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Abstract

Investigating the relationship between brain structure and function is a central endeavor for neuroscience research. Yet, the
mechanisms shaping this relationship largely remain to be elucidated and are highly debated. In particular, the existence
and relative contributions of anatomical constraints and dynamical physiological mechanisms of different types remain to
be established. We addressed this issue by systematically comparing functional connectivity (FC) from resting-state
functional magnetic resonance imaging data with simulations from increasingly complex computational models, and by
manipulating anatomical connectivity obtained from fiber tractography based on diffusion-weighted imaging. We
hypothesized that FC reflects the interplay of at least three types of components: (i) a backbone of anatomical connectivity,
(ii) a stationary dynamical regime directly driven by the underlying anatomy, and (iii) other stationary and non-stationary
dynamics not directly related to the anatomy. We showed that anatomical connectivity alone accounts for up to 15% of FC
variance; that there is a stationary regime accounting for up to an additional 20% of variance and that this regime can be
associated to a stationary FC; that a simple stationary model of FC better explains FC than more complex models; and that
there is a large remaining variance (around 65%), which must contain the non-stationarities of FC evidenced in the
literature. We also show that homotopic connections across cerebral hemispheres, which are typically improperly estimated,
play a strong role in shaping all aspects of FC, notably indirect connections and the topographic organization of brain
networks.
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Introduction

Coherent behavior and cognition involve synergies between

neuronal populations in interaction [1–3]. Even at rest, in the

absence of direct environmental stimulations, these interactions

drive the synchronization of spontaneous activity across brain

systems, shedding light on the large-scale anatomo-functional

organization of the brain [4]. The study of such patterns of

synchronization has known important developments due to

recent methodological advances in brain imaging data acquisition

and analysis. These advances have enabled investigators to

estimate interactions in the brain by measuring functional

connectivity (FC) from resting-state functional MRI (rs-fMRI).

Analyses of FC at rest have supported the hypothesis that the

brain is spatially organized into large-scale intrinsic networks [5–

7], e.g. the so-called resting-state networks [8,9], such as the

default mode network, which have been linked to central

integrative cognitive functions [10–13]. The study of large-scale

intrinsic networks from rs-fMRI has become a central and active

area for neuroscience research. However, the mechanisms and

factors driving FC, as well as their relative contribution to

empirical data, are still highly debated [14] and remain to be

elucidated.

Theoretical rationale and empirical findings support the

hypothesis that FC is driven and shaped by structural connectivity

(SC) between brain systems, i.e., by the actual bundles of white

matter fiber connecting neurons [15]. As a first approximation, SC

can be inferred from fiber tractography based on diffusion-

weighted imaging (DWI) [16–19]. A recent study [20], which

focused on a small subset of robustly estimated structural

connections, demonstrated the existence of a statistical, yet

complex, correspondence between FC and specific features of

SC (e.g., low vs. high fiber density, short vs. long fibers, intra vs.

interhemispheric connections). However, a large part of FC

cannot be explained by SC alone [21]. There appears that FC is

the result of at least two main contributing factors: (i) the

underlying anatomical structure of connectivity, and (ii) the

dynamics of neuronal populations emerging from their physiology

[3]. A key issue is to better understand the relative contributions of

these two components to FC. Besides, recent studies using

windowed analyses have suggested that FC estimated over an

entire acquisition session (referred to as ‘stationary FC’ in the

literature) breaks down into a variety of reliable correlation

patterns (also referred to as ‘dynamic FC’ or ‘non-stationarities’)

when estimated over short time windows (30 s) [14,22]. The

authors advocated that FC estimated over short time windows (or
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windowed FC, for short) mostly reflects recurrent transitory

patterns that are aggregated when estimating FC over a whole

session. They further suggested that whole-session FC may only be

an epiphenomenon without clear physiological underpinning, and

not the reflection of an actual process with stationary FC [14].

This perspective remains to be reconciled with the fact that whole-

session FC has been found to be highly reproducible, functionally

meaningful and a useful biomarker in many pathological contexts

[23,24]. Note that, in the recent literature of fMRI data analysis,

stationarity implicitely refers to a stationary FC (i.e., the invariance

of FC over time), to be contrasted with the more general notion of

(strong) stationarity, where a model or process is stationary if its

parameters remain constant over time [25,26]. SC being

temporally stable at the scale of a whole resting state fMRI

session (typically 10 min), we could expect SC to drive a stationary

process (in the strong sense). Since SC is furthermore expected to

drive FC, we can hypothesize that this stationary process

contributes to generate a stationary FC.

In order to bring together the structural and dynamical

components underlying FC, some studies have used computational

models that incorporate SC together with biophysical models of

neuronal activity to generate coherent brain dynamics [27–32].

This approach has yielded promising results for the understanding

of the relationship between structure and function [17,33,34].

Here, we used a testbed of well-established generative models

simulating neuronal dynamics combined with empirical measures,

to investigate the relative contributions of anatomical connections,

stationary dynamics, and non-stationarities to the emergence of

empirical functional connectivity. In particular, we considered the

following hypotheses: (H1) part of FC directly reflects SC; (H2)

models of physiological mechanisms added to SC increase

predictive power all the more as they are complex; (H3) part of

the variance of FC that is unexplained by models is due to issues in

the estimation of SC, e.g., problems with measuring homotopic

connections; (H4) there is an actual stationary process reflected in

whole-session FC that is not merely an artifact but substantially

reflects the driving of the dynamics by SC.

In order to test these hypotheses and estimate the relative

contribution of anatomy, stationary dynamics and non-stationa-

rities to FC, we relied on the following approach. After

T1-weighted MRI based parcellation of the brain (N = 160

regions), SC was estimated using the proportion of white matter

fibers connecting pairs of regions, based on probabilistic tracto-

graphy of DWI data [35]. FC was measured on rs-fMRI data

using Pearson correlation between the time courses of brain

regions. We quantified the correlation between SC alone and FC

as a reference, and also fed SC to generative neurodynamical

models of increasing complexity: a spatial autoregressive (SAR)

model [36], analytic models with or without conduction delays

[28–31,37], and biologically constrained models [29,32]. Impor-

tantly, all these models were used in their stationary regime in the

strong sense, since their parameters were not changed during the

simulations. Of these models, only the SAR is explicitely associated

with a stationary FC; other, more complex models, generate

dynamics that are compatible with a non-stationary FC. We

computed FC from data simulated by these models and compared

the results to empirical FC. For each model, performance was

quantified using predictive power [29], for each subject as well as

on the ‘average subject’ (obtained by averaging SC and empirical

FC across subjects). Values for the model parameters were based

on the literature, except for the structural coupling strength that

was optimized in order to maximize each model’s performance.

Results

Predictive power of models
In agreement with H1, SC explained a significant amount of the

variance of whole-session FC for all subjects, as did all generative

models (permutation test, p,0.05 corrected) (Figure 1, panel A).

Generative models predicted FC better than SC alone (paired

permutation test, p,0.05 corrected). Predictive power obtained

with the average subject ranged from 0.32 for SC alone to 0.43 for

the SAR model (Table 1). For a given model, predictive power was

reproducible across subjects. Contrary to our hypothesis H2,

generative models had similar performance, and complexity was

not predictive of performance. The results remained unchanged

when no global signal regression was applied (Figure S1). Also,

findings were found to be similar for SC alone and the SAR model

at finer spatial scales (N = 461 and N = 825 regions, Figure S2) and

consistent with a replication dataset (Figure S3). Most importantly,

a large part of the variance (R2) in the empirical data (at least 82%)

remained unexplained by this first round of simulations.

Role of homotopic connections
We reasoned (see hypothesis H3) that part of the unexplained

variance could reflect issues with the estimation of SC from DWI,

which can be expected because of limitations in current fiber

tracking algorithms and the problem of crossing fibers [38]. We

know for instance that many fibers passing through the corpus

callosum are poorly estimated in diffusion imaging, in particular

those connecting more lateral parts of the cerebral cortex [39].

Yet, the corpus callosum is the main interhemispheric commissure

of the mammal brain, see [40]. It systematically connects

homologous sectors of the cerebral cortex across the two

hemispheres in a topographically organized manner, with an

antero-posterior gradient, through a system of myelinated

homotopic fibers or ‘homotopic connections’. The hypothesis of

an impact of SC estimation problems on FC unexplained variance

was supported by the observation that, in our results, intrahemi-

spheric connections yielded on average a much higher predictive

power (e.g., 0.59 for the SAR model) than interhemispheric

connections (0.16 for the SAR model).

In order to further test the role of white matter connections in

driving FC, we artificially set all homotopic connections to a

Author Summary

By analogy with the road network, the human brain is
defined both by its anatomy (the ‘roads’), that is, the way
neurons are shaped, clustered together and connected to
each others and its dynamics (the ‘traffic’): electrical and
chemical signals of various types, shapes and strength
constantly propagate through the brain to support its
sensorimotor and cognitive functions, its capacity to learn
and adapt to disease, and to create consciousness. While
anatomy and dynamics are organically intertwined (anat-
omy contributes to shape dynamics), the nature and
strength of this relation remain largely mysterious. Various
hypotheses have been proposed and tested using modern
neuroimaging techniques combined with mathematical
models of brain activity. In this study, we demonstrate the
existence (and quantify the contribution) of a dynamical
regime in the brain, coined ‘stationary’, that appears to be
largely induced and shaped by the underlying anatomy.
We also reveal the critical importance of specific anatom-
ical connections in shaping the global anatomo-functional
structure of this dynamical regime, notably connections
between hemispheres.

Anatomy and (Non-)Stationarity in the Brain
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constant SC value (0.5) for the average subject and reran all

simulations. As a result, the predictive power strongly increased

for all models (Figure 1, panels A and B), ranging from 0.39 for

SC alone to 0.61 for the SAR model (Table 1). Thus the

variance unexplained (1-R2) was reduced to 63%. Moreover,

predictive power for intra and interhemispheric connections

became equivalent (0.60 and 0.62, respectively). Interestingly,

adding homotopic connections also led to a substantial increase

in predictive power for indirect connections, that is, pairs of

regions for which SC is zero (increasing from 0.07 to 0.45). The

effect of adding interhemispheric anatomical connections on

increasing predictive power was highly specific to homotopic

Table 1. Predictive power for SC and the SAR model.

all direct indirect intra inter

SC

individuals, mean (SD) 0.21 (0.02) 0.33 (0.06) - 0.30 (0.02) 0.02 (0.01)

average subject 0.32 0.47 - 0.44 0.06

average subject with homotopic connections 0.39 0.55 - 0.44 0.36

SAR

individuals, mean (SD) 0.29 (0.02) 0.41 (0.05) 0.12 (0.02) 0.41 (0.03) 0.10 (0.03)

average subject 0.43 0.58 0.07 0.59 0.16

average subject with homotopic connections 0.61 0.69 0.45 0.60 0.62

doi:10.1371/journal.pcbi.1003530.t001

Figure 1. Performance of computational models. (A) Predictive power for all connections and when restricted to intra/interhemispheric, direct/
indirect connections. For each type of connections and each model, we represented the individual predictive powers (bar chart representing means
and associated standard deviations), as well as the predictive power for the average subject computed using the original SC (diamonds), or after
adding homotopic connections (circles). Of note, SC alone has no predictive power (zero) for the subset of indirect connections, by definition. (B)
Patterns of SC, empirical FC and FC simulated from the SAR model for the average subject and associated scatter plot of simulated versus empirical
FC (solid line represents perfect match). SARh stands for the SAR model with added homotopic connections. Matrices were rearranged such that
network structure is highlighted. Homologous regions were arranged symmetrically with respect to the center of the matrix; for instance, the first and
last regions are homologous. (C) Similarity of functional brain networks across subjects (bar chart with means and associated standard deviations), for
the average subject (diamonds), and when adding homotopic connections (circles) (left). Network maps for the average subject and empirical FC, as
well as for FC simulated using either the SAR model with original SC or the SARh.
doi:10.1371/journal.pcbi.1003530.g001

Anatomy and (Non-)Stationarity in the Brain
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connections. When applying the SAR model to the SC matrix

with added homotopic connections and randomly permuting

(10 000 permutations) the 80 corresponding interhemispheric

connections (one region in one hemisphere was connected to

one and only one region in the other hemisphere), the predictive

power strongly decreased, even compared to results with the

original SC (Figure 2, panel A). Moreover, we further assessed

the specificity of this result by systematically manipulating SC.

In three different simulations, we randomly removed, added,

and permuted structural connections (10 000 times). In all cases,

the predictive power decreased as a function of the proportion

of connections manipulated (Figure 2, panel B). Moreover,

changes induced by these manipulations remained small

(,0.05), far below the changes that we were able to induce by

adding homotopic connections. All in all, these results suggest

that homotopic connections play a key role in shaping the

network dynamics, in a complex and non-trivial manner.

Predicting functional brain networks
Beyond predicting the overall pattern of FC, we also assessed

whether models could predict the empirical organization of FC

into a set of intrinsic networks. Connectivity matrices were

clustered into groups of non-overlapping brain regions showing

high within-group correlation and low between-group correlation,

and the resulting partitions into functional brain networks were

compared between empirical and simulated FC using the adjusted

Rand index (see Methods). Again, the SAR model tended to

perform best among all computational models (Figure 1, panel C).

Without adding homotopic connections in the SC matrix, the

simulated networks highly differed from the empirical networks. In

particular, most networks were found to be lateralized. After

adding homotopic connections, the resemblence between simu-

lated and empirical networks greatly improved. Networks were

more often bilateral and overall consistent with the topography of

empirical functional networks, including somatosensory, motor,

visual, and associative networks. High FC between the amygdala

and ventral-lateral sectors of the prefrontal cortex was also

correctly predicted by the simulations. There were nevertheless

some notable differences. First, the clustering of empirical FC

yielded a long-range fronto-parieto-temporal association network

(Figure 1, panel C, cyan) that was not observed in simulated FC as

such. Second, a parieto-temporal cluster (Figure 1, panel C, red),

which was associated with thalamo-striatal networks, was predict-

ed by simulations but was not present in the empirical data. Third,

a cluster encompassing the entire cingulate gyrus and precuneus

(Figure 1, panel C, green) was predicted by simulations but was

broken down into more clusters in the empirical data.

Stationary FC, non-stationary FC, and non-stationarities
The results above show that SC plays a causal role in FC, but

one can still wonder what aspects of the underlying dynamics are

the most directly related to this influence. A hypothesis is that SC,

in combination with stable physiological processes (e.g., overall

gain in synaptic transmission), drives a stationary regime of the

dynamics. This hypothesis is supported by the finding that all

models tested in this study, which were used in a stationary regime

(in the strong sense), could explain significantly more variance

than SC alone. Furthermore, the fact that the SAR could predict

FC significantly better than all other models is evidence that this

stationary regime is associated with stationary FC (paired

permutation test, p,0.05 corrected).

But, clearly, many variations in the dynamical patterns of

brain activity, be it in the process of spontaneous cognition,

physiological regulation, or context-dependent changes, cannot

be expected to be associated with a purely stationary FC.

Modeling how the brain dynamics deal with endogenous and

environmental contexts should require more complex models,

either stationary or non-stationary, that are able to generate

non-stationary (i.e., time-varying) patterns of FC. Given that at

best 37% of the variance could be explained by the model of a

purely stationary FC (the SAR), we can wonder why the models

of higher complexity used in our simulation testbed did not

perform better in predicting FC. One possible hypothesis is that

the SAR model was favored in the simulations, because we

estimated FC over about 10 minutes of actual brain dynamics.

In such configuration, we can imagine that the non-stationa-

rities of FC cancel out, the estimation effectively keeping the

stationary part of FC. We thus wondered whether the more

complex models would better perform when non-stationary FC

had the potential of being more strongly reflected in the data.

We approached this question by computing predictive power on

windowed FC as a function of the length of the time-window

used [22], for all possible time-windows over which FC could be

estimated and for all models. We also investigated the effect of

simulation duration (see Methods). We found that the relative

performance of more complex models was still lower than that

of the SAR model (Figures 3 and S4). The average predictive

power was lower for shorter time-windows and increased

Figure 2. Manipulation of SC. (A) Predictive power of the SAR model with original SC (green), when adding homotopic connections (‘SARh’, red),
or with shuffled homotopic connections (black). (B) Predictive power of the SAR model with original SC (red) and when SC values were randomly
permuted, removed or added (from left to right). For each graph, predictive power was quantified as a function of the percentage of connections
manipulated.
doi:10.1371/journal.pcbi.1003530.g002

Anatomy and (Non-)Stationarity in the Brain
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towards a limit for longer time-windows. The SAR model

behaved like an ‘upper-bound’ for predictive power. The

performance of all other models, irrespective of the size of the

time-window, was between that of SC alone and that of the

SAR model.

A straightforward explanation is that the non-stationary

patterns of FC, as generated by the simulation models, did not

match the non-stationary patterns of the empirical FC as they

unfolded during the acquisition in the brain of the participants.

Context-dependent and transient dynamics are likely to be missed

by models of the dynamics that cannot be contextually constrained

in the absence of further information. It is thus difficult to infer

how much of the 63% of unexplained variance remaining in

whole-session FC actually reflect physiologically meaningful non-

stationary FC, and more broadly, non-stationary dynamics.

Discussion

In the present study, we investigated the respective contribu-

tions of anatomical connections, stationary dynamics, and

non-stationarities to the emergence of empirical functional

connectivity. We compared the performance of computational

models in modeling FC and manipulated SC in order to analyze

the impact of SC on FC, with and without the filter of combined

physiological models of the dynamics.

The importance of white matter fiber pathways in shaping

functional brain networks is a known fact, for a review, see

[15,17,21,23]. Previous modeling studies have supported the

importance of the underlying anatomical connections, i.e., SC, in

shaping functional relationships among brain systems [16,41,42].

In agreement with our hypothesis H1, we showed that functional

connectivity could at least in part be explained by structural

connectivity alone. Adding homotopic connections in the matrix

of SC, we found a slight increase in explained variance when

considering the prediction of whole-session FC from SC alone

(+4% of explained variance). In agreement with H2, adding

models of physiological interactions above and beyond SC alone

increased the explained variance in whole-session FC, by 8% for

the best performing model, the SAR model, when no homotopic

connections were added, and by 22% when homotopic connec-

tions were added. This latter fact, which strongly supports H3,

suggests a complex interplay between anatomy as reflected by SC

and physiological mechanisms in generating FC. This impact of

SC manipulations on predicted FC pertained not only to direct

but also to indirect connections. For indirect connections, whole-

session FC was much better predicted after adding homotopic

connections to SC than before adding them (0.45 versus 0.07 in

predictive power). The problem of limited predictive power for

FC based on SC when considering indirect connections has

puzzled the field [43]. For this reasons many studies only assess

the performance of models on direct connections. Here, we

showed that a major factor in driving FC for indirect anatomical

connections (+20% in explained variance) is the interplay

between a subset of anatomical connections, i.e., homotopic

connections (which are typically underestimated by DWI), and

physiological parameters that generate the dynamics underlying

FC, themselves conditioned by the possible interactions defined

by SC.

Contrary to our expectation (see hypothesis H2), all models

tended to perform similarly, irrespective of model complexity. The

best performing model in most cases was the SAR model, a model

of stationary FC driven by SC, with 63% of the variance

remaining unexplained. It is likely that, above and beyond

problems with the estimation of SC from DWI, and other

incompressible sources of irrelevant noise, much of the unex-

plained variance in FC relates to non-stationary patterns in FC,

and more generally to non-stationarities in the strong-sense. Such

non-stationarities are difficult to model in the experimentally

unconstrained resting-state and in the absence of further

information regarding the specific parameters shaping FC.

Irrespective of their complexity, computational models are only

capable of generating prototypical brain activities, and not the

subject-dependent activity that took place in the brain of the

participants during scanning. The scientific necessity of modeling

brain dynamics is hindered by such uncertainty and it will be a

challenge to find solutions to approach this problem [26,44]. Even

though one objective for neuroscience is to propose generative

models that are capable of generating detailed neuronal dynamics,

generative models cannot be informed by this unknown context

and, as a consequence, cannot generate context-dependent activity

in a manner that would be predictive of empirical data, in the

absence of additional measures and experimental controls.

Nevertheless, and perhaps for that very reason, the study of

non-stationarity in FC should become of central interest for the

field, as such non-stationarities could explain much of FC (up to

63% according to our simulation results), and thus reflect critical

mechanisms for neurocognitive processing.

In the absence of adequate modeling principles, determining the

precise contribution of non-stationarities to the unexplained

variance in FC is impossible, as other confounding sources of

unexplained variance are expected. As we showed, even naive

manipulations aimed at estimating the impact of the known errors

in DWI-based reconstruction of homotopic connections showed

that such errors could cause 20% of the unexplained variance in

predicting empirical FC. How DWI and fiber tracking should be

used for an optimal estimation of structural connectivity is still a

topic of intense debates [45–48]. It is likely that part of the

unexplained variance in predicting FC will be reduced as better

estimates of SC become available.

The model showing the best results, the SAR model, explicitly

modeled a stationary process with a stationary FC. In line with our

hypothesis H4, empirical FC is likely to incorporate stationary

components driven by SC. Further knowledge about this

stationary process might be gained by analyzing FC computed

over much longer periods of time than is commonly performed

(e.g., hours versus minutes). This stationary process is itself likely to

be only locally stationary, as it might be expected that slow

physiological cycles, from nycthemeral cycles to hormonal cycles,

development, learning and aging, will modify the parameters

controlling it.

Figure 3. Effect of time on performance. Predictive power as a
function of time-window length across subjects (left) and of duration of
simulated runs on the average subject (right). For color code see
Figure 1.
doi:10.1371/journal.pcbi.1003530.g003
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In the present study, we did not take into account the statistical

fluctuations induced by the fact that the time series were of finite

length. Such a finiteness entails that even a model that is stationary

in the strong sense could generate sample moments that fluctuate

over time. For instance, the sample sum of square of a multivariate

normal model with covariance matrix S computed from time

series of size N is not equal to NS but is Wishart distributed with N-

1 degrees of freedom and scale matrix S. This phenomenon will

artificially increase the part of variance that cannot be accounted

for by stationary models and, hence, play against stationary

models. Since it is conversely very unlikely for a non-stationary

model to generate sample moments that are constant over time,

statistical fluctuations cannot at the same time artificially increase

the part of variance that can be accounted for by stationary

models. As a consequence, not considering these statistical

fluctuations made us underestimate the part of variance that can

be accounted for by models that are stationary in the strong sense.

In other words, our estimate of the part of variance accounted for

by a stationary model is a lower bound for the true value. We can

therefore be confident that taking statistical fluctuations into

account will only strengthen H4.

Our goal here was to investigate how current generative models

of brain acticity fare in predicting the relationship between

structure and function. The complexity of some of these models

was such that the simulations included here were only possible

thanks to a computer cluster. The behavior of all these models

depends on the values of some parameters and, in the present

study, we set these parameters in agreement with the literature. In

what measure this choice affects how well models predict FC is

unclear. Yet a full investigation of this issue remains beyond the

scope of this study, since parameter optimization through

extensive exploration of the parameter space for all models is at

this stage unrealistic. Nevertheless, in order to get a sense of the

sensitivity of our results to parameter values in a way that is

compatible with the computational power available, we explored

the behavior of the Fitzhugh-Nagumo, Wilson and Kuramoto

models over a subset of the parameter space (see Figures S5 and

S6). We found that parameter values had little influence on

predictive power, which, in all cases, remained below that of the

SAR, the simplest model tested.

We formulated H2 to test for the existence of a relationship

between complexity and realism in the models that we used.

Indeed, there should exist a very tight connection between the two,

since the more complex generative models in our study have been

designed to take biophysical mechanisms into account, with

parameters that are physiologically relevant and values often

chosen based on prior experimental results. Now, realism usually

comes at the cost of complexity. As a consequence, it is often

(implicitely) assumed that, among the models we selected, the

more complex a model is, the more realistic it will also be and the

better it will fit the data. This is the reason why we stated H2,

based on such rationale inspired from the literature, in order to put

such hypothesis to the test. The results show that for the models we

used, with their sets of parameters, an increase in complexity was

not associated with an increase in performance. This suggests that,

for these models, complexity and realism are not quite as tightly

connected as expected.

Given that the SAR model is the only model that does not

include a step of hemodynamic modeling (Balloon-Windkessel), it

cannot be ruled out that the superiority of the SAR reflects issues

with this step. In order to check that this is not the case, we

computed predictive power for all models without the hemody-

namic model. The predictive power was largely insensitive to the

presence of the hemodynamic model (see Figure S7). In particular,

the SAR model remained overall an upper bound in terms of

predictive power.

Finally, we should note that we relied on a definition of SC

restricted to the white matter compartment. Although this is

standard in the field, in reality, local intrinsic SC exists in the gray

matter. However, current models generally make prior assump-

tions about such SC. Moreover, intrinsic SC currently remains

impossible to measure reliably for the entire brain.

In spite of the complexity of the problems and the limitations of

current modeling approaches, computational modeling of large-

scale brain dynamics remains an essential scientific endeavor. It is

key to better understand generative mechanisms and make progress

in brain physiology, physiopathology and, more generally, theoret-

ical neuroscience. It is also central to the endeavor of searching for

accurate and meaningful biomarkers in aging and disease [49].

Moreover, computational modeling of FC opens the possibility of

making inference on specific biophysical parameters, including

inference about the underlying anatomical connectivity itself. In

spite of their limited predictive powers, simpler models can be useful

in this context. The SAR model, introduced in [36], may appear

well-suited to model essential stationary aspects of the generative

mechanisms of FC. One interest of such a simple and analytically

tractable model is that, beyond its very low computational burden, it

could be the basis for straightforward estimation of the model

parameters that can be used to compare clinical populations, and

could constitute a potentially important biomarker of disease.

Methods

Ethics statement
All participants gave written informed consent and the protocol

was approved by the local Ethics Committee of the Pitié-

Salpêtrière Hospital (number: 44-08; Paris, France).

Data
Twenty-one right-handed healthy volunteers were recruited

within local community (11 males, mean age 2262.4 years). Data

were acquired using a 3 T Siemens Trio TIM MRI scanner

(CENIR, Paris, France). For acquisition and preprocessing details,

see Text S1. For each subject, the preprocessing yielded three

matrices: one of SC, one with the average fiber lengths, and one of

empirical FC. These matrices were also averaged across subjects

(‘average subject’).

Simulations
We used eight generative models with various levels of

complexity: the SAR model, a purely spatial model with no

dynamics that expresses BOLD fluctuations within one region as a

linear combination of the fluctuations in other regions; the Wilson-

Cowan system, a model expressing excitatory and inhibitory

neuronal populations activity; the two rate models (with or without

conduction delays), simplified versions of the Wilson-Cowan

system obtained by considering exclusively the excitatory popu-

lation; the Kuramoto model, which simulates neuronal activity

using oscillators; the Fitzhugh-Nagumo model, which aims at

reproducing complex behaviors such as those observed in

conductance-based models; the neural-mass model, also based

on conductance and with strong biophysiological constraints; and

finally, the model of spiking neurons, the most constrained model

in the current study which models neuron populations as

attractors. For more details, see Text S2.

All models took an SC matrix as input, and all but the SAR

were taken as models of neuronal (rather than BOLD) activity.

Simulated fMRI BOLD signal was obtained from simulated
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neuronal activity by means of the Balloon-Windkessel hemody-

namic model [50,51]. Global mean signal was then regressed out

from each region’s time series. Finally, simulated FC was

computed as Pearson correlation between simulated time series.

For the SAR model, we directly computed simulated FC from the

analytical expression of the covariance, see Equation (2) in Text

S2. All models had a parameter that represents the coupling

strength between regions. This parameter was optimized sepa-

rately for each model on the average subject to limit computa-

tional burden (Text S2). After optimization, we generated three

runs of 8 min BOLD activity and averaged the corresponding FCs

to obtain the simulated FC for each dynamical model and each

subject. For the average subject, simulated FC was obtained by

feeding the average SC matrix to the different models.

Performance
Modeling performance was assessed using predictive power and

similarity of spatial patterns. Predictive power was quantified for

each subject and for the average subject by means of Pearson

correlation between simulated and empirical FC [29]. Regarding

the similarity of functional brain networks, SC, empirical FC and

simulated FC were decomposed into 10 networks using agglom-

erative hierarchical clustering and generalized Ward criterion

[52]. The resulting networks from SC and simulated FC were

compared to the ones resulting from empirical FC using the

adjusted Rand index [53,54]. The Rand index quantifies the

similarity between two partitions of the brain into networks by

computing the proportion of pairs of regions for which the two

partitions are consistent (i.e., they are either in the same network

for both partitions, or in a different network for both partitions).

The adjustment accounts for the level of similarity that would be

expected by chance only.

Analysis of dynamics
Empirical and simulated windowed FC were computed on

individual subjects using sliding time-windows (increment of 20 s) of

varying length (from 20 to 420 s by step of 20 s). Predictive power

was computed as the correlation between any pair of time-windows

of equal length corresponding to simulated and empirical windowed

FC, respectively. This approach was only applied to the dynamical

models; for SC alone and the SAR model, simulated FC remained,

by definition, constant through time and, as a consequence,

windowed FC was equaled to whole-session FC. The influence of

simulated run duration on predictive power was also investigated.

For each model, three runs of one hour were simulated on the

average subject. Predictive power was then computed as a function

of simulated run duration. For the same reason as above, SC alone

and the SAR model did not depend on simulation duration.

Supporting Information

Figure S1 Performance of computational models when
no global signal regression was performed. (A) Predictive

power for all connections and when restricted to intra/interhemi-

spheric, direct/indirect connections. For each type of connections

and each model, we represented the individual predictive powers

(bar chart representing means and associated standard deviations),

as well as the predictive power for the average subject computed

using the original SC (diamonds), or after adding homotopic

connections (circles). Of note, SC alone has no predictive power

(zero) for the subset of indirect connections, by definition. (B)

Patterns of SC, empirical FC and FC simulated from the SAR

model for the average subject and associated scatter plot of

simulated versus empirical FC (solid line represents perfect match).

SARh stands for the SAR model with added homotopic

connections. Matrices were rearranged such that network structure

is highlighted. Homologous regions were arranged symmetrically

with respect to the center of the matrix; for instance, the first and last

regions are homologous. (C) Similarity of functional brain networks

across subjects (bar chart with means and associated standard

deviations), for the average subject (diamonds), and when adding

homotopic connections (circles) (left). Network maps for the average

subject and empirical FC, as well as for FC simulated using either

the SAR model with original SC or the SARh.

(EPS)

Figure S2 Performance of SC alone and the SAR model
at finer spatial scales. Predictive power for all connections and

when restricted to intra/interhemispheric, direct/indirect connec-

tions. For each type of connections and each model, we represented

the individual predictive powers (bar chart representing mean and

associated standard deviation), as well as the predictive power of the

average subject computed using the original SC (diamonds), or after

adding homotopic connections (circles).

(EPS)

Figure S3 Performance of computational models on the
replication dataset. The replication dataset was from the study

of Hagmann and colleagues [55]. Brain network was defined at

low anatomical granularity (N = 66 regions), and connectivity

measures were averaged over five healthy volunteer subjects. (A)

Predictive power for all connections and when restricted to intra/

interhemispheric, direct/indirect connections. For each type of

connections and each model, we represented the individual

predictive powers (bar chart representing means and associated

standard deviations), as well as the predictive power for the

average subject computed using the original SC (diamonds), or

after adding homotopic connections (circles). Of note, SC alone

has no predictive power (zero) for the subset of indirect

connections, by definition. (B) Patterns of SC, empirical FC and

FC simulated from the SAR model for the average subject and

associated scatter plot of simulated versus empirical FC (solid line

represents perfect match). SARh stands for the SAR model with

added homotopic connections. Matrices were rearranged such

that network structure is highlighted. Homologous regions were

arranged symmetrically with respect to the center of the matrix;

for instance, the first and last regions are homologous. (C)

Similarity of functional brain networks across subjects (bar chart

with means and associated standard deviations), for the average

subject (diamonds), and when adding homotopic connections

(circles) (left). Network maps for the average subject and empirical

FC, as well as for FC simulated using either the SAR model with

original SC or the SARh.

(EPS)

Figure S4 Effect of time on performance. Predictive power

of computational models as a function of the time-window length

for each subject (graphs) and model (color).

(EPS)

Figure S5 Exploration of the parameter space for the
Fitzhugh-Nagumo model. (Left) Phase diagrams (i.e., x-y

plane) for an uncoupled model (k = 0) over various parameter

values of a and b. The model operate mostly in an oscillatory

regime for the range of parameter values investigated. (Right)

Predictive power as a function of a and b. The black dot represents

the parameter set used in our simulations, while the black square

corresponds to the values from [28]. The values used in our

simulations gave rise to higher predictive power than the

parameters values from [28]. In any case, for the range of
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parameters considered, the predictive power always remained

lower than that obtained with a SAR model.

(EPS)

Figure S6 Effect of velocity on predictive power.
Predictive power as a function of the coupling strength and

velocity values in generative models. Black dots represent values

used for subsequent simulations. These simulations show that the

predictive power is little influenced by velocity. In any case, for the

range of parameters considered, the predictive power also always

remained lower than that obtained with a SAR model.

(EPS)

Figure S7 Effect of the hemodynamic model. Predictive

power for all connections and when restricted to intra/interhemi-

spheric, direct/indirect connections. For each type of connections

and each model, we represented the predictive power for the

average subject computed using the BOLD signal (diamonds, solid

line) or using the neuronal activity (circles, dashed line). Of note,

the prediction differs slightly from that of the Figure 1 due to the

stochastic component of most models at each run.

(EPS)

Text S1 Data and preprocessing.
(PDF)

Text S2 Computational models.

(PDF)
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