministic model. We see that for both the
native and the SynEx circuit, the stochastic range extends beyond the deterministic range for
both low and high induction rate o. At low induction rate, the range expands by more in the
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Fig 3. Stochastic modeling of B. subtilis competence. (A) The deterministic model of each circuit (see Egs 6 and 7) exhibits three dynamic regimes
(excitable, oscillatory, and mono-stable), depending on the ComK induction rate a,, which models stress level. (B) The stochastic model (see Eqgs 1-5)
reveals the ensuing distribution of ComK levels in each of the three dynamic regimes (excitable, oscillatory, and mono-stable). The fraction of the distribution
in the responsive state f (determined by the inflection points, see Materials and Methods) is shaded. (C) Whereas the deterministic model exhibits sharp
transitions between the dynamic regimes (dashed lines), the stochastic model exhibits a continuous dependence of f on induction rate. We see that for both
circuits, stochasticity extends the viable response range (0 < f < 1) beyond the transitions predicted by the deterministic model, in both directions, by the
factors given above the arrows (see Materials and Methods). Parameters are as in [16] and are given in S1 Text. In A and B, from left to right, the values of the
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control parameter are aj, = {0.072, 1.15, 36}/hour (native) and aj, = {0.036, 1.8, 36}/hour (SynEXx). In A, from left to right, the initial conditions are 71, = {3, 3,3}
ComK molecules and m, = {15, 5,0.1} ComS molecules (native), and 7z, = {0.8, 2,1} ComK molecules and 1, = {0.05, 35,50} MecA molecules (SynEx); in
the excitable regime (left), the initial conditions are chosen to demonstrate the single, transient excitation.

doi:10.1371/journal.pcbi.1004793.9003

SynEx circuit than in the native circuit (16 times vs. 8.4 times). In contrast, at high induction
rate, the range expands by more in the native circuit than in SynEx circuit (20 times vs. 3.5
times). The latter effect is much stronger, such that the total expansion of the viable range is
three times larger in the native circuit than in the SynEx circuit (8.4 x 20 = 168 times vs.

16 x 3.5 = 56 times). Taken together, these observations imply that noise expands the range of
stress levels to which cells can respond in a dynamic way, and that this expansion depends on
circuit architecture. In the next section, we elucidate the mechanisms behind this expansion.

Noise-induced oscillations underlie the expansion of the response range

Why does noise expand the viable response range at low induction levels? As shown in Fig 4A,
the reason is that noise leads to repeated excitations into the competent state, which prevents
the system from remaining completely unresponsive. In a completely deterministic excitable
system, an excitation is caused by initializing the system away from its stable fixed point, and it
occurs only once. However, in a stochastic system, noise can cause repeated perturbations
away from the stable state, leading to persistent additional excitations. Indeed, in both circuits,
noise at the stable state is high, because the stable state corresponds to one or more species
being expressed at very low molecule number. Specifically, in the native circuit, one species is
at low molecule number (ComK), and in the SynEx circuit, both species are at low molecule
number (ComK and MecA); see Fig 4A. This difference is consistent with the expansion of the
viable response range being larger in the SynEx circuit than in the native circuit at low induc-
tion levels (Fig 3C). Since the dynamics in both circuits are governed by Poissonian birth-death
reactions, low molecule numbers correspond to high intrinsic noise (variance over the squared
mean). The corresponding fluctuations are visible in S1A Fig, which shows a zoom-in of the
top left panel in Fig 4A. These fluctuations then lead to excitations, driven by the the low-mole-
cule-number species. This is seen in S1B Fig, which overlays the ComK and Com$ dynamics
for the native circuit in the left column of Fig 4A, and shows that maxima in ComK levels
slightly precede minima in ComS levels, indicating that the low-molecule-number species,
CombK, is the driver of the excitation. The net result is frequent and persistent noise-induced
excitations for both circuits in the low-stress regime. This effect is consistent with the noise-
induced excitations seen for these circuits in previous work [15, 16]. Here, however, we have
quantified the effect of these excitations on the stochastic distribution, which describes the het-
erogeneous population response.

Why does noise expand the viable response range at high induction levels? Here the mecha-
nism is different from at low induction levels. As shown in Fig 4B, the reason is that noise pre-
vents the damping of oscillations, which keeps the system from relaxing to the competent state.
In the deterministic system, the mono-stable state is defined by a stability matrix whose eigen-
values are complex with negative real parts (S2 Fig and S1 Text section 2). This means that the
solution relaxes to the mono-stable state in an oscillatory way, i.e. the oscillations are damped.
The damped oscillations are clearly visible for the native circuit in S1C and S1D Fig, and for
the SynEx circuit in the right panel of Fig 4B (black lines). Intrinsic noise thwarts this relaxa-
tion, continually perturbing the system away from the stable point, and preserving a finite
oscillation amplitude (colored lines in Fig 4B). Similar effects have been observed in ecological
and epidemic models, where they are attributed to the ability of white noise to repeatedly excite
a system at its resonant frequency [19]. Here we see the effect at the molecular level in bacteria,

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004793 March 22,2016 7/21
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ComS, is at low copy number and therefore subject to significant intrinsic noise. The deterministic model is
givenin Egs 6 and 7, while the stochastic model is given in Eqs 1-5. In A, the deterministic initial conditions
are i, = 1 ComK molecules and i, = 100 ComS molecules (native), and 7z, = 0 ComK molecules and m, =
0 MecA molecules (SynEx). In B, the deterministic initial conditions are 71, = 5 ComK molecules and /i, = 1
ComS molecules (native), and 77, = 0 ComK molecules and 7, = 0 MecA molecules (SynEx). In the
excitable regime (A), the initial conditions are chosen to demonstrate the single, transient excitation.

doi:10.1371/journal.pcbi.1004793.9g004

and we find that it occurs sufficiently strongly that it supports and significantly extends a het-
erogeneous population response. Note that in both circuits the low- and high-stress regimes
differ in both the number and the stability characteristics of their fixed points (S2 Fig and S1
Text section 2), further indicating that the noise-induced features arise via different mecha-
nisms in the two regimes.

At high induction levels, the expansion of the viable response range is more pronounced in
the native circuit than in the SynEx circuit. This effect was demonstrated at the population
level in Fig 3C, and it is sufficient to make the expansion of the entire viable response range, at
both low and high induction levels, three times larger in the native circuit than in the SynEx
circuit. The effect is also demonstrated by the dynamics in Fig 4B: the noise-induced preven-
tion of damping is clearly evident for the native circuit, even at the oy value shown, which is 15
times value predicted deterministically. In fact, at an oy, value this large, the deterministic
dynamics are no longer damped oscillations; instead they are monostable and non-oscillatory
(S1 Text section 2), and yet the stochastic pseudo-oscillations persist. The reason that the effect
of noise is so pronounced in the native circuit is that the mono-stable fixed point corresponds
to ComS being expressed at very low molecule numbers, where the intrinsic noise is high
(lower left panel). In contrast, in the SynEx circuit, the mono-stable state corresponds to both
species being expressed at high molecule numbers, so the intrinsic noise is lower than in the
native circuit. This difference, which stems ultimately from the difference in the architecture of
the two circuits (Fig 2), was found in previous work [16] to be responsible for the increased var-
iability in the competence durations of the native circuit compared to the SynEx circuit. Here
we demonstrate that, in the context of the current model, this difference between circuits addi-
tionally leads to an increase in the expansion of the viable response range.

We have tested that the effects discussed above are robust, in that they persist when we relax
the three simplifying assumptions of our minimal stochastic model (see Materials and Meth-
ods). We relax two of the assumptions by considering a non-adiabatic stochastic model in
which the fast dynamics of mRNA production and enzymatic degradation that have been
named as the possible source of large comK mRNA varijations and linked to competence entry
[18] are included explicitly, and by setting the mean molecule numbers in the tens of thousands
as opposed to tens (see S1 Text). We find that all noise-induced effects persist, namely (i)
repeated excitations, (ii) the prevention of damping, and (iii) the enhancement of effect ii in
the native circuit over the SynEx circuit (see S6 and S7 Figs). As shown in S6 and S7 Figs, we
also verify quantitatively that effects i and ii produce sufficiently oscillatory dynamics that the
power spectrum is peaked, as opposed to the non-peaked power spectrum observed for purely
excitable or mono-stable dynamics. Interestingly, when we raise the molecule number, but
retain the adiabatic assumption, we find that the effects of noise diminish, and the stochastic
model behaves like the deterministic model (see S8 and S9 Figs). This confirms that the effects
we observe are rooted in the intrinsic noise arising from low molecule numbers, as expected.
Importantly, however, it demonstrates that when coupled with explicit mRNA and competitive
degradation dynamics, these intrinsic effects dominate the response up to a much higher mole-
cule number regime.
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Finally, we relax the third assumption by considering a three-species model for the SynEx-
Slow circuit, in which the dynamics of ComsS are accounted for explicitly (see S10 Fig). Recall
that SynExSlow is a variant of SynEx that adds an additional P,,,,g — comS in addition to the
P,psp — comS such that the duration of competence is similar to the native strain [16]. We find
that effect ii persists, while effect i does not, indicating that the expansion of the viable response
regime at high induction levels is more robust than at low induction levels. Since the high-
induction regime is also where the contrast between the native and SynEx circuits is greater, we
focus on the high-induction regime in the next section, where we compare our model predic-
tions with experiments.

Fluorescence microscopy confirms the predictions of the model

To test our model predictions, we use quantitative fluorescence microscopy to measure the
ComK activity levels in populations of B. subtilis cells harboring either the native or the SynEx-
Slow circuits, as described in Materials and Methods (see Fig 5A). To report the competence
state, we use a P, — ¢fp reporter that was previously shown to be highly correlated with the
activity of P,k [15]. In particular, we use a previously reported strain, Hyper — o, to measure
competence in the native competence circuit, and we created an analogous SynExKSlow strain
to monitor competence in the synthetic SynExSlow competence circuit. ComK expression is
induced by increasing the concentration of IPTG, which corresponds to the model parameter
0. As seen in Fig 5B, in both the native and the SynEx strain, as the IPT'G concentration
increases, the fluorescence distribution across the population changes shape: first it is centered
at low values, then it is split between low and high values, and finally it is centered at high val-
ues. This change is qualitatively reminiscent of the change seen in the stochastic model in Fig
3B. Moreover, Fig 5C also shows that the transition to a distribution centered at high values
occurs at a higher IPTG concentration in cells with the native circuit than in cells with the
SynExSlow circuit. This feature is also qualitatively consistent with the finding in Fig 3C that
the viable response range is expanded to a greater extent in the native circuit than in the SynEx
circuit at high induction levels.

To investigate whether our experimental observations agree quantitatively with our theoret-
ical predictions, as well as qualitatively, we fit the fluorescence distributions to the stochastic
model, as described in Materials and Methods. Fig 5C shows that both of our central predic-
tions in the high-induction regime are quantitatively confirmed by the data, namely (i) that
noise extends the transition to a permanently competent state beyond the deterministically
predicted induction level, and (ii) that it does so to a larger extent in the native circuit than in
the SynEx circuit. Fig 5 therefore provides strong experimental support for the the notion that
intrinsic noise expands the viable response range by delaying, as a function of induction level,
the relaxation of cells to the competent state.

Discussion

Phenotypic heterogeneity, in which different individuals express particular genes at different
levels, is an important survival strategy in uncertain environments. Here we studied dynami-
cally maintained phenotypic heterogeneity in the competence response of B. subtilis, and how
it is influenced by intrinsic fluctuations in molecule numbers. By combining theoretical model-
ing, stochastic simulations, and quantitative microscopy, we showed that intrinsic noise facili-
tates heterogeneity by expanding the range of stress levels over which heterogeneity is
maintained (the viable response range). The effect manifests itself at both low and high stress
levels, and the influence of noise is dramatic: in the native competence circuit, noise increases
the maximal stress level at which a heterogeneous population response occurs, by 20-fold.
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Fig 5. Quantitative fluorescence microscopy confirms model predictions. (A) Microscopy image of B. subtilis cells with 1.5 uM IPTG. ComK activity,
measured by CFP fluorescence, is shown in red. (B) Fluorescence distributions over the imaged populations for both circuits as a function of IPTG levels (see
additional distributions in S11 Fig). Note that, as in the model, the shift from a non-responsive state (low fluorescence) to a responsive state (high
fluorescence) is clearly evident in the distributions. (C) Comparison of the data with the stochastic model (Egs 1-5) in the high-induction regime. For both
circuits, ax is normalized by the value of the deterministic transition from the oscillatory to the mono-stable regime (dashed line); these normalized ay values
are shown for each distribution in B in the upper-right corners. Agreement between the model and data confirms both model predictions: that noise extends
the viable response regime to higher stress levels than predicted deterministically, and that the effect is more pronounced in the native circuit than in the

SynEx circuit.

doi:10.1371/journal.pcbi.1004793.9005

Our work advances previous work investigating the effects of circuit architecture on

dynamic response. It was previously known that the native competence circuit exhibited higher

variability in its competence duration times than a synthetic analog with different architecture

(SynEx). This variability was attributed to intrinsic molecule number fluctuations and was
thought to provide a fitness advantage, similar to variability in the times to commit to cell states
[20]. Yet the advantages of the native design over the synthetic design were not immediately
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clear. Here, we showed that while the SynEx circuit is more predictable in terms of competence
duration times, its dynamic response is limited to a much smaller range of stress levels, which
limits its functionality.

In both circuits, the viable response range is expanded at both low and high stress levels.
The mechanisms in these two cases are different. At low stress levels, intrinsic noise causes
repeated, period excitations, effectively sustaining oscillations into the excitable regime. At
high stress levels, noise prevents the damping of oscillations, effectively delaying, as a function
of stress level, the static and indefinite entry into the competent state. Both mechanisms rely on
intrinsic fluctuations and, importantly, persist even at high molecule numbers in a non-adia-
batic system. The limited response range observed in the deterministic solution is recovered
only in the strict limit of fast switching and high molecule numbers, suggesting that the effects
of noise that we observe here are generic.

Quantitative microscopy measurements confirmed our theoretical predictions: all cells
exhibited competence at high induction levels, no cells exhibited competence at low induction
levels, and a bimodal population response was observed in the intermediate regime. Important
differences between circuit architectures were also confirmed experimentally, namely that the
SynEx circuit begins to oscillate at lower stress levels (IPTG levels) than the native circuit, and
that the native circuit can withstand roughly 5-fold higher stress levels than the SynEx circuit
before indefinitely entering the competent state. An independent fit of the model predictions
to the experimental data showed very good agreement.

Traditionally, noise in gene expression has often been seen as a nuisance that needs to be
controlled, especially in stable environments or when the reproducibility of downstream gene
expression is crucial. Thus, much work has concentrated on how to ensure the reliability of
gene expression and cell signaling in the presence of intrinsic noise [21-29]. However, as has
been shown experimentally and theoretically in the context of antibiotic resistance [3, 30, 31],
noise-induced population heterogeneity can be advantageous for adaptation to new conditions
[32-35]. Functional applications of noise have also been identified in a number of settings [36]
ranging from differentiation decisions to sporulate [37], apoptose [38], or allow DNA uptake,
such as discussed in this paper.

In B. subtilis, a heterogeneous competence response is thought to be optimal since perma-
nent competence curbs cell growth. The effect of phenotypic heterogeneity on the growth rate
of populations has also been studied theoretically [2, 39-44], showing that while in optimal
conditions fluctuations decrease the overall growth rate, in less favorable environments, diver-
sity of gene expression increases the population fitness [44]. The effect of selection on such
populations was also considered [43], and shown to influence the stability of the phenotypic
states [6].

We have taken advantage of the finding that comK is the master regulator of competence in
B. subtilis in that the regulation of competence primarily occurs by modifying the expression of
comK][45]. However, it is not clear whether significant physiological stress would cause ComK
production in the same controlled manner as we induce ComK production via IPTG. Indeed,
it is likely that the regulatory input into competence via comK has been evolutionarily tuned to
stay within the dynamic range of the native competence machinery. Alternatively, it may be
that the competence circuit has been tuned to the accept the available range of comK regulatory
input discernable from the organism’s environment. Perhaps then the topology that allows for
the most dynamic response range given the available signal transduction mechanisms may be
subject to natural selection in order to improve fitness.

An alternative differentiation program to competence, which is evident in the experiments
(Fig 5A), is sporulation under stress, in which cells create a durable endospore. This differentia-
tion program has been shown to occur independently of competence without crosstalk [4, 5].
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This is remarkably illustrated by the existence of dual-activity cells where the mother cell of a
spore continuous to undergo competence until the spore forces it to lyse [5]. Since competence
has been demonstrated to occur independently of sporulation, further consideration of sporu-
lation is beyond the scope of this work and spores are excluded from the analysis (see also S1
Text, sections 6 and 7).

We have described an example of phenotypic heterogeneity that is maintained by an oscil-
latory response, and we have demonstrated that intrinsic noise increases the range of stress lev-
els for which oscillations occur. The ability of noise to facilitate oscillations has also been
observed in the entrainment of NF-xB in fibroblast cells to oscillating TNF inputs [46]. There,
small-molecule-number noise was shown to facilitate both oscillation and entrainment, and
phenotypic variability was shown to enlarge the dynamic range of inputs for which entrain-
ment is possible. These results, along with our findings herein, suggest that strategies that
exploit the coupling between noise and phenotypic heterogeneity allow for functional popula-
tion responses over a large variety of conditions.

Materials and Methods
Stochastic model

Our minimal stochastic models of the native and SynEx circuits are based on our previous
modeling work [16], but employ the (stochastic) master equation instead of a (deterministic)
dynamical system in order to capture the effects of intrinsic noise. The master equation
describes the dynamics of the probability distribution over the numbers of the relevant molecu-
lar species inside the cell [47]. For both circuits the master equation reads

d nm
% = &iPuam T rn+1.m(” + 1)pn+1.m - (gn + rnmn)p””‘

+qnpn.m71 + sn.m+l(m + 1)pn7m+1 - (qn + Snmm)pnm'

(1)

where p,,,,, is the joint probability distribution over molecule numbers n and m (see Fig 2 for a
diagram and explanation of all variables and parameters). In the native circuit, # is the number
of ComK proteins and m is the number of ComS proteins. In the SynEx circuit, # is the number
of ComK proteins and m is the number of MecA proteins. The dynamics are birth-death pro-
cesses with mutual regulation: the production rates g and g increase the numbers n and m,
respectively, while the degradation rates r and s decrease the numbers n and m, respectively,
and the regulation is encoded in the functional dependence of the rates on # and m. The regula-
tion functions follow from our previous work [16] and for the native circuit read
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while for the SynEx circuit they read

Bk”h B.n
8 “k+kﬁ+nh’ qn O(m—i—klr’n—i-l’lP’ ()
tpw=tn=0m+7A, s, =s=21,. (5)
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The meaning of the parameters is explained in Fig 2. The regulatory functions introduce
positive and negative feedbacks (see Fig 2, top). The parameter values used in the model are as
in [16] and are given in S1 Text.

The model in Eqs 1-5 makes three simplifying assumptions, all of which we later relax.
First, as in [15, 16] we have assumed that mRNA dynamics and the enzymatic degradation pro-
cess are substantially faster than all other biochemical reactions in the circuits, and are thus adi-
abatically eliminated (see S1 Text for details). This reduces each model to the two-species form
in Eq 1, depicted by the cartoons in Fig 2 (top). Second, the parameters are chosen such that
typical protein copy numbers are small (in the tens or hundreds per cell). Lacking information
about the absolute protein numbers in the experiments, we make this assumption because we
expect any effects of intrinsic noise to be most evident in the low-number regime, although as
we later show, the effects we find persist out to protein numbers in the tens of thousands.
Third, we model in Eqs 4 and 5 the SynEx circuit as originally constructed [16], instead of the
“SynExSlow” circuit that we use in experiments (described later in this section). This reduces
the model from three species to two, which is more amenable to analytic and numerical solu-
tion. Once again, however, we will see that the most important effects of noise that we elucidate
are also present in a model of the SynExSlow circuit.

We solve Eq 1 in steady state in one of two ways. At low copy numbers, we use the spectral
method [48, 49], a hybrid analytic-numerical technique that exploits the eigenfunctions of the
birth-death process. Derivation of the spectral solution of Eq 1 is given in SI Text. The spectral
method is much more efficient than other numerical techniques [48], but we find here that it
becomes numerically unstable at sufficiently high copy numbers. Therefore, at high copy num-
bers, we use iterative inversion of the matrix acting on p,,,,, on the right-hand side of Eq 1 (see
S1 Text). To obtain individual stochastic trajectories of the system described by Eqs 1-5, we
use the Gillespie algorithm [50].

Deterministic model

The deterministic analog of Eq 1 is obtained by performing an expansion in the limit of large
molecule numbers [47]. To first order one obtains

dn _

i gh = Tanll, (6)
dm _
ar = qn — M, (7)

where # and 7 are ensemble averages. Eqs 6 and 7 form a coupled dynamical system whose
properties we obtain by linear stability analysis. As shown in S2 Fig, both circuits exhibit excit-
able, oscillatory, and mono-stable regimes, depending on the value of the control parameter o.
The transition from excitable to oscillatory is marked by the annihilation of a stable and an
unstable fixed point, leaving only one unstable fixed point. The transition from oscillatory to
mono-stable is marked by this unstable fixed point becoming stable. These transitions provide
the dashed lines in Fig 3C.

Genetic circuit construction

For the native competence circuit, we used a variant from our previous study [13]. For the syn-
thetic competence circuit, we reconfigured the original “SynExSlow” circuit created in [16], in
order to introduce a tunable proxy for stress level. This required replacing the tunable Py,
spank — comS with an internally controlled promoter for the ribosomal gene rpsD, as well as
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adding in Pyyperspank — comK. The result was a strain that is resistant to four antibiotics and has
comS expressed from a ribosomal promoter, providing for a basal level of expression (see S1
Text for chromosomal alterations and antibiotic resistance). In both strains, ComK expression
is induced by increasing the amount of IPTG in the environment. Since stress signals are usu-
ally integrated at the ComK promoter, IPTG therefore acts as a proxy for stress and triggers
competence. This allows us to simulate stress directly in a controlled manner, rather than using
physiological stresses that may themselves induce external variation in the responses.

Time-lapse microscopy

Cells of Bacillus subtilis were prepared by streaking from glycerol stocks onto LB agar plates
containing the appropriate antibiotic for maintenance and incubated at 37°C overnight. Single
colonies were then selected from the plates and grown in LB broth for three to four hours at
37°C until an OD of 1.6 to 1.8 was reached. While culturing the cells, argarose pads were made
by pouring 6 mL of 0.8% w/v low-melting point agarose in re-suspension medium onto a glass
coverslip. A second glass coverslip was then placed on top of the medium, and the medium was
left to congeal while the culture was grown. Once the culture was ready, cells were spun down
and resuspended in the resuspension medium twice to wash away the LB. To deposit cells, the
top glass coverslip was removed, and then 2 yL of cells were dropped on 37°C low melting
point agarose pads. The pads were then cut into squares with a 5mm edge, each containing a
single drop of cells. After drying for one additional hour, the pads were flipped over and placed
on a glass-bottom dish. The dish was then sealed with parafilm. Images of the cells were then
obtained at 100X magnification on an Olympus IX81 system using the ImagePro software
from MediaCybernetics along with customized macros.

IPTG stock solutions were dissolved in ethanol to a concentration of 100 mM. Working
(1000X) stocks were diluted with Milli-Q water to 30 mM, 10 mM, 3 mM, 1.5 mM, 0.75 mM,
respectively, by serial dilution and then added to the appropriate resuspension media at a ratio
of 1:999 to achieve the final concentrations indicated. The resuspension media at the specified
concentrations of IPTG were used in all steps above after the initial growth in LB. See S12 Fig
for time-lapse images of strains containing either the native or SynExSlow competence circuits
over the span of 24 hours.

Plasmid and strain construction

Template plasmids with homologous recombination arms for the Bacillus subtilis chromo-
somal loci were modified through restriction enzyme digest and ligation of DNA inserts (see
S1 Text for loci). The inserts were created by polymerase chain reactions using primers from
Integrated DNA Technologies while using genomic DNA or other plasmids as templates.

The PY79 strain of Bacillus subtilis was modified through homologous recombination using
a One-Step Transformation protocol by inducing competence. 50 ng of plasmid DNA was rep-
licated in TOP10 E. coli cells (Invitrogen, Life Sciences, Inc) and purified using a MiniPrep spin
column (Sigma-Aldrich). The DNA was then mixed with culture growing in minimal salts for
thirty minutes and then subsequently were rescued using 2xYT rich medium. Positive colonies
were then selected on LB agar plates containing selective concentrations of antibiotics.

Image analysis

Fluorescence histograms were obtained from microscopy images using a pixel-based analysis.
A mask was created on each image to identify the areas that the cells occupy (see S3 Fig). A his-
togram of fluorescence intensity values was then generated for pixels within that area.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004793 March 22,2016 15/21



©PLOS

COMPUTATIONAL

BIOLOGY

Noise Expands the Response Range of a Bacterial Population

Culture media

Sterlini-Mandelstram Resuspension Medium was used during time-lapse microscopy and fol-
lowed the protocol as in references [51, 52]. The actual protocol used consists of making two
salt solutions: A and B. Solution A consists of 0.089 g of FeCl; - 6H,0, 0.830 g of MgCl, - 6H,0
and 1.979 g MnCl, - 4H,0 in 100 mL of filtered water. Solution A is filter sterilized (not auto-
claved) and stored at 4°C. Solution B consists of 53.5 g NH,CI, 10.6 g Na,SO,, 6.8 g KH,PO,,
and 9.7 g NH,NO:s. Solution B is then also filter sterilized and stored at 4°C. Sporulation salts
are made by combining adding 1 mL of Solution A and 10 mL of Solution B to filtered water
for a total 1 L. This solution is then autoclaved. The final Resuspension media is created by
combining 93 mL of sporulation salts, 2 mL of 10% v/v L-glutamate, 1 mL of 0.1M CaCl,, and
4 mL of 1M MgSO, on the day of the experiment.

One-step transformation media consists of 6.25 g of K,HPO, - 3H,0, 1.5 g of KH,PO,, 0.25
g of trisodium citrate, 50 mg of MgSQO, - 7H,0, 0.5 g of Na,SO, at pH 7.0, 125 uL of 100 mM
FeCl;, 5 uL of 100 mM MnSOy, 1 g of glucose, and 0.5 g of glutamate added into filtered water
for a total of 250 mL. The media is filter sterilized using 0.2 micron Millipore filters.

2xYT recovery medium consists of 16.0 g of Tryptone, 10.0 g of Yeast Extract, 5.0 g of NaCl
added to filtered water to a total volume of 1L. The media is then filter sterilized using 0.2
micron Millipore filters.

Distribution analysis and comparing experiments with modeling

For the ComK distributions in the model, p,, = %, py.m» we determine the fraction f of cells in
the responsive, high ComK protein concentration state using two independent methods. First,
we use a generalized method of separating the distribution’s two modes: since the distribution
is often not completely bimodal (see Fig 3B, middle column), we find the average n* = (n; + n,)
/ 2 of the two inflection points surrounding the putative local minimum between the two
modes, and define f = >~ _ p,. In the case of a bimodal p,,, this method indeed well approxi-
mates the location of the actual local minimum. Second, we fit p,, to a mixture of two Poisson
distributions, using the Kullback-Leibler divergence as the cost function. There are three fitting
parameters, the two Poisson parameters and the relative weighting between them, and the
weighting provides f. We see in 54 Fig that the two methods give similar results for the depen-
dence of f on the control parameter oy, demonstrating that our determination of fis robust to
the method used.

The two-Poisson method is smoother but is numerically unstable at low ¢. Furthermore, it
does not capture the transition to f = 1 at high o, since a roughly equal mixture of two Poisson
distributions with similar means (f ~ 0.5) will always provide a better fit than a single Poisson
distribution (f = 1). Therefore, in Fig 3C, we use the two-Poisson method at intermediate oy,
while we use the inflection-point method for low o and to determine the transition to f= 1 at
high ay. At low/intermediate o, we concatenate the curves from the two methods and use
smoothing near the concatenation point. Since f= 0 is approached asymptotically, we quantify
the expansion of the viable range at low stress by determining the minimum ¢, value for which
f> €=10"". The expansion factors at low a are robust to the values of ¢ and the smoothing
parameters.

To compare the model predictions to the experimental data, we analyze the fluorescence
distributions (Fig 5B) in the same way as the model distributions. Specifically, we calculate the
fraction of the comK population in the responsive state f for each experimental distribution
using the two-Poisson method above. Because the mapping between IPTG concentration and
the model parameter describing the level of external stress o is unknown, we infer the most
likely value of @ corresponding to each experimental distribution by fitting the theory to the
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data. First we use the mode of the [IPTG] = 0 distributions to subtract the background fluores-
cence from the remaining data. To avoid binning, we then fit the cumulative distribution
instead of the probability distribution (sample fits are shown in S5 Fig). We use a maximally
constrained least-squares fit, where all parameters are fixed as in S1 Text except oy and the
unknown parameter X describing the conversion of pixel intensity to molecule number. Given
a value of X, we find the values of gy, for each distribution that minimize the sum of the squared
error S in each case. X is then chosen by minimizing the sum of minimum S values over all dis-
tributions. These fand oy, values inferred from the data are plotted in Fig 5C. The error bars on
oy are obtained by finding the o values where S reaches 1.25 of its minimum value (sample
plots of S vs. oy are shown in S5 Fig).

Supporting Information

S1 Text. Supplementary materials and methods, including model parameter values, stabil-
ity analysis of the deterministic fixed points, description of relaxing the model assump-
tions, spectral solution to the master equation, and chromosomal alterations and
antibiotic resistance of the strains used.

(PDF)

S1 Fig. Further details on simulations in Fig 4. (A) Zoom-in of the top left panel in Fig 4A,
showing fluctuations at low molecule number. (B) Overlay of the ComK and ComS dynamics
in the left column of Fig 4A, demonstrating that ComK and ComS excitations are synchro-
nized, with maxima in ComK slightly preceding minima in ComS. (C, D) As in the left column
of Fig 4B, except less far outside the deterministically oscillatory regime (1.5 times the deter-
ministic transition value of oy, instead of 15 times). In this regime, the deterministic dynamics
are clearly damped oscillatory (black), while the stochastic dynamics are, as in Fig 4B, pseudo-
oscillatory and not damped.

(PDF)

S2 Fig. Linear stability analysis of deterministic system predicts three dynamic regimes, for
both the native and SynEx circuits. Fixed points 71* satisfying the steady state of Eqs 6 and 7
for (A) the native circuit and (B) the SynEx circuit. Each fixed point is stable if the real parts of
the eigenvalues of the Jacobian matrix evaluated at that point are negative, and unstable other-
wise. The Jacobian matrix is Ji; = OF;/0x;, where x, = n,x, = m, F, = dn/dt,and F, = dm /dt.
For both circuits, there are three dynamic regimes. The excitable regime (low o) is has three
fixed points, one of which is stable. The oscillatory regime (intermediate ¢) has one unstable
fixed point. The mono-stable regime (high o) has one stable fixed point. In the mono-stable
regime, near the oscillatory regime, the eigenvalues are complex, indicating damped oscilla-
tions (see also S1 Text section 2).

(PDF)

S3 Fig. Image analysis procedure. Fluorescence histograms are generated via isolating cells
from the background by identifying connected and contiguous areas, applying a binary mask,
and binning the resulting pixel intensities. Only pixels that fall within cells, not the background,
are included.

(PDF)

$4 Fig. Determination of high-response fraction fis robust to calculation method. Two
independent methods are used to determine f: finding the inflection points, and fitting to a
mixture of two Poisson distributions (see Materials and Methods). For both the native and
SynEx circuit, we see that the two methods give results that correspond very closely to each
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other. The two-Poisson method does not capture the transition to f= 1, since a roughly equal
mixture of two Poisson distributions with similar means (f ~ 0.5) will always provide a better
fit than a single Poisson distribution (f=1).

(PDF)

S5 Fig. Sample fits to experimental data and plots of sum-of-squares. Cumulative probabil-
ity distributions of fluorescence data are fit to the distributions from the stochastic model (Eqs
1-5) by minimizing the sum of squared errors, for the (A-D) native and (E-H) SynEx circuits,
as described in Materials and Methods.

(PDF)

S6 Fig. Effects of noise persist when assumptions are relaxed in the model of the native cir-
cuit. Top two rows show ComK and ComS time series from Gillespie simulations of the
relaxed model that includes mRNA and competitive degradation dynamics (see S1 Text, sec-

tion 3, native circuit). Far from the deterministic boundaries of the control parameter, k\" and

k{* (indicated by the dashed vertical lines), the dynamics are excitable, oscillatory, and mono-
stable as predicted (columns 1, 3, and 5, respectively). However, near the boundaries, but out-
side the oscillatory regime, noise causes oscillations to persist, due to either repeated excitations
(column 2) or prevention of damping (column 4), confirming the effects seen in the reduced
model of the main text. The persistence of oscillations is verified by computing the power spec-
trum P(w) = |it(w)|* from the Fourier transform of the ComK time series n(t). For periodic
signals, the power spectrum is peaked at a non-zero frequency w (and in some cases its har-
monics). Red line is a Gaussian fit to aid the eye.

(PDF)

S7 Fig. Effects of noise persist when assumptions are relaxed in the model of the SynEx cir-
cuit. As in S6 Fig but for the SynEx circuit (see S1 Text, section 3, SynEx circuit). Once again,
oscillations persist outside the deterministic boundaries as indicated by the peaked power spec-

tra. Note, however, that oscillations are damped at the value k, = 5k\” here, whereas in the
native circuit they persist beyond this value (see S6 Fig). This confirms the effect seen in the
main text that the the prevention of damping is more pronounced in the native circuit than in
the SynEx circuit.

(PDF)

S8 Fig. Effects of noise diminish when molecule number is raised in the adiabatic model of
the native circuit. Gillespie simulations of the adiabatically reduced model of the native circuit
(Eqs 1-5, as in Fig 4), but for high molecule numbers (I'; = 25000 and I'; = 20). We see that
10% outside the deterministically oscillatory regime, the stochastic dynamics are either non-
oscillatory (column 2) or weakly oscillatory (column 4). This is in contrast to the low-mole-
cule-number regime (Fig 4), where oscillations persist in these regions and beyond. We con-
clude that raising molecule number in the adiabatic model of the native circuit reduces the
stochastic behavior to the deterministic behavior.

(PDF)

S9 Fig. Effects of noise diminish when molecule number is raised in the adiabatic model of
the SynEx circuit. As in S8 Fig, but for the adiabatically reduced model of the SynEx circuit
(Egs 1-5) at high molecule numbers (k; = 5000 and k,,, = 2500). Comparing to Fig 4, we simi-
larly conclude that raising molecule number in the adiabatic model of the SynEx circuit reduces
the stochastic behavior to the deterministic behavior.

(PDF)
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S10 Fig. Effects of noise persist in a model of the SynExSlow circuit. Top row shows the
deterministic ComK time series from the SynExSlow model (see S1 Text, section 3, SynExSlow
circuit), while the next three rows show the stochastic ComK, MecA, and ComS time series for
the same model. Although the SynExSlow model only exhibits a damped oscillatory regime at
these parameters, not a standard oscillatory regime (see S1 Text), we define a heuristic bound-
ary 0"’ = 0.15/s below which oscillations are not appreciably damped within the first 24 hours
(column 3), and above which they are (column 4). We see that, as in S7 Fig, noise prevents
damping at large values of the control parameter, even at high molecule numbers (column 4).
However, as in S9 Fig, noise does not induce repeated excitations at small values of the control
parameter (column 2). We conclude that the former effect is more robust.

(PDF)

S11 Fig. Supplementary fluorescence distributions. Together with Fig 5B, these distributions
provide the data analyzed for Fig 5C. As in Fig 5B, the normalized o values are shown for each
distribution in the upper-right corners.

(PDF)

$12 Fig. Time-lapse fluorescence images of native and SynExSlow strains. Composite phase
contrast and fluorescence images of the Native and SynExSlow strains are shown with IPTG
concentrations of 0, 0.75, 1.5, and 3 yM at 0, 6, 12, and 24 hours. Fluorescence represents
ComK activity as reported by P, — ¢fp.

(PDF)
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