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We present a combined experimental and theoretical study of the proximity effect in an atomic-scale
controlled junction between two different superconductors. Elaborated on a Si(111) surface, the junction
comprises a Pb nanocrystal with an energy gap Δ1 ¼ 1.2 meV, connected to a crystalline atomic
monolayer of lead with Δ2 ¼ 0.23 meV. Using in situ scanning tunneling spectroscopy, we probe the local
density of states of this hybrid system both in space and in energy, at temperatures below and above the
critical temperature of the superconducting monolayer. Direct and inverse proximity effects are revealed
with high resolution. Our observations are precisely explained with the help of a self-consistent solution of
the Usadel equations. In particular, our results demonstrate that in the vicinity of the Pb islands, the Pb
monolayer locally develops a finite proximity-induced superconducting order parameter, well above its
own bulk critical temperature. This leads to a giant proximity effect where the superconducting correlations
penetrate inside the monolayer a distance much larger than in a nonsuperconducting metal.

DOI: 10.1103/PhysRevX.4.011033 Subject Areas: Condensed Matter Physics,
Superconductivity

I. INTRODUCTION

If a normal metal (N) is in good electrical contact with a
superconductor (S), Cooper pairs can leak from S to N,
modifying the properties of the metal. This phenomenon,
known as a proximity effect, was intensively studied in the
1960s [1,2], and there has been a renewed interest in the last
two decades because of the possibility of studying this
effect at much smaller length and energy scales [3]. When a
Cooper pair penetrates into a normal metal, via an Andreev
reflection [4], it becomes a pair of time-reversed electron
states that propagate coherently over a distance LC, which
in diffusive metals is given by LC ¼ minf ffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏD=E
p

; Lϕg,
where D is the diffusion constant, E is the energy of the
electron states (with respect to the Fermi energy), and Lϕ is
the phase-coherence length in N. This Cooper pair leakage
modifies the local density of states (DOS) of the normal

metal over a distance LC from the S-N interface. Such a
modification has been spatially resolved in recent years
with the help of tunneling probes [5,6] and with scanning
tunneling microscopy/spectroscopy (STM/STS) techniques
applied to mesoscopic systems [7–11]. Very recently, the
considerable progress in the controlled growth of
atomically clean materials under ultrahigh vacuum con-
ditions has made it possible to probe the proximity effect
with high spatial and energy resolution in in situ STM/STS
experiments [12,13].
The proximity effect is not exclusive of S-N systems. If a

superconductor S1, with a critical temperature TC1 and
energy gap Δ1, is brought into contact with another
superconductor S2 with a lower critical temperature TC2 <
TC1 and energy gap Δ2 < Δ1, the local DOS of both
superconductors near the interface is expected to be
modified. At low enough temperature, T < TC2, this
modification should be significant in the energy interval
jEj ∈ ½Δ1;Δ2� and may occur in each electrode over a
distance minf ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏD=Δi

p
; Lϕi

g from the interface. Moreover,
in the temperature range TC2 < T < TC1, one expects the
proximity effect to induce a finite local order parameter in a
formally nonsuperconducting S2, owing to a nonzero
attractive pairing interaction λ2 existing in S2. Such a
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mechanism should result in a proximity-induced interface
superconductivity. These remarkable effects were first
discussed qualitatively by de Gennes and co-workers in
the 1960s [1,2], but to the best of our knowledge, no
experiment has ever been reported in which this peculiar
S1-S2 proximity effect could be spatially resolved.
In this work, we present a STM/STS study of the

proximity effect in a lateral S1-S2 junction with a very
high spatial and energy resolution, for temperatures well
below and above TC2. The junction was elaborated in situ in
ultrahigh vacuum on Si(111). The S1 electrode is formed by
a single nanocrystal of Pb (TC1 ≈ 6.2 K, Δ1 ¼ 1.2 meV).
S2 consists of a single atomic layer of Pb reconstructed
on Si(111) to form the so-called striped incommen-
surate phase, a superconductor with TC2 ≈ 1.8 K and
Δ2 ¼ 0.23 meV. For temperatures well below TC2, we
observe a pronounced modification of the local tunneling
conductance spectra in S2 over a distance of around 100 nm
from the S1-S2 interface. Above TC2 but below TC1, the
tunneling spectra in S2 exhibit an induced gap that extends
to distances anomalously large for a normal metal. Our
experimental observations are explained with the help of a
one-dimensional model based on the Usadel equations,
where the order parameter is evaluated self-consistently.
Importantly, our combined experimental and theoretical
study furnishes strong evidence that the long-range
proximity effect observed in S2 above TC2 is a direct
consequence of the appearance of proximity-induced inter-
face superconductivity in the atomic monolayer (ML).
The paper is organized as follows. Section II describes the

fabrication of the atomic-scale controlled junctions between
two different superconductors and presents the results for
the tunneling spectra in the low-temperature regime where
both electrodes are in the superconducting state. Section III
is devoted to the discussion of the theoretical model based
on the Usadel theory that is used to describe all our
experimental results. In Sec. IV, we present and discuss
the results for the tunneling spectra in the temperature
regime where the Pb monolayer is in its normal state. Then,
we briefly discuss the inverse proximity effect in the Pb
islands and summarize our main conclusions in Sec. V.

II. PROXIMITY EFFECT BETWEEN TWO
SUPERCONDUCTORS: EXPERIMENTAL SETUP

AND LOW-TEMPERATURE RESULTS

The fabrication of an S1–S2 junction was carried out in
situ as we proceed to explain. First, a 7 × 7 reconstructed
n-Si(111) surface (heavily doped) was prepared by
direct-current heating at 1200°C in ultrahigh vacuum.
Subsequently, a 1.65 monolayer of Pb was evaporated
on the Si(111)-7 × 7 kept at room temperature, using an
electron-beam evaporator calibrated with a quartz micro-
balance. The

p
7 ×

p
3 reconstructed Pb monolayer was

formed by annealing at 230°C for 30 minutes [14]. The
slightly denser striped incommensurate phase was then

formed by adding 0.2 ML of Pb onto the
p
7 ×

p
3-Pb/Si

(111) held at room temperature [15,16]. This resulted in a
slightly extra amount of lead atoms (0.07 ML) with respect
to the nominal reported coverage of the striped incom-
mensurate phase (1.33 ML).
This procedure allowed us to grow a very small density

of Pb islands of size larger than 100 nm and height of 7 ML,
such as the one denoted by S1 in the STM topographic
image shown in Fig. 1(a). These islands have a critical
temperature and an energy gap slightly smaller than the
bulk Pb values—here, TC1 ≈ 6.2 K and Δ1 ≈ 1.2 meV
[17–20]. The island S1 shown in Fig. 1(a) is in direct
electrical contact through peripheral atoms with the striped
incommensurate (SIC) monolayer denoted S2, reported to
be a superconductor with TC2 ≈ 1.8K and Δ2 ≈ 0.3 meV
[21,22]. It has been shown by various surface techniques
that the Pb islands lay directly on top of the Si(111)-7 × 7
substrate [23]. In addition, one can see in Fig. 1(a) the
formation of very tiny 1-ML-high nanoprotrusions or
clusters on top of the striped incommensurate phase (less
than 5 nm), also resulting from the deposition of the extra
0.07 ML of Pb. As presented in Fig. 1(b), the atomic
superstructure of the SIC was observed everywhere on the
surface between the overlying Pb islands or clusters. At
each step, the sample structure was controlled in both real
and reciprocal space by STM and low energy electron
diffraction. The STS measurements were performed in situ
with ahomemadeapparatus, at a base temperatureof 320mK
and in ultrahigh vacuum P < 4.0 10−11 mbar [19,24].
Mechanically sharpened Pt-Ir tips were used. The tunneling
conductance curves dIðVÞ=dV were obtained from numeri-
cal derivatives of the raw IðVÞ experimental data.
Let us first discuss the results obtained at low temper-

ature, T ¼ 0.3 K < TC1, TC2, when both electrodes are in

FIG. 1. (a) Topographical STM image of a 7-ML-high Pb
island, denoted as S1, surrounded by the SIC Pb monolayer,
denoted as S2. Small Pb clusters of few-nanometers size and 1-
ML height are visible on the SIC monolayer. These very small
clusters result from the extra Pb atoms deposited on the surface in
order to form few large islands such as S1. (b) Topographical
STM image showing a smaller-scale region representing the
atomic superstructure of the SIC monolayer observed everywhere
on the surface between the Pb clusters. The images were taken at
Vbias ¼ −1.0 V and I ¼ 35 pA.
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the superconducting state. These results are summarized in
Fig. 2. In particular, panel (a) displays the S1-S2 junction
considered throughout this work, where S1 is the Pb island
and S2 corresponds to the SIC monolayer. The color-coded
conductance map shown in this panel, at a bias voltage
close to the S2 gap edge, emphasizes that the proximity
effect extends significantly far from the island edge. Let us
stress that in Figs. 2, 3, and 5, one single dI=dVðV; xÞ
spectrum corresponds to the average of all dI=dVðV; xÞ
spectra measured at the same distance x from the island
edge (the S1-S2 interface) in Fig. 1(a). As can be seen from
the extension of the superconducting correlations shown in
Figs. 2(a) and 3(a), this averaging procedure represents the
main behavior well when going away from all island edges
except in the vicinity of the sharp corner region, where the
extension of the superconducting correlation is slightly
reduced. Figures 2(b) and 2(c) show the detailed evolution
of the local dIðV; xÞ=dV spectra as a function of the
distance x from the island edge measured in steps of 1 nm.
Representative spectra are also shown in Fig. 2(d). The
main spectral features are the following [see labels in

Fig. 2(c)]: (A) Close to the interface, there is a proximity
region where the spectra gradually evolve from one bulk
behavior to theotheroveradistanceofmore than100nm. (B)
A tiny yet important spectral feature is a small discontinuity
in the height of the coherence peaks occurring at the S1-S2
interface on a subnanometer scale. (C,D) Far away from the
island edge, the spectra go back to their bulk forms, S1 (S2),
exhibiting a spatially constant superconducting gapΔ1 (Δ2).
(E) Over about 60 nm from the S1-S2 interface, the spectra
evolve inS1with slight changes toward thebulkS1 spectrum,
revealing the inverse proximity effect.
Before presenting how the tunneling conductance

spectra are modified by increasing the temperature, it is
convenient to first introduce the theoretical model that will
help us to understand our observations. This is the goal of
the next section.

III. THEORETICAL MODELING:
USADEL EQUATIONS

Most theoretical studies of the proximity effect in S1-S2
systems have focused on the analysis of their critical
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FIG. 2. S1-S2 proximity effect at 0.3 K. (a) Topographic STM image of the sample showing the Pb nanoisland S1 connected to the
striped incommensurate Pb monolayer S2. The superposed color-coded spectroscopy map at Vbias ¼ −0.2 mV allows one to visualize
the proximity effect. The 256 × 256 spectra were measured in the STS map. (b) Spatial and energy evolution of the experimental
tunneling conductance spectra, dI=dVðV; xÞ, across the junction (3 D view). One spectrum is plotted every 1 nm and highlighted by a
black line every 10 nm. (c) Color-coded experimental dI=dVðV; xÞ spectra across the interface. One spectrum is plotted every
nanometer. (d) Selected local tunneling spectra (dots). The last spectrum measured on the top flat part of the island before the edge is
denoted by −0 nm. The first spectrum measured on the SIC monolayer is denoted by þ0 nm. The distance between the þ0-nm and
−0-nm spectra is about 1 nm. (e) Color-coded computed dI=dVðV; xÞ across the interface. (f) Spatial evolution of the energy of the peak
maximum EpeakðxÞ across the interface. The experimental results (symbols) are nicely reproduced by self-consistent calculation of the
order parameter (red solid line), while the red dashed line corresponds to the non-self-consistent result. The evolution of the order
parameter is shown by black lines: self-consistent (solid) and non-self-consistent (dashed).
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temperature. These studies have made use either of the
Ginzburg-Landau theory or of the linearized Gorkov
equations [2], which are only valid close to the critical
temperature of the whole system [25]. Here, in order to
describe the local spectra at arbitrary temperatures, we used
the Usadel approach [26]. Usadel equations summarize the
quasiclassical theory of superconductivity in the diffusive
limit, where the mean free path is smaller than the super-
conducting coherence length. In the monolayer S2, this
length is given by ξ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏD2=Δ2

p
. The quasiclassical

theory describes all the equilibrium properties in terms
of a momentum-averaged retarded Green’s function
ĜðR; EÞ, which depends on position R and energy E.
This propagator is a 2 × 2 matrix in electron-hole space,

Ĝ ¼
�
g f
~f ~g

�
: (1)

Neglecting inelastic and phase-breaking interactions, the
propagator ĜðR; EÞ satisfies the following equation [26]:

ℏD
π

∇ðĜ∇ĜÞ þ ½Eτ̂3 þ Δ̂; Ĝ� ¼ 0: (2)

Here, τ̂3 is the Pauli matrix in electron-hole space and

Δ̂ ¼
�

0 ΔðRÞ
Δ�ðRÞ 0

�
; (3)

where ΔðRÞ is the space-dependent order parameter that
needs to be determined self-consistently via the following
equation:

ΔðRÞ ¼ λ

Z
ϵc

−ϵc
dE
2π

ImffðR; EÞg tanh
�
βE
2

�
: (4)

Here, β ¼ 1=kBT is the inverse temperature, λ is the
coupling constant, and ϵc is the cutoff energy. These two
latter parameters are eliminated in favor of the critical
temperature of the monolayer (in the absence of a prox-
imity effect) in the usual manner. Moreover, in our case,
with no phase difference between the superconducting
reservoirs, the order parameter can be chosen to be real,
as we have done implicitly in Eq. (4).
To solve the Usadel equations in practice, we modeled

our lateral S1-S2 system by a one-dimensional (1 D)
junction. Because of the big thickness difference between
S1 and S2, we consider S1 as an ideal reservoir in which the
order parameter Δ1 remains constant and unperturbed up to
the interface (the observed tiny deviations due to the inverse
proximity effect in S1 are discussed below). S2 is approxi-
mated as a semi-infinite wire with a constant attractive
pairing interaction λðRÞ ¼ λ2 that corresponds to a critical
temperature TC2. Following Ref. [27], we solved the 1 D
Usadel equations using the Ricatti parametrization [28] and
described the junction interface with Nazarov’s boundary
conditions, valid for arbitrary transparency [29]. A key
parameter in these boundary conditions is an effective
reflectivity coefficient, r, roughly defined as the ratio
between the resistances of the S1-S2 barrier and of the
monolayer. Further technical details can be found in
Appendix A. Within our 1 D model, we compute the local
DOS ρðx; EÞ as a function of the distance to the interface, x,
as ρðx; EÞ ¼ −Imfgðx; EÞg=π, while the corresponding
normalized tunneling spectrum is given by
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FIG. 3. The same as in Fig. 3, but for T ¼ 2.05 K. At this temperature, the striped incommensurate Pb monolayer S2 is in its normal
state. Notice that the order parameter determined self-consistently exhibits a finite value close to the S1-S2 interface.

V. CHERKEZ et al. PHYS. REV. X 4, 011033 (2014)

011033-4



dI
dV

ðx; VÞ ¼ −
Z

∞

−∞
dEρðx; EÞ ∂nFðE − eVÞ

∂E ; (5)

where nFðEÞ is the Fermi function.
Let us now use this model to describe the low-temper-

ature results described in the previous section. For this
purpose, we first fixed the bulk gaps in S1 and S2 by
performing BCS fits of their local tunneling spectra
acquired far away from the S1-S2 interface. The best fits
were obtained for Δ1 ¼ 1.20 meV and Δ2 ¼ 0.23 meV,
with an effective electron temperature of 0.55 K slightly
higher than the base temperature of our STM (see
Appendix B). Second, we determined the value of the
effective reflectivity coefficient r by adjusting the disconti-
nuity in the spectra observed at the interface. We obtained
r ¼ 0.02, which implies a highly transparent yet nonperfect
interface. Third, we fixed the diffusion constant D2 so as to
reproduce the spatial dependence of the energy of the
spectral maximum Epeakðx > 0Þ [see Fig. 2(f)]. We
obtained D2 ≈ 7.3 cm2=s, which corresponds to a coher-
ence length of ξ2 ≈ 45.7 nm, in nice agreement with the ξ2
value extracted from the analysis of the vortex core profile
in the striped incommensurate phase [21,30]. Moreover, the
value of D2 suggests that the mean free path is rather small
(around 1 nm), and therefore, it is much smaller than ξ2,
which justifies the use of the Usadel approach.
Figure 2(f) shows that the theory captures the decay

length of EpeakðxÞ, along with the observed jump at the
island edge. In the same panel, we also show the self-
consistent order parameter ΔðxÞ in the Pb monolayer: It
exhibits a jump at the island edge and decays gradually to
the S2 bulk value within 80–100 nm. If the order parameter
is not accounted for self-consistently, the calculated spatial
dependence EpeakðxÞ does not follow the experimental data
[see dashed line in Fig. 2(f)]. This result emphasizes the
need for a fully self-consistent calculation, which, in any
case, is required based on fundamental principles. In
Fig. 2(e), we show the dI=dVðV; xÞ spectra obtained from
the solution of the Usadel equations with the parameter
values determined above. As one can see, the theory
reproduces all the salient features of the experimental
results of Figs. 2(c) and 2(d).

IV. GIANT PROXIMITY EFFECT:
TEMPERATURES ABOVE TC2

Let us now present and discuss the results for temper-
atures above the critical temperature of the monolayer. At
T ¼ 2.05 K, when S2 is already in the normal state,
the tunneling spectra change markedly [see Figs. 3(a)
and 3(b)]. Now, the spectra in the Pb monolayer close to
the interface exhibit a smooth induced gap that gradually
disappears over a distance of around 60 nm away from the
island edge. The overall evolution of the spectra resembles
that recently reported by us in an S-N system, in which an
amorphous Pb wetting layer played the role of a 2 D

disordered normal metal [13]. However, there are two
important differences with respect to the present case:
(i) Here, the Altshuler-Aronov reduction of the low-bias
tunneling density of states, characteristic of electronic
correlations, is absent, and (ii) the crystalline monolayer
is superconducting at lower temperatures while the dis-
ordered Pb wetting layer is not.
We now compare the proximity spectra with the results

of our model using values of the parameters determined
above, i.e., at 0.3 K. The effective temperature was taken to
be equal to the bath temperature 2.05 K. The computed
tunneling spectra are presented in Fig. 3(e). Again, the
theoretical results qualitatively reproduce the experimental
spectra of Fig. 3(c) with no adjustable parameters. More
importantly, as we show in Fig. 3(f), the Pb monolayer
locally develops, in the vicinity of the interface, a finite-
order parameter that survives over a distance of more than
100 nm. The impact of this proximity-induced order
parameter can be appreciated by comparing these results
with a non-self-consistent calculation where the order
parameter is assumed to vanish at this temperature, which
would correspond to the situation where S2 is a non-
superconducting metal. Such a calculation shows that the
induced gap extends over a much shorter distance inside the
Pb monolayer as compared to the experimental dependence
(see also Appendix C). This fact is illustrated in Fig. 3(f),
where we show that the experimental data for EpeakðxÞ are
fitted much more satisfactorily by the self-consistent
calculation. Thus, our results provide clear evidence for
the existence of the proximity-induced superconductivity in
the interface region. This phenomenon was already dis-
cussed theoretically by de Gennes and co-workers in the
early 1960s [1], but to our knowledge, no direct observation
has ever been reported. It is worth mentioning that the
existence of this long-range or giant proximity effect has
been suggested in the context of high-temperature super-
conductors based on the analysis of the supercurrent in
trilayer Josephson junctions [31,32].
For completeness, we studied the proximity-induced

interface superconductivity theoretically, in a more sys-
tematic manner. For this purpose, we computed the induced
order parameter in S2 for different temperatures (see Fig. 4).
For temperatures below TC2, the order parameter tends to a
finite value far away from the island, while for higher
temperatures, it asymptotically vanishes. Notice that right
above TC2 (see the light green curve in Fig. 4), the induced
order parameter can extend several hundreds of nanometers
inside the monolayer. A detailed analysis of our numerical
results in this temperature regime shows that away from the
interface, the induced order parameter decays exponentially
as ΔðxÞ ∝ expð−x=LΔÞ, where LΔ is a temperature-
dependent decay length. As we illustrate in the inset of
Fig. 4, this decay length diverges when TC2 is approached
from above, approximately as ∼1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T − TC2

p
, which agrees

with the prediction made with the help of the linearized
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Gorkov equations [1,2]. It is worth stressing that at
distances x < LΔ, the induced order parameter does not
follow this simple exponential decay. On the other hand,
notice also that when the temperature approaches TC1, both
the island’s order parameter and the induced one in the
monolayer vanish altogether. Thus, our analysis shows that
the proximity effect in S1-S2 junctions is much richer than
in the S-N case recently considered in Ref. [12].

V. DISCUSSION AND CONCLUSIONS

It is worth stressing that we also observed the so-called
inverse proximity effect in the Pb island (see Fig. 5), which
we ignored for simplicity in our calculations. Indeed,
although the Pb island is much closer to being an electron
reservoir than the atomically thin Pb monolayer, the
electron density ratio between S1 and S2 is not infinite,
and the superconductivity in S1 is also affected near the
interface by a contact to a weaker superconductor S2.
Nevertheless, the spectroscopic effects produced in S1 are
weak because of the large difference in electron densities of
the two systems, and they require a four-decade log scale to
be clearly visible. Figure 5 allows us to see two important
features of the inverse proximity effect: (i) Following the
coherence peak heights represented by the violet–light-pink
bands (normalized conductance values above 1), one sees
that the peak height slightly increases away from the S1-S2
interface while the energy of the peak maximum also
slightly increases toward higher energy. (ii) Focusing now
on the behavior of the low conductance values in the green-
orange-brown region (10−3-few 10−1), a tail of induced

subgap states appears in the excitation spectrum of S1 in the
energy window jEj ∈ ½Δ1;Δ2�. This tail of induced states
enables us to connect, by the edges, the large gap of S1 to
the small gap of S2. In principle, the inverse proximity
effect can be described within a natural extension of our 1 D
model. However, as we discuss in Appendix D, such a
description is not quite satisfactory, and this limitation calls
for an extension of our model that is presently in progress.
To summarize, we have presented an experimental study

of the proximity effect between two different supercon-
ductors, S1 and S2. Our system consists of an in situ
fabricated lateral junction composed of a large-gap Pb
island S1 (Δ1 ¼ 1.20 meV) and a small-gap crystalline
atomic Pb monolayer S2 (Δ2 ¼ 0.23 meV). Making use of
a low-temperature STM/STS, we have probed the local
DOS of such a hybrid system with an unprecedented
energy and space resolution. The observed proximity-
induced modification of the tunneling spectra in the Pb
monolayer S2 was rationalized with the help of a 1 D model
based on the self-consistent solution of the Usadel equa-
tions. In particular, our results show the appearance of
proximity-induced interface superconductivity in S2 in the
vicinity of the S1-S2 interface for temperatures above TC2,
thus confirming the theoretical prediction by de Gennes and
co-workers [1,2]. Our work not only elucidates this old-
standing problem in the context of a proximity effect, but it
also paves the way for studying new aspects of this
quantum phenomenon such as the Meissner effect and
vortex phases in proximity-induced superconductors.
Finally, a weak inverse proximity effect is also revealed
in the S1 Pb island, characterized by both a slight reduction
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junction. One spectrum is plotted every nanometer. The four-
decade log color scale allows one to visualize two important
effects as one approaches the S1-S2 interface: (i) reduction of
the peak energy and amplitude (pink narrow dI=dV > 1 band)
and (ii) appearance of a tail of induced subgap states in the
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of the coherence peak height and energy and by the
appearance of a tail of induced subgap states. Further
generalization of our 1 D model is needed to account for the
inverse proximity effect.
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APPENDIX A: THEORETICAL DESCRIPTION OF
THE PROXIMITY EFFECT—USADEL

EQUATIONS

Our approach to describing the proximity effect is based
on the Usadel equations [26]. The goal of this appendix is
to provide some additional technical details about how they
were solved in practice. In this discussion, we shall closely
follow Ref. [27].
To describe the proximity effect in the crystalline mono-

layer, we modeled the Pb islands as ideal superconducting
reservoirs and the monolayer as an infinite normal wire. To
implement this model in practice, we considered a 1 D
S1-S02-S2 junction, where S1 and S2 are BCS superconduct-
ing reservoirs with constant gaps Δisland ¼ Δ1 and
Δmonolayer ¼ Δ2, respectively, and S02 is a superconducting
wire of the same material as the monolayer reservoir. The
length of the central superconducting wire, L, was chosen
sufficiently large as to avoid the influence of the presence of
the S2 reservoir in the density of states close to the interface
with the S1 reservoir. On the other hand, we neglected the
inverse proximity effect in the S1 reservoir (island), and we
assumed that the S02-S2 interface was perfectly transparent.
However, we allowed theS1-S02 to be nonideal, aswe explain
in more detail below.
As explained in Sec. III, our technical task is to solve the

Usadel equations [Eq. (2)], together with the corresponding
equation for the order parameter [Eq. (4)]. Equation (2)
must also be supplemented by the normalization condition
Ĝ2 ¼ −π21̂. In order to numerically solve the Usadel
equations, it is convenient to use the so-called Riccati
parametrization [33], which automatically accounts for the
normalization condition. In this case, the retarded Green’s
functions are parametrized in terms of two coherent
functions, γðR; EÞ and ~γðR; EÞ, as follows:

Ĝ ¼ − iπ
1þ γ ~γ

�
1 − γ ~γ 2γ

2~γ γ ~γ − 1

�
: (A1)

Using their definition in Eq. (A1) and the Usadel
equation (2), one can obtain the following transport
equations for these functions in the wire region [28]:

∂2
~xγ þ

~f
iπ

ð∂ ~xγÞ2 þ 2i

�
E
ET

�
γ ¼ −i Δ

ET
ð1þ γ2Þ; (A2)

∂2
~x ~γ þ

f
iπ

ð∂ ~x ~γÞ2 þ 2i

�
E
ET

�
~γ ¼ i

Δ
ET

ð1þ ~γ2Þ; (A3)

where we have used the fact that the order parameter is real.
Here, ~x is the dimensionless coordinate that describes the
position along the S02 wire, which ranges from 0 (S1 lead) to
1 (S2 lead), and ET ¼ ℏD2=L2 is the Thouless energy of the
wire. The expressions for ~f and f are obtained by
comparing Eq. (1) with Eq. (A1). Notice that Eqs. (A2)
and (A3) couple the functions with and without tildes.
However, for the system under study, one can show that the
symmetry ~γðR; EÞ ¼ −γðR; EÞ holds, and therefore, only
Eq. (A2) needs to be solved.
Now, we have to provide the boundary conditions for

Eq. (A2). Since we want to describe a semi-infinite region
of the striped incommensurate phase, we assume that the
S02-S2 interface is perfectly transparent. In this case,
the boundary condition in this interface is simply given
by the continuity of the coherent function:

γð~x ¼ 1; EÞ ¼ γ2ðEÞ ¼ − Δ2

ER þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

2 − ðERÞ2
p ; (A4)

with ER ¼ Eþ i0þ.
We allow the interface between the island and the

monolayer wire to be nonideal, and to describe it, we
used the boundary conditions derived in Refs. [29,34].
These conditions for a spin-conserving interface are
expressed in terms of the Green’s functions as follows:

Ĝβ∂ ~xĜβ ¼
�
G0

GN

�X
i

2π2τi½Ĝβ; Ĝα�
4π2 − τiðfĜβ; Ĝαg þ 2π2Þ : (A5)

Here, ĜβðαÞ refers to the Green’s function on the monolayer
(island) side of the interface,G0 ¼ 2e2=h is the quantum of
conductance, and τi are the different transmission coef-
ficients characterizing the interface. The parameter GN is
equal to σ2S=L, where σ2 is the normal-state conductivity
of the monolayer and S is the cross section of the barrier.
Thus,GN can be viewed as the normal-state conductance of
a wire with cross section S and length L. In general, one
would need the whole set fτig, but since one does not have
access to this information, we adopt here a practical point
of view. We assume that all the M interface open channels
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have the same transmission τ, and we define GB ¼ G0Mτ
as the conductance of the barrier. Thus, the S1-S02 interface
is characterized by two quantities, namely, the barrier
conductance GB and the transmission τ, and our starting
point for the boundary conditions is

rĜβ∂ ~xĜβ ¼
2π2½Ĝβ; Ĝα�

4π2 − τðfĜβ; Ĝαg þ 2π2Þ ; (A6)

where we have defined the ratio r ¼ GN=GB. In this
language, an ideal interface is characterized by r ¼ 0,
and a tunnel contact is described by τ ≪ 1.
The next step is to express these boundary conditions

directly in terms of the coherent functions. Substituting the
definitions of Eq. (A1) into Eq. (A6), after straightforward
algebra, one obtains the following boundary conditions for
the coherent function γ at ~x ¼ 0:

−r∂ ~xγβ− ðγβÞ2∂ ~xγβ
ð1− ðγβÞ2Þ2

¼ ð1þðγβÞ2Þγα− ð1þðγαÞ2Þγβ
ð1− ðγβÞ2Þð1− ðγαÞ2Þþ τðγα− γβÞ2

:

(A7)

This equation establishes a relation between the coherent
function and its derivative evaluated on the side of the
interface inside the S02 wire (β) and the corresponding
function evaluated on the side of the interface inside the
S1 reservoir (α), which is given by Eq. (A4) by replacing
Δ2 by Δ1.
In summary, our main task was to solve Eq. (A2)

together with Eq. (3) in a self-consistent manner. The
nonlinear second-order differential equation of Eq. (A2),
together with its boundary conditions in Eqs. (A4) and
(A7), is a typical two-point boundary value problem. We
solved it numerically using the so-called relaxation method,
as described in Ref. [35]. On the other hand, the self-
consistent loop was done using a simple iterative algorithm
until convergence was achieved. Finally, the numerical
solution for the coherent function was used to construct the
retarded Green’s function from Eq. (A1) and to compute the
local density of states in the striped incommensurate phase
region and the corresponding local tunneling conductance
[see Eq. (5)].

APPENDIX B: BULK GAPS—BCS FITS

A first necessary step in the explanation of our exper-
imental results is the determination of the zero-temperature
bulk gaps of the island (Δ1) and the Pb monolayer (Δ2). For
this purpose, we fitted the tunneling spectra measured at
0.3 K deep inside both superconductors with the bulk BCS
theory, i.e., using the bulk BCS DOS in Eq. (5). To do the
fits, we used both the zero-temperature gap and the
temperature as adjustable parameters. The results of these
fits are shown in Fig. 6. As one can see, the BCS theory
satisfactorily reproduces the bulk spectra of both

superconductors with an effective temperature of 0.55 K,
which is slightly higher than the bath temperature of our
experiments. The values obtained for the zero-temperature
gaps are Δ1 ¼ 1.2 meV and Δ2 ¼ 0.23 meV. It is worth
stressing that no artificial broadening was introduced in the
expression of the BCS DOS to perform the fits.

APPENDIX C: THEORETICAL
RESULTS—REPRESENTATIVE EXAMPLES
AND THE ROLE OF SELF-CONSISTENCY

We are not aware of any theoretical work on the
proximity effect between two diffusive superconductors
for arbitrary temperatures. For this reason, it may be of
interest, for future reference, to provide here a more in-
depth discussion of the results of the model
described above.
In what follows, we fix the values of the zero-temper-

ature gap of both superconductors to the values that best
describe the experimental results, i.e., Δisland ¼ Δ1 ¼
1.2 meV and Δmonolayer ¼ Δ2 ¼ 0.23 meV, corresponding
to critical temperatures within the BCS theory equal to
TC1 ¼ 7.89 K and TC2 ¼ 1.51 K. On the other hand, we
also keep fixed the value of the diffusion constant in the
crystalline monolayer to D2 ¼ 7.3 cm2=s, which corre-
sponds to a coherent length of ξ2 ¼ 45.7 nm. Let us start
our analysis by considering the case in which the interface
between the island and the monolayer is perfectly trans-
parent (r ¼ 0). Assuming a temperature of 0.55 K, which
corresponds to the lowest effective temperature of the
experiments, we have computed the local tunneling spectra
in the monolayer as a function of the bias voltage for
different positions along the monolayer, x, and the results
can be seen in Fig. 7. Here, we show both the results
obtained assuming a constant order parameter in the
monolayer (see lower left panel), i.e., ignoring the self-
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(a) Normalized tunneling spectra as a function of the bias
voltage. The symbols correspond to the experimental spectrum
measured at 0.3 K deep inside the Pb island (x ¼ −80 nm). The
solid line corresponds to the best fit obtained with the BCS theory
for Δ1 ¼ 1.2 meV and T ¼ 0.55 K. (b) The same as in the upper
panel but for a spectrum measured in the Pb monolayer very far
away from the island edge (x ¼ þ200 nm). The BCS tunneling
spectrum was obtained using Δ2 ¼ 0.23 meV and T ¼ 0.55 K.
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consistency, and the full self-consistent results (see lower
right panel). We also show, in the upper panels, the
corresponding profiles of the order parameter. The different
curves in the lower panels correspond to different distances
to the island edge ranging from 0 to 100 nm. The curves
have been calculated in steps of 10 nm. As one can see, the
spectra evolve gradually from the BCS-like spectrum at the
island edge (x ¼ 0 nm) for Δ ¼ 1.2 meV to the BCS-like
spectrum deep inside the monolayer (x ¼ 100 nm) for
Δ ¼ 0.23 meV. In the vicinity of the island, the maximum
of the spectra occurs in the range between the two bulk gaps
(slightly shifted by the finite temperature), and it
approaches Δ2 at ∼2ξ2. Notice, however, that the spectra
exhibit a space-independent gap equal to Δ2. This result
agrees with the results obtained by de Gennes using a
variational method [1]. Notice also that the self-consistency
increases the magnitude of the bias at which the spectra
reach their maximum close to the interface, which is a
consequence of the larger order parameter in that region.
Let us now consider a temperature of 2.05 K, which is

above the critical temperature of the striped incommensu-
rate monolayer. The corresponding results are shown in
Fig. 8. In this case, one may naively expect the system to
behave like an ordinary S-N system. However, this is not
the case. As we show in the upper right panel of Fig. 8, the
monolayer develops a finite order parameter close to the
interface because of the proximity effect. This fact has a
strong impact on the spectra. In particular, the induced gap
that naturally appears in an S-N junction (see the non-self-
consistent calculation in the lower left panel) now extends
up to a much larger distance inside the monolayer, giving

rise to a long-range proximity effect. As we have also
discussed in Sec. IV (see Fig. 4), this phenomenon persists
up to the critical temperature of the island, which, in this
case, coincides with the critical temperature of the hybrid
structure.
Irrespective of the temperature, in the previous results,

the spectra evolve continuously from the island to the
crystalline monolayer. This is a consequence of the
assumed perfect transparency. However, the experimental
results discussed in the main text show that there is a jump
in the spectra when crossing the island edge. This suggests
that the interface, although highly transparent, is not
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perfect. This discontinuity can be accounted for by using
the boundary conditions described above. For simplicity,
we assume that the transmission coefficient τ is equal to 1,
and we attribute the nonideality of the interface to a non-
negligible resistance of the barrier (r ≠ 0). To illustrate the
role of a finite value of the parameter r, we computed the
tunneling spectra for different values of r for 0.55 and
2.05 K. The results are displayed in Figs. 9 and 10 and, as
one can see, a finite r produces two main effects. First, a
jump appears at the island edge, which increases in
magnitude as r increases. Indeed, we have used the
magnitude of this jump to adjust the value of r. Second,
the peak’s height in the spectra in the vicinity of the island

decreases as the value of r increases. If we keep increasing
the value of r, the spectra in the monolayer would tend to be
constant and we would recover the result for a bulk
superconductor with its corresponding bulk gap
(0.23 meV at 0.55 K and 0 meV at 2.05 K).
The finite interface resistance (r ≠ 0) also has an obvious

influence on the profiles of the order parameter. In Fig. 11,
we show the order-parameter profiles corresponding to the
different cases considered in Figs. 9 and 10. As one can see,
a finite value of r reduces the amplitude of the order
parameter in the vicinity of the island, thus reducing the
proximity effect. Again, a very high value of r would
simply kill the proximity effect in the monolayer.
A crucial point in our discussion is the marked difference

between the self-consistent and non-self-consistent calcu-
lations, which is particularly clear for temperatures above
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FIG. 12. Computed normalized tunneling spectra as a function
of the bias and the position measured with respect to the island
edge. (a) Results obtained in a self-consistent calculation using
the following parameter values: T ¼ 2.05 K, Δ1¼1.2meV,
Δ2¼0.23meV, r ¼ 0.02, and D2 ¼ 7.3 cm2=s. (b) The same
as in panel (a) but for a non-self-consistent calculation where the
order parameter is assumed to vanish in the monolayer.
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the critical temperature of the monolayer. This was already
illustrated in Fig. 3(f), where we show that the experimental
evolution of EpeakðxÞ at 2.05 K is much more satisfactorily
described by the self-consistent result. For completeness,
we show in Fig. 12 a comparison between the self-
consistent and non-self-consistent calculations of the evo-
lution of the tunneling spectra at 2.05 K in a 2 D plot for the
same parameters as in Figs. 3(e) and 3(f). Notice that the
color scale is different from the one used in the main text.
As one can see, in the non-self-consistent case, the
proximity effect extends a much smaller distance inside
the monolayer. This is a natural consequence of the
nonvanishing order parameter in the vicinity of the island

that is found in the self-consistent calculation. This induced
order parameter is reflected in a long-range proximity
effect, as compared to the standard S-N case where N is
a nonsuperconducting metal.
This long-range proximity effect can be better appre-

ciated by looking directly at the local DOS, i.e., getting rid
of the thermal broadening of the tunneling conductance.
For this reason, in the lower panels of Fig. 13, we show a
comparison of the spatial dependence of the local DOS for
the cases shown in Fig. 12. We also include, in the upper
panels, the corresponding profiles of the order parameter, as
well as the evolution of the coherent peaks, defined as the
position in energy of the maxima of the local DOS. As one
can see in the lower panels, in both cases, the main feature
in the local DOS is the appearance of an induced gap that
progressively disappears as we move away from the
interface—an induced gap that is obviously more pro-
nounced than in the conductance spectra. In the non-self-
consistent case, which corresponds to a standard S-N
junction (with N being a nonsuperconducting metal), the
decay of the induced gap away from the interface can be
fitted by a function of the type 1=ð1þ x=LξÞ2, with
Lξ ¼ 14.3 nm. This means that the induced gap roughly
scales as a local Thouless energy ℏD2=x2, as it is well
known in standard diffusive S-N junctions [36]. In the self-
consistent case, the decay of the induced gap can also be
accurately described with the same type of function, but
this time, the existence of a finite induced order parameter
in the monolayer is manifested in a larger decay length,
which we numerically found to be Lξ ¼ 55.7 nm for this
example.

APPENDIX D: INVERSE PROXIMITY EFFECT

So far, we have assumed, in our theoretical analysis, that
the island is a perfect reservoir with a constant order
parameter. However, as discussed in Sec. V, our experi-
ments show a small inverse proximity effect in the form of a
reduction of the coherence peak amplitude and energy, as
well as the appearance of subgap states in the excitation
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density of states as a function of energy (measured with respect to
the Fermi energy, EF). The parameters of the model are those of
Fig. 12, and the different curves correspond to different positions
along the monolayer, x. The curves were computed in steps of
10 nm, ranging from x ¼ 0 (monolayer side of the island edge) to
x ¼ 100 nm. The lower left panel corresponds to a calculation
where the order parameter in the monolayer is assumed to be zero
everywhere, while the lower right panel corresponds to the case in
which the order parameter was calculated in a self-consistent
manner. The upper panels show the corresponding order-param-
eter profiles (black lines) and the spatial evolution of the coherent
peaks (red lines).

FIG. 14. Normalized tunneling spectra as a function of the bias voltage and the position measured with respect to the island edge.
These results were obtained in self-consistent calculations that take into account the inverse proximity effect in the island. The three
panels correspond to different values of the diffusion constant ratio rdiff ¼ D1=D2. The different parameter values are T ¼ 0.55 K,
Δ1 ¼ 1.2 meV, Δ2 ¼ 0.23 meV, r ¼ 0.0, and D2 ¼ 7.3 cm2=s.
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spectrum of S1 in the energy window jEj ∈ ½Δ1;Δ2�. It is
straightforward to extend the model discussed above to try
to describe this inverse proximity effect. This simply
requires solving the Usadel equation inside the island also,
by taking into account that the pairing interaction constant λ
takes different values in both electrodes, according to the
corresponding critical temperatures. Moreover, we must
consider that the diffusion constant can be different in both
superconductors.
In Fig. 14, we present the results of the extension of our

model to account for the inverse proximity effect. For
simplicity, we have assumed a perfectly transparent inter-
face, and the spatially resolved spectra are shown for
different values of the ratio rdiff ¼ D1=D2, where D1

and D2 are the diffusion constants of the island and of
the monolayer, respectively. As in the examples of the
previous appendix, we have used the following parameter
values: T ¼ 0.55 K, Δ1 ¼ 1.2 meV, Δ2 ¼ 0.23 meV, and
D2 ¼ 7.3 cm2=s. These results suggest that the weak
proximity effect observed inside the island could be
naturally described within our model by simply assuming
that D1 is much smaller than D2 (around 10 times smaller).
However, given the small value ofD2, it seems unlikely that
the Pb island could have such a small diffusion constant.
We believe that this result might be an artifact of our 1 D
model. A more natural explanation for the weak proximity
effect would invoke the higher dimensionality of the island,
which surely leads to a quick geometrical dilution of the
order parameter inside. The confirmation of this idea would
require performing 3 D simulations, which are out of the
scope of this work. For this reason, and since the proximity
effect inside the crystalline monolayer is indeed the main
problem of interest in this work, in the main text we have
decided to stick to the model in which the island is
considered as a perfect superconducting reservoir.
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