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Probing local and electronic 
structure in Warm Dense Matter: 
single pulse synchrotron x-ray 
absorption spectroscopy on 
shocked Fe
Raffaella Torchio1,2, Florent Occelli1, Olivier Mathon2, Arnaud Sollier1, Emilien Lescoute1, 
Laurent Videau1, Tommaso Vinci3,4, Alessandra Benuzzi-Mounaix3,4, Jon Headspith5, 
William Helsby5, Simon Bland6, Daniel Eakins5,6, David Chapman6, Sakura Pascarelli2 & 
Paul Loubeyre1

Understanding Warm Dense Matter (WDM), the state of planetary interiors, is a new frontier in 
scientific research. There exists very little experimental data probing WDM states at the atomic level to 
test current models and those performed up to now are limited in quality. Here, we report a proof-of-
principle experiment that makes microscopic investigations of materials under dynamic compression 
easily accessible to users and with data quality close to that achievable at ambient. Using a single 
100 ps synchrotron x-ray pulse, we have measured, by K-edge absorption spectroscopy, ns-lived 
equilibrium states of WDM Fe. Structural and electronic changes in Fe are clearly observed for the first 
time at such extreme conditions. The amplitude of the EXAFS oscillations persists up to 500 GPa and 
17000 K, suggesting an enduring local order. Moreover, a discrepancy exists with respect to theoretical 
calculations in the value of the energy shift of the absorption onset and so this comparison should help 
to refine the approximations used in models.

Warm Dense Matter refers to a material state that occurs, under extreme thermodynamic conditions, at the 
intersection of condensed matter physics and plasma physics1. The limits of WDM are not sharply defined: it is 
the region where electron degeneracy, ion coupling and atomic physics all play a role in the material response, i.e. 
typically density and temperature are in units of solid density and 104 K (~eV) respectively. The most advanced 
calculations of WDM are made using first principle density functional theory2,3. It is a ground state electronic 
theory that has been very successfully extended to predict the properties of compressed matter at ambient tem-
perature but the approximations for its extension in the eV temperature range, where the contributions of excited 
electronic states are important, still need to be validated.

Unfortunately, very little experimental data exist to test the predictions of these calculations at the atomic 
level. The equation of state of WDM is currently obtained at dynamic compression facilities (such as multi-stage 
gas guns, multi-mega ampere pulsed power generators and high energy lasers) by measuring the shock velocities. 
The link between the measured temperature –pressure – density relation and the microscopic state and atomic 
structure is the next step to progress in the validation of WDM models. Over the last decade, much effort has 
been devoted to the development of in-situ x-ray probes for atomic scale characterization of compressed matter 
in front of these various dynamic facilities. Most common techniques use x-ray back-lighters generated by lasers. 
Recently, significant results were achieved using x-ray absorption, on ramp compressed iron to around 500 GPa4 
in the EXAFS (Extended X-ray Absorption Fine Structure) range, on aluminum shocked to 8 eV5 and SiO2 to 
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5 eV6 in the XANES (X-ray Absorption Near Edge Spectroscopy) range. However, these x-ray characterizations 
have not reached the energy resolution and level of detail achievable on synchrotron beamlines, even for samples 
under high static pressure-temperature conditions7.

Here, we propose an alternative line of progress by combining the best possible x-ray characterization meth-
ods available at synchrotrons to dynamic compression8,9. This is based on a similar strategy as the one used by the 
static high pressure community, namely minimizing the volume of the compressed sample to achieve extreme 
pressures and take full advantage of the high brightness (1014 photons/s/10 μ m2), extreme stability (fluctuations 
of normalized intensity ≤ 0.002 at ~1 KHz frequency), high energy resolution (δ E/E ~ 10−4), large spectral range 
(Δ E/E >  10%) and small spot size (typically less than 10 μ m2) of the synchrotron x-ray beam. The shocked states 
were generated by a portable 35 J laser. The laser pulse was focused to a diameter of ~90 μ m (high power density 
configuration) or ~350 μ m (low power density configuration), resulting in similar compressions as those obtained 
by kJ lasers on mm size samples. Measurements were performed at the energy dispersive x-ray absorption beam-
line ID2410 of the European Synchrotron Radiation Facility, which has been recently upgraded. X-ray absorption 
fine structure, which includes XANES and EXAFS, is an element selective probe of the local electronic and atomic 
structure. Hence, it is well adapted for the characterization of WDM at the atomic level. Iron is a key constituent of 
terrestrial and exoplanets. Given its ubiquitous importance, Fe is often one of the first materials to be investigated 
with novel experimental techniques. With this in mind, the present data are thus compared to XAS measurements 
recently performed under dynamic compression at the OMEGA laser4 and LCLS free electron laser facilities11.

Results
The sketch of the experimental configuration is presented in Fig. 1 panel a. In the dispersive geometry, a fan of 
x-rays is dispersed and focused on the sample by a curved crystal, so that the energy of each ray varies as a func-
tion of convergence angle. The transmitted photons are then detected by a position sensitive detector allowing the 
simultaneous collection of the whole spectrum, up to a 300 eV range above the Fe K-edge (7.112 keV). Data were 
acquired using a single x-ray pulse of 100 ps duration, during a 4-bunch mode configuration of the synchrotron 
storage ring that assures the highest number of photons per pulse and a maximum separation between pulses 
(700 ns). The x-ray spot could be focused down to 5 μ m ×  7 μ m FWHM (H ×  V) to ensure that the probed part 
of the compressed sample was not perturbed by edge effects. The position sensitive detector equipped with 1024 
Ge pixels was operated with an integration time of 680 ns and phase locked to the ESRF radiofrequency system, 
ensuring integration of the signal generated by a unique bunch of electrons in the storage ring. The absorption 
spectrum so acquired for the undriven sample (in Fig. 1, panel b, the ref spectrum) shows fine structure features 

Figure 1. Schematic view of the experimental set-up. Panel (a) a curved Si-crystal focuses the polychromatic 
x-ray beam onto the sample. The beam transmitted by the sample diverges towards a position sensitive detector 
where energy is correlated to position; in this way, the full EXAFS spectrum is acquired at once by a position 
sensitive detector with Ge pixels (1024). A long laser pulse (10 ns, up to 35 J, at 1057 nm) focused at the sample 
position, drives the compression wave in Fe. The Fe target consists of a 3.5 μ m iron layer sandwiched between 
two diamond windows. Panel (b) a series of typical single bunch XANES spectra obtained by changing the 
x-ray probe delay time with respect to the laser onset time, while keeping the same driving energy for each shot, 
shows that the compressed state is in the hcp phase and its thermodynamic conditions are stable over 2 ns at 
least. Panel (c) 1-D hydro-simulation of the shock in the Fe layer with a similar color scale for the pressure as for 
the XANES spectra.
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comparable to those of a spectrum acquired on an energy scanning XAS beamline. The < 35 J energy of a 1057 nm 
laser delivered in a 10 ns square pulse was focused under vacuum on the target with an angle of 30°, launching 
an ablation driven compression in the target perpendicular to its surface. The x-ray beam probed the shocked Fe 
parallel to the compression axis with variable drive-probe delay.

The minimization of the compressed volume of Fe required a careful target design that was optimized using 
two 1D hydro-codes, ESTHER12 and MULTI13. The target was made of a thin (3.5 μ m) deposit of pure Fe sand-
wiched between two diamond windows, which act to confine the shocked state over a time interval much longer 
than the 100 ps x-ray pulse. A CH layer was deposited on the ablation surface to limit pre-heating effects. Two 
different kinds of targets were prepared for the two laser configurations used to cover a large thermodynamic 
range. In the first case, diamond windows of 40 (front) and 50 (rear) μ m were used and the laser was focused 
with a phase plate of ~350 μ m producing a maximum usable ablation laser intensity of 4 ×  1012 W/cm2 and so a 
maximum pressure of ~80 GPa in Fe. The x-ray focal spot was adjusted to 5 ×  100 μ m (H ×  V) FWHM in this 
configuration. The shock launched in the front window generates reverberating compression waves in the iron 
foil due to the presence of the rear diamond window. The pressure reached in Fe is approximately the pressure of 
the diamond front window and because of the impedance matching between diamond and iron, the final state 
of iron is near its principal Hugoniot. A 2-D simulation with the DUED code14 was performed to evaluate rare-
faction edge effects and the homogeneous compressed region in Fe was calculated to be 200 μ m in diameter. The 
confinement time of the stable thermodynamic conditions in Fe was estimated by hydrodynamic simulations and 
measured directly from the modifications in the XANES spectra for various delays between the laser arrival on 
the target and the x-ray pulse. As seen in Fig. 1 panel b, a 4 ns confinement time is observed, in agreement with the 
hydro-simulations (panel c); within this interval, thermodynamic conditions are stable for at least 2 ns. The pres-
sure was estimated by hydro-simulations using MULTI13 and ESTHER12 codes and also double-checked using 
an empirical law giving the ablation pressure versus the laser intensity in the ablator15 (see the Supplementary 
material); the error in the pressure is estimated as the difference between the two hydrodynamic codes outputs.

The reproducibility of the measured spectra was good. We are thus confident that homogeneous well defined 
compressed states of Fe were measured.

The evolution of the K-edge EXAFS spectra at different pressures is shown in Fig. 2 (panel a); no deteriora-
tion of the spectra quality between the undriven and the shocked states is observed. The ambient spectrum was 
modeled with the bcc structure and those at higher pressure, from 40 GPa, with the hcp structure, as suggested 
by the changes in the shape of the spectral features. For example, the disappearance of the peak around 7.2 keV is 
the signature of the bcc-hcp transition16. A quantitative analysis of the EXAFS spectra enabled the determination 
of the volume and temperature of the compressed solid states4,17 (Fig. 2 panel c) . The fits of normalized EXAFS 
signals, χ (k), of the unshocked and highest pressure shocked samples are shown in panel b of Fig. 2. The fit allows 
the lattice parameters abcc and ahcp to be determined, and thus the volume (Vbcc =  a3/2 and Vhcp =  0.433 a2 c). In 
the hcp phase, c/a was fixed to the value 1.61 since the k-range of the EXAFS was not sufficient for its precise 
adjustment; however, simulations and static measurements18–22 have shown that the c/a value remains almost 

Figure 2. EXAFS spectra, volume and temperature determination. Panel (a) Series of EXAFS spectra 
obtained by increasing the irradiation intensity at 7 ns of delay, driving the compression in the 350 μ m phase 
plate configuration. The spectra under shock are compared to the reference spectra at ambient. The structural 
change between the bcc and hcp phase is clearly seen. Panel (b) Fit of the EXAFS for the reference spectrum 
and the most compressed hcp one. The compression factor and the temperature extracted for each intensity are 
indicated in panel (c) with comparison to the simulations outputs, literature Hugoniot curves27,28 and shock 
data25,26. The pressure value for the EXAFS points is given by the average between the two hydrodynamic codes 
outputs.
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ideal (1.59–1.63) over the thermodynamic region covered here. The temperatures were also estimated from the 
EXAFS spectra using a correlated Debye model23, where the Debye temperature as a function of compression was 
taken from ref. 24 (see the Methods session for further details on the fitting procedures). In panel c we compare 
V and T values obtained from the EXAFS analysis to the hydrodynamic codes outputs, literature EoS27,28 and 
shock data25,26. The compression data obtained by the EXAFS analysis are found quite close to previous shock 
data25,26, EoS27,28 and simulations values. The EXAFS temperature values are in agreement with the outputs from 
the ESTHER code, systematically higher than the Hugoniots. The difference found in the PT and PV outputs from 
the two codes origins from the different parameters and models used in the calculations and is a good estimation 
of the error made by this kind of calculations (see the Supplementary material for further details).

In order to achieve pressures in the 500 GPa range, the 350 μ m phase plate was removed and the laser directly 
focused to a 90 μ m spot with a Gaussian spatial profile. To maintain a homogeneous thermodynamic state and 
limit 2D effects, Fe targets with 25 μ m thick diamond windows were used in that case. 2D-simulations give a 40 μ m  
diameter homogeneous region, larger than the x-ray probe beam. An additional vertical focusing mirror was 
used to reduce the x-ray focal spot down to 5 ×  7 μ m (H ×  V) FWHM. Again, a homogeneous thermodynamic 
state could be probed, however, the reproducibility from shot to shot was poorer due to the request in alignment 
of a 10 μ m precision coupled to the lower spatial homogeneity of the laser profile. As seen in Fig. 3, the EXAFS 
data quality obtained in this second configuration was not as good as for the spectra acquired with the phase 
plate and with a larger x-ray spot (the signal to noise ratio decreased by a factor ~2). The high frequency noise is 
related to lower photon statistics, because the additional mirror could not be put under vacuum. However, as seen 
in Fig. 3, clear trends can be followed in the spectra as a function of the laser intensity (hence pressure), both in 
the XANES and in the first EXAFS oscillations region. The compression and heating trend are revealed from the 
shift to higher energy and the broadening of the EXAFS oscillations respectively (black, purple and red spectra in 
Fig. 3). As pressure increases this trend is broken (orange spectrum) and the bump in the edge (at E =  7.12) starts 
to flatten, indicating the onset of melting, in agreement with the recent melting curve from Anzellini et al.18. The 
most extreme shocked state has been achieved with I =  5 ×  1013 W/cm2, with a corresponding pressure estimated 
around 500 GPa. Remarkably, weak EXAFS oscillations remain as liquid Fe is further compressed and heated to 
such an extreme state, indicating a persisting local order in WDM.

Figure 4 shows the states in the phase diagram of Fe that have been probed by XAS measurements under 
dynamic compression, namely our data (red full circles) and measurements on two other platforms4,11. Although 
the thermodynamic domains of investigation are comparable in these three experiments, the use of the synchro-
tron facility enables to improve the XAS data. The experiment11 at the x-ray free electron laser LCLS could not 
bring much insight on the local order in the liquid phase. The energy range (25 eV) was too narrow to cover even 
the first EXAFS oscillations and the data quality suffered from the intrinsic intensity fluctuations of the incident 
beam, leading to the necessity to average over few tens of shots to acquire satisfactory spectra. The second exper-
iment4 at the OMEGA facility produced very good quality EXAFS data of Fe compressed to 560 GPa but the 
XANES region could not be exploited due to a lack in energy resolution29.

The present P T data points are close to the Fe principal Hugoniot curve up to around 270 GPa and 6700 K 
(corresponding to a laser power of 3 ×  1013 W/cm2) where the hydrodynamic simulations start to witness some 
preheating which makes the two last points higher in temperature (see the Supplementary material for further 
details on the simulations). Our data agree with the melting curve of Anzellini et al.18: our point at 170 GPa and 
3800 K (red spectrum in Fig. 3), which is close to the new melting curve of Aquilanti et al.7 still shows a pro-
nounced bump at the absorption edge, a signature of the solid phase. However, a precise determination of the 
melting curve is beyond the scope of this paper.

Figure 3. EXAFS spectra and structural changes. (Left) A series of EXAFS spectra obtained in the highly 
focused configuration of the laser. (Right). Zoom over the edge region.
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The evolution of the absorption at the K-edge of iron is shown in Fig. 5. The quality of the data is sufficient to 
detect the evolution of features (noted a, b, c, d) as predicted by ab-initio molecular dynamics calculations3,11 and 
as observed in the laser heated DAC7. In the compressed hcp solid (blue spectrum in Fig. 5 left bottom panel) fea-
ture a increases in intensity and feature c moves to higher energy due to the compression. At higher drive intensity 
up to I =  5 ×  1013 W/cm2, corresponding to around 500 GPa and 17000 K, feature c moves back to lower energies 
and feature a increases more in intensity as the edge is modified into a rounded shape: such drastic change is the 
sign of a molten phase. In fact, similar behavior has been recently observed in lower pressure laser heating exper-
iments (< 100 GPa) probing the melting of Fe7,30. By comparing the available ab-initio molecular dynamics sim-
ulations of iron in similar conditions (Fig. 5 right panels) to our data, we observe that although the shape of the 
absorption onset is more structured than the experimental one, theory is capable of grasping the main changes in 
the data (indicated with arrows). However, whereas good agreement between the theoretical prediction and the 
data is observed in the energy shift of the absorption onset (7.112 keV, feature d) for the compressed solid (Fig. 5, 
bottom panels), an important discrepancy is found for the data recorded at the highest P, T values (Fig. 5, top 
panels): the theoretical shift is ~ − 2 eV, whereas the experimental shift is ~ − 0.5 eV.

Discussion
In the low power density configuration, the volume and the temperature could be extracted from the fit of the 
EXAFS oscillations. In the high power density configuration, the temperature induced broadening of the EXAFS 
oscillations does not enable volume extraction and local order structural refinement. However, a clear signature 
of the hcp structure could be followed up to the melting of Fe. This observation confirms the great stability of 
the hcp structure in Fe under very high pressure, as shown previously utilizing static laser heated DAC18 or the 
dynamic multi shock compression4.

At the most extreme states achieved (500 GPa and 17000 K), the electrons degeneracy factor is around 2 and 
the plasma coupling parameter around 6, and so thermodynamic conditions for Fe enter into the WDM regime1. 
With further optimization of the technique, future measurements are expected to yield data up to 500 GPa and 
above of similar quality as in Fig. 2, thus allowing a finer comparison to theoretical models and a possibility to 
disclose the local order in WDM Fe.

The coupling between local order and the electronic state is also an important issue for models of WDM. 
Changes in the features of the absorption edge indeed reflect this coupling. The general trend of the modification 
of the K-edge spectra along the Hugoniot is well reproduced by DFT calculations with the exception of the value 
of the shift of the edge at 500 GPa (0.5 eV measured and 2 eV calculated). Since the K-edge shift is related to the 
energy difference, EF-E1s , between the Fermi energy and the 1s core energy level, it reflects the modification of the 
core energy level and of the electron density. In Fe, this K-edge shift along the Hugoniot is predicted to be much 
smaller than in Al5, in line with our observation. In the Warm Dense regime, this shift is particularly sensitive to 
changes in electronic shielding due to ionization, and to continuum lowering depression. The XANES data there-
fore provide important constraints on the electronic treatment of WDM within the DFT framework.

Figure 4. Iron phase diagram. Phase diagram of Fe showing our data (red full circles) in comparison to recent 
data from the literature. Full green triangles are from Harmand et al.11; blue squares are from Ping et al.4: full 
is single shock, half horizontal is multiple shock with P0 =  100 GPa and half vertical is multiple shock with 
P0 =  150 GPa; black lines are melting lines from ref. 18 (full) and ref. 7 (dash). Grey curves indicate different 
estimations of Fe Hugoniot, from Brown25, SESAME27 and BLF28.
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In summary, we present data from a proof-of-principle experiment demonstrating that single pulse XAS syn-
chrotron measurements will enable determination of structural and electronic properties of WDM with accu-
racy close to that on materials at ambient. Bringing the standard of synchrotron material studies towards the 
measurement of the atomic and microscopic properties of WDM will help validate models at the microscopic 
level and reveal new phenomena. We provide the first EXAFS data of Fe compressed to 500 GPa and heated to 
17000 K, covering a region of the phase diagram not previously explored conclusively with x-ray diagnostics. Our 
data indicate a persistent local order in the dense Fe fluid. The experimentally measured value of the shift of the 
absorption edge at 500 GPa with respect to ambient is found to be smaller than the theoretical prediction, stimu-
lating further work to improve the electronic treatment of WDM in the DFT framework. The present experimen-
tal approach could easily be extended to higher pressures and temperatures by using a more powerful (100–200 J) 
laser that would remain compatible with the beamline configuration.

Methods
Target preparation.  The targets were made of a thin (3.5 μ m) deposit of pure Fe sandwiched between two 
diamond windows, whose role was to confine the shock for a time interval much larger than the synchrotron 
pulse duration (100 ps). The Fe deposit was realized by the DEPHIS company and the Fe initial density was meas-
ured to be that of the solid (7.87 ±  0.08 g/cc). This was confirmed by the obtained x-ray absorption jump, which is 
dependent on the density. The adherent Fe deposit was realized on the rear window, a good contact to the ablation 
window was assured by an interstitial thin layer of CH (< 1 μ m) and by the windows holder specifically designed 
to “close” the sandwich by exerting a slight mechanical pressure. Diamond windows of around 40 μ m (front) and 
50 μ m (rear) were used when the laser was focused to 350 μ m with the phase plate, whereas thinner windows 
(25 μ m) were used when the laser was focused down to 90 μ m to limit the 2D effects. The lateral dimension of 
the windows, and thus of the Fe deposit was 2 mm, and the holder opening was 1.2 mm. A 4 μ m layer of CH was 
deposited on the ablation face to limit the pre-heating effect.

Laser, synchronization and alignment.  The experiment was performed with the QUANTEL portable 
high power laser system provided by CEA. The maximum energy of the laser was 35 J, delivered in a square pulse 
of 10 ns. The diameter of the laser focal spot was around 350 μ m and 90 μ m with and without a phase plate respec-
tively, as measured with a 30 degree incidence angle using a blade and sending the image to a Spiricon camera. 
The laser maximum repetition rate was 45 sec. All the laser clocks were locked to the ESRF radiofrequency system 
with the proper frequency divisions. The delay between the laser and the x-ray pulse was pre-aligned using a 
GaAs APD. A fine temporal adjustment was performed directly looking at the onset of the compressed hcp state 

Figure 5. Evolution of the absorption at the K-edge onset. Left: zoom over the edge region of a selection 
of spectra acquired in the highly focused configuration of the laser. a, b, c and d indicate regions where major 
changes are observed. Right: ab-initio molecular dynamic simulations (based upon private communication with 
Vanina Recoules from refs 3 and 11).
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in the sample evident through the changes in the XANES. The spatial alignment between the laser and the x-ray 
beam was performed using the following procedure. First the x-ray beam position was determined by scanning a 
reference target containing a metallic foil. We then used a high magnification camera looking at the front face of 
the target to visualize the laser at low power and bring it to the x-ray beam position. Since the laser spot size was 
always much bigger than the x-ray spot, the error in the alignment is given by the accuracy in the determination 
of the x-ray beam position which we estimate to be around 10 μ m.

Hydrodynamic simulation of the target.  1D Hydrodynamic simulations using the Lagrangian 
ESTHER12 code were performed using a mesh of around 900 units to describe the diamond-Fe-diamond sand-
wich. The EOS for plastic and diamond were taken from SESAME tables 7592 and 7834 respectively while a BLF28 
(Bushman, Lomonosov and Fortov) multiphase equation was used for iron. Opacities are given by the NOHEL 
code by A. Decoster and at low temperature by measurement from Henke31. The strength of diamond is taken 
into account by using a perfectly elastoplastic model, which includes a simple constitutive model where the elastic 
yield stress and the shear modulus are constant in the solid domain and vanish to zero when the diamond temper-
ature reaches the melting temperature. The values of the elastic yield strength and shear modulus used to simulate 
the strength of diamond are 7.5 109 (erg/cm3) and 4.77 1012 (erg/cm3) respectively.

The 1D Hydrodynamic simulations using the MULTI13 code were performed using a mesh of around 550 
units for the thin targets and 800 for the thick targets. The SESAME 7830 was used for the diamond, and the 
SESAME 2150 for iron. Opacities are taken from a SNOP model32. In both cases thermal conductivity and radia-
tive transfer were included in the calculation.

EXAFS analysis.  The EXAFS quantitative analysis was performed using the IFFEFIT package33 for the spec-
tra up to laser intensities of 4 ×  1012 W/cm2. A five shells model was used for the fit to the ambient bcc spectrum; 
assuming an undistorted bcc structure, only one distance parameter was fitted. Temperature and Debye temper-
ature were set to ambient values. The volume was then calculated as Vbcc =  a3/2. Other fitting parameters were the 
energy offset Δ E and the amplitude reduction factor S0

2. The obtained value of S0
2 =  0.7 ±  0.1 was then fixed in the 

fits to the compressed hcp structures and its error used to evaluate the temperature error; in fact, temperature and 
S0

2 are strongly correlated, therefore the main source of error in the temperature determination comes from the 
uncertainty over the S0

2. A two shells model was used for the hcp structure, assuming a homogeneous compres-
sion between the two, so that only one distance parameter was fitted. The fit allows the lattice parameter ahcp and 
thus volume Vhcp =  0.433 a2 c to be obtained. The c/a parameter was fixed to the value 1.61 since the k-range of the 
EXAFS was not extended enough for its precise adjustment; however simulations and static measurements18–22 
have shown that the c/a value remains almost ideal (1.59–1.63) over the thermodynamic region of interest. Other 
fitting parameters were the energy shift Δ E and the temperature T. The k-range of the collected data was not 
sufficient for the analysis to include anharmonic corrections. However, ab-initio molecular dynamics simulations 
suggest that these are small in hcp Fe up to inner core conditions22. A correlated Debye model was used for the 
temperature fit23 which is appropriate in our temperature range4. The Debye temperature at different compres-
sions in the hcp phase is taken from published measurements24.
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