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Abstract. In this paper, we propose an interactive version of the Borda method
for collective decision-making (social choice) when the alternatives are described
with respect to multiple attributes and the individual preferences are unknown.
More precisely, assuming that individual preferences are representable by linear
multi-attribute utility functions, we propose an incremental elicitation method
aiming to determine the Borda winner while minimizing the communication ef-
fort with the agents. This approach follows the recent work of Lu and Boutilier
[8] relying on the minimax regret as a criterion for dealing with uncertainty in the
preferences. We show that, when preferences are expressed on a multi-attribute
domain and are additively separable over attributes, regret-based incremental elic-
itation methods can be made more efficient to determine or approximate the
Borda winner. Our approach relies on the representation of incomplete prefer-
ences using convex polyhedra of possible utilities and is based on linear program-
ming both for minimizing regrets and selecting informative preference queries. It
enables to incrementally collect preference judgements from the agents until the
Borda winner can be identified. Moreover, we provide an incremental technique
for eliciting a collective ranking instead of a single winner.

1 Introduction

Voting is an effective method for collective decision-making, used in political elections,
technical committees, academic institutions. Recently, interest in voting has increased
in computer science, given the possibility offered by online web systems to support vot-
ing protocols, or protocols inspired by voting, for group decision-making (for example,
for scheduling a meeting). In many real situations, however, it may be necessary to rea-
son with partial preferences, as some preferences are not available and too expensive to
obtain (with respect to a cognitive or economic cost). This observation has motivated
a number of recent works on social choice with partial preferences, e.g., [8, 9, 3–6, 2,
12]. In this research stream, typical questions concern the determination of possible and
necessary winners, the selection of preference queries to ask to the agents for further
eliciting preferences, the approximation of optimal solutions or the determination of
robust recommendations based on the available preference information.



Acquiring agents’ preferences is expensive (with respect to time and cognitive cost).
It is therefore essential to provide techniques that allow to reason with partial prefer-
ence information, and that can effectively elicit the most relevant part of preferences to
make a decision. Adaptive utility elicitation [11, 10, 1] tackles the challenges posed by
preference elicitation by representing the system knowledge about the agents’ prefer-
ences in the form of a set of admissible utility functions. This set includes all functions
compatible with the preferences collected so far, and is updated following agents’ re-
sponses. In this way, one can often make good (or even optimal) recommendations with
sparse knowledge of the users’ utility functions.

The aim of this paper is to introduce an adaptive utility elicitation procedure in the
context of voting, for the fast determination of a Borda winner or a social ranking based
on the Borda score, and to test the practical efficiency of this procedure. In particular,
we extend the work of [8] to the multi-attribute case. Multiple attributes may appear
in well-known collective decision problems such as committee elections or voting in
multi-issue domains [7]. In these cases, attributes are boolean and represent elementary
decisions on candidates or issues. More generally, the multi-attribute case occurs when
the alternatives of a collective decision problem are described by different features, non-
necessarily boolean. Individual preferences are assumed here to be representable by a
linear function of the attribute values. Since utilities are decomposable over attributes,
a set of preference statements formulated by an agent on some pairs of alternatives will
possibly allow to infer other preference statements with respect to other pairs, without
asking them explicitly. We show in the paper how this type of inference mechanism can
be implemented using mathematical programming to reduce the number of queries and
speed-up the determination of a necessary Borda winner.

The paper is organized as follows: in Section 2, we introduce the basic framework
for voting on multi-attribute domains. Then, we present the minimax regret decision
criterion as a useful tool for decision under uncertainty and preference elicitation. In
Section 3, we introduce a new method based on mathematical programming to mini-
mize regrets based on the Borda count. Section 4 deals with preference elicitation for
the Borda count; we introduce different strategies for generating preference queries and
compare them experimentally. Finally, in Section 5, we extend the approach to ranking
problems based on the Borda score and provide additional numerical tests to evaluate
the efficiency of our approach in ranking.

2 Social Choice in Multi-attribute Domains with Incomplete
Preferences

We consider a set of n voters or agents and a set X of m alternatives (candidates,
options, items), characterized by a finite set of q attributes or criteria; an alternative
is associated to a vector x = (x1, . . . , xq) where each xk represents the value of an
attribute k or a performance with respect to a given point of view.

Individual preferences are assumed here to be represented by linear utilities of the
form ui(x) =

∑q
k=1 ω

i
kxk, where ωi = (ωi1, . . . , ω

i
q) is a vector of weights charac-

terizing the preferences of agent i. Hence, an alternative x is as least as good as y for
agent i whenever

∑q
k=1 ω

i
kxk ≥

∑q
k=1 ω

i
kyk. Our framework can be used to address



two different cases: a multi-criteria decision setting or a multi-attribute utility where the
utility is defined as the weighted sum of attribute values. Formally, these preferences
are defined by the following relation %i:

x %i y iff
q∑

k=1

ωik(xk − yk) ≥ 0

A preference profile 〈%1, . . . ,%n〉 of an election is therefore completely characterized
by the weight vectors ω1, . . . , ωn (each associated with an agent). We can now define
the Borda score in our multi-attribute settings, where preferences are defined by the
utility weights. Given ω = 〈ω1, . . . , ωn〉, the Borda score s(x, ω) of an alternative x is

s(x, ω) =

n∑
i=1

si(x, ωi)

where si(x, ωi) = |{y ∈ X |x �i y}| counts the number of alternatives that are
strictly beaten by x according to the preference relation induced from ωi, where �i is
the asymmetric part of %i: x �i y iff �i and ¬(y �i x). Our definition allows for ties
in each ranking. When using only linear orders (i.e. the ωis are such that there are no
ties) we get the usual Borda count.

When the weights of the agents are not known to the system with certainty, we
need to reason about partially specified preferences. This is done by assuming a vector
Ω = 〈Ω1, . . . , Ωn〉 where each Ωi is the set of feasible ωi that are consistent with
the available preference information on agent i. Later, we will use Ω (that represents
our uncertainty about the weights associated with the agents) in order to provide a
recommendation based on minimax regret. At the level of a single agent i, we can
check whether pairs of alternatives are in a necessary preference relation given Ωi.

Definition 1. Alternative x is necessarily weakly preferred to y for agent i, written
x %Ni y, iff ∀ωi ∈ Ωi,

∑q
k=1 ω

i
k(xk − yk) ≥ 0. Similarly, x is necessarily strictly

preferred to y for agent i, written x �Ni y, iff ∀ωi ∈ Ωi,
∑q
k=1 ω

i
k(xk − yk) > 0.

The necessarily strictly preferred relation �Ni should not be confused with the asym-
metric part 3 of the necessarily weakly preferred relation %Ni .

At the level of the community of the agents, a possible Borda winner is an alternative
such that there exists a feasible instantiation of the weights that makes it a Borda winner;
a necessary Borda winner is a Borda winner for all feasible instantiations of the weights.

In general the sets Ω1, . . . , Ωn are not given directly but are inferred by available
preference statements. Any preference statement of type x %i y for agent i is indeed
interpreted as a linear constraint ωi · (x − y) ≥ 0. Therefore, after collecting several
preferences of this type, Ωi is a convex polyhedron in the space of weights.

When the utility weights are known and characterized by ω = 〈ω1, . . . , ωn〉, the
actual loss or real regret of an alternative x is the shortfall in Borda score that occurs
by choosing x instead of the optimal choice x∗ω; more formally:

Regret(x, ω) = max
y∈X
{s(y, ω)} − s(x, ω) = s(x∗ω, ω)− s(x, ω).

3 The asymmetric part �N
i of %N

i is defined as x�N
i y iff (x %N

i y) ∧ ¬(y %N
i x).



Instead, when the actual weights ω = 〈ω1, . . . , ωn〉 are not known, but some prefer-
ences are available, we are interested in quantifying how “bad” a choice can be with
respect to the current uncertainty about the weights, encoded by Ω = 〈Ω1, . . . , Ωn〉.
To this end, we first define pairwise max regret, then max regret and finally minimax
regret as proposed in [10, 8]. The pairwise max regret PMR(x, y,Ω) of alternative x
relative to y under Ω is the worst-case loss, in terms of Borda score, of selecting the
alternative x instead of y. The max regret MR(x,Ω) is the worst-case loss of choosing
x: this can be viewed as an adversarial selection of the instantiation of the weights ω to
maximize the loss between x and the true winner under ω. We want to choose the alter-
native x minimizing max regret: the minimax regret MMR(Ω) represents the smallest
max regret under Ω. These concepts are formalized below:

PMR(x, y,Ω) =max
ω∈Ω

[
s(y, ω)− s(x, ω)

]
,

MR(x,Ω) =max
y∈X

PMR(x, y,Ω), (1)

MMR(Ω) =min
x∈X

MR(x,Ω). (2)

Finally the minimax optimal alternative x∗Ω is any alternative x mininimizing regret
MR over Ω (i.e. x∗Ω ∈ argminx∈X MR(x,Ω)). Solution x∗Ω is an approximate winner
of the current election according to the minimax regret criterion; it gives us the safest
choice with respect to the uncertainty on the preference weights attached to the agents;
this will be suggested as a recommendation for the social choice problem given the
available preference information. We recall from [8] the observation that the regret-
minimizing alternative may not be a possible winner. Another important property is
that, if MMR(Ω) = 0, then x∗Ω is a necessary winner.

3 Minimax Regret Computation for Borda

We are now interested in the computation of minimax regret, given the uncertainty
sets 〈Ω1, . . . , Ωn〉, when using Borda count as voting rule on a multi-attribute domain.
Note that the computation of the pairwise max-regret values PMR is the cornerstone
of the problem: once we have computed PMR(x, y,Ω) for all x, y ∈ X , max regret
MR(x,Ω) for all x and then minimax regret MMR(Ω) can be computed directly from
the definitions (Equations 1 and 2).

The main intuition for computing minimax regrets comes from [8]; however, in our
multi-attribute settings, computing PMR is more involved as we need to deal with the
multi-attribute structure of the domain. The key idea is to exploit the decomposition of
PMR with respect to the different agents:

PMR(x, y,Ω) =

n∑
i=1

max
ωi∈Ωi

[
si(y, ωi)−si(x, ωi)

]
This decomposition allows to decompose the PMR maximization problem into a series
of simpler maximization problems. For each agent i, we maximise the contribution to



PMR separately, which is defined as follows:

PMRi(x, y,Ω
i) = max

ωi∈Ωi

[
si(y, ωi)− si(x, ωi)

]
This optimization problem gives the maximal difference between the number of alter-
natives strictly less preferred than y and the number of alternatives strictly less preferred
than x (according to the ith-agent’s preferences); note that, if there is no tie, this corre-
sponds to maximizing the difference between their rank. Let ωi be the weighted vector
maximizing this value and %i be the preference relation induced by ωi. From the defi-
nition of the scores, we have:

si(y, ωi)− si(x, ωi) =
{
− |{z ∈ X, x �i z %i y}| if x %i y
|{z ∈ X, y �i z %i x}| otherwise

However, since we do not know in which case we are (ωi is not known), we make use of
the necessarily preferred relation %Ni in order to check whether some conclusions can
be drawn from the available information about the preference between x and y. More
precisely, we distinguish whether it is known that x is necessarily weakly preferred to y
or not. Then, we deduce the weighting vector that maximizes the contribution to regret
of agent i. Note that checking whether x %Ni y can be simply performed using a linear
program, by testing the condition minωi∈Ωi{(x− y) · ωi} ≥ 0}. We now express two
mutually exclusive cases using the necessary preference relation.

1) case x %Ni y: in that case, we have si(y, ωi) − si(x, ωi) ≤ 0 for all ωi ∈ Ωi by
definition of %Ni . This induces that the contribution to PMR(x, y,Ω) is non-positive
and more precisely, we have PMRi(x, y,Ω

i) = −minωi∈Ωi |{z ∈ X, x �i z %i y}|.
Hence, to maximize the pairwise max regret PMR(x, y,Ω), we need to minimize over
Ωi the cardinality of the set {z ∈ X, x �i z %i y} as much as possible.

2) case¬(x %Ni y): there exists ωi∈Ωi such that si(y, ωi)−si(x, ωi)≥0 by definition
of %Ni . Therefore, we know that the contribution to PMR(x, y,Ω) is non-negative here.
More precisely, we have PMRi(x, y,Ω

i) = maxωi∈Ωi |{z ∈ X, y �i z %i x}|.
Hence, we need to maximize the cardinality of the set {z ∈ X, y �i z %i x} to
maximize the pairwise max regret PMR(x, y,Ω).

In the following, we consider the problem of computing PMRi(x, y,Ω
i) for any x, y

and i. First of all, we need to define the following sets for any a ∈ {x, y}:

Ua={z∈X \ {a}, z%Ni a}, La={z∈X, a�Ni z}, V a=X \ ({a} ∪ Ua ∪ La)

and for any pair of alternatives (a, b) ∈ {(x, y), (y, x)}:

Ma,b = La ∩ U b, Za,b1 = La ∩ V b, Zb,a2 = U b ∩ V a, Za,b3 = V a ∩ V b

These sets are computed for each user i using linear programming (repeatedly testing
%Ni or �Ni on pairs of alternatives) and allow us to partition the set X for the com-
putation of PMRi(x, y,Ω

i). We refer the reader to Figure 1 where the different cases
are visualized; for simplicity, we only show the transitive reduction of the preference
relation and we distinguish whether it is known that y is necessarily weakly preferred
to x or not (if not, set My,x is empty). Note that, in the following, we may write Z1, Z2

and Z3 (dropping the superscripts) when the case considered is clear from the context.
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i y) ∧ ¬(y%N

i x)

Fig. 1: Partition of set X with respect to the value of %Ni with x and y for agent i.
The solid (resp. dashed) arcs represent necessary strict (resp. weak) preferences.

1) case x %Ni y (Figure 1a): We want to compute PMRi(x, y,Ω
i). Recall that, in this

case, PMRi(x, y,Ω
i) = −minωi∈Ωi |{z ∈ X, x �i z %i y}|. Hence, we want to find

a feasible ωi ∈ Ωi such that as few of the alternatives z ∈ X are such that x �i z %i y.
First, let us note that none of the alternatives z in Ux ∪ Ly verify x �i z %i y for
some ωi ∈ Ωi (by definition of Ux and Ly). Moreover, x �i z %i y for all alternatives
z ∈Mx,y and all ωi ∈ Ωi (by definition of Mx,y). Therefore, we have:

PMRi(x, y,Ω
i) = −|Mx,y| − min

ωi∈Ωi
|{z ∈ Z1 ∪ Z2 ∪ Z3 ∪ {y}, x �i z %i y}|

Thus, we need to compute minωi∈Ωi |{z ∈ Z1 ∪ Z2 ∪ Z3 ∪ {y}, x �i z %i y}| to de-
termine PMRi(x, y,Ω

i). We propose now a mixed-integer programming formulation
(named MIPx,y) to solve the latter optimization problem:

(MIPx,y): min b0 +
∑
z∈Z1

bz1 +
∑
z∈Z2

bz2 +
∑
z∈Z3

bz3

s.t.
q∑
j=1

ωij = 1 (3)

ωi · (a− b) ≥ 0, ∀(a, b) ∈ Pi≥ (4)

ωi · (a− b) ≥ ε, ∀(a, b) ∈ Pi> (5)

ωi · (y − x) + Cb0 ≥ 0 (6)

ωi · (y − z) + Cbz1 ≥ ε, ∀z ∈ Z1 ∪ Z3 (7)

ωi · (z − x) + Cbz2 ≥ 0, ∀z ∈ Z2 ∪ Z3 (8)
bz3 ≥ bz1 + bz2 − 1, ∀z ∈ Z3 (9)

ωij ≥ 0, ∀j∈{1, . . . , q}; b0∈{0, 1}; bz3∈{0, 1}, ∀z∈Z3

bz1 ∈ {0, 1}, ∀z ∈ Z1 ∪ Z3; b
z
2 ∈ {0, 1}, ∀z ∈ Z2 ∪ Z3



In this program, the variables are ωi = (ωi1, . . . , ω
i
q), a vector of q positive real

numbers, binary variable b0 and binary variables bz1 for each z ∈ Z1 ∪ Z3, bz2 for each
z ∈ Z2 ∪ Z3, and bz3 for each z ∈ Z3 (we therefore have q + |Z1| + |Z2| + 3|Z3| + 1
variables). C is an arbitrary large constant value and ε is an arbitrary small and positive
constant modelling strict inequalities. Constraint 3 simply states that the weights should
be normalized to add up to 1. Constraints 4 and 5 model the fact that weight ωi should
satisfy both the weak preference statements in Pi≥ and the strict preference statements
in Pi> obtained from agent i; indeed, set Ωi is defined by these preference statements.

Proposition 1 If x %Ni y, then PMRi(x, y,Ω
i) = −|Mx,y| − OPT , where OPT is

the optimum of mixed-integer program MIPx,y .

Proof. We want to prove that minωi∈Ωi |{z ∈ Z1 ∪ Z2 ∪ Z3 ∪ {y}, x �i z %i y}|
is the optimum of MIPx,y , i.e. we want to show that the objective function counts the
cardinality of {z ∈ Z1 ∪ Z2 ∪ Z3 ∪ {y}, x �i z %i y}. In this program, we use
a set of binary variables bz1, bz2 and bz3 to represent the condition x �i z %i y for
alternatives z in Z1, Z2 and Z3 respectively. Binary variable b0 represents whether x
is strictly preferred to y (otherwise the contribution to PMR is null). The objective
function sums up over all variables b0, bz1, bz2 and bz3, so that we count the cardinality
of {z ∈ Z1 ∪ Z2 ∪ Z3 ∪ {y}, x �i z %i y}. We now prove that each binary variable
is equal to one iff the corresponding constraint is satisfied. Since the objective is a
minimization, the values of the binary variables b0, bz1, bz2 and bz3 (that appear in the
objective function), will be 0 unless forced to 1.

The binary variable bz1, for z ∈ Z1, represents whether alternative z verifies x �i
z %i y. Equation 7 indeed enforces bz1 = 1 when ωi · (z − y) ≥ 0, i.e. when z %i y;
otherwise, variable bz1 is set to zero since we are minimizing the objective function.
Then, since x �i z (by definition of Z1), we have that bz1 = 1 iff x �i z %i y.

For all alternatives z ∈ Z2, we know that z %i y by definition. Therefore, z will be
such that x �i z %i y iff x �i z. The binary variable bz2 will take value 1 in this case.
This is indeed guaranteed by Constraint 8 enforcing bz2 = 1 when ωi · (z − x) < 0, i.e.
if x is strictly preferred to z. If instead z is preferred to x, then the value ωi · (z − x)
is positive and Constraint 8 is vacuous; in this case, bz2 will take value 0, as desired,
because we are minimizing.

For all alternatives z ∈ Z3, the two previous conditions need to be satisfied in order
for z to contribute to the score difference. Constraint 9 implements an and between
these two conditions (bz3 = 1 iff x �i z and z %i y).

Finally, while we know that y cannot be strictly preferred to x (since x %Ni y),
it might be the case that they are equally preferred. The binary variable b0 represents
whether x is strictly preferred to y; more precisely, Constraint 6 enforces that b0 = 1
whenever ωi · (y − x) < 0. ut

2) case ¬(x �Ni y) (Figures 1b and 1c): Recall that, in this case, PMRi(x, y,Ω
i) =

maxωi∈Ωi |{z ∈ X, y �i z %i x}|. Therefore, we aim to find a feasible ωi ∈ Ωi

so that as many of the alternatives z ∈ X are such that y �i z %i x. Since we are
maximizing, the optimal ωi ∈ Ωi will be such that y %i x; thus, the case represented in
Figure 1c reduces to the one depicted in Figure 1b. We now focus on the optimization



of PMRi(x, y,Ω
i) for Figure 1b. Similarly to the first case, note that none of the alter-

natives z in Uy ∪Lx verifies y �i z %i x for some ωi ∈ Ωi. Moreover, all alternatives
z ∈My,x are such that y �i z %i x for all ωi ∈ Ωi. Therefore:

PMRi(x, y,Ω
i) = |My,x|+ max

ωi∈Ωi
|{z ∈ Z1 ∪ Z2 ∪ Z3 ∪ {x}, y �i z %i x}|

Thus, we need to compute maxωi∈Ωi |{z ∈ Z1 ∪ Z2 ∪ Z3 ∪ {x}, y �i z %i x}|. This
can be performed by solving the following program (named MIPy,x hereafter):

(MIPy,x): max b0 +
∑
z∈Z1

bz1 +
∑
z∈Z2

bz2 +
∑
z∈Z3

bz3

s.t.
q∑
j=1

ωij = 1

ωi · (a− b) ≥ 0, ∀(a, b) ∈ Pi≥
ωi · (a− b) ≥ ε, ∀(a, b) ∈ Pi>
ωi · (y − x) + (1− b0)C ≥ ε (10)

ωi · (z − x) + (1− bz1)C ≥ 0, ∀z ∈ Z1 ∪ Z3 (11)

ωi · (y − z) + (1− bz2)C ≥ ε, ∀z ∈ Z2 ∪ Z3 (12)
bz3 ≤ bz1, ∀z ∈ Z3 (13)
bz3 ≤ bz2, ∀z ∈ Z3 (14)

ωij ≥ 0, ∀j∈{1, . . . , q}; b0∈{0, 1}; bz3∈{0, 1}, ∀z∈Z3

bz1 ∈ {0, 1}, ∀z ∈ Z1 ∪ Z3; b
z
2 ∈ {0, 1}, ∀z ∈ Z2 ∪ Z3

Proposition 2 If ¬(x %Ni y), then PMRi(x, y,Ω
i) = |My,x|+OPT , where OPT is

the optimum of mixed-integer program MIPy,x.

The proof is similar to that of the previous condition, however since the objective is a
maximization, the values of the binary variables b0, bz1 (for z ∈ Z1), bz2 (for z ∈ Z2)
and bz3 (for z ∈ Z3) will be 1 unless forced to be 0. Constraints 10-14 formalize the
required behaviour: the value of each binary variable, relative to a specifc z, will be set
to 1 unless ωi is chosen in a way such that y �i z %i x.

Note that the MIP formulations might be too computationally demanding for prob-
lems involving a large number of alternatives (since there are one or more integer vari-
ables per alternative). For this reason, we will consider the linear programming relax-
ation of these programs, i.e., the linear programs obtained by replacing boolean vari-
ables b0, bz1, bz2, bz3 by continuous variables belonging to the unit interval. The resulting
optimization problems are solvable in polynomial time using linear programming; how-
ever the solution gives an upper bound on pairwise max regret values (instead of the
exact value). The relaxed values for PMR are then aggregated giving a relaxed MMR
value. Note that, since optimizing the relaxed problem gives an upper bound, the result



can still be used in order to provide a robust recommendation with worst-case guar-
antees; the guarantee is less strong than if pairwise max regret values were computed
exactly, but computation times are significantly improved as shown in Subsection 4.2.

4 Incremental Elicitation

Given the available preference information, the worst-case loss ensured by the minimax
regret might be at unacceptable level. In order to approximate the Borda winner with
the desired guarantee (expressed by the minimax regret value), we may ask additional
preference information to the agents. By incorporating the responses to additional ques-
tions, we can indeed refine the uncertainty sets and therefore reduce this loss.

4.1 Elicitation Strategies

We adopt an incremental setting where preference queries are selected incrementally
according to the current available information until the minimax regret is zero; at that
point, we know that alternative x∗Ω is a necessary Borda winner. We allow asking queries
that may induce either weak or strict preference statements. In order to limit the cog-
nitive effort of the agents, it is important to ask queries that are informative (roughly, a
query is informative if it significantly reduces regrets whatever the answer); in particu-
lar, the computation of minimax regret can suggest queries that may be able to impose
a significant reduction of regrets. One common technique, also known as the Current
Solution Strategy (CSS), is to consider one of the current “best challenger” y∗Ω of the
approximate winner: y∗Ω ∈ argmaxy∈X PMR(x∗Ω , y, Ω). New preference information
involving the pair (x∗Ω , y

∗
Ω) is indeed often useful to reduce the minimax regret effi-

ciently, which is equal to PMR(x∗Ω , y
∗
Ω , Ω). We propose now two elicitation strategies

of different complexity, that are aimed to reduce PMR(x∗Ω , y
∗
Ω , Ω).

Multi-Attribute-CSS0 (MA-CSS0). This strategy selects a pair (agent, query) such that
the answer may reduce the agent’s contribution to PMR(x∗Ω , y

∗
Ω , Ω). More precisely,

an agent i is selected at random and the strategy proceeds as follows:

1) case x∗Ω %Ni y∗Ω: recall that, in this case, PMRi(x
∗
Ω , y

∗
Ω , Ω

i) = −|Mx∗
Ω ,y

∗
Ω | −

minωi∈Ωi |{z ∈ Z1 ∪ Z2 ∪ Z3 ∪ {y}, x∗Ω �i z %i y∗Ω}|. We distinguish two cases:

– case Z1 ∪ Z2 ∪ Z3 = ∅: if ¬(x∗Ω �Ni y∗Ω), then we ask the agent whether x∗Ω is
strictly preferred to y∗Ω . If, instead, x∗Ω �Ni y∗Ω , we know precisely the difference of
scores between x∗Ω and y∗Ω for agent i, that is −|Mx∗

Ω ,y
∗
Ω | − 1. In this case, asking

a query to agent i is useless (since his/her contribution to PMR(x∗Ω , y
∗
Ω , Ω) cannot

be decreased) and so the strategy selects another agent at random.
– case ¬(Z1 ∪Z2 ∪Z3 = ∅): an alternative z in Z1 ∪Z2 ∪Z3 is selected at random.

For each z ∈ Z1 ∪ Z2 ∪ Z3, our current knowledge about the agent’s preferences
is not sufficient to conclude on whether x∗Ω �i z %i y∗Ω is satisfied or not. More
precisely, if z ∈ Z1, then we know that x∗Ω is strictly preferred to z by definition,
but there exists ωi ∈ Ωi such that ¬(z %i y∗Ω). Therefore, we ask the agent whether



z is (weakly) preferred to y∗Ω so as to obtain the missing information. Similarly, if
z ∈ Z2, then we know that z is preferred to y∗Ω , and so the agent is asked whether
x∗Ω is strictly preferred to z. Finally, if z ∈ Z3, then we ask one of the two previous
questions, the choice between the two questions being randomly made.

2) case ¬(x∗Ω %Ni y∗Ω): recall that, in this case, PMRi(x
∗
Ω , y

∗
Ω , Ω

i) = |My∗Ω ,x
∗
Ω | +

maxωi∈Ωi |{z ∈ Z1 ∪ Z2 ∪ Z3 ∪ {x}, y∗Ω �i z %i x∗Ω}|. We distinguish three cases:

– case ¬(y∗Ω %Ni x∗Ω): in this case, x∗Ω and y∗Ω are incomparable for the system, and
so we ask the agent to compare them directly.

– case (y∗Ω %Ni x∗Ω)∧ (Z1∪Z2∪Z3 = ∅): if ¬(y∗Ω �Ni x∗Ω), then the agent is asked
whether y∗Ω is strictly preferred to x∗Ω . If, instead, y∗Ω �Ni x∗Ω , then the difference
of scores between x∗Ω and y∗Ω for this agent is equal to |My∗Ω ,x

∗
Ω |+ 1. In this case,

asking a query to agent i is useless and another agent is selected at random.
– case (y∗Ω %Ni x∗Ω) ∧ ¬(Z1 ∪ Z2 ∪ Z3 = ∅): an alternative z in Z1 ∪ Z2 ∪ Z3 is

selected at random and we want to know whether y∗Ω �i z %i x∗Ω . More precisely,
if z ∈ Z1, then we ask the agent whether z is (weakly) preferred to x∗Ω . Instead, if
z ∈ Z2, then we ask the agent if y∗Ω is strictly preferred to z. Finally, if z ∈ Z3,
then we ask one of the two previous questions.

Multi-Attribute-CSS1 (MA-CSS1). This strategy is based on the heuristics proposed
by Lu and Boutilier [8] but adapted to our multi-attribute setting. The aim is to choose
the query with the highest potential of reducing PMR(x∗, y∗, Ω). More precisely, in-
stead of choosing the agent and the alternative z ∈ Z1 ∪Z2 ∪Z3 at random (as in MA-
CSS0), strategy MA-CSS1 selects the pair (agent, query) that maximizes the minimax
regret reduction in the most optimistic scenario; it therefore requires the computation
of the resulting minimax regret for each pair (agent, query).

4.2 Numerical Tests

We performed a number of numerical experiments in order to evaluate the proposed
elicitation procedures for determining the Borda winner in an incremental process. In
these experiments, the attribute values for each alternative are randomly sampled in
[0, 1]q . Starting from an empty set of preference statements, we repeatedly compute
minimax regret and we ask a new question to one of the agent according to an elici-
tation strategy. We simulate answers to queries according to randomly generated vec-
tors ω1, . . . , ωn (one vector per agent). Optimizations are performed using the Gurobi
solver; the simulation enviroment is implemented in Java.

In the first experiment, we evaluate the impact of exploiting the fact that the domain
is multi-attribute. We implemented the elicitation procedure proposed in [8] (named
CSS1 hereafter) where no assumption is made about the “structure” of the agents pref-
erences, and compare it with our strategies MA-CSS0 and MA-CSS1.4 In Figure 2a,

4 Note that CSS1 and MA-CSS1 adopt the same heuristics for choosing the pair (agent, query);
the difference is that MA-CSS1 makes use of the multi-attribute structure (using linear pro-
gramming) for identifying the sets Z1, Z2, etc., and computing regrets, while CSS1 does not.



(a) (b)

Fig. 2: Evaluation of the elicitation strategies; regret reduction is plotted as a function
of the average number of queries per agent (30 alternatives, 5 criteria and 10 agents;
results averaged over 30 runs). In (a) we plot the reduction of minimax regret obtained
by different elicitation strategies; in (b) we compare the upper bound of MMR obtained
with the relaxed optimization, the exact computation of MMR and the real regret.

we report the minimax regret, computed at each step of the incremental elicitation pro-
cedure. Regret values are expressed on a normalized scale, with 1 corresponding to the
initial MMR (computed before acquiring any preference information). Note that a value
of 0 for MMR implies identification of a Borda winner. We observe that the MMR re-
duces much more slowly with CSS1 than with its multi-attribute version MA-CSS1;
after 20 queries, the MMR is still above 40% of the initial value with CSS1, while it is
under 10% with MA-CSS1. Moreover, after 30 queries per agent on average, the MMR
is still around 40% of the initial regret with CSS1 while MA-CSS1 has identified the
Borda winner. Then, we observe (somewhat surprisingly) that the heuristics used by
MA-CSS1 is less effective than MA-CSS0. Since MA-CSS1 is much more computa-
tional demanding than MA-CSS0, in the following experiments, we use MA-CSS0.

The second experiment evaluates the quality of the upper bound obtained when
using the linear programming relaxation of the MMR optimization. Figure 2b shows
the minimax regret, the upper bound obtained by linear programming relaxation and
the real regret (the actual loss in terms of Borda score) at each iteration step of the
elicitation procedure. We can see that the linear programming relaxation gives us a
relatively tight upper bound on the minimax regret and its quality improves with the
number of preference statements. Recall that the relaxed version is significantly faster
than the exact version, as the former solves linear programming problems instead of
mixed integer linear problems. For instance, when no preferences are given, the relaxed
optimization takes about 1s on average while the exact method needs 30s to compute
the value of initial minimax regret. The determination of the next query is also faster
when using the relaxed optimization (2s againts 12s). Even if, by optimizing the relaxed
problem, we are potentially ignoring some valuable information, the experiment shows
that the elicitation performs well. The recommended choice is the alternative whose
“relaxed” MMR is lowest; the real regret associated to this choice is small and quickly



(a) 10 agents, 50 alt. and 5 attributes. (b) 50 agents, 50 alt. and 5 attributes.

(c) 10 agents, 100 alt. and 5 attributes. (d) 10 agents, 50 alt. and 7 attributes.

Fig. 3: Performance of MA-CSS0 with the relaxed version of minimax regret (30 runs).

decreases to zero. Note that the fact that real regret is much smaller than minimax regret
in practice has already been observed [10].

The third experiment aims to evaluate the performance of MA-CSS0, using the
relaxed optimization of regrets, when increasing the size of the problem (number of
agents, number of alternatives and number of criteria). Figure 3 shows that, with 5
attributes, our incremental elicitation procedure determines a necessary Borda winner
in about 30-35 queries asked to each agent; however, with 7 attributes, slightly more
than 50 queries are needed. In all cases, the real regret is low even after a few queries.

5 Determination of the Social Ranking Induced by Borda Scores

There are many decision situations where knowing the top-k alternatives is the desir-
able output. When the preference profile is fully known, ranking alternatives with a
scoring rule is straightforward. However, when preferences are incomplete, incremen-
tal elicitation methods need to be adapted to efficiently focus the elicitation effort on
the determination of the top-k alternatives. We address here the problem of ranking as
one of repeated choices, assuming that we want to incrementally rank alternatives from
best to worst; we can generate preference queries until the minimax regret drops to 0,
meaning that the Borda winner has been identified. Then, this alternative is put aside5

5 It may still be associated with a binary variable bz in the optimization problems for computing
regrets (as it can impact the Borda score of other alternatives).



and the selection process is iterated on the remaining set of alternatives. The alternative
selected in the second stage will be the second best alternative in the ranking induced
by Borda scores and so forth.

Numerical Tests. We perform an experiment that evaluates the performance of our
incremental assessment of ranking (when used with MA-CSS0) in comparison to ap-
proaches that are more systematic. We consider the following two elicitation proce-
dures: strategy S1 determines the preference order of each agent by adapting a standard
sorting algorithm (it requiresO(m log2(m)) comparison queries per agent); the ranking
is then obtained by straightforward computation of the Borda scores. Instead, strategy
S2 iteratively applies a regret-based incremental elicitation procedure for the determi-
nation of the best alternative in terms of a linear utility model for a single agent. The
procedure is repeated in order to find the second item, the third, and so on; this is done
for all agents and finally Borda scores are computed. In Table 1, we report the average
number of comparison queries per agent required to identify the top-10 alternatives,
varying n the number of agents, m the number of alternatives and q the number of
criteria. Our incremental ranking procedure based on Borda scores is referred to as
Incremental Ranking Elicitation (IRE); overall, IRE outperforms both S1 and S2.

n m q IRE S1 S2

10 30 5 43.3 147.2 58.7
10 50 5 43.7 282.2 67.4

100 30 5 51.1 147.2 87.2
10 30 10 93.3 147.2 178.2

Table 1: Average number of queries per agent for determining the top-10 (30 runs).

We now present some experimental results about our incremental ranking method
(when used with MA-CSS0). Figure 4 shows the average number of queries needed to
determine the top-k alternatives in domains with 20 agents and 5 criteria. We observe
that the marginal amount of queries needed to determine the next best alternative de-
creases as the rank of the alternatives increases. Actually, most of the elicitation “cost”
in terms of queries occurs when determining the top alternative.

6 Conclusions

This paper dealt with social choice in a context where preferences are dictated by a la-
tent (linear) utility function. We provided algorithms for the computation of an approx-
imate winner and elicitation strategies based on minimax regret, extending previous
work [8] to multi-attribute domains. We also provided an iterative procedure for top-k
ranking and compared our results with full elicitation procedures. Possible directions
for future research include: dealing with other voting rules in multi-attribute domains,
considering different kinds of queries, and addressing combinatorial domains.



Fig. 4: Performance of top-k elicitation with MA-CSS0 (30 runs).
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