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Marie Curie, Université Denis Diderot, Paris, France, 3 Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America,

4 Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America

Abstract

Positive correlations in the activity of neurons are widely observed in the brain. Previous studies have shown these
correlations to be detrimental to the fidelity of population codes, or at best marginally favorable compared to independent
codes. Here, we show that positive correlations can enhance coding performance by astronomical factors. Specifically, the
probability of discrimination error can be suppressed by many orders of magnitude. Likewise, the number of stimuli
encoded—the capacity—can be enhanced more than tenfold. These effects do not necessitate unrealistic correlation
values, and can occur for populations with a few tens of neurons. We further show that both effects benefit from
heterogeneity commonly seen in population activity. Error suppression and capacity enhancement rest upon a pattern of
correlation. Tuning of one or several effective parameters can yield a limit of perfect coding: the corresponding pattern of
positive correlation leads to a ‘lock-in’ of response probabilities that eliminates variability in the subspace relevant for
stimulus discrimination. We discuss the nature of this pattern and we suggest experimental tests to identify it.
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Introduction

Many of the classic studies relating behavior to the activity of

neurons, such as studies of single photon counting, have focused on

behaviors that are near the threshold of perception [1,2,3,4,5], where

performance is uncertain and can suffer a substantial error rate. One of

the surprises of these studies is that in this limit, the variability of single

neurons often matches the variability in performance, such that single

neurons can account for the behavior [4,6,7]. However, most of our

everyday visual experience involves judgments made with great

accuracy and certainty. As is illustrated by phrases like ‘‘seeing is

believing’’ and Shakespeare’s ‘‘ocular proof,’’ we often dismiss any

doubt about an aspect of the world once it is perceived visually. In this

‘high-fidelity’ limit, perception must cope with single neuron variability

by relying upon populations of neurons. Our visual system not only

yields perception with certainty, but it also allows us to make complex

judgments very rapidly—a fact that places additional constraints on the

population neural code [8,9].

In a neural population, correlations in the activity of neurons

provide additional variables with which information can be

represented. While details may vary from one neural circuit to

another, a fairly common pattern of correlation is observed across

many brain regions, including the retina, LGN, cerebral cortex,

and cerebellum [10,11,12,13,14,15,16,17]. Correlations vary from

pair to pair, with a positive mean and a standard deviation

comparable to the mean [18,19,20,21,22,23] (but see Ref. [24]).

Whereas noise correlations adopt moderate values in the retina

and may not contribute much to the coding accuracy, their larger

values—possibly reflecting the underlying recurrent neural

dynamics—in cortex suggest that, there, they may have greater

incidence upon coding properties.

How do these affect coding? This question has been investigated

by a number of authors [25,26,27,28,29,30,31,32,33,34,35,36,37,

38,39,40], who find that in many cases positive correlations are

detrimental to coding performance; in some cases, however,

positive correlations can enhance the coding performance of a

neural population. Using specific choices of neural response and

correlation properties, this effect was probed quantitatively in

models of pairs of neurons, small populations, or large populations.

In all these cases, the presence of positive correlation boosted

coding performance to a relatively modest degree: the mutual

(Shannon) information or the Fisher information (depending on

the study) in the correlated population exceeded that in the

equivalent independent population by a factor of O 1ð Þ. For

typical choices of correlation values, the improvement was

calculated to be *1%{20%. These results can be translated

into the units of capacity used in this study and correspond to an

improvement of a fraction of a percent to a few percents (see

Discussion below), which in turn correspond to a negligible

increase of the information encoded per neuron. Recently [41,42]

(see also Ref. [31,37]), the Fisher information and related

quantities were revisited for more general cases of either the

tuning properties of neurons [41] or the structure of pairwise

correlation [42]. In the resulting picture, earlier statements about

the detrimental effect of positive correlation are nuanced. These

analyses demonstrate, in particular, that correlation can be helpful

in the presence of neuron-to-neuron variability of the tuning curve

[37,41] or when correlation adopts more complicated structures

than the ones considered in earlier work [42].

Here, we focus upon the case of stimulus-independent

correlation. We pose the problem in much the same way as it

was posed in a number of earlier studies [30,31,32,33,36,37,
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38,39,40] extending the work of Abbott and Dayan [28], and

which itself can be traced, possibly, to similar ideas that appeared

earlier in the literature (see, e.g., [25,26]). Namely, we ask how the

structure of the correlation – specifically, of the covariance matrix

– affects coding performance. We exploit the same idea that was

used in the papers just referenced: correlation can enhance coding

performance by a simple mechanism—relegating the variability of

neural response into non-informative modes of the population

activity. For a more precise statement, note that, because of

variability each stimulus is represented by a distribution of

response patterns in the population, and the overlap between

neighboring distributions results in coding ambiguity. While,

generically, positive correlations broaden response distributions,

depending upon the interplay between the mean response

properties of neurons and their correlations, probability distribu-

tions can be, instead, deformed by correlations in such a way as to

suppress overlap.

While much of the earlier literature on this topic is set in the

context of continuous stimuli, here we focus upon the case of

discrete stimuli (‘categorical perception’). (This does not represent

a fundamental conceptual shift, but the case of discrete stimuli

begs for different mathematical objects, such as the discrimination

error rate and the information capacity, rather than information

theoretic quantities which depend upon a continuous stimulus

such as the Fisher information.) First, we shall investigate the

coding performance in a discrimination task that involves two

stimuli. In this case, by construction, a subset of the neural

population will respond preferentially to one stimulus, while the

remaining neurons in the population will be more responsive to

the other stimulus; hence, this ‘staggered preference’ is assumed

without any loss of generality. (This ‘staggered preference’, also,

plays a similar role to that of putative negative signal correlations

in earlier work – see our comments on this issue, below.) In this

context, we shall demonstrate that some patterns of positive

correlations can serve to suppress discrimination errors by many

orders of magnitude. Second, we shall consider the more general

case in which the discrimination task involves a large number of

stimuli—the question then becomes one of capacity: how many

stimuli can be encoded by a population of neurons at very low

error rates? We shall show that the capacity can be enhanced

significantly by the presence of correlation; specifically, the

information per neuron can be boosted by factors of 10 (or even

greater), as compared with an equivalent independent population.

Interestingly, an astronomical enhancement in coding perfor-

mance does not require a large population; it can occurs in small

populations with tens or hundreds of neurons and, also, it can

occur in cases in which independent coding breaks down entirely.

Along the way, we shall discuss some auxiliary results, such as the

favorable role of neuron-to-neuron variability in the response

properties and a possible experimental approach to our ideas, as

well as quantitative relations between our work and earlier results.

If one or several parameters are fine-tuned, the system reaches a

‘lock-in’ limit in which coding can become perfect: the distribution

of population responses becomes ‘compressed’ into a lower-

dimensional object. While in this limit some population patterns

are forbidden, population responses are still variable and pairwise

correlation coefficients can have moderate values similar to the

ones measured experimentally. If the population is close to this

singular, fine-tuned limit, then even though coding is not perfect

one can obtain an astronomical enhancement of the coding

performance as compared to that of a population of independent

neurons. Furthermore, this enhancement is robust to variations in

the additional (‘untuned’) parameters in the system. The resulting

picture results from a collective phenomenon. Earlier work

exploited the basic mechanism in models in which the role of

correlation involved, in effect, pairs or very small numbers of

neurons. In our work, we invoke a pooling mechanism: even in the

presence of only weak correlations, a moderately small sub-

population can behave like a nearly deterministic, ‘macro-neuron’.

Thus, at the cost of losing some amount of coding performance by

having homogeneous pools within the population, we obtain a

tremendous enhancement because the variability in the informa-

tive directions can be severely suppressed.

Results

Our results amount to the answers to two complementary

questions. Given a pair sensory stimuli, how well can a population

of correlated neurons discriminate between them? Or, more

precisely, what is the discrimination error rate? Conversely, given

a discrimination error rate, what is the capacity of a correlated

population? That is, how many stimuli can it encode with tolerable

error? In natural situations, discrimination errors are exceedingly

rare and, hence, neural populations are expected to achieve very

low error rates. (See Discussion for a detailed argument and

quantitative estimates of low error rates.) The present work is set in

this low-error regime.

Since we are interested in rapid coding, we focus on short time

windows. The biophysical time scale of neurons—a few tens of

milliseconds—affords us with a natural choice. This time scale also

happens to correspond to the spike timing jitter of individual

neurons in the early visual pathway in response to a natural movie

clip [43]. We consider short time bins in which each neuron can

only fire one spike or none at all. (This last assumption is not

essential; in the more general case in which many spikes can fit in a

time bin, our qualitative conclusions remain unchanged or may

even become stronger. Furthermore, in some examples we shall

assume a relatively high firing rate—say, 50%. In those cases we

can still assume a binary output by identifying all cases in which

there is at least one spike per time bin, i.e., by saying that a cell is

either silent or firing in a time bin. A perceptron-like decoder can

implement this identification by an appropriate saturating non-

Author Summary

Traditionally, sensory neuroscience has focused on corre-
lating inputs from the physical world with the response of
a single neuron. Two stimuli can be distinguished solely
from the response of one neuron if one stimulus elicits a
response and the other does not. But as soon as one
departs from extremely simple stimuli, single-cell coding
becomes less effective, because cells often respond weakly
and unreliably. High fidelity coding then relies upon
populations of cells, and correlation among those cells can
greatly affect the neural code. While previous theoretical
studies have demonstrated a potential coding advantage
of correlation, they allowed only a marginal improvement
in coding power. Here, we present a scenario in which a
pattern of correlation among neurons in a population
yields an improvement in coding performance by several
orders of magnitude. By ‘‘improvement’’ we mean that a
neural population is much better at both distinguishing
stimuli and at encoding a large number of them. The
scenario we propose does not invoke unrealistic values of
correlation. What is more, it is even effective for small
neural populations and in subtle cases in which single-cell
coding fails utterly. These results demonstrate a previously
unappreciated potential for correlated population coding.

High-Fidelity Coding with Correlated Neurons
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linearity which collapses unto the same output all inputs with one

or more spikes.) The situation we have in mind is one in which a

stimulus is presented once every time bin, and the corresponding

population response is recorded.

Positive correlations can suppress discrimination error
rates by orders of magnitude

We consider two stimuli, which we henceforth refer to as Target

and Distracter, and we consider a situation in which these have to

be discriminated by the response of a neural population in a short

time window during which each neuron fires 0 or 1 spike. Each

neuron is bound to respond more vigorously on average either to

Target or to Distracter. Thus, it is natural to divide the N-neuron

population into two pools of neurons (‘‘Pool 1’’ and ‘‘Pool 2’’),

each more responsive to one of the two stimuli, as it has been done

customarily in studies on stimulus discrimination (see, e.g., [4]).

For the sake of simplicity, in this 2-Pool model we allocate N=2
neurons to each pool (Fig. 1A). We denote by k1 and k2 the

number of active neurons in Pools 1 and 2 respectively. We start

with a symmetric case: neurons in Pools 1 and 2 respond with

firing rates p and q respectively to the Target and, conversely, with

firing rates q and p respectively to the Distracter. Moreover,

correlations in the activity of pairs of neurons may take different

values within Pool 1 (c11), within Pool 2 (c22), and across pools

(c12). We denote by Cij the elements of the covariance matrix and

by cij the normalized pairwise correlations; normalized values are

often quoted in the literature and present the advantage of being

bounded by {1 and 1. (See Materials and Methods for

mathematical definitions.) While we shall present most of our

quantitative results for symmetric choices of the parameters, our

qualitative conclusions hold in general.

In the discrimination case just outlined, between two individual

stimuli (e.g., a given black cat and a given tabby cat), any

correlations in question are what is often referred to in the

literature as noise correlations; these reflect the dynamics of the

neural network, not any structure inherent to stimuli. In order to

relate this setup to that of earlier studies involving continuous

stimuli, we mention that, although we cannot define signal

correlation, here, the ‘staggered preference’ in the population (i.e.,

the fact that different pools of neurons respond preferentially to

different stimuli) plays a similar role to that of negative signal

correlation in earlier work.

One can also define a discrimination task between an individual

stimulus and a stimulus category (e.g., a given black and all other

cats) or between two stimulus categories (e.g., all black cats and all

tabby cats). In the case of these problems, the correlations at play

are combinations of noise correlations and signal correlations; the

latter reflect both the response properties of neurons and the

structure of the stimulus ensemble. At the level of the mathemat-

ical treatments in our study, the distinction between noise and

signal correlations is irrelevant: our derivations make use of the

matrix of activity covariances without reference to their origin.

The same goes for the actual problem faced by the brain: a

readout neuron does not ‘know’ whether the correlations it sees

are noise or signal correlations. However, for the sake of

conceptual clarity, we shall phrase our discrimination problem

as one between two individual stimuli; thus, the reader can think of

the elements of the covariance matrix and the normalized

correlation coefficients as representing noise correlations.

If p is larger than q, Pool 1 consists of the neurons ‘tuned’ to

Target while Pool 2 consists of the neurons ‘tuned’ to Distracter. A

useful visual representation of the probability distributions of

responses to Target and Distracter makes use of contour lines

(Fig. 1B). In the case of independent neurons (with c11~

c22~c12~0), the principal axes of the two distributions are

horizontal and vertical, and their contour lines are nearly circular

unless p or q take extreme values. As a result, the overlap between

the two distributions tends to be significant (Fig. 1B), with the

consequence of a non-negligible coding error rate. In such a

situation, positive correlations can improve coding by causing the

distributions to elongate along the diagonal and, conversely, to

shrink along the line that connects the two centers (Fig 1B).

To illustrate this generic mechanism, we have computed the

error rate numerically for specific choices of parameters of the

firing rates and correlations in the population. (See Materials and

Methods for a reminder of the maximum likelihood error and for

details on the numerics.) By way of comparison, in an independent

population with N neurons the error rate drops exponentially as a

function of N (Fig. 2A). While the error rates for independent and

correlated populations start out very similar for small population

size, they diverge dramatically as N increases to 90 neurons

(Fig. 2A). We can define a factor of coding improvement due to

correlations as the ratio of the two error rates; this factor exceeds

1020 for large populations (Fig. 2B). We can also explore the way

in which the error rate changes as we vary the strength of the

pairwise correlations at fixed population size. Increasing the

strength of correlation across pools, c12, sharply reduces the error

rate, while increasing the strength of correlation within pools, c11

or c22, enhances the error rate (Figs. 2C and D).

The important point, here, is that improvements by orders of

magnitude do not result from growing the population to unrealis-

tically large numbers of neurons or from boosting the values of

pairwise correlations to limiting values close to 1. Correlations may

be more or less fine-tuned at a population level, so that the

probability of some activity pattern in the population becomes

vanishingly small, but no fine-tuning is apparent at the level of

pairwise correlation. Furthermore, we have focused here on ‘rapid

coding’ – situations in which it is not possible to suppress variability

by temporal integration. Even then, the massive suppression of error

rates occurs in populations of fewer than a hundred neurons and in

the presence of realistic correlations ranging from c& 0.01 to 0.03.

(Most correlation values reported in the literature have been

measured over somewhat longer time scales than the tens of

milliseconds of interest here, but see Ref. [21].) Strong error

suppression occurs because, even in populations of relatively modest

size, weak correlations can significantly deform the shape of the

probability distributions of population responses (Fig. 2E).

In fact, the suppression of the coding error down to negligible

values by positive correlation does not even require populations with

as many as N&100 neurons. Such suppression can be obtained in

much smaller populations, with a total number of neurons, N,

between 8 and 20 and with values of correlations below or not much

higher than c&0:3 (Figs. 3A and B). Such values of correlations are

still well within the experimentally measured range. We also explore

another case which, naively, prohibits low-error coding: that in

which the firing rates in the two neuron pools differ by very little;

specifically, when N p{qð Þ is of order one. This condition implies

that the overall activities in a given pool, in response to Target and

Distracter respectively, differ by one or a few spikes. In this limiting

case, coding with pools of independent neurons fails entirely, with

error rates of order one, since the absolute amplitude of fluctuations

exceeds unity. In a correlated population, we find, again, a massive

suppression of error rates by orders of magnitude, for realistic values

of correlation (Figs. 3C and D).

Analysis of low-error coding
In addition to our direct numerical investigations, we have

performed analytic calculations using a Gaussian approximation of

High-Fidelity Coding with Correlated Neurons
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the probability distribution (see Materials and Methods for

derivations). The analytic results agree very closely with the

numeric results (Figs. 2 and 3, solid line vs. circles) and yield

simple expressions for the dependence of the error rate upon the

parameters of our model, useful for a more precise understanding

of the effect of correlation.

The analytic expression of the error rate, e, reads

e~
e{N p{qð Þ2=4Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pN p{qð Þ2=D

q : ð1Þ

The numerator in the argument behaves as expected for a

population of independent neurons: it yields an exponential decay

of the error rate as a function of N, with a sharpness that increases

with the difference between p and q. But the denominator,

D~ p 1{pð Þzq 1{qð Þ½ � 1{c11z
N

2
c11{

2

cz1=c
c12

� �� �
, ð2Þ

where

c:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1{pð Þ
q 1{qð Þ

s
ð3Þ

and we have assumed the symmetric case c11~c22 for the sake of

simplicity, provides a strong modulation as a function of

correlations (Figs. 2 and 3). The quantity in Eq. (2) approaches

zero when Ndc?1, where dc~ 1=2{1=Nð Þc11{c12= cz1=cð Þ.

Figure 1. Simple model of a population code. A. Schematics of our model with two pools with N=2 neurons each. Correlation within Pool 1 is
c11 for all pairs; correlation within Pool 2 is c22 for all pairs; correlation between the two pools is c12 for all pairs. Firing probability in a single window
of time for Pool 1 is p for Target and q for Distracter; firing probabilities are the opposite for Pool 2. B. Probability contours (lightest shade represents
highest probability) for Target stimulus (red) and Distracter (blue) stimuli in the case of independent neurons (left). Correlation can shrink the
distribution along the line separating them and extend the distribution perpendicular to their separation (right). Variances along the two principle
axes are denoted by z and {; the angle between the long axis and the horizontal line is denoted by w. Variances along the axes of Pool 1 and 2 are
denoted by x11 and x22, respectively; the variance across Pools 1 and 2 is denoted by x12.
doi:10.1371/journal.pcbi.1003970.g001

High-Fidelity Coding with Correlated Neurons
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Thus, in a population of tens or hundreds of neurons, it is sufficient

that the two terms in dc differ by less than a few percent for the

coding error to become vanishingly small.

From Eq. (1), it is apparent that the error rate converges

rapidly to zero with decreasing D, and has an essential singularity

at D~0. For any well-defined probability distribution, D remains

non-negative, but it can take arbitrarily small values. When

correlations are such that D is small enough, we are in a regime of

high-fidelity coding. The error vanishes for D?0; in this limit, the

probability distributions corresponding to Target and Distracter

are both parallel and infinitely thin. The value of D alone does

not specify the geometry of the probability distributions entirely;

even with D~0, there remain free parameters, namely, the angles

along which the elongated distributions lie in the (k1,k2) plane

(denoted by w in Fig. 1B). In Materials and Methods, we

demonstrate that these additional parameters need not be fine-

tuned for high-fidelity coding. In fact, angles can vary by as much

as *400 while the error rate remains below 10{12.

Figure 2. Positive correlation can dramatically suppress the error. A. Probability of discrimination error for a 2-Pool model of a neural
population, as a function of the number of neurons, N , for independent (dashed; all cij~0) and correlated (circles) populations; parameters are
p~0:5, q~0:2 for both, and c11~c22~0:01, c12~0:03 in the correlated case. Numerical (circles) and analytic (solid line) results are compared. B.
Suppression factor due to correlation, defined as the ratio between the error probability of independent and correlated populations, as a function of
the number of neurons, N ; numeric (circles) and analytic (solid line) results. C. Error probability as a function of the cross-pool correlation, c12, for
independent (dashed line) and correlated (circles, c11~c22~0:01) populations; analytic results for correlated population (solid line). N~90. D. Error
probability as a function of the correlation within Pool 1, c11, for independent (dashed line) and correlated (circles, c22~0:01, c12~0:03) populations;
analytic results for correlated population (solid line). N~90. E. Probability contours for three examples of neural populations; independent (green
cross, N~90, p~0:5, q~0:2), near lock-in correlation (pink dot, c11~c22~0:01, c12~0:03), and uneven correlation (blue diamond, c11~0:03,
c22~0:01, c12~0:03). Colored symbols correspond to points on plots in previous panels.
doi:10.1371/journal.pcbi.1003970.g002

High-Fidelity Coding with Correlated Neurons
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Neural diversity is favorable to high-fidelity coding
The simplest version of the 2-Pool model, discussed hitherto,

assigns homogeneous firing rate and correlation values within and

across each of the two neural sub-populations. Similar homoge-

neity assumptions are frequent in modeling and data analysis:

while response properties vary from neuron to neuron in data,

average values are often chosen to represent a population as a

whole and to evaluate coding performances. It is legitimate,

however, to ask to what extent error rates are shifted in a more

realistic setting which includes neural diversity and, in fact,

whether high-fidelity coding survives at all in the presence of

neuron-to-neuron heterogeneity. We find that not only does it

survive but that, in fact, neural diversity further suppresses the

error rate.

We generalized the 2-Pool model of a correlated population to

include neuron-to-neuron diversity, by randomly and indepen-

dently varying the firing rate and correlation values according to a

Gaussian distribution with standard deviation s, measured as a

fraction of the original value. We then computed the error rate in

this generalized model and compared it to the corresponding

quantity in the homogeneous 2-Pool model. (See Materials and

Methods for the precise definition of the heterogeneous model and

details on the derivation of error rates.) We found that every single

instantiation of neural diversity yielded an improvement in the

coding performance (Figs. 4A and B). More diverse neural

populations with larger values of s display stronger suppressions

of the error rate (Fig 4C). As s increases, the suppression factor

grows both in mean and in skewness, so that a significant fraction

of the instantiations of heterogeneity yields a large improvement of

the coding performance over the homogeneous case (Figs. 4A vs.
B).

The degree of error suppression depends, of course, on how

much correlation reduces the error relative to the matched

independent population in the first place. For the population

shown here, neuron-to-neuron variations on a range commonly

seen in experiments lead to a suppression of the error rate by a

factor of *5 on average and a factor of *50 for some

instantiations of the heterogeneity (Fig. 4B). These results would

differ quantitatively, and may differ qualitatively, in the extreme

cases already poised very near lock-in in the absence of neuron-to-

neuron variability of the correlation values, as the lock-in limit

corresponds to a boundary in the space of covariance matrices.

Figure 3. Small correlated populations. A. Probability of error as a function of the cross-pool correlation, c12, for a small neural population
(circles, N~12 neurons, p~0:7, q~0:3, c11~c22~0:1), with analytic result for correlated population (solid line) and independent population (dashed
line) for the sake of comparison. B. Probability of error versus c12 for populations of different sizes (colors); independent population (dashed lines) and
analytic results for correlated population (solid lines). C. Probability of error versus c12 for a neural population with responses differing by an average
of 2 spikes (N~20 neurons, p~0:6, q~0:4, c11~c22~0:01); numeric solutions (circles), analytic result (solid line), and independent comparison
population (dashed line). D. Probability of error versus c12 for populations having different sizes but with N p{qð Þ held constant at 2 spikes (colors);
independent population (dashed lines) and analytic results for correlated population (solid lines).
doi:10.1371/journal.pcbi.1003970.g003

High-Fidelity Coding with Correlated Neurons
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Above, we have examined the effect of heterogeneity for a

simple and contrived case: in a model with homogeneous pools, we

have perturbed firing rates and correlation coefficients by small

amounts. The results may be different for other forms of

heterogeneity. We relegate to a separate publication a more

detailed investigation of the quantitative effect of heterogeneity

and of the corresponding mechanisms by which coding is

improved. We mention, however, that the coding benefit of

heterogeneity appears to be a rather general phenomenon

[31,37,44].

The mechanism for high-fidelity coding and the ‘lock-in’
phenomenon

The mechanism of dramatic error suppression from positive

correlations may be explained in a general manner that does

not invoke a specific model or approximation. A powerful

description is given in terms of the ‘macroscopic’ variances and

covariances of the spike count within and across the two pools:

we call x11 the variance in the spike count, k1, within Pool 1,

x22 the variance in the spike count, k2, within Pool 2, and x12

the covariance of spike counts across the two pools. (See Fig. 1B

for a visual definition of these quantities, Materials and

Methods for mathematical definitions as well as derivations of

the results discussed below.)

The variances of the probability distribution of the neural

response in the plane k1,k2ð Þ take the form

2
+:

1

2
x11zx22+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x11{x22ð Þ2z4x2

12

q� �
: ð4Þ

The angles along which these variances are measured can also

be computed similarly (see Materials and Methods). In the case of

positive correlation, the angle along which the distribution

elongates (i.e., the angle long which z extends, denoted w in

Fig. 1B) lies between 00 and 900. The small variance, {, lies at

right angle and governs error rate suppression. The smaller {

and the more parallel the compressed distributions, the smaller the

error rates. The expressions for the variances (above) and the

angles (given in Materials and Methods) are general—they do not

depend upon the shapes of the distributions or the details of the

correlation among neurons—and they give a sense of the extent to

which probability distributions of the population response are

deformed by correlations. In the specific 2-Pool models we treated

above, positive correlations induce massive suppressions of the

coding error rate. We expect similar high-fidelity coding whenever

the tails of probability distributions fall off sufficiently rapidly.

The limiting case of an infinitely thin distribution occurs when

x11x22~x2
12; ð5Þ

in this case,

z~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

11zx2
22

q
ð6Þ

and

{~0: ð7Þ

We refer to Eq. (5) as the ‘lock-in’ condition. When the cross-

pool covariance becomes this large, the width of the probability

distribution vanishes and the dimensionality of the response space

is effectively reduced by one. In the case of homogeneous pools of

neurons, we can reformulate this condition using ‘microscopic’

correlations, as

1z
N

2
{1

� �
c11

� �
1z

N

2
{1

� �
c22

� �
~

N2

4
c2

12 ð8Þ

(see Materials and Methods). If the lock-in condition in Eq. (5)

(alternatively, Eq. (8)) is satisfied and and _ (alternatively, _ and _)

are chosen such as to yield compressed distributions that are

parallel, then error rates vanish. (See Discussion for remarks on the

nature of the locked-in state.

As we have seen above, even if the cross-pool correlation

approaches this lock-in limit without achieving it, still the error

rate can be suppressed dramatically. Furthermore, the angles of

the two distributions need not be precisely equal. Thus, this

amounts to a robust mechanism by which coding and discrimi-

nation may be achieved with near-perfect reliability. It does not

require fine tuning of the parameters such as the distribution

widths and their tilt angles; in particular, we need not limit

ourselves to symmetric choices of parameters, as we have done

above for the sake of simplicity.

The general arguments presented here also indicate that the ‘0
or 1 spike’ assumption is inessential and, in fact, that relaxing it

may lead to even stronger effects. If individual neurons can fire

Figure 4. Heterogeneous neural populations. A, B. Histogram of
the error suppression (error in the homogeneous, 2-Pool model divided
by the error in the fully heterogeneous model) for variability values
s~2% and 14%, respectively. All suppression values are greater than
one. C. Value of the error suppression (geometric mean) versus the
degree of population variability; N~10 neurons, p~0:7, q~0:3,
c11~c22~0:03, c12~0:21. (With these parameters, correlation suppress-
es the error probability by a factor of 4350 relative to the matched
independent population.)
doi:10.1371/journal.pcbi.1003970.g004
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several spikes in a time window of interest, the code can be

combinatorial, but a simple spike count code will do at least as well
as a more sophisticated combinatorial one. If we stick to the spike

count code, the general formulation remains valid. In this

situation, allowing many spikes per neurons corresponds effectively

to increasing the total number of neurons and, hence, can yield

stronger effects for comparable correlation values.

Correlated populations can code for large sets of stimuli
with high fidelity

In most natural situations, the task of organisms is not to tell two

stimuli apart but rather to identify an actual stimulus among a wealth of

other, possibly occurring stimuli. Visual decoding must be able to

assign a given response pattern to one of many probability

distributions, with low error. In other words, any pair of probability

distributions of neural activity, corresponding to two stimuli among a

large set of stimuli, must have little overlap. Thus, the problem of low-

error coding of a large set of stimuli amounts to fitting, within the space

of neural activity, a large number of probability distributions, while

keeping them sufficiently well separated that their overlap be small.

It is easy to see pictorially why the presence of correlation is

favorable to the solution of this problem. The state of the 2-Pool

model is specified by the number of active neurons in Pools 1 and 2,

k1 and k2 respectively. If neurons are independent, probability

distributions (corresponding to different stimuli) have a near-circular

shape with variances along the horizontal and the vertical axes of

order k1 and k2 (Fig. 5A). As a result, the only way to prevent tails

from overlapping too much is to separate the peaks of the

distributions sufficiently. By contrast, since correlated distributions

are elongated, their centers can be placed near each other while

their tails overlap very little (Fig. 5B). Thus, many more correlated

distributions than independent distributions can be packed in a

given region in the space of neural responses (Figs. 5A and B).

We call V the maximum number of stimuli that a population of

neurons can code with an error rate less than e� in the

discrimination of any stimulus pair. In the case of independent

neurons (Fig. 5A), a simple calculation yields

Vindependent
2{Pool v*

2N

ln
4

pNe�2

� � , ð9Þ

where we have chosen the value of the error threshold to be small

enough that pNe�2v4 (see Materials and Methods for deriva-

tions). In the correlated case (Fig. 5B), distributions are elongated

and, provided the correlations values are chosen appropriately,

error rates become vanishingly small even if the average firing

rates of nearby distributions differ by no more than a few, say a,

spikes. We then obtain

Vcorrelated
2{Pool &

N

2a
, ð10Þ

since distribution centers can be arranged along a line that cuts

through the space of responses—a square with side N=2 in the

positive k1,k2ð Þ quadrant. (Note that more than one row of

distributions may be fitted into the response space of the neural

populations if the distributions are not too broad in their elongated

direction, with a resulting enhancement of Vcorrelated
2{Pool . Figure 5B

illustrates a case in which three rows are accommodated. We do not

include these extra encoded stimuli in our calculations, thus

remaining more conservative in our estimate of coding capacity.)

According to our earlier results (Fig. 3D), even in moderately small

populations the error rate becomes exceedingly small for realistic

choices of the correlation values when the distribution centers are

two spikes away from each other. Thus, we can choose the value

a~2 to obtain an estimate of Vcorrelated
2{Pool . Putting all this together,

find that for low enough e� correlated coding always wins over

independent coding (Fig. 5C) because Vindependent
2{Pool depends upon e�

much more strongly than Vcorrelated
2{Pool does. Furthermore, in the

uncorrelated case and in the limit of small error thresholds,

increasing the population size yields only a negligible enhancement

of the number of faithfully encoded stimuli, Vindependent
2{Pool , because this

quantity is largely insensitive to the size of the population (Figs. 5D).

Positive correlations in a diverse neural population can
enhance capacity by orders of magnitude

Our arguments suggest that we ought to examine the behavior of

the capacity of heterogeneous neural populations because a greater

degree of heterogeneity amounts to higher dimensional versions of

the situations depicted in Figs. 5A and B, as we explain now. We

define the D-Pool model: a heterogeneous generalization of the 2-

Pool model in which the neural population is divided into D sub-

populations. As before, firing rates and correlations are homogeneous

within each pool and across pool pairs. For the sake of simplicity, we

consider symmetric pools with N=D neurons each; we also expect

this arrangement to be optimal for coding. The state of the model is

completely defined by the number of active neurons in each pool.

In order to estimate V, we have to examine how probability

distributions corresponding to different stimuli can be fitted within

a D-dimensional box enclosing
N

D

� �D

neural states. And overlaps

among distributions have to respect the prescribed error rate

threshold. In the case of independent neurons we have to fit in D-

dimensional near-circular objects, whereas in the case of

correlated neurons we have to fit in slender objects. It is intuitive

that it is easier to pack cucumbers in a box than to pack melons of

a comparable volume, because a greater amount of empty space is

wasted in the case of spherical objects such as melons, and indeed

we find here that a greater number of correlated distributions, as

compared to independent distributions, can be packed in the space

of responses. The calculation gives

V
independent
D{Pool v*

4N

D ln
2D

pNe�2

� �
2
664

3
775

D=2

ð11Þ

(Fig. 6A, see Materials and Methods for derivations). Notice that

the number of possible stimuli encoded by the independent

population increases for greater heterogeneity (larger D).

In the case of correlated neurons, distributions may be compressed

along one, two,…, or D{1 directions, by tuning one, two,…, or D{1
effective parameters, respectively, in such a way that the matrix of

covariances come with one, two,…, or D{1 near-vanishing

eigenvalues. In the latter case, indeed the most favorable scenario,

we have to pack near-one-dimensional objects. As before in the case of

a two-pool population, we can assume that neighboring distributions

centers are separated by a spikes, and we obtain

Vcorrelated
D{Pool &

N

Da

� �D{1

: ð12Þ
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This simple result follows from the observation that distribution

centers can be arranged on a hyperplane that cuts through the

hypercube of the space of responses (see Materials and Methods

for a more detailed discussion and a slightly more careful bound).

From these expressions we can conclude that the enhancement in

capacity due to correlation is significant, and that the enhance-

ment increases with the degree of heterogeneity (Fig. 6B).

The number of stimuli encoded with tolerable error rate, V,

scales differently with model parameters in the independent and

correlated cases. In order to focus on this scaling behavior, we

define the ‘capacity per neuron’, C, by analogy to the information

conveyed by each neuron in a population of perfectly deterministic

neurons. In the latter case, the population has access to 2N

response patterns that can code for stimuli with perfect reliability.

Each neuron conveys log2 2Nð Þ=N~1 bit of information. Conse-

quently, we define the capacity per neuron as

C: log2 Vð Þ
N

: ð13Þ

It is a measure of the mutual (Shannon) information per neuron

in the population in the limit of very small e�.
To explore the scaling behavior of correlated versus indepen-

dent populations, it is reasonable to ask what degree of

heterogeneity, as measured by D, maximizes C for each value of

N. Equivalently, we can ask what pool size, n:N=D, maximizes C
(Fig. 6C, see Materials and Methods). In the correlated case, the

optimal capacity obtains when heterogeneity is strong, in fact so

strong that the number of neurons per pool, n, is as small as 5 to 10
neurons for the choice a&1{2. From the optimal pool size, we

find that the optimal value of the capacity per neuron is given by

Figure 5. Number of encoded stimuli for independent versus correlated populations. A, B. Schematics of the optimal arrangement of the
probability distributions for independent (A) and correlated (B) populations. Each set of contours represents the log probability distribution of neural
activity given a stimulus (hotter colors indicate higher probability). Spacing is set by the criterion that adjacent pairs of distributions have a
discrimination error threshold e�~10{6 . C. Number of stimuli encoded at low error, per neuron, versus N , for correlated (thin dashed line for a~1,
thick dashed line for a~2) and independent (solid lines) populations, for different values of the error criterion, e� (colors). D. Number of encoded
stimuli per neuron, for correlated (thin dashed line for a~1, thick dashed line for a~2) and independent (solid lines) populations, versus e� , for
different values of the number of neurons, N (colors).
doi:10.1371/journal.pcbi.1003970.g005
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Cindependent
D{Pool, optimalv* e ln 2ð Þ ln 4

pee�2

� �� �{1

ð14Þ

and

Ccorrelated
D{Pool, optimal *

> 0:26 for a~1, n~5 or a~2, n~10 ð15Þ

in the independent and correlated cases respectively (see Materials

and Methods for derivations). The independent capacity becomes

very small at low-error thresholds, while the correlated capacity

remains fixed and in fact of the same order as the capacity of a

perfectly reliable neuron (Fig. 6D). Thus, in the limit of low error,

the capacity and hence information encoded per neuron exceeds

the corresponding quantity in an independent population by more

than a factor of 10. By comparison, one often finds analogous

effects measured in a few percent in other studies.

We have put forth the following picture. For a neural

population to code for a large set of inputs reliably, it breaks up

into small pools with about ten neurons, with correlation across

pools stronger than correlation within pools. These pools are small

enough that their number is large, and consequently the response

space is high-dimensional. But, at the same time, the pools are

large enough that realistic correlations lock them in and yield

effectively lower-dimensional response distributions. In a sense, a

pool behaves like a ‘deterministic meta-neuron’ which obeys a

near-digital code. In the D-dimensional space of population

activity, variability is confined to one (or more) directions. In the

extreme case in which the population responses for different

stimuli differ by no more than one or two spikes (as illustrated in

Fig. 5B), the orthogonal D{1 (or fewer) directions are relieved

from variability and the code is near-digital in that sub-space.

Clearly, this represents the most extreme case of high-fidelity

coding; even away from this limit, when there is a degree of

variability along all directions, correlation can significantly

enhance capacity. We emphasize, also, that, even in the limiting

case, the suppression of the variability can be checked only in

simultaneous measurements of at least all the neurons in a given

pool; measurements of, e.g., pairs of neurons will yield as much

variability as if neurons were independent.

Experimental test of favorable correlations
If neural populations rely upon correlation to achieve high-

fidelity coding, we expect that patterns of correlations resembling

those postulated in our model can be found in data. Namely, our

hypothesis predicts that subsets of similarly tuned pools of neurons

will exhibit weaker within-pool correlations than cross-pool

correlations. In order to check this prediction, the response of a

neural population to a pair of stimuli or a pair of stimulus classes

Figure 6. Coding capacity of heterogeneous populations. A. Number of encoded stimuli versus N , for an independent population divided
into different numbers of pools, D (colors); the error criterion is e�~10{6 . B. Ratio of the number of encoded stimuli in a correlated population and
the number of encoded stimuli in a matched independent population, for different numbers of pools D (colors). C. Optimal pool size, n, versus error
criterion, e� , for correlated (dashed line, a~2) and independent (solid line) populations. D. Optimal capacity per neuron, C, versus error criterion, e� ,
for correlated (dashed line, a~2) and independent (solid line) populations.
doi:10.1371/journal.pcbi.1003970.g006
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has to be recorded (Fig. 7A). This population is divided into a

group of cells that fire more strongly to the first stimulus and the

rest that fire more strongly to the second stimulus (Fig. 7B). Note

that this step is always possible and that all cells can be thus

assigned.

Next, one would have to identify pools of neurons, within the

population, such that the correlations relative to these pools are

near lock-in. But this is a stringent requirement, which would

involve exceedingly heavy numerical processing. Instead, one can

search for subsets of the population that have stronger correlation

across the groups than within (Fig. 7C), as this is a definite

requirement in the proposed scenario—and the one that may

appear counter-intuitive. For recordings with several tens of cells,

there is a very large number of possible subsets, so an exhaustive

search may not be feasible. Instead, there exist a number of faster

search strategies. For instance, one can score each cell according

to the sum of its pairwise correlation to all cells in the other group

minus the sum to all cells within its stimulus-tuned group. This

yields a rank ordering of cells, which can be used for selecting

favorable subsets. In addition, searches can be made iteratively,

starting with M cells and finding the best next cell to add to the

subset. Once a subset is identified, a quick assessment of the role of

correlation can be made using average firing rates and correlations

to calculate the error rate in the Gaussian approximation (Eq. (1)).

As seen in Figs. 2 and 3, this approximation is highly accurate.

Then, for the most favorable subsets, a maximum entropy

calculation can be carried out to estimate the discrimination error

taking into account the true experimentally observed heterogene-

ity. As indicated by Fig. 4, the homogeneous approximation is not

only quite close to the real error rate, but it also serves as an upper

bound on the error. In this manner, subsets of neurons with

correlation patterns favorable to lock-in can be identified in

neurophysiological recordings.

Discussion

Summary
We have shown that a class of patterns of positive correlation

can suppress coding errors in a two-alternative discrimination task

(Figs. 2A and B). The idea that correlations among neurons may

be favorable to coding was noted earlier. What is new, here, is the

demonstration of the extreme degree of the enhancement in

coding fidelity from positive correlation — several orders of

magnitude rather than a few tens of a percent. Furthermore, this

generic result does not require unrealistic values of correlation or

population size: it can operate at the moderate values of

correlations recorded experimentally (Figs. 2C and D) and in

populations with as few as *10 neurons (Figs. 3A and B). In fact,

massive error suppression may occur even when average activities

in a neural pool in response to different stimuli differ by one or a

few spikes (Figs. 3C and D)—a limiting, but realistic, situation in

which coding with independent neurons fails completely.

Figure 7. Schematics of an experimental test of high-fidelity correlated coding. A. Representation of a population of 50 neurons recorded
under two stimulus conditions. Each cell displays firing rates pi and qi in response to the two stimuli, respectively; the color scale shows the difference
in rates, pi{qi . B. The population is divided into two groups, depending on whether their cells fire more significantly in response to the first
(preferred) or the second (anti-preferred) stimulus. C. Matrix of correlation values among all pairs of neurons (red = large, blue = small, black =
average), divided into preferred and anti-preferred groups. Although the overall correlation is stronger for neurons with the same stimulus tuning
(average correlation of pref-pref = 0.206, anti-anti = 0.217, and pref-anti = 0.111), a subset of neurons (Pool 1 and Pool 2) are identified which have
the pattern of correlation favorable to lock-in. D. Matrix of pairwise correlations after re-labeling cells in order to sort out Pools 1 and 2. Now the
favorable pattern of correlation is visible.
doi:10.1371/journal.pcbi.1003970.g007
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We have also shown that correlations can boost dramatically the

capacity of a neural population, i.e., the number of stimuli that can

be discriminated with low error (Figs. 5 and 6). For independent

neurons, the mean firing rates of the population in response to

different stimuli must differ by a substantial amount to allow low

error, because the firing variability about the mean is not

harnessed by correlation. By contrast, in the presence of

correlation, neural response distributions can deform into slender

objects, effectively lower-dimensional objects, which can be fitted

much more efficiently within the population’s response space

(Fig. 5B).

At lock-in, response distributions become strictly lower-dimen-

sional (one-dimensional in the extreme case); in this limiting case,

small pools of neurons within the population behave like

‘deterministic meta-neurons’ which obey a near-digital code.

While our calculations have focused on this extreme limit of ‘lock-

in’, the brain need not achieve it strictly. The logic is that if this

upper bound is insignificant then one can rule out this coding

scheme, but that if the upper bound is highly significant – as we

show here – then it is more plausible that the brain might find

beneficial adaptations to make use of the mechanism. We note

that, even in the lock-in limit, it is not possible to read off the high

reliability of the population response from ‘local’ quantities such as

pairwise correlation coefficients. The latter display as much

variability as in the case of independent neurons. High-fidelity

coding is a collective phenomenon.

Furthermore, we have demonstrated that diversity in neuron-to-

neuron response, and more generally heterogeneity of the

population response, further enhances the effect of correlation

(Fig. 4 and Figs. 6A and B). Indeed, the advantageous role of

heterogeneity seems to be a rather general feature of population

coding, and it has been illustrated within various approaches

[31,37,44]. We refer to the phenomenon in which neural

correlation suppresses the discrimination errors to negligible

values and dramatically boosts the capacity of a population as

high-fidelity coding. In passing, we note that high-fidelity coding

does not, in principle, require equal-time correlation: the same

mechanism can be at play when the correlations that matter

involve different time bins, such as in ‘spike-latency codes’ [45].

Finally, we have proposed a possible analysis of neural data that

aims at uncovering favorable patterns of correlation (Fig. 7).

How extreme is lock-in?
We showed that, in the limit of large enough populations or

strong enough pairwise correlations, the distribution of activity of

the population can ‘lock in’ to a state of lower dimensionality.

While, in this state, macroscopic correlations (among spike counts

in sub-populations) reach limiting values, one may wonder about

the nature of the microscopic correlations. Furthermore, we can

ask how finely the parameters of the model ought to be tuned for a

significant effect on coding to obtain.

The positivity of probability implies constraints upon moments

of the neural activity; in particular, we have x11x22§x2
12. This

bound is achieved by the lock-in condition given in Eq. (5). Thus,

lock-in embodies the limiting case of maximum macroscopic

correlation between Pools 1 and 2, but there remains a significant

amount of (microscopic) variability even at lock-in. The specificity

of lock-in is that it forbids a subset of the microscopic patterns, i.e.,

that these occur with vanishing probability. However, at lock-in

the system is not confined to a single output pattern. A large set of

patterns can occur with non-negligible probability each—hence

the variability—and the remaining patterns are ruled out—hence

the vanishing overlaps and error rates.

In fact, generically, positive correlations will enhance the

marginals of the probability distributions of activity patterns. For

example, the variability in a given pool will be boosted by

correlations. Thus, for measurements within a given pool,

responses will appear more variable than independent ones, even

at the lock-in limit. Furthermore, while the distribution of

population states reaches a singular limit at lock-in, this cannot

be read off from individual measurements of pairwise correlations

(even is the pair of neuron straddles two different pools). While

macroscopic correlation coefficients have been pushed to their

limiting values at lock-in, microscopic correlation coefficients

remain moderate (and well below any limit one would obtain by

considering pairs or small groups of neurons).

In the Gaussian approximation of the two-pool model, only

patterns with a fixed ratio between k1{Sk1T and k2{Sk2T are

allowed at lock-in. In the absence of correlations, allowed output

patterns fill a two-dimensional space—the k1,k2ð Þ plane. When

correlations push the system to lock-in, output patterns are confined

to a one-dimensional space—the (k1{Sk1T)!(k2{Sk2T) line.

This dimensionality reduction results in error rate suppression and

in increased capacity. In the higher-dimensional case of full

heterogeneity (and Gaussian variability), the question of lock-in

amounts to asking whether one or several eigenvalues of the

covariance matrix become vanishingly small. A population attains

the actual lock-in state only for specific values of pairwise correlation

and firing rate; however, we have shown that the error rate can

reach near-vanishing values for a range of parameters that do not

bring the population all the way to the lock-in condition. This result

on robustness is generic as it relies only upon the rapid fall-off of the

tails of the response probability distribution.

This points to the second question we posed above, namely,

to what extent are the parameters in the model fine-tuned.

Clearly, in order to reach the singular, lock-in limit, an

effective parameter—a combination of firing rates and

correlation coefficients—has to be fine-tuned. There are,

however, two important points to note. First, as mentioned

above, astronomical enhancement of coding performance

occurs near lock-in already; there is no need to be at lock-in.

Second, while one effective parameter ought to be fine-tuned,

others do not have to be. In Materials and Methods, we

provide a detailed study of the coding performance as a

function of variations in these additional parameters, and we

demonstrate that the enhancement of performance is highly

robust to parameter perturbations.

Finally, we point out an important distinction, which may play

a major role in the issue of fine-tuning. Throughout, we have

been referring to ‘parameters’ when discussing the response

properties, i.e., firing rates, correlation coefficients, and combi-

nations of these. But, in reality, ‘neural processing parameters’ or

‘biophysical parameters’ (such as temporal filters, non-linear

transfer functions, synaptic weights, etc) are the ones which are

putatively tuned, in an actual brain area. Ultimately, one would

like to know to what extent fine-tuning is stringent in the space of

these parameters. While a detailed answer to this question

certainly lies beyond the scope of the present paper, we can offer

a preliminary comment. Intuition as well as exploratory

numerical work indicate that, in the space of the ‘biophysical

parameters’, rather than fine-tuning parameters, what will matter

for a high coding performance is that some parameters be

sufficiently strong (e.g., synaptic weights sufficiently large to build

up significant correlation). Thus, while high-fidelity coding may

require (a relatively) fine tuning in the space of ‘correlation

parameters’, fine-tuning is not necessarily required in the space of

the ‘biophysical parameters’.
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Relation with earlier work on coding with correlated
neurons

A number of theoretical studies have explored the role of

correlation in neural coding, with the use of different neuron

models and information theoretic measures [25,26,27,28,29,

30,31,32,33,34,35,36,37,38,39,40,41,42]. If response properties

are homogeneous among neurons, positive correlation is detri-

mental to coding: it tends to induce neurons to behave alike, and

thereby suppresses the advantage of coding with a population

rather than with a single cell (see Text S1, Supplementary

discussion for detailed arguments). By contrast, if response

properties vary among neurons, positive correlation can be either

unfavorable or favorable [28,29,30,31,34,39,37,41,42]. Put more

generally, when the scale of correlation is comparable to that of

the informative mode in the system (dictated, e.g., by the response

tuning curve), then correlation enhances the confounding effect of

noise (see Text S1, Supplementary discussion for a simple

illustration of this mechanism). But when the scale and structure

of correlation is very different — as in the case of uniform positive

correlations, in the case of negative correlations (anti-correlations),

or in models with heterogeneity — correlation can relegate noise

to a non-informative mode [28,30,31,41,42]. (We recall that we

are focusing exclusively upon the case of stimulus-independent

covariance matrices and, hence, stimulus-independent pairwise

correlations. Experiments indicate the presence of both stimulus-

independent and stimulus-dependent correlations.)

In the case of stimulus-independent, positive correlation, earlier

studies have formulated a mechanism by which correlation can

relegate noise to non-informative models and, hence, enhance

coding fidelity [25,27,28,46,30,31,32,38,39,41,42]. Namely, that

negative signal correlations (anti-correlations) should be supple-

mented with positive noise correlations. To be explicit, this means

that when neurons respond differentially to different stimuli, on

average, then the variability about this average response should be

correlated positively; this mechanism is illustrated in Fig. 1B and

sets the starting point of our study. Conversely, negative

correlations (anti-correlations) are favorable in the case of positive

signal correlation. These statements have been established

following different routes in the literature. They can be read off

in full generality, that is, without invoking any particular neuron

model or form of the neural response, from the expression of the

mutual (Shannon) information [29,33,34,39]. This is done by

rewriting the mutual information in a form that displays

contributions from firing rates, correlations, and the interplay of

firing rate and correlation patterns. Approaches using the mutual

information have the merit of elegance and generality. However,

for quantitative estimates they require the implementation of

specific response models; furthermore, they are difficult to apply to

large populations of neurons because of sampling limitations and

mathematical difficulties.

Similar results can be derived from the form of the Fisher

information [28,30,31,39,41,42], often used to establish bounds on

the estimation variability in the case of continuous stimuli. Most

studies consider neurons with broad tuning properties and find

that positive correlations are unfavorable if they decay on the scale

of the tuning curve. Positive correlations were observed to be

favorable in cases in which they are uniform among all neurons or

have a non-monotonic profile according to which similarly tuned

neurons are less correlated than neurons that differ greatly in their

tuning. In all cases, however, positive correlation enhanced the

coding fidelity by modest amounts. In the next section, we discuss

these quantitative aspects in greater detail, as well as their

correspondence with our formulation and results.

In models of broadly tuned neurons with uniform pairwise

correlation over the entire population, coding becomes increas-

ingly reliable as the quantity c tends to 1. For example, the Fisher

information is boosted by a factor 1= 1{cð Þ as compared to the

case of independent neurons [28]. Thus, strong correlation-

induced improvement in coding performance occurs only in the

unrealistic limit of c close to 1. The situation is different in our

simple models. There, high-fidelity coding requires that the

modified quantity Ndc approach 1, where dc is a weighted

difference of cross-pool correlation values and within-pool values,

be small (see, e.g., Eqs. (2)). The presence of similarly tuned pools

of neurons, within the population, amplifies the effect of weak

pairwise correlation to produce profound changes in the activity

patterns of the neural population. Since correlation values are in

the range c&1%{30%, values of N as modest as a few tens or a

few hundreds are sufficient to bring the quantity of interest, Ndc,

extremely close to 1.

Similarly, Ref. [30] showed that coding can be enhanced by a

large factor in the presence of anti-correlations as weak as

c~{0:005 (as quoted, also, in Ref. [39]) and Refs. [37,41]

reported significant boosts of the Fisher information of positively

correlated neurons in the presence of heterogeneous tuning

functions. This occurs for populations with hundreds of neurons

and it is yet another illustration of the significant effect that can

take place when Ndc*O 1ð Þ. In the present work, we have shown

that similarly large effects can occur due to the experimentally

more typical positive correlations, and in the context of much

smaller neural population with no more than a few tens of

neurons.

We remark in passing that there are other mechanisms by which

confounding noise can be relegated to non-informative dimen-

sions. In the context of broadly-tuned neurons and long-range

correlation—the usual setup of studies which make use of Fisher

information—the presence of neuron-to-neuron variability (e.g., in

the firing rates) can do the trick [31,37,41,42]. In the absence of

variability, positive correlation suppresses the coding performance

as compared with an independent population. Neuron-to-neuron

variability introduces a new dimension, namely, modulations

much finer-grained than the scale of tuning and correlation, in

which information is stored. Then, in a correlated population one

retrieves, roughly, the coding performance of an independent

population. This mechanism cannot, to our knowledge, generate

substantial improvement in coding performance over that of an

independent population.

A separate line of investigation of the properties of coding in the

presence of correlation focuses upon ‘interactions’ (parameters of

the probability distribution of population activity) instead of

correlation coefficients as its central objects [47,48,49]. When a

maximization procedure is applied to the mutual information

between the distribution of parameters and that of population

activity, in a noisy regime one obtains positive interactions and,

correspondingly, positive correlation, which enhance the encoded

information appreciably compared to an independent population

[50]. We note that, there, and at odds with the case we studied

here, correlations depend upon the stimulus since some param-

eters are stimulus-dependent.

Quantitative comparisons among information theoretic
measures

As mentioned in the introduction and in the previous section,

earlier investigations which exhibit an improvement of the coding

performance due to positive correlation find that the latter is

rather limited quantitatively. Specifically, the Shannon informa-

tion or the Fisher information (depending on the study) in the
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correlated population exceed that in the equivalent independent

population by less than a factor of O 1ð Þ. As stated above, the

Fisher information can be boosted by a factor 1= 1{cð Þ as

compared to its counterpart for a population of independent

neurons; for typical choices of correlation values, this yields an

improvement of *1%{20%. By contrast, in the present study we

claim that positive correlation can enhance coding fidelity by

massive factors, and that this effect can exist even in small

populations of neurons. But how are we to compare our results to

earlier results, since the former are expressed in terms of error rate

and capacity while the latter are expressed in terms of information

measures?

In the case of an unbiased estimator, the Fisher information, IF ,

bounds from below the discrimination error, r, of a continuously

variable stimulus: r §1=
ffiffiffiffiffi
IF

p
[51]. Thus, if the stimulus spans a

space of size L then the number of stimuli that can be

distinguished reliably is calculated as

V&
L

r
v*L

ffiffiffiffiffi
IF

p
, ð16Þ

so that the capacity per neuron scales with the Fisher information

as C~ log2 Vð Þ=Nv* log2 L
ffiffiffiffiffi
IF

p� �
=N . (A rigorous version of this

result was derived for a population of independent neurons in

Refs. [52,53].) If correlation enhances the Fisher information by a

factor DI=I , I correlated
F ~I

independent
F 1zDI=Ið Þ, then the number of

distinguishable stimuli is correspondingly enhanced according to

Vcorrelated&L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I correlated

F

q
~Vindependent

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zDI=I

p
. Thus, we have

Vcorrelated

Vindependent
&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

DI

I

r
, ð17Þ

and

Ccorrelated

Cindependent
&1z

1

N

log2 1zDI=Ið Þ
2Cindependent

ð18Þ

or

Ccorrelated{Cindependent&
1

2N
log2 1z

DI

I

� �
: ð19Þ

We can now relate the earlier results in terms of Fisher

information to our results in terms of capacity through these

formulæ.

An enhancement of the Fisher information given by

DI=I*O 1ð Þ or, to be more specific, DI=I&0:01{0:2 as

suggested by earlier theoretical studies, amounts to a small

increase of the number of distinguishable stimuli by a factor

1:005{1:1. Similarly, the difference between correlated and

independent capacity per neuron decays inversely proportionately

with N ; in a large population, the improvement becomes

negligible. By contrast, we found that the ratio

Vcorrelated=Vindependent can attain large values (&3{105, Fig. 6B)

and that the difference between the correlated capacity per

neuron, Ccorrelated, and the independent capacity per neuron,

Cindependent, can be significant (Fig. 6D). In brief, earlier studies

have demonstrated that, in spite of positive correlations, coding

can be as efficient as in an independent population or even slightly

better. Here, we show that, provided true population effects are

taken into account, positive correlation can have a profound

quantitative effect in that they can modulate the way coding

measures scale with the number of neurons in the population and,

as a result, yield a massive enhancement in coding fidelity.

To conclude the comparison among information measures, we

note that, for continuous stimuli, the Fisher information is a

natural performance metric. In this case, stimulus entropy always

exceeds that of the population response, and the estimation

variability decreases with population size, so that one is interested

in quantifying the precision of estimation in the large-N limit. By

contrast, here we treat the case of a discrete stimulus, where the

entropy is small and discrimination can be achieved with great

reliability. This regime is clearly relevant to tasks like decision-

making, language, and abstract thought: each categorization error

imposes a cost on the organism, making it relevant to characterize

coding performance using the error rate rather than the mutual

information. Much of computational neuroscience work devoted

to networks of neuron has focused upon large-N situations. The

regime at hand here is somewhat new in character: the largest

number is not N, the population size, but rather 1=e, the inverse

discrimination error. In fact, a number of neurons as small as

N*10 can achieve inverse error rate, 1=e, several orders of

magnitude larger. Given the breadth and accuracy of cerebral

function, and the brain’s limited size, we expect this regime to be

relevant to diverse instances of neural processing.

Relation with recorded cortical data
A detailed analysis of neurophysiological data must await a

subsequent study. Here, we mention several observations which

are consistent with our experimental prediction. Patterns of

correlations with stronger cross-pool values may at first seem

unlikely; this intuition comes mainly from our knowledge of the

primary visual cortex and area MT, in which neurons with similar

orientation tuning or directional preference are more strongly

correlated, on average. But recent results in the literature hint to

the fact that inverse patterns of correlation, with stronger cross-

pool values, may well be present in the brain and favorable to

coding. Romo and colleagues have reported precisely this

phenomenon in S2 cortex: in some fraction of their data (but

not in others) they found positive correlation among pairs of

neurons with opposite frequency-tuning curves [32]. This pattern

of correlation resulted in an improvement in the threshold for

discrimination between different frequencies of tactile stimulation.

Maynard et al. similarly found that a model that incorporated

correlation reduced discrimination errors, as compared to an

independent model, for groups of up to 16 cells in M1 during a

reaching task [54]. Here, correlations elongated the response

distributions precisely in the manner depicted in Fig. 2B.

Interestingly, Cohen and Newsome observed that MT neurons

with widely different direction preferences displayed stronger

positive noise correlation when the discrimination task was

designed in such a way that, effectively, they belonged to different

stimulus-tuned pools [55]. In another cortical study, Poort and

Roelfsema demonstrated that noise correlation can improve

coding between V1 cells with different tuning, partially canceling

its negative effect on cells with similar tuning [56]. Finally,

Gutnisky and Dragoi [57] observed that after rapid (400 ms)

adaptation to a static grating, pairwise correlation coefficients

among neurons with similar tuning decreased more than for

neurons with somewhat different tuning preferences — a trend in

adaptation which agrees with the proposed favorable pattern of

correlation. However, we note that correlation among neurons

with very different tuning preferences also dropped after

adaptation, so that the trend may be mixed.

High-Fidelity Coding with Correlated Neurons

PLOS Computational Biology | www.ploscompbiol.org 14 November 2014 | Volume 10 | Issue 11 | e1003970



Read-out and decoding from correlated neurons
In this paper, we have been concerned with establishing bounds

on the information that can be extracted from a population of

correlated neurons, by calculating the error rate of an optimal

deterministic decoder and by estimating the encoding capacity of

the population. A separate question is: How do actual, read-out

neural circuits ‘decode’ the information contained in the activity of

a correlated population? While this question is a very interesting

one, which, quite generally, pertains to almost all studies of the

neural code, it is also a difficult one because of a biological issue

and a conceptual issue. The biological issue is that we don’t yet

know enough about the constraints that apply to decoding: the

architecture of read-out circuits, the relevant biophysical proper-

ties of read-out neurons, etc. The conceptual issue is that we don’t

know in what form the information is decoded: even if, ultimately,

the information is represented by some kind of ‘grand-mother cell’,

the latter may result from many layers of processing. Thus,

decoding circuits may be highly non-trivial.

There are many examples in the literature in which decoding is

discussed in the context of a one- or two-layer perceptron-like

read-out model. The motivation for such models is that they can

be implemented accurately by the known, basic properties of

neurons; hence, they make simple and likely candidates for actual

read-out networks. Here, we illustrate a similar model devised as a

decoder from a correlated population.

The read-out circuit ought to implement the optimal decision

boundaries. We focus, first, on a two-pool model of correlated

population. In the simplest case with symmetric parameters

(Fig. 1), the decision boundary is given by k1~k2, where ki is the

spike count in Pool i. In the case of non-symmetric choices of

parameters, the decision boundary becomes

k1~ak2zb, ð20Þ

where a and b are constants. In the presence of many stimuli, the

decision boundaries between pairs of stimuli are given by Eq. (20)

with different values of the constant b for different stimulus pairs

(Fig. 8A). (For stimulus-independent correlation, the constant a is

fixed.) Thus, if b and b’ correspond to two ‘neighboring’ decision

boundaries, then the intervening stimulus is uniquely identifies if

both inequalities k1wak2zb and k1vak2zb’ are satisfied

(Fig. 8A). The task of a ‘decoder neuron’ is to be active when

both these inequalities are satisfied and inactive otherwise: its

activity then represents the presence of a given stimulus. This is

achieved trivially by a two-layer perceptron in which excitatory

and inhibitory inputs from Pool 1 and Pool 2 are summed non-

linearly (Fig. 8B). The constants a and b are implemented by the

strengths of the synapses and the value of the perceptron threshold

(equivalently, baseline), respectively.

In the case of a many-pool model of correlated population, the

decoding rule is, conceptually, the same, but is calculationally

more involved as it is carried out in a higher-dimensional space. In

the case of D homogeneous pools of correlated neurons, and d

dimensions along which the probability distributions are ‘com-

pressed’ (in our examples above, we had chosen d~D{1), a given

stimulus is identified by d pairs of inequalities analog to the above

ones. In other words, to identify a given stimuli, the decoder has to

carry out at most D{1 pairs of binary decisions.

A few comments are in order, here, about this model of

decoding. First, we note that this simple perceptron read-out

achieves optimal decoding, as it implements the optimal decision

boundaries (up to processing noise). Second, we point out that the

complexity of the proposed decoder is comparable to that of a

decoder from independent neurons; thus, the presence of

correlations does not render decoding more problematic. Third,

we emphasize that, when reading out many stimuli from a given,

correlated population, the decoder cells do not need to collect their

inputs from different sub-divisions of the population, nor do

different arrays of synaptic weights need be learned for each

stimulus. Fourth, and finally, we mention that in the more realistic

case of a heterogeneous neural population, an optimal decoder

would have to implement a non-linear decision boundary (instead

of the linear ones illustrated in Fig. 8A). As a result, the read-out

circuit would be more involved. However, one might still be able

Figure 8. Illustration of a proposed decoding mechanism and
circuit. A. The decoding mechanism is illustrated in the case of a two-
pool model, in which ki denotes the spike count in Pool i. The stimulus
to be decoded elicits the distribution of activities represented by the
yellow-red contour lines; other distributions, in blue-grey, flank it and
result from different stimuli. Optimal decision boundaries (dashed lines),
defined by simple inequalities, are implemented by the read-out circuit.
B. The read-out circuit is a two-layer perceptron. In its first layer,
excitatory and inhibitory inputs from both pools are non-linearly
summed into two intermediary read-out neurons; the synaptic weights
and thresholds (equivalently, baselines) are chosen such that the two
intermediary neurons implement the inequalities k1wak2zb and
k1vak2zb’, respectively. Their two outputs are then summed non-
linearly in turn, so that the ‘decoder neuron’ is active only if both
inequalities are satisfied.
doi:10.1371/journal.pcbi.1003970.g008

High-Fidelity Coding with Correlated Neurons

PLOS Computational Biology | www.ploscompbiol.org 15 November 2014 | Volume 10 | Issue 11 | e1003970



to recover nearly optimal performance with simpler decoders if the

heterogeneity is not too severe.

Sensory coding requires extremely low error rates
Everyday vision occurs in a different regime than that probed in

many of the classic studies in visual psychophysics. Our retina is

presented with complicated scenes in rapid succession—either

because of saccadic eye movements or because of motion in the

scene itself—from an enormous set of possibilities. Often, we seek

to recognize the presence of a target stimulus or stimulus class and

distinguish it from every other possible stimulus. For example, we

might want to recognize a friend’s face in a particular spatial

location. That location might contain another person’s face, or a

flower, or myriad other objects, which we do not want to mistake

for our friend’s face. Alternatively, the target stimulus is often a

class of related stimuli, such as that friend’s face from a variety of

angles or the presence of any human face, so that a class of visual

patterns on the retina, rather than a single fixed pattern, is to be

identified.

In this regime, one distinguishes two kinds of coding error:

misses and false alarms. In the former, one does not pick up on the

target stimulus; in the latter, an absent target stimulus is

erroneously perceived. While both kinds of error take place

occasionally (think of mistaking a wavy tree branch for a snake, as

a false alarm), the effortless feat of the visual system in avoiding

them most of the time is rather bewildering. If we pause a moment

on what this feat means at the neural level, as illustrated by the

following example, we realize that it requires extremely precise

coding.

Imagine stretching out on your hotel bed in a tropical country.

If there were a very large spider on the ceiling, you most likely

would want to detect it and detect it promptly. For the sake of

concreteness, let us imagine that the spider has a size of three

centimeters and is three meters away, subtending a visual angle of

0.01 radians. Thus, there are 1=(0:01)2~104 possible spider

locations on the ceiling. If you are able to detect the spider in any

of these locations, it implies that your brain must effectively have a

‘spider-detector’ circuit that reads out activity from a retinal

population that subtends each of these spatial locations. If you

would like to detect the spider quickly, say in 100 milliseconds,

then there are 105 possible spider-detection events per second.

Now, if each detector operates at a false alarm rate that would

naively seem low enough to be acceptable, say 0.001—i.e., a

probability of error of a tenth of a percent— you would still

perceive 100 virtual spiders per second! If we impose the additonal

cautionary constraint that spider detection be possible only within

the parafoveal region, which covers about 0.1 radians, the

numbers would be further divided by a factor of 100, but this

would still correspond to perceiving about 1 virtual spider per

second. While we do not wish to insist too heavily on a quantitative

argument, we want to show that it is not implausible that, even in

our everyday experience, the brain may need to encode sensory

signals with exceedingly low error probabilities.

One can think of a number of resolutions to this ‘spider-on-the-

wall problem’ (changing hotel rooms will not do). Temporal

integration, for one, may be used to suppress errors. Also, error

rates ought to be influenced by the prior expectation of an event—

a quantity we have not included explicitly in our argument. That

said, both temporal integration and prior expectation involve

trade-offs. Extensive temporal integration requires longer viewing

times, and many behaviors need to occur quickly. Relying too

heavily upon prior expectation could leave one unable to

recognize novel objects.

A more direct way of ensuring reliable discrimination is to

employ neural populations that are organized to suppress false

alarm (and miss) rates down to extremely low values. In the

present paper, we focus on this strategy. As an illustration of the

stringency of the requirement, imagine that no more than one

virtual spider ought to be perceived in the hour it takes you to fall

asleep (as such spider detections could prevent sleep). This

condition is satisfied if the false alarm rate remains below

*10{8 per detection circuit. And of course, the visual system

can recognize many objects other than spiders, implying even

lower false alarm rates in any one kind of detector so that the total

false alarm rate remain very low.

Other strategies for low-error coding
As was have just explained, infinitesimal error is not a luxury,

but a necessity in rapid coding if one wishes to avoid relatively

frequent false alarms. We have shown here how correlations can

enable population codes to perform with negligible error rates.

However, other possible strategies for reducing false alarm errors

exist: temporal integration and prior expectation. Both strategies

effectively involve raising the detection threshold to suppress the

false alarm rate. But both strategies involve trade-offs as well.

First, most stimuli in natural settings are present over periods of

time longer than a few tens of milliseconds. Thus, in rapid coding

a miss can be corrected: for a miss rate Pmissv1 in a fundamental

time window of 20 ms, a stimulus present during a period of

200 ms allows *10 opportunities of detection. These multiple

opportunities of detection reduce the overall miss rate to roughly

Pmissð Þ10
, a much smaller quantity. However, the consequence is

that the false alarm rate, Pfalse alarm is the short time window,

increases to roughly 10Pfalse alarm (assuming Pfalse alarm%1) in the

long time window. This imbalance can be corrected by raising the

detection threshold, P T Drð Þ=P DDrð Þ§h (with hw1 instead of

h~1), so that the false alarm rate goes down for detection in each

fundamental time window. Because the false alarm rate is

suppressed exponentially by raising the threshold, but only

increased linearly by allowing detection in several successive time

bins, such a strategy can be favorable. For instance, in the case of

the independent code in Fig. 3, if the threshold is raised to boost

the miss rate to about 10% (which corresponds to an increase by a

factor of 53), then the false alarm rate is reduced from about 0.1%

down to 0.0001% (which corresponds to a suppression by a factor

of 850). The obvious cost of this strategy is that the presence of

new objects in the visual world will be noted slowly, and if there

are important objects that require rapid detection this delay and

variability in detection may be unfavorable.

Second, prior expectation can modulate the balance between

misses and false alarms in a favorable manner. The miss rate and

the false alarm rate are weighed by the frequency of occurrence of

stimuli, P Tð Þ and P Dð Þ (see Materials and Methods). In practice,

these quantities are not known and must be estimated by a freely

behaving animal. Changing their values amounts to weighing the

two kinds of error—misses and false alarms—by their expectation

with regards to the occurrence of stimuli. Mathematically, this is

equivalent to weighing miss and false alarm rates as a function of

the costs associated with them. Thus, the effects of expectation and

cost can both be subsumed in the choice of the decoding

boundary, h. If the boundary is displaced toward the distribution

corresponding to Target, then the miss rate increases while the

false alarm rate decreases. The reverse occurs if the boundary is

displaced toward the distribution corresponding to Distracter.

Therefore, an object expected to be incredibly unlikely in a given

environment can have its detection threshold raised substantially

to prevent unwanted false alarms.
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This strategy has the obvious drawback that if the rare object is
actually present, it will be detected with difficulty. A behaving

animal continually updates its internal representations of expec-

tation and cost as a function of experience — a strategy often

referred to as Bayesian decision-making. In a new overall visual

context, an otherwise rare object may be more likely present, and

the animal may consequently lower its detection threshold and,

hence, render that object more easily visible. In addition, temporal

integration can enhance the detectability of unexpected objects,

thus helping to overcome a high detection threshold. But of

course, both these methods require more time, so that they will not

be effective for rapid detection. Furthermore, there are limits as to

how high the miss rate can be allowed to increase without adverse

behavioral consequences, which places limits on how effective

these strategies can be in achieving very low false alarm rates.

For all these reasons, it is likely that these strategies are

combined with population codes having intrinsically low error. In

fact, the suppression of the false alarm rate by raising the threshold

is much more effective if the distributions of neural activity are

already well separated: in the example of the correlated code in

Fig. 3, increasing the miss rate to 10{9 reduces the false alarm rate

by another factor of 1015.

Materials and Methods

Maximum likelihood error bound
In the absence of detailed knowledge about the decoding

algorithm employed by readout neurons, we can still establish a

bound on performance. This bound is derived from maximum

likelihood decoding—an algorithm that minimizes the error rate of

deterministic decoding [51]. It assigns Target to a response

pattern, r, if P T Drð ÞwP DDrð Þ and, conversely, it assigns Distracter

to a response pattern, r, if P T Drð ÞvP DDrð Þ, where P T Drð Þ and

P DDrð Þ denote the probability that Target and Distracter,

respectively, were presented given that the response pattern is r.

The miss rate—the fraction of instances in which Distracter is

mistaken for Target—is then calculated as

Pmiss~
X

r with P T Drð ÞvP DDrð Þ
P T Drð ÞP rð Þ, ð21Þ

where P rð Þ is the probability to record a response pattern r
(regardless of the stimulus presented). Similarly, the false alarm
rate—the fraction of instances in which Target is mistaken for

Distracter—is calculated as

Pfalse alarm~
X

r with P DDrð ÞvP T Drð Þ
P DDrð ÞP rð Þ: ð22Þ

The total error rate committed by maximum likelihood

decoding,

e:PmisszPfalse alarm, ð23Þ

is a lower bound to the error rate committed by any deterministic

decoder. Readout neurons make at least e errors per unit time.

Throughout, we use the error rate, e, as a measure of the fidelity of

the neural population to contrast the coding performance of

independent neural populations versus correlated neural populations.

Since experiments record the rate of occurrence of neural

responses given the stimuli, namely the probabilities P rDTð Þ and

P rDDð Þ, and not the other way around, it is often advantageous to

express the miss and false alarm rates in terms of these measurable

quantities, as

Pmiss~
X

r with P T Drð ÞvP DDrð Þ
P rDTð ÞP Tð Þ ð24Þ

and

Pfalse alarm~
X

r with P DDrð ÞvP T Drð Þ
P rDDð ÞP Dð Þ: ð25Þ

In the laboratory, P Tð Þ and P Dð Þ are controlled by the

experimenter; in natural situations, P Tð Þ and P Dð Þ can be

thought of as the subject’s expectation of the chances of

occurrence of the respective stimuli.

In general misses and false alarms are not symmetric, as they

represent different kinds of errors. In some situations, one may wish to

limit the rate of false alarms more stringently than that of misses, or vice
versa. A convenient way to impose such a condition is to introduce a

threshold, h, greater or smaller than one, when comparing P DDrð Þ and

P T Drð Þ, and consequently to generalize the error rates to

Pmiss~
X

r with
P T Drð Þ
P DDrð Þwh

P rDTð ÞP Tð Þ, ð26Þ

Pfalse alarm~
X

r with
P T Drð Þ
P DDrð Þvh

P rDDð ÞP Dð Þ: ð27Þ

We discuss the asymmetry between misses and false alarms, and

the corresponding role of the threshold, h, in Discussion.

Definitions of ‘macroscopic’ and ‘microscopic’
correlations

We consider a neural population divided into D homogeneous

pools, labeled by m,n~1, . . . ,D, and we call km the number of

spikes fired in Pool m in a given time bin. The ‘macroscopic’

correlation among pools, xmn, is defined as

xmn:S km{SkmT
� �

kn{SknTð ÞT: ð28Þ

The ‘microscopic’ variable which characterizes the state of the

neural population is s
m
i ; s

m
i ~0 or 1depending upon whether the ith

neuron in Pool m is silent or fires a spike, respectively. The

‘microscopic’ correlation between neuron i in Pool m and neuron j
in Pool n is then defined as

c
mn
ij :

s
m
i {Ss

m
i T

� �
sn

j {Ssn
j T

	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s
m
i {Ss

m
i T

� �2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sn

j {Ssn
j T

	 
2

s

~

s
m
i {Ss

m
i T

� �
sn

j {Ssn
j T

	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pm 1{pm

� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pn 1{pnð Þ

p ,

ð29Þ

where pm is the firing rate in Pool m.
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Since km~
X

i
s

m
i , the ‘macroscopic’ correlations are related to

the ‘microscopic’ correlations according to

xmm~
N

D
pm 1{pm

� �
1z

N

D
{1

� �
c

mm
ij

� �
, ð30Þ

xmn~
N

D

� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pm 1{pm

� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pn 1{pnð Þ

p
c

mn
ij , ð31Þ

where i=j, N is the total number of neurons in the population and

where we have assumed that all pools have the same size. Hence

the identity between Eqs. (5) and (8).

2-Pool model of correlated neurons: Coding error—
numerical treatment

The numerical procedure begins by dividing a population with

N neurons into two homogeneous pools with N1 and N2 neurons

respectively. The maximum entropy distribution over the micro-

scopic variables [47], s
m
i , induces a distribution over the spike

counts in each pool, k1 and k2, which takes the form

P k1,k2DSð Þ~ N1!

k1! N1{k1ð Þ!
N2!

k2! N2{k2ð Þ!
exp E Sð Þ k1,k2ð Þ
� �

Z
, ð32Þ

where

E Sð Þ k1,k2ð Þ~h
Sð Þ

1 k1zh
Sð Þ

2 k2z
1

2
J

Sð Þ
11 k1 k1{1ð Þz

1

2
J

Sð Þ
22 k2 k2{1ð ÞzJ

Sð Þ
12 k1k2

ð33Þ

and S~T or D (i.e., S labels the identity of the stimulus). The

combinatorial prefactors appear, above, because we consider here

the maximum entropy distribution of the microscopic variables

(i.e., s
m
i , with m~1and i~1, . . . ,N1 or m~2and i~1, . . . ,N2, the

spiking output of each neuron), rather than the distribution of

population variables (i.e., of k1 and k2, the spiking output in each

pool). Thus, the five parameters, h
Sð Þ

1 , h
Sð Þ

2 , J
Sð Þ

11 , J
Sð Þ

22 , J
Sð Þ

12 , are

found by direct numerical solution, such that the firing rates of

individual neurons in each other the two pools, p and q, and the

normalized pairwise correlations, c11 (within Pool 1), c22 (within

Pool 2), c12 (across Pools 1 and 2), take given values. (Throughout,

we borrow symmetric choices (Fig. 2A). That is, in response to

Target the firing rates are p and q in Pools 1 and 2 respectively,

while in response to Distracter the firing rates are swapped, i.e., q
and p, in Pools 1 and 2 respectively. The same holds for the

correlation values c11 and c22.) After finding the maximum

entropy distribution corresponding to a given choice of firing rates

and pairwise correlations, we used maximum likelihood decoding

(described above) to define errors. Specifically, we evaluated Eqs.

(24) and (25) for every value of k1,k2ð Þ using a threshold of h~1
for minimum total error. Thus, our calculation of total error was

exact with no approximation made to the decoder’s decision

boundary.

For the case of a fully heterogeneous population, all of the firing

rates and pairwise correlations were randomly perturbed from

their homogenous values. For a cell with firing probability p, we

set its new firing probability to p
0
i~(1zdi)p, where di is a

Gaussian random variable with vanishing mean and variance s2.

Similarly, for each cell pair with correlation coefficient c, we set its

new correlation to c
0
ij~(1zdij)c, where dij is also a Gaussian

random variable with vanishing mean and variance s2. Thus,

random instantiations of firing rates and correlations had, on

average, the same mean as the matched homogeneous population

and a standard deviation of s, measured as a percentage of the

original value. Next, we solved numerically for the pairwise

maximum entropy model consistent with the specified firing

probabilities and pairwise correlation coefficients. If we denote the

activity state of the population by R~ sif g, where si~0 or 1 is the

activity state of cell i, the energy of the full pairwise maximum

entropy model reads

E(R)~
X

i

hisiz
X

i,j

Jijsisj : ð34Þ

Because the population size was small (Nƒ10), we were able

to relate the parameters of the maximum entropy model, hif g
and Jij

� �
, to the firing rates and pairwise correlations, using

exact numerical integration over all 2N activity states rather

than approximating this integral using Monte Carlo methods.

Error rates were obtained from maximum likelihood decoding,

with the use of the exact decision boundary over all 2N activity

states. Clearly, the error rate depended upon the specific

random instantiation of firing probabilities and pairwise

correlations. In Figs. 4A and B, we show the error rate for

300 random instantiations of heterogeneous populations; in

Fig. 4C, we plot the average error rate over all 300 random

instantiations along with the standard deviation as an error

bar.

The choice of maximum entropy distributions is a reasonable

one for establishing upper bounds on the error rate, as these

distributions are ‘as spread out as possible’ given the constraints on

firing rates and correlations. Strictly speaking, true bounds are

obtained from minimum mutual information distributions, but we

expect the results to be close to those obtained from maximum

entropy distributions. This expectation is substantiated by the

results obtained from Gaussian approximations—see the remarks

at the end of the next section.

2-Pool model of correlated neurons: Coding error—
Gaussian approximation

We consider a 2-Pool population with N neurons. For the

sake of simplicity, we focus on a symmetric case with N=2
neurons in each pool, firing rates p and q in response to Target

and Distracter, respectively, in Pool 1, and vice versa firing

rates q and p in response to Target and Distracter, respectively,

in Pool 2. For the sake of simplicity, also, we specify the

calculation to the symmetric case with c11~c22, the within-

pool correlation coefficients, but the calculation runs along

similar lines for more general cases. The pairwise correlation

across the two pools is denoted by c12. With these hypotheses, a

Gaussian approximation to the probability of response to

Target reads

P k1,k2DTð Þ~

1

2p
ffiffiffiffiffiffiffiffiffiffiffi
Detx
p exp {

1

2
K{SKTð Þx{1 K{SKTð ÞT

� �
,
ð35Þ

where k1 and k2 are the spike counts in Pools 1 and 2

respectively. Here, we use the vector notation with
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K{SKT~ k1{Sk1T,k2{Sk2Tð Þ, ð36Þ

Sk1T~
N

2
p, ð37Þ

Sk2T~
N

2
q, ð38Þ

and the covariance matrix

x~
x11 x12

x12 x22

� �
: ð39Þ

A similar expression approximates the probability of response to

Distracter, but with p and q swapped. (The firing rates depend

upon the stimulus, but the correlations do not.) For calculational

ease, we give a name to the inverse covariance matrix:

x{1:G:
g11 g12

g12 g22

� �
: ð40Þ

We calculate the probability of error by integrating the tails of

the two distributions, corresponding to the two stimuli, as

delineated by the maximum likelihood boundary. For the rather

symmetric choice of parameters with which we are concerned

here, the maximum likelihood boundary in the k1,k2ð Þ-plane is

given by the condition

Npq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{pð Þ 1{qð Þ

pq

s
Nc12

1z N{1ð Þc11

z1

" #
z 1{p{qð Þ k1zk2ð Þ

( )
k1{k2ð Þv

w
0: ð41Þ

Thus, the maximum likelihood lies along the diagonal in the

k1,k2ð Þ-plane; however, the tail of the distribution to be integrated

over (in order to obtain the maximum likelihood error) switches

from one side of this boundary to the other when the first factor

changes sign. What is going on, here, is easy to understand if one

considers the angles along which the elongated axes of the

distributions are aligned (see Eq. (62), below, for an analytical

expression). If the two angles corresponding to the two distribu-

tions are not equal, then the two distributions (i.e., their long axes)

are not parallel, and ‘they will cross’; at that ‘crossing point’, the

maximum likelihood condition switches sign. For several reasons,

however, we can safely ignore this complication in the calculation.

First, for all cases in which 1{p{q§0, the sign switch occurs for

an unphysical negative value of k1zk2; and, indeed, all the

examples illustrated in this paper obey the inequality 1{p{q§0
as one would expect for sparse neural responses. Second, we are

interested in cases in which the two distributions of neural activity

have similar means, and in this case the two elongated

distributions in the k1,k2ð Þ-plane are nearly parallel. Indeed, the

deviation from a parallel scenario occurs because the firing rates of

neurons in response to two stimuli are different (as, otherwise, their

correlations do not depend upon the stimulus); this is what yields

the stimulus-dependence of the angle of the macroscopic

distributions in the k1,k2ð Þ-plane. If their means are close, then

the distributions are nearly parallel. Finally, in practice, distribu-

tions ‘cross’ in any significant way in cases in which they are broad

or correlations are unfavorable.

For the remainder of the calculation, it is convenient to

parametrize the plane of neural activities in the two pools in

coordinates, x1 and x2, which take the point of maximum

equiprobability, K�~ k�,k�ð Þ, as origin and lie along the

maximum likelihood boundary and the orthogonal direction,

respectively. Specifically, we set

k1~k�z
x1zx2ffiffiffi

2
p , ð42Þ

k2~k�z
x1{x2ffiffiffi

2
p : ð43Þ

The error rate is then obtained the 2-dimensional integral of the

probability distribution, with x1 ranging from {? to ? (so that

we include a small overestimate that comes from unphysical

negative values of the spike counts) and x2 ranging from 0 to ?.

(In order to calculate the total error, we have to take into account

both misses and false alarms, i.e., the ‘two tails’ on the two sides of

the maximum likelihood boundary. But we also have to normalize

this result by the stimulus probability, i.e., by a factor of 1=2.)

Thus,

e~

ð0

{?
dx2

ð?
{?

dx1P k�z
x1zx2ffiffiffi

2
p ,k�z

x1{x2ffiffiffi
2
p

� �
: ð44Þ

The probability distribution can be written in terms of the new

variables, as

P x1,x2ð Þ~

1

2p
ffiffiffiffiffiffiffiffiffiffiffi
Detx
p exp {

1

2
a1x2

1za2x2
2za12x1x2zb1x1zb2x2zc

� �� � ð45Þ

with

a1~
1

2
g11z2g12zg22ð Þ, ð46Þ

a2~
1

2
g11{2g12zg22ð Þ, ð47Þ

a12~g11{g22, ð48Þ

b1~0, ð49Þ

b2~
ffiffiffi
2
p

g11d1{g22d2{g12 d1{d2ð Þ½ �, ð50Þ

c~g11d2
1zg22d2

2z2g12d1d2, ð51Þ

where we have used the shorthand

(41)

(45)
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d1~k�{Sk1T, ð52Þ

d2~k�{Sk2T: ð53Þ

Performing the Gaussian integral over x1, we obtain

e~

ð?
0

dx2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pa1Detx
p exp {

1

2
a2{

a2
12

4a1

� �
x2

2zb2x2zc

� �� �
:ð54Þ

Finally, this integral can be immediately rewritten as a

complementary error function which, in turn, can be expanded:

e~
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pa1Detx
p exp {

1

2
c{

a1b2
2

4a1a2{a2
12

� �� �

|

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8a1

4a1a2{a2
12

s ð?
b

d~xx2 exp {~xx2
2

� �

~
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pa1Detx
p exp {

1

2
c{

a1b2
2

4a1a2{a2
12

� �� �

|

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8a1

4a1a2{a2
12

s
exp {b2
� �
2b

X?
n~0

{1ð Þn 2n{1ð Þ!!
2b2
� �n ,

ð55Þ

where we have defined

b:
b2ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8a1

4a1a2{a2
12

s
: ð56Þ

Finally, keeping only the dominant term and simplifying the

expression, we compute the error according to

e&
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pa1Detx
p

DSk1T{Sk2TD
exp {

Sk1T{Sk2Tð Þ2

4a1Detx

 !
: ð57Þ

We obtain Eq. (1), (2), and (3) when we replace a1 and Detx by

their expressions in terms of firing rates and correlation

coefficients.

We note that, above, we have simply integrated the tails of the

distributions as delineated by the maximum likelihood bound. In

simple (symmetric) cases, this can be recast as a linear estimation

problem, and the error rate can be related to the z- (or d 0-) score.

Furthermore, the term appearing in the argument of the

exponential is closely related to the linear Fisher information,

and can be intuited as such.

We emphasize the agreement between the numerical and the

analytical results (dots versus solid lines in Figs. 2A-D and Figs. 3A

and C), which is not to be expected in general and is encouraging

here. Indeed, numerical results are derived by making use of

maximum entropy distributions. These are as broad as the

constraints on firing rates of individual neurons and pairwise

correlations allow, yet when expressed in terms of spike counts

their tails fall off more rapidly than Gaussian tails. Estimations of

the error rate from maximum entropy distributions and from

Gaussian distributions coincide. We recall that the maximum

likelihood error is dominated by the height of the distributions at

equiprobability. So the quantitative similarity between numerical

and Gaussian results means that, even for very stringent error

thresholds, the asymptotic behavior of the tails does not play a

dominant role.

Robustness of high-fidelity coding with respect to
parameter variations

High-fidelity coding results from the suppression of overlap

among response probability distributions corresponding to differ-

ent stimuli. By tuning one combination of the correlation

parameters, distributions become thin (i.e., favorable), and we

have demonstrated that this can occur for realistic values of the

correlations. But even in the singular limit of infinitely thin (i.e.,
locked-in) distributions, independent parameters are left free,

namely, the orientations of the principal axes of the distributions

or, equivalently, the angles along which the elongated distributions

lie in the (k1,k2) plane. We have denoted this angle by w (Fig. 1B).

An important question is whether these parameters have to be

fine-tuned for high-fidelity coding. We show, here, that no fine-

tuning is necessary: high-fidelity coding operates over a wide range

of parameter choices (Fig. 9).

Consider, for example, the dependence of the error rate upon

the cross-pool correlation strength, c12, for several choices of the

angle w (Fig. 9A). Clearly, when the two distributions correspond-

ing to Target and Distracter are elongated along the same

direction (here the diagonal, w~450, because of our choice of

symmetric parameters), the error rate plunges down to vanishing

numbers for appropriate correlation values. If the two distributions

are not parallel, there always remains some overlap, even if they

are infinitely thin. However, this overlap is so small that, even

when the angle differs from the diagonal by as much as 200, the

error rate is suppressed by more than ten orders of magnitude

(Fig. 9A).

In order to explore the parameter dependence of the error rate,

we set a (small) ‘error rate threshold’, e�, not to be exceeded. The

closer p and q are, i.e., the more similar the mean responses to

Target and the response to Distracter, then the more stringent

becomes the threshold condition, eve�, upon the parameters of

the model. An arbitrary threshold—here, we choose e�~10{12—

defines a corresponding ‘angle bandwidth’: a range of distribution

angles, w, within which the error rate remains below threshold

(Fig. 9B). We selected the value of the error threshold to be

sufficiently low that networks within the angle bandwidth

contribute fewer than a single error per human lifetime. Clearly,

the angle bandwidth depends upon all other model parameters.

The closer the firing rates p and q in response to Target and

Distracter respectively, the closer the two distributions lie and,

hence, the more precisely their angle has to be tuned for error rate

suppression. Yet, even when the average activities in the two pools

differ by as little as two to five spikes, the angle bandwidth remains

as large as 100 to 400 over a wide range of correlation values

(Figs. 9B and C). Thus, error rate suppression is robust to small

parameter variations.

Arguments for lock-in beyond a Gaussian approximation
Here, we present general arguments on the role of correlation in

high-fidelity coding, which do not rely on a Gaussian approxima-

tion of probability distributions. We assume only that the

probability distributions of spike counts in response to Target

and Distracter are ‘well-behaved’; specifically, that they each have

High-Fidelity Coding with Correlated Neurons

PLOS Computational Biology | www.ploscompbiol.org 20 November 2014 | Volume 10 | Issue 11 | e1003970



a single maximum and that their tails decay rapidly enough. Then

the knowledge of the correlation structure is sufficient to discuss

the degree of their overlap and, hence, the coding error rate. For

the sake of simplicity we still consider a 2-Pool model, but our

arguments can be transposed to the general case of a D-Pool

model.

We start by examining the quantity

V hð Þ: e hð Þ: K{SKTð Þ½ �2 , ð58Þ

where e hð Þ is a unit vector along the direction given by the angle h
and K is the vector of spike counts. This quantity is calculated as

V hð Þ~ cos hð Þ k1{Sk1Tð Þz sin hð Þ k2{Sk2Tð Þ½ �2

~ cos hð Þ2x11z2 sin hð Þ cos hð Þx12z sin hð Þ2x22,

ð59Þ

i.e., it is the variance along the direction prescribed by the unit

vector e hð Þ~ cos hð Þ, sin hð Þð Þ in the k1,k2ð Þ-plane of spike counts.

Optimizing V hð Þ with respect to the rotation angle, we find that it

reaches its minimal and maximal values,

2
+:

1

2
x11zx22+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x11{x22ð Þ2z4x2

12

q� �
, ð60Þ

along the two orthogonal angles given by

tan 2hð Þ~ 2x12

x11{x22

: ð61Þ

This expression can also be written in terms of the microscopic

correlations as

tan 2hð Þ~

N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1 1{p1ð Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 1{p2ð Þ

p
c12

p1 1{p1ð Þ 1z N=2{1ð Þc11½ �{p2 1{p2ð Þ 1z N=2{1ð Þc22½ � :
ð62Þ

For positive correlation, the angle along which the distribution

elongates, hz~w (Fig. 1B), lies between 00 and 900. The other

solution of this equation lies at right angle with w, h{~wz900,
and defines the direction of ‘probability compression’. The

quantities that govern overlap suppression are the small variances,

{, and the angles w, for each of the two distributions

corresponding to Target and Distracter. The error rates decrease

with smaller { and more parallel distributions.

The positivity of V hð Þ implies a constraint upon the values of

the macroscopic correlations:

x11x22§x2
12: ð63Þ

In terms of the microscopic correlations, the inequality reads

1z
N

2
{1

� �
c11

� �
1z

N

2
{1

� �
c22

� �
§

N2

4
c2

12: ð64Þ

Figure 9. Robustness to parameter variations. A. Probability of
error as a function of the cross-pool correlation c12 for populations with
N~20 neurons and different angles Q of their probability distributions
in the space of (k1,k2); parameters are (p~0:7, q~0:3, c11~0:1) with
c22 set to give the chosen angle (Eq. (62)). B. Probability of error as a
function of angle for fixed difference in spike count, N(p{q), intersects
the error criterion e�~10{12 at two angles, which defines the angular
bandwidth. C. Angular bandwidth plotted as a function of within pool
correlation, c11, for different values of the difference in spike count,
N(p{q).
doi:10.1371/journal.pcbi.1003970.g009
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This condition amounts to the positivity of probability. When

equality is achieved, the corresponding probability distribution

becomes infinitely thin along one direction, i.e., the probability of

any state in the k1,k2ð Þ-plane away from this line vanishes. When

equality is achieved, we say that the neural population is ‘locked-
in’; in this case, the coding error rate can vanish. When correlation

values are such that the inequality is satisfied, and hence the

coding error rate can be massively suppressed, we refer to the

pattern of correlation as ‘favorable’.

We note in passing that a vanishing error in the Gaussian

approximation, i.e., D~0 (see Eq. (2)), corresponds to two ‘infinitely

thin’ probability distributions whose directions of largest variance

are parallel. Indeed, the condition {~0, which occurs when

x11x22~x2
12, together with the condition h~450 (see Eq. (61) above)

imply

1z
N

2
{1

� �
c11~

N

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q 1{qð Þ
p 1{pð Þ

s
c12, ð65Þ

1z
N

2
{1

� �
c22~

N

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1{pð Þ
q 1{qð Þ

s
c12, ð66Þ

i.e., D~0.

D-Pool model of independent neurons: Coding capacity
For an estimate of the coding capacity of a population of

independent neurons, we approximate the spike count distribution

by a Gaussian with appropriate mean and variance. In the 1-Pool

case with N neurons, this distribution reads

PSkT kð Þ~ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pSkT 1{SkT=Nð Þ

p exp {
1

2

k{SkTð Þ2

SkT 1{SkT=Nð Þ

 !
, ð67Þ

where SkT is the mean spike count and SkT 1{SkT=Nð Þ the

variance. We then ask, given one such distribution with parameter

Sk1T, how far away along the k-line should a distribution, with

parameter Sk2T, be placed so that the probability not exceed a

small value, e�, a the point of equiprobability, k�:

PSk1T k�ð Þ~PSk2T k�ð Þƒe�: ð68Þ

If this bound is achieved, the form of Eq. (67) implies the

relation

k�~Sk1Tzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sk1T 1{

Sk1T
N

� �
ln "�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pSk1T 1{

Sk1T
N

� �s" #{1
0
@

1
A

vuuut ð69Þ

for Sk1Tvk�. Since Sk1T 1{Sk1T=Nð ÞƒN=4 and

1{Sk1T=Nð Þ§1=2 if Sk1TƒN=2, we obtain

k�{Sk1T§

ffiffiffiffiffiffiffiffiffiffi
Sk1T

p
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln e�

ffiffiffiffiffiffiffi
pN

2

r" #{1
0
@

1
A

vuuut , ð70Þ

i.e., a lower bound on the distance between the mean of the

distribution and the point of equiprobability. Similarly, for

k�vSk2TƒN=2, we have

Sk2T{k�§
ffiffiffiffiffiffiffiffiffiffi
Sk2T

p
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln e�

ffiffiffiffiffiffiffi
pN

2

r" #{1
0
@

1
A

vuuut : ð71Þ

Combining the two inequalities, we obtain a lower bound on the

distance between the means of the two distributions, as

Sk2T{Sk1T§

ffiffiffiffiffiffiffiffiffiffi
Sk1T

p
z

ffiffiffiffiffiffiffiffiffiffi
Sk2T

p	 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln e�

ffiffiffiffiffiffiffi
pN

2

r" #{1
0
@

1
A

vuuut , ð72Þ

or

ffiffiffiffiffiffiffiffiffiffi
Sk2T

p
{

ffiffiffiffiffiffiffiffiffiffi
Sk1T

p
§

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln e�

ffiffiffiffiffiffiffi
pN

2

r" #{1
0
@

1
A

vuuut : ð73Þ

We can then iterate this argument for successive distributions,

corresponding to different stimuli, and for each pair of distribu-

tions the bound

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Skiz1T

p
§

ffiffiffiffiffiffiffiffiffiffi
SkiT

p
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln e�

ffiffiffiffiffiffiffi
pN

2

r" #{1
0
@

1
A

vuuut ð74Þ

holds, up to Skiz1T~SkmaxT&N=2. For a total of Vindependent
1{Pool

distributions to my fit along the k-axis, the means of half of these

will be between 0 and N=2, while the other half will be between

N=2 and N . Thus,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SkmaxT

p
&

ffiffiffiffiffi
N

2

r
§

Vindependent
1{Pool

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln e�

ffiffiffiffiffiffiffi
pN

2

r" #{1
0
@

1
A

vuuut : ð75Þ

From this relation, we obtain the final bound on the capacity of

a homogeneous population of independent neurons, as

Vindependent
1{Pool v*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4N

ln 2

pNe�2

	 

vuut : ð76Þ
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In the 2-Pool case, we calculate similarly the number,

Vindependent
2{Pool , of well-separated probability distributions that can

be fit within the positive quadrant of the k1,k2ð Þ-plane of spike

counts. Here, k1 and k2 each run from 0 to N=2, so Vindependent
2{Pool is

roughly evaluated as

Vindependent
2{Pool v*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 N=2ð Þ

ln
2

N=2ð Þe�2

� �
vuuut :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 N=2ð Þ

ln
2

p N=2ð Þe�2

� �
vuuut

~
2N

ln
4

pNe�2

� � :
ð77Þ

Similarly, in the general D-Pool case, each axis of the response

space runs from 0 to N=D, so that

V
independent
D{Pool v*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 N=Dð Þ

ln
2

p N=Dð Þe�2

� �
vuuut
2
6664

3
7775

D

~
4N

D ln
2D

pNe�2

� �
2
664

3
775

D=2

:

ð78Þ

By analogy with a population of N deterministic neurons, we

define the capacity per neuron, C
independent
D{Pool , as

Cindependent
D{Pool :

log2 Vindependent
D{Pool

	 

N

: ð79Þ

In the deterministic case, the population as a whole codes for 2N

states and the capacity per neuron is equal to 1 bit. In the case of

independent, but stochastic, neurons,

Cindependent
D{Pool v*

1

2 ln 2ð Þn ln
2n

ln
2

pne�2

� �
0
BB@

1
CCA, ð80Þ

where

n:
N

D
ð81Þ

is the number of neurons per pool. The capacity decreases with

decreasing e�. For a given value of e�, the capacity is maximal for a

characteristic pool size which depends upon e� but does not

depend upon N and which can be calculated perturbatively.

Indeed, the minimization of the capacity yields the optimal pool

size as the implicit solution of the equation

l~ ln
4

pee�2

� �
{ ln lð Þ{ 1

l
: ð82Þ

Solving this equation perturbatively to the next-to-lowest order,

we obtain an approximate optimal pool size, as

n
independent
optimal &e ln

2ffiffiffiffiffi
pe
p

e�

� �
ð83Þ

and a maximal capacity per neuron given by

Cindependent
D{Pool, optimalv* e ln 2ð Þ ln 4

pee�2

� �� �{1

: ð84Þ

Equivalently, the number of stimuli that a population of N

independent neurons can encode with an error threshold e� is

limited by

V
independent
D{Pool, optimalv* exp

N

e ln
4

pee�2

� �
0
BB@

1
CCA: ð85Þ

D-Pool model of correlated neurons: Coding capacity
We derive an estimate of the capacity in the correlated case by

evaluating how many ‘thin probability distributions’ can be fitted

in the quadrant of possible response patterns defined by

0ƒk1,k2, . . . ,kDƒN=D. In a 2-Pool population (D~2), we can

arrange one row of ‘parallel distributions’ along the diagonal that

connects the points 0,N=2ð Þ and N=2,0ð Þ in the k1,k2ð Þ plane.

(Three such rows are displayed in Fig. 6B.) If neighboring

distribution centers differ by O að Þ spike, this manipulation yields

a number

Vcorrelated
2{Pool &

N

2a
ð86Þ

of well separated probability distributions that the population can

code for. Similarly, in the general D-Pool case we arrange a set of

correlated distributions across a hyperplane within the hypercube

with edge N=D in the k1, . . . ,kDð Þ space. Such a configuration

immediately yields a scaling

Vcorrelated
D{Pool *

N

D

� �D{1

~nN=n{1, ð87Þ

where

n:
N

D
ð88Þ

is the number of neurons per pool, as before. To be more precise,

we can bound Vcorrelated
D{Pool from below. If we are concerned that

distributions may overlap near the faces of the hypercube, we can,

for example, allow them to fill only a central half of the

hyperplane. Furthermore, if neighboring distribution centers are

separated by a spikes, we obtain
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Vcorrelated
D{Pool *>

N

2aD

� �D{1

~
n

2a

	 
N=n{1

: ð89Þ

This quantity behaves differently from its counterpart in the

independent case: for a wide range of even vanishingly small error

thresholds, Vcorrelated
D{Pool is essentially independent of the error

threshold as realistic values of the correlation coefficients can be

chosen so as to make the distributions much narrower than a. For

fixed n, this bound scales with N in a trivial manner akin to the

independent case. Indeed, the capacity per neurons,

Ccorrelated
D{Pool :

log2 Vcorrelated
D{Pool

� �
N

, ð90Þ

here becomes

Ccorrelated
D{Pool *

>
1

n
{

1

N

� �
log2

n

2a

	 

&

1

n
log2

n

2a

	 

: ð91Þ

The capacity per neuron is maximized for

noptimal&2ea, ð92Þ

where e~2:7183 . . . is Euler’s number, and is evaluated as

Ccorrelated
D{Pool, optimal *

>
1

ln 2ð Þnoptimal

&
1

2 ln 2ð Þea
: ð93Þ

We find

noptimal&5 for a&1 ð94Þ

and

noptimal&10 for a&2: ð95Þ

Correspondingly,

Ccorrelated
D{Pool, optimal *

>
1

5 ln 2ð Þ&0:28 for a&1 ð96Þ

and

Ccorrelated
D{Pool, optimal *

>
1

5 ln 2ð Þ&0:14 for a&2: ð97Þ

As opposed to the case of independent neurons, here one does

not need to invoke large values of n for low-error coding. This is

because n is not the only parameter from which the system can

take advantage to suppress error rates; for each value of n, the

correlation coefficients may be tuned to suppress error rates. We

emphasize that the result for optimality, with noptimal&5{10, is

self-consistent: low-error coding can indeed occur with such small

pool sizes (see Fig. 3).

We find that, in a correlated population, each neuron can carry

as much as 1=6 to 1=3 bits of information. This result is to be

contrasted with the absolute maximum of 1 bit of information in

the case of independent, deterministic neurons and with the

corresponding result for independent, stochastic neurons, Eq. (84).

In the correlated case, the optimal capacity per neuron is fixed,

whereas in the independent case it drops with e�. In particular,

from Eqs. (84) and (93) with a&2, we conclude that individual

neurons are more informative in a correlated population, as

compared to an independent population, as soon as the error rate

threshold, e�, falls below 0:1. Thus, for any realistically small value

of the error rate threshold, correlated populations are favored.

Taking the 2-Pool model as an example, we note that only for

relatively large values of the parameters (e.g., N&1000 or

e� *> 10{3) does Vindependent
2{Pool compare with Vcorrelated

2{Pool . At relatively

low threshold values (e�v10{6), Vindependent
2{Pool remains well below

Vcorrelated
2{Pool for any reasonable (and even large) value of the

population size (Fig. 5D), as the behavior of Vindependent
2{Pool is

dominated by e� rather than by N (Fig. 5D). This behavior

obtains because the nearly isotropic tails of the distributions for

independent neurons forbid the presence of more than one or a

few distribution centers within the space of neural responses, if the

error threshold is stringent.

It is worth mentioning that for loose error thresholds V
independent
2{Pool

may exceed Vcorrelated
2{Pool . This results from the fact that independent

distributions are arranged on a two-dimensional grid, whereas

correlated distributions, which are compressed along one direc-

tion, are arranged along a line (along the ‘compressed direction’).

Thus, independent distributions can take advantage of the O N2
� �

possible positions of their centers, whereas correlated distributions

have only O Nð Þ choices.
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