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Abstract

A pervasive case of cost-benefit problem is how to allocate effort over time, i.e. deciding when to work and when to rest. An
economic decision perspective would suggest that duration of effort is determined beforehand, depending on expected
costs and benefits. However, the literature on exercise performance emphasizes that decisions are made on the fly,
depending on physiological variables. Here, we propose and validate a general model of effort allocation that integrates
these two views. In this model, a single variable, termed cost evidence, accumulates during effort and dissipates during rest,
triggering effort cessation and resumption when reaching bounds. We assumed that such a basic mechanism could explain
implicit adaptation, whereas the latent parameters (slopes and bounds) could be amenable to explicit anticipation. A series
of behavioral experiments manipulating effort duration and difficulty was conducted in a total of 121 healthy humans to
dissociate implicit-reactive from explicit-predictive computations. Results show 1) that effort and rest durations are adapted
on the fly to variations in cost-evidence level, 2) that the cost-evidence fluctuations driving the behavior do not match
explicit ratings of exhaustion, and 3) that actual difficulty impacts effort duration whereas expected difficulty impacts rest
duration. Taken together, our findings suggest that cost evidence is implicitly monitored online, with an accumulation rate
proportional to actual task difficulty. In contrast, cost-evidence bounds and dissipation rate might be adjusted in
anticipation, depending on explicit task difficulty.
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Introduction

Suppose that you are given a job whose payoff is proportional to
the effort made within a limited time, say for instance the number
of Christmas cards sold at the end of the day. Maximizing your
payoff would require running from house to house, but this effort
would induce such fatigue that you decide to walk from time to
time. This sort of situation can be examined through economic
decision theory, which would suggest you to write down the
expected costs and benefits, and try to figure out whether the effort
is worthy. If the cost of a given effort is anticipated to increase with
fatigue [1,2], then you will find an optimal duration that can be
determined before engaging any action. Yet the literature on
exercise performance has developed a different perspective on this
issue [3,4], which would suggest that you start by running, and
only stop when some physiological variable, for instance in
cardiovascular function (such as heart beat rate) or in muscular
metabolism (such as lactate concentration), attains a given limit
[5,6]. In other words, effort cessation would be a reaction to
homeostatic failure, and would not require any explicit anticipa-
tion of effort cost.

These two extreme perspectives have obvious limitations. The
physiological view does not account for the effect of expectations

that might pre-configure behavioral performance [4,7,8]. The
economic view does not integrate the constraints imposed by
physiological reactions, which might be difficult to anticipate [9].
Here, we intend to overcome these limitations by integrating the
two perspectives into the same computational model. Further-
more, we have built this model so as to explain the duration not
only of effort exertion but also of rest (recovery from fatigue). Let
us assume that a single waning and waxing variable triggers
decisions to stop and restart effort exertion when reaching bounds
(see Figure 1A for a graphical presentation). As this variable
linearly accumulates during effort and dissipates at rest, it can be
seen as a simple reflection of physiological reactions that predict
the proximity of homeostatic failure. Alternatively, it can be
interpreted as tracking cost increase with fatigue, by integrating
past effort over time. Thus, the basic architecture of the model (the
accumulation-to-bound principle) can account for implicit, online
adaptation to actual effort costs, complying with physiological
constraints. On this basis, the modulation of the model latent
parameters (slopes and bounds) could allow for anticipatory
adjustments, depending on explicit costs and benefits (see
Figure 1B for a graphical illustration).

To dissociate the effects of actual and expected effort costs, we
developed seven variants of a paradigm that was employed in a
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previous paper [10] to identify the neural underpinnings of the
modeled variable, which we termed cost evidence (see Figure 2 for
an overview). The task involved participants squeezing a handgrip
with a given force, knowing that their payoff will be proportional
to their effort duration. Cost evidence can be manipulated by
varying either an imposed duration or an imposed force (task
difficulty). In a first study, we used three tasks that impose variable
durations in order to verify that the behavior is adapted on the fly
due to internal constraints (bounds). In a second study, we
demonstrate that explicit ratings of subjective exhaustion do not
follow the cost-evidence variable that accounts for the decision to
stop effort exertion. In a third study, we used three other tasks that
vary the difficulty in order to dissociate the effects of expected and
actual costs.

Results

Behavioral adaptation to cost evidence (study 1)
In our previous paper [10], we suggested that the alternation of

effort and rest periods observed in the Effort Allocation Task was
well explained by a waning and waxing accumulation signal.
However, this cost-evidence signal that we localized in the brain
could be epiphenomenal, in the sense that it would not reflect any
causal mechanism triggering the decisions to stop and restart
effort. In this first study, we wished to verify that the level of cost
evidence imposes actual constraints on subsequent behavior, as
predicted by the accumulation-to-bound principle. We therefore
tested the predictions of the accumulation model on the behavior
that followed an effort whose duration was imposed. The difficulty
was not manipulated in this study, for two reasons: firstly, the effect
of difficulty was already shown in the previous paper [10] and will
be further investigated in the following studies, and secondly,
manipulation of difficulty only applies to effort periods, whereas
manipulation of duration can be equally applied to both effort and
rest periods. Predictions of the accumulation model are that 1)
prolonging effort should decrease the next effort period (if
compensatory resting is not allowed), 2) prolonging rest should
increase the next effort period (up to a maximum corresponding to

full recovery), and 3) prolonging effort should increase the next rest
period (if compensatory resting is allowed). These three predictions
were tested in different groups of participants (n = 36 in total),
using three variants of the Effort Allocation Task. These three
Adaptation Tasks had the same structure, with first an imposed
effort (between start and stop signals), second a rest period (either
fixed or free) and third a free effort exertion. Difficulty of both
efforts was fixed at 60% of the maximal force, and payoff was
proportional to the duration of the last effort, which was the main
dependent measure. Data were regressed at the individual level
against a linear model that included the factor of interest (the
imposed duration) and several potential confounds (see methods).
The statistical significance of regressors was estimated at the group
level using two-sided one-sample t-tests. Results are given as
standardized effect size (beta)6 inter-subject standard error of the
mean.

Effort is adapted to accumulated cost evidence (Task 1)
In this task, cost evidence was increased by prolonging the first

effort period (from 1 to 10s), then the second effort duration was
observed after a fixed 2-s rest (Figure 3A). To ensure that the rest
duration was well controlled, we checked that initiation delay of
the second effort after the go signal was not significantly impacted
by the duration of the first effort (6.0 102 26 3. 2 102 2, df = 11,
p = 0.09), by cumulated duration of efforts produced in the current
session (1.1 102 26 3.4 102 2, df = 11, p = 0.76), and by the session
number (2 2.8 102 26 2.3 102 2, df = 11, p = 0.25). Critically, the
second effort was significantly shortened by prolonging the first
effort (2 8.29 102 16 2.3 102 1, df = 11, p = 0.0037).

Next we examined the shape of the transfer function from
imposed to observed effort duration. The model predicts that this
link should be negative, except if resting is long enough to fully
dissipate the accumulated cost. We therefore compared a model
with pure negative correlation (no saturation,# 1) to models with
an upper plateau (over shortest efforts), followed by a decrease. We
tried two possibilities for this saturation effect: first a constant
followed by a linear decrease (# 2) and second a negative
exponential (# 3). The latter was implemented because it provides
a better fit of plateau effects when data are noisy (see methods).
Bayesian model selection revealed that the pure linear model was
far better than the two saturation models in the family comparison
(model 1 versus models 2 & 3), with an expected frequency
ef = 0.81 (which is much higher than chance level - 1/2) and an
exceedance probability xp = 0.96 (confidence that the model is
more frequently followed than the others). Thus, the result
supports linear accumulation of cost evidence, which limits
subsequent effort production due to the existence of an upper
bound. However, we found no evidence for the existence of a
lower bound in cost dissipation, probably because our rest period
was not long enough. This limitation was overcome in the next
task, where rest period was systematically varied.

Effort is adapted to dissipated cost evidence (Task 2)
This task (Figure 3B) was very similar to Task 1, except that

effort duration was now fixed (to 7 s) and rest duration was
systematically varied (from 1 to 12 s). We checked again that
subjects were not delaying effort initiation to compensate for
variations in the imposed rest duration (2 3.7 102 26 2.1 102 2,
df = 11, p = 0.10). In addition we found that the initiation delay
was slightly affected by the cumulated duration of past efforts (1.2
102 26 5.0 102 3, df = 11, p = 0.03), but not by the session number
(2 1.1 102 26 1.4 102 2, df = 11, p = 0.46). Critically, observed
effort was significantly prolonged by longer rest (6.9 102 16 1.9
102 1, df = 11, p = 0.0035).

Author Summary

Imagine that ahead of you is a long time of work: when
will you take a break? This sort of issue – how to allocate
effort over time – has been addressed by distinct
theoretical fields, with different emphasis on reactive and
predictive processes. An intuitive view is that you start
working, stop when you are tired, and start again when
fatigue goes away. Biologically, this means that decisions
are taken when some physiological variable reaches a
given bound on the risk of homeostatic failure. In a more
economic perspective, fatigue translates into effort cost,
which must be anticipated and compared to expected
benefit before engaging an action. We proposed a
computational model that bridges these perspectives
from sport physiology and decision theory. Decisions are
made in reaction to bounds being reached by an implicit
cost variable that accumulates during effort, at a rate
proportional to task difficulty, and dissipates during rest.
However, some latent parameters (bounds and dissipation
rate) are adjusted in anticipation, depending on explicit
costs and benefits. This model was supported by behav-
ioral data obtained using a paradigm where participants
squeeze a handgrip to win a monetary payoff proportional
to effort duration.

Modeling Effort Allocation over Time
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Next we tested the existence of a saturation, meaning that
beyond a certain rest duration, cost evidence is entirely dissipated
and subsequent effort cannot be further prolonged. As was done
for the previous task, we compared three models for the link
between rest and effort duration: 1) a linear effect (no saturation),
2) a linear effect bounded by an upper plateau (over longest rests),
3) an exponential asymptotic plateau. Bayesian model selection
showed that the saturation family was now more plausible (models
2 and 3 versus model 1, chance level is 1/2, ef = 0.79, xp = 0.94).
Direct comparison between models 2 and 3 revealed that the
asymptotic saturation was more likely than the linear plateau
(xp = 0.98). Thus, the results confirmed that prolonging rest after a
first effort augments the capacity to produce a second effort, as if

cost evidence was dissipated. Moreover, the saturation effect
suggests the existence of a threshold after which prolonging rest is
useless, which would correspond to a lower bound for cost-
evidence dissipation.

Rest is adapted to accumulated cost evidence (Task 3)
This task (Figure 3C) was quite similar to Task 2, except that

participants were not asked to resume their effort immediately at
the go signal, but only when they felt ready to do so. There were
therefore two dependent variables of interest: rest duration and
subsequent effort duration. Critically, rest duration was signifi-
cantly increased by prolonging the imposed effort duration (6.5
102 16 1.3 102 1, df = 11, p = 0.0005).

Figure 1. Computational model of effort allocation over time. A. Application of the accumulation-to-bound principle to cost-evidence
monitoring. The graph displays an example trial from the Effort Allocation Task, with the observed force time series on top of the theoretical cost
evidence. Force level was normalized by the participant’s maximal force (estimated prior to the experiment). It is traced in black (not gray) when the
effort is rewarded, i.e. when above the target force level (80% of maximal force in this example). The three effort periods shown in red were defined
using both the force level and its temporal derivative. The modeled cost evidence accumulates during effort, with slope Se, to an upper bound
triggering effort cessation, and then dissipates during rest with slope Sr, to a lower bound triggering effort resumption. The amplitude of cost-
evidence fluctuations is denoted A. The accumulation model was built to fit two dependent measures: effort duration (Te) and rest duration (Tr). B.
Illustration of how the experimental factors (monetary incentive, actual difficulty, expected difficulty) affect cost-evidence monitoring. Bayesian
model comparison dissociated the computational effects of experimental factors: higher incentives increase the amplitude between bounds and the
dissipation rate; higher actual difficulty steepens the accumulation rate; higher expected difficulty shallows the dissipation rate. Mathematical
equations of the winning model are given in the results section.
doi:10.1371/journal.pcbi.1003584.g001

Modeling Effort Allocation over Time
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We expected that participants would rest long enough to fully
dissipate the first effort cost, which hence would have no impact on
the second effort duration. This was not the case: prolonging the
first effort significantly shortened the second effort (2 4.7
102 16 1.4 102 1, df = 11, p = 0.006). Thus, subjects did not wait
long enough to compensate for the imposed effort cost. This
partial recovery might be related to the fact that the total time
allowed for rest and effort was limited to 20s, so that participants
may have shortened rest to make sure there would be enough time
for effort (even if in reality, 20s was largely enough to fully dissipate
and accumulate cost again).

Introspection of cost evidence (study 2)
So far, our results suggest that effort duration is not entirely

planned in advance but adapted on the fly so as to keep cost
evidence within pre-defined bounds. The next study was designed
to assess whether our participants could explicitly report the cost
evidence that was monitored by their brain in order to regulate
their behavior. The first study only manipulated the duration of
effort or rest periods. Yet our model posits that cost evidence
accumulation during effort depends on task difficulty. Therefore,
cost-evidence level should reflect the interaction of task difficulty
and effort duration. The logic of this second study was first to
examine whether introspective reports would reflect the interaction

of difficulty and duration, and then to verify that behavioral
choices were indeed driven by this interaction,

For introspective reports we asked a new group of 18
participants to perform a Cost Rating Task, in which they had
to rate their degree of exhaustion after effort exertion. Note that
we could have directly inserted cost ratings within the Effort
Allocation Task, but subjects in this case might have artificially
aligned their behavior to their explicit reports (or vice-versa).
Another issue with this possibility was that effort duration would
not have been sufficiently varied, at least not orthogonally to effort
difficulty, since subjects would have stopped their effort when cost
evidence (difficulty times duration) reached a pre-defined bound.
We chose to frame the question in terms of exhaustion because
debriefing of previous studies revealed that exhaustion is the
intuitive term that subjects spontaneously use to describe the
sensation that makes them cease their effort. The precise question
was ‘Have you exhausted your resources?’ and the response scale
was ranging from ‘not at all’ to ‘completely’. In this Cost Rating
Task, both effort duration (from 3 to 7 s) and task difficulty (from
40 to 60% of maximal force) were imposed and varied
experimentally (Figure 4A). To keep similarity with the Effort
Allocation Task, we also manipulated the incentive level. Yet we
acknowledge that the comparison between tasks has limitations,
first because they implement different range of forces and

Figure 2. Summary of experimental manipulations and behavioral findings.
doi:10.1371/journal.pcbi.1003584.g002

Modeling Effort Allocation over Time
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durations, second because they are performed by different
subjects, who might have different sensitivity to effort cost.

On each trial, the payoff was calculated as the incentive
multiplied by the fraction of the imposed duration that subjects
spent squeezing at the required target force level or higher. As
participants were asked to be as accurate as possible, this fraction
was almost 100% (mean over subjects: 98.7%, extreme subjects:
94.6% and 99.9%). The difference between required and
produced force levels did not vary significantly across conditions
(multiple regression analysis and two-sided t-test with df = 17;
incentive: 4.1 102 36 3.7 102 3, p = 0.28; duration:2 3.4 102 66 4.6
102 3, p = 0.99; difficulty:2 1.8 102 36 3.3 102 3, p = 0.59; inter-
actions between these factors: all p. 0.21), suggesting that effort
production was well controlled by the experimental design. Cost
ratings were not significantly impacted by incentives (1.46 0.86,
df = 17, p = 0.1), and marginally by the initial position of the
cursor on the scale (1.86 0.9, df = 17, p = 0.056). Critically, cost
ratings increased with both duration (1.96 0.79, df = 17,p = 0.028)
and difficulty (3.26 0.49, df = 17, p = 5 102 6), without significant
interaction between these factors (p = 0.96).

We then fitted cost ratings with a linear combination of regressors
meant to capture the impact of duration and difficulty. We
considered three possibilities: main effects of duration and difficulty,
non-linear effects (power functions) of duration and difficulty, and
interaction between duration and difficulty. Including or not each
possibility in the linear combination made a total of eight models,
which we compared using Bayesian model selection (Figure 4C).
This analysis confirmed the absence of significant interaction
between duration and difficulty, since the best model was simply
additive (chance level is 1/8, ef = 0.48; xp = 0.93). In principle, this

additive effect could arise from half the subjects reporting duration
and the other half reporting difficulty. This would imply that the
effect sizes of these factors are anti-correlated across subjects. We
found the opposite result (Pearson rho: 0.82, df = 16, p = 3 102 5),
suggesting that subjects who were good at perceiving duration were
also good at perceiving difficulty. Yet they reported the addition of
the two dimensions, and not their product, as should be the case if
they were simply introspecting cost evidence.

We next re-analyzed the behavioral choices observed in our
Effort Allocation Task (Figure 4B) that involved subjects (n = 38)
squeezing a handgrip in order to accumulate as much money as
possible [10]. The payoff was calculated as the monetary incentive
multiplied by the time spent above a target force level (which
indexed task difficulty). Both the incentive (10, 20 or 50 cents) and
difficulty levels (70, 80 or 90% of maximal force) were varied
across trials such that we could assess their effects on effort
allocation. Incentive levels were sufficient for subjects to initiate
the effort and to reach the target, but difficulty levels were too
demanding for subjects to sustain their effort throughout trials,
which lasted 30 seconds. Instead, they freely alternated effort and
rest periods within trials (as can be seen in Figure 1A). We used the
normalized cumulative distribution of effort durations to calculate
the probability of stopping the effort after a given duration at a
given difficulty level. This probability was fitted with a sigmoid
function of cost-evidence level, which accounts for higher cost
evidence making effort cessation more likely. Cost evidence was
then modeled with the same linear combinations as used for fitting
cost ratings. Results of Bayesian model selection (Figure 4D)
showed that the most plausible model was pure interaction (chance
level is 1/8, ef = 0.62, xp = 0.988).

Figure 3. Behavioral adaptation to cost evidence. The three columns (A, B and C) present three different studies, with results underneath the
tasks. Note that there are two sub-columns for the last study (on the right) because there are two dependent variables (rest and effort duration). Top:
Behavioral tasks. Each plot sketches the variations of exerted force level within a trial. Gray shading indicates the periods when action was imposed
on participants; in the other periods the behavior was let free. The broken line points to periods when durations were systematically varied. Bottom:
Relation between imposed and observed group-level average durations (6 SEM). Two data points are plotted for each imposed duration,
corresponding to left and right hands. The black line is the group average of the model fit estimated at the subject level; dash lines indicate the 95%
confidence interval of the average.
doi:10.1371/journal.pcbi.1003584.g003
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The Cost Rating and Effort Allocation tasks thus elicited distinct
forms of cost evidence, with additive versus multiplicative effect of
effort difficulty and duration. The critical difference is the shape of
iso-value lines of cost evidence in the duration by difficulty space,
with straight lines for explicit report and convex lines for effort

cessation (compare Figures 4E and 4F). To directly compare the
curvature of cost evidence inferred from introspective reports and
behavioral choices, we fitted a model with constant elasticity of
substitution (CES) between duration and difficulty (see methods).
This model has a free parameter that captures the curvature of

Figure 4. Introspection of cost evidence. A–B: Behavioral tasks. The illustrated screenshots were successively presented every trial. A: the Cost
Rating Task was developed to assess introspection of resource exhaustion. On each trial, participants were asked to squeeze the hand grip up to the
target level (horizontal bar), which corresponded to varying difficulty level (40% to 60% of maximal force), as long as the thermometer was displayed,
which could last for varying durations (4 to 7 seconds). After each effort, participants rated their degree of exhaustion using a visual horizontal analog
scale. The last screen of each trial indicated the payoff cumulated over preceding trials. B: the Effort Allocation Task was exploited in a previous paper
[10]. When the thermometer image was displayed, participants could squeeze a handgrip to win as much money as possible. Subjects were provided
with online feedback on force level and cumulative payoff. The payoff was only increased when force level was above the target bar, at a constant
rate proportional to the monetary incentive. The incentive (10, 20 or 50 cents) and the difficulty (i.e. the force required to reach the target bar: 70,80
or 90% of maximal force) were crossed over trials. The last screen indicated the money won over all preceding trials. C–D: Computational modeling:
Bayesian model comparison. For each participant, we estimated eight models generating cost evidence from difficulty and duration. Cost evidence
was then used to fit the subjective ratings of exhaustion (C) or the decisions to stop effort exertion (D). Models were linear combinations of different
possible regressors (main effects, interaction and non-linear effects), as indicated in the bottom chart (tick: included, cross: not included). E–F: Fit of
additive and multiplicative models. Data are subjective ratings of exhaustion (E) and probability of stopping effort exertion (F), shown in the duration
by difficulty space explored in the Cost Rating and Effort Allocation tasks, respectively. The color code indicates average observed data (left diagram)
or predicted data from the additive and multiplicative models that provided the best fit with median parameter values (middle and right diagrams).
Note the main difference between additive and multiplicative models is the curvature of iso-value lines (in white), which reflects the interaction
between duration and difficulty.
doi:10.1371/journal.pcbi.1003584.g004
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cost in the duration by difficulty space, which should be equal to
one in the absence of interaction, and below one in the case of a
convex interaction. We found that the curvature parameter was
significantly below one in the Effort Allocation Task (median: 0.52,
SEM: 0.06; two-sided sign-test of the median against 1: p = 6.7
102 8) but not in the Cost Rating Task (median: 1.01, SEM: 0.12;
sign-test of the median against 1: p = 1), with a significant
difference between tasks (p = 3 102 6, two-sided Wilcoxon rank
sum test for equal medians).

When debriefing the Cost Rating Task, participants unambig-
uously reported having noticed variations in both difficulty and
duration. When asked whether one of these two factors had a
greater impact on their ratings, 13 subjects favored the duration, 3
favored the difficulty, and 2 could not favor one or the other,
describing something like an interaction. However, comparison of
standardized effect size revealed a greater impact of difficulty on
ratings (paired t-test on duration minus difficulty effect size:
2 1.36 0.48, df = 17, p = 0.016). Among the 16 subjects who
favored a main effect, 12 got it wrong (the other factor had a
higher impact on their ratings), which is more than expected by
chance (binomial test, p = 0.028).

To summarize, the costs reported in subjective ratings do not
have the same shape as the costs inferred from behavioral choices.
What subjects report is an addition of duration and difficulty,
whereas what drives their behavior is an interaction between the
two. Furthermore, at a meta-cognitive level, subjects have poor
insight into the factors that modulate their sensation of exhaustion.

Dissociation of implicit from explicit cost processing
(study 3)

The two studies presented so far are compatible with a completely
implicit and automatic model, in which decisions to cease and
resume effort production are controlled by an internal variable
fluctuating between bounds that might be determined by physio-
logical constraints. In this last study, we explored whether explicit
information about cost could impact the mechanics driving
decisions to start and stop effort exertion. In our previous paper
[10], we had observed that task difficulty shortened effort duration,
which could reflect cost evidence (difficulty times duration) reaching
the upper bound, but did not affect rest duration. We hypothesized
that the last observation could arise from task difficulty not being
made explicit to participants. Indeed, monetary incentives, contrary
to difficulty levels, were explicitly presented with coin images at trial
start and affected both effort and rest durations (with longer effort
and shorter rest for higher incentive).

We therefore tested whether providing explicit information
about difficulty level would change the way participants process
cost evidence. We constructed three variants of the Effort
Allocation Task, which were administered to three different
groups of participants (n = 67 in total). In all tasks, incentives (coin
images) were explicitly displayed before and during trials, which
had a fixed duration (30s) that was specified to participants prior to
the experiment. The Implicit Task (Figure 4B) is the task used in
our previous paper [10], with no visual cue for difficulty level. In
the Explicit Task, the only change is that difficulty level
(percentage of maximal force: 70, 80 or 90%) was announced
before the beginning of trials, on the same screen as incentive level.
In the Dissociation Task, we kept the explicit cues, but they were
no longer predictive of the actual task difficulty. To maintain
sufficient statistical power, only two difficulty levels were used (75
and 85%), in a full factorial design (two cued difficulties crossed by
two actual difficulties). This design was meant to disentangle the
effects of implicit versus explicit cost processing. Monetary
incentives were also manipulated in all tasks and crossed with

the three (Implicit and Explicit Tasks) or four (Dissociation task)
cells corresponding to variations in difficulty. We only used two
incentive levels (10 versus 20c) in the Dissociation task to avoid
combinatorial inflation. In every task, the effect of experimental
factors (incentive, actual and cued difficulty) on the duration of
effort and rest epochs were estimated in separate multiple linear
regressions followed by two-sided one-sample t-tests.

Note that because they must add up to 30s, the cumulative
durations of effort and rest are anti-correlated. However, this
dependency was broken first because the last rest epochs were
discarded from the analysis, since they are interrupted by trial
ending, and second because we considered the single epoch
durations, which are not predictable from the cumulative durations,
since they depend on the number of alternations between effort and
rest. The remaining correlation was rather low (Pearson rho:
2 0.156 0.026 in the main Implicit Effort Allocation Task) and
probably due to opposite effects of experimental factors (see below).

Comparison of Implicit and Explicit Tasks
As previously shown [10], in the Implicit Task (Figure 5, left),

effort duration was both longer for higher incentive (1.56 0.26,
df = 37, p = 8.1 102 7) and shorter for higher difficulty (2 1.16 0.13,
df = 37, p = 1.6 102 10). In contrast, rest duration was shorter for
higher incentive (2 0.376 0.08, df = 37, p = 2.0 102 5) but was not
modulated by the difficulty (0.03,6 0.03, df = 37, p = 0.32).
Interactions were included in the regression model, but the
incentive x difficulty interaction was not significant, neither for
effort or for rest duration (all p. 0.084).

All significant results were replicated in the Explicit Task
(Figure 5, middle): effort duration was both longer for higher
incentive (2.26 0.53, df = 13, p = 1.1 102 3) and shorter for higher
difficulty (2 1.86 0.24, df = 13, p = 6.0 102 6), and rest duration
was shorter for higher incentive (2 0.46 0.09, df = 13, p = 9.7
102 4). The novel result is that rest duration was now increased by
higher difficulty (0.316 0.08, df = 13, p = 1.6 102 3), which was
correctly cued at trial start. The difference in standardized effect
sizes between Implicit and Explicit Tasks was also significant
(p = 1.2 102 4, unpaired t-test, df1: 37, df2: 13). All interactions
remained non-significant, neither for effort or rest duration (all
p. 0.1). Thus, the difficulty in the Explicit Task, which was both
expected and experienced during effort exertion, affected both
effort and rest durations.

The results obtained with the Implicit and Explicit Tasks are
compatible with the actual difficulty affecting effort duration, and
the expected difficulty affecting rest duration. In the Implicit Task,
there was no explicit cue, so subjects did not expect any particular
difficulty level, and consequently only effort duration (not rest
duration) was affected by task difficulty. In the Explicit Task, both
effort and rest durations were modulated because the actual
difficulty was fully expected. However, as the explicit cues were
perfectly valid, we could not formally demonstrate with this task
that rest duration is not concerned with actual difficulty, or that
effort duration is not concerned with expected difficulty. To
complete our demonstration, we intended to dissociate the two
effects within the same task.

Analysis of the Dissociation Task
In the Dissociation Task (Figure 5, right), the levels of actual and

cued difficulty were manipulated independently. As in the Implicit
and Explicit tasks, higher incentive increased effort duration
(0.426 0.16, df = 14, p = 0.022) and shortened rest duration
(2 0.226 0.06, df = 14, p = 1.5 102 3). Effort duration was affected
by the actual (2 0.476 0.18, df = 14, p = 0.021) but not by the cued
difficulty (0.076 0.15, df = 14, p = 0.64). The difference in
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standardized effect size was at significance limit (2 0.546 0.25,
df = 14, p = 0.050, paired t-test). We also verified that the effect of
cued difficulty on effort duration in the Dissociation Task was
significantly lower than the (actual) difficulty effects observed in the
Implicit (p = 4.3 102 7, unpaired t-test, df1: 37, df2: 14) and Explicit
(p = 2.3 102 6, unpaired t-test, df1: 14, df2: 13) tasks. Conversely, rest
duration was affected by the cued (0.226 0.06, df = 14, p = 1.7 102 3)
but not by the actual (0.036 0.06, df = 14, p = 0.63) difficulty. The
difference in standardized effect size was as well significant
(2 0.196 0.08, df = 14, p = 0.045, paired t-test). We also verified
that the effect of cued difficulty on rest duration was higher in the
Dissociation Task than the (actual) difficulty effect observed in the
Implicit Task (p = 0.002, unpaired t-test, df1: 37, df2: 14), and that
the effect of actual difficulty in the Dissociation Task was lower than
the (cued) difficulty effect observed in the Explicit Task (p = 0.008,
unpaired t-test, df1: 14, df2: 13). Thus, within- and between-task
comparisons both support a double dissociation between the actual
and cued difficulty effects on effort and rest durations.

As some critical p-values were near 0.05 type I error rate, we
conducted a permutation test to ensure the reliability of the
parametric t-distribution in our small sample. This permutation-
based t-distribution yielded the same exact p-values up to the 3rd

decimal. Second and third order interaction terms between
incentive, cued and actual difficulty were included in the model,
but none of them was significant neither for rest or effort duration
(all p. 0.18). We also checked that there was no interaction of
cued difficulty with time, which could potentially reflect a
progressive discount of the cue effect (as subjects would learn that
cues are not predictive of actual difficulty). Time was modeled at
three nested scales (rest or effort period position within a trial, trial
position within a session, and session number). Two-way
interactions with cued difficulty were estimated for each time
scale: none of them was significant (all p. 0.25).

Bayesian model selection
We compared different versions of our accumulation model to

identify how the latent parameters (A: amplitude between bounds,
SE: accumulation slope during effort, and SR: dissipation slope
during rest) were affected by the experimental factors (I: Incentive,
Da: actual difficulty, Dc: cued difficulty). We started with the
formalization that we proposed in our previous publication [10] to
account for the behavior observed in the Implicit Task. All models
were built as a set of three equations that defines each latent
parameter as a linear combination of the different factors (see

Figure 5. Dissociation of implicit from explicit cost processing. Three sets of participants performed three slightly different versions of the
Effort Allocation Task. The Implicit Task is sketched in Figure 4B. The only variation introduced in the Explicit Task is that effort difficulty was written
on screen (70%, 80%, 90%) along with incentive level, announced as a coin image. The Dissociation Task was visually identical to the Explicit Task, the
difference being that the difficulty level announced on screen was not predictive of the actual difficulty level: cued and actual difficulties were
crossed into a factorial design. Thus, the factorial combination generated 9 cells for the Implicit and Explicit Tasks (3 incentives6 3 difficulties) and 8
cells for the Dissociation Task (2 incentives6 2 actual6 2 cued difficulties). The effects of the different factors, estimated with linear regression analysis,
are illustrated column-wise for each task. Regression coefficients were statistically tested and compared with two-sided t-test, p-values: *, 0.05,
**, 0.005, ***, 0.0005.
doi:10.1371/journal.pcbi.1003584.g005
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methods). Only models that can produce the behavioral results
(significant effect on effort or rest duration) were included in the
space covered by Bayesian Model Selection. In the Implicit Task,
this left 24 possible models (see Figure 6A) with one that was much
more plausible than the others (chance level is 1/24, ef = 0.30,
xp = 0.90).

For the novel tasks (Explicit and Dissociation), we explored two
possibilities for integrating the additional factor (cued difficulty).
The first possibility was to integrate it as an additive term, just as
was done with actual difficulty (see Figure 6B and 6C). Note that
these purely linear models do not enable dissociating the effects of
actual and expected difficulty in the Explicit Task. The second
possibility was to integrate cued difficulty as a hyperbolic
discounter of incentives, which is quite standard in the literature
for capturing temporal discounting [11–13]. Thus, for the novel
tasks that manipulate expected difficulty, we included the
hyperbolic equivalent of our linear models (see Figure 6D). With
this hyperbolic version, we can dissociate the effect of actual and
expected difficulty (the former is linear, the latter hyperbolic) even
in the Explicit Task where the two factors are confounded.

Family comparison revealed that there was far more evidence in
favor of a hyperbolic rather than linear discount of incentives by

cued difficulty, in both the Explicit and Dissociation tasks (chance
level is 1/2, ef. 0.91, xp. 0.999). Among the 78 possible hyperbolic
models, a best model was identified with xp = 0.90 (chance level is
1/78, ef = 0.13) in the Dissociation Task and with xp = 0.82 (chance
level is 1/78, ef = 0.14,) in the Explicit Task. Crucially, the best
hyperbolic model identified in the Explicit and Dissociation tasks
was the same model, which also corresponded to the best model
identified in the Implicit Task (where modulation by cued difficulty
is necessarily absent). This best model is written as follows (Te and
Tr being effort and rest duration,a, b, c the coefficients and I, Da
and Dc the incentive, actual difficulty and cued difficulty levels):

Te~
A
Se

; Tr~
A
Sr

A~ amz aI I

Se~ bmz bDaDa

Sr~ cmz cI I
1z cDcDc

8
>><

>>:

A graphical interpretation of the model with a summary of the
observed effects is provided in Figure 1. In short, incentives

Figure 6. Model space definition. Models are characterized by the modulation of latent parameters (A: amplitude between bounds, Se:
accumulation slope during effort, and Sr: dissipation slope during rest) by the experimental factors (incentive, actual difficulty, cued difficulty). Each
column is a potential factor and each line is a possible set of modulations by this factor (‘1’ denotes that the modulation is allowed, ‘0’ that the
modulation is absent). For each latent parameter, the different modulations are linearly combined (models A, B, C), except for the cued difficulty in
hyperbolic models (D), which is integrated as a hyperbolic discounter of monetary incentives. In this case, including cued difficulty (in the
denominator) is useless when modulation by incentives (the numerator) is not allowed, which is indicated by a gray background. Lines appearing in
red correspond to models that were not included in the comparison, because they cannot produce the behavioral results (significant effect on effort
or rest duration). The winning models for the different tasks appear in blue (note that it is indeed the same model, as there is no cued difficulty, and
hence no hyperbolic discounting, in the Implicit Task).
doi:10.1371/journal.pcbi.1003584.g006
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impacted both the amplitude between bounds and the dissipation
rate, resulting in longer effort and shorter rest for higher incentives.
The effect of task difficulty was computationally dissociable: higher
actual difficulty accelerated the accumulation, resulting in shorter
effort, whereas higher expected difficulty slowed the dissipation,
resulting in longer rest.

Discussion

In our previous paper [10], we addressed the issue of how the
brain allocates effort production over time, in a situation where the
payoff depends on the total effort duration. We found a neural
signal that was ramping up and down during effort and rest
periods and that could, in principle, trigger the decisions to stop
and restart effort production. Here we provide evidence that the
core accumulation-to-bound mechanism is reactive and implicit.
Indeed, participants adapted their behavior on the fly when we
implicitly manipulated both the duration (Study 1) and the
difficulty (Study 3) of effort exertion. However, when asked to rate
their degree of exhaustion (Study 2), subjects did not report the
cost evidence signal that was shown to drive their behavior. In
addition, we suggest that some latent parameters of the
accumulation-to-bound process are susceptible to anticipatory
adjustment based on explicit information. Indeed, we found that
expected benefit and difficulty could modulate the distance
between bounds or the dissipation rate during rest. The
dissociation of implicit and explicit cost processing could reconcile
the perspectives offered by sport physiology on the one hand, and
economic theory of choice on the other hand.

The implicit part of the model - monitoring cost evidence and
triggering decisions when bounds are attained, accords well with
the literature on exercise performance [4,8]. Although it was
developed to explain how athletes pace their running on
treadmills, we can borrow the notion that behavioral changes
are reactions to physiological variables reaching homeostatic
borders. Results of Study 1 show that bounds between which the
cost-evidence signal fluctuates are true limits that determine the
decisions to stop and restart effort exertion. On the contrary, the
explicit part of the model – adjusting the behavior depending on
expected benefit and difficulty – is consistent with the literature on
value-based decision-making [14,15]. It is quite remarkable in
Study 3 that the computational effect of actual (implicit) difficulty
during effort was simply linear, as in a passive accumulation,
whereas the effect of expected (explicit) difficulty was hyperbolic,
as in economic models of temporal discounting [13,16]. It should
be acknowledged that mixtures of anticipatory calculations and
on-line adaptations are frequently used in motor control theory
[17,18], for instance to explain how movement trajectory can be
adjusted to internal noise and to unexpected target displacement.
However, these models have not integrated the conflict between
costs and benefits until very recently [19,20]. Finally, we note that
the perspectives offered by the literatures on exercise performance
and value-based choice only explain the duration of effort; without
further specification they say nothing about the duration of rest.
Our model accounts for the timing of both effort and rest, within
the same accumulation framework.

Examining whether the accumulation mechanism is optimal or
not would go beyond the scope of this study. It can nonetheless be
seen has a heuristic mechanism that certainly has advantages.
Physiologically, it ensures that effort production does not put the
body at threat, avoiding for instance damage to the muscles. In this
view the signal would indicate the likelihood of physiological
damage, and the upper bound would implement a threshold on
that risk. Economically, it ensures that costs do not overcome

benefits. In this view, the signal would indicate the cost, and the
upper bound the benefit of the potential effort at the next time
point. Mixing predictive and reactive processes also presents
advantages. Online monitoring of effort consequences allows
refining cost estimation, which is usually uncertain beforehand, as
in our implicit version of the task. Anticipatory estimation allows
deciding whether or not to engage the action, and scaling energy
expenditure to expected costs and benefits. In our case, this means
spending more time at work and less time at rest when the net
value of effort is higher.

The two behaviors, effort and rest, are not equivalent though.
While monitoring cost evidence during effort might be a passive
process (mechanically integrating difficulty over time), dissipating
cost evidence during rest seems more active. Indeed, the
dissipation rate was susceptible to modulation by explicit
information (monetary incentive and cued difficulty). Moreover,
the observation that subjects do not report cost evidence was only
made in Study 2, relative to the effort period. It remains possible
that during rest, subjects are fully aware of the cost-evidence level,
and hence of how much effort they would be able to produce next.
We could have tried to test whether their introspective reports
integrate duration with cued difficulty after a given rest, but asking
the question in this case would have been awkward.

Using dissipation as well as accumulation in order to explain
behavioral choices is a major difference between our model and
the standard evidence accumulation models. Classically, accumu-
lation of evidence is meant to improve the estimation of a
stationary noisy input, whether external, as in perceptual decision-
making [21–23], or internal, as in value-based decision making
[24–26]. The fact that the cost evidence variable dissipates at rest
rules out the possibility that this signal simply reflects an
integration of the force produced throughout the trial (which
can only increase). It is likely that the signal reflects an input that is
already dynamical (and not stationary). This might be true not
only at the theoretical level, if we interpret it as signaling the
potential effort cost or the proximity of exhaustion, but also at the
biological level. For instance, our cost evidence signal could relay
the accumulation and dissipation of a by-product of effort
exertion, which could integrate several variables such as lactate
concentration, stretch of muscle fibers or heart beat rate.
Alternatively, the cost-evidence signal could reflect increase in
the efferent drive needed to overcome fatigue and maintain motor
output [27]. Using combined fMRI and MEG recordings, we
localized the cost-evidence signal in proprioceptive areas (posterior
insula). This localization would incline us to situate the input in the
afferent proprioception coming from the muscles [28]. However,
the fact that subjects had a poor introspection into that signal
argues against the idea that it represents the neural counterpart of
a common and intuitive sensation such as fatigue.

Yet the fact that cost evidence dissipation could be modulated
depending on expected benefit and difficulty suggests that other
neural processes occur during rest than passive transmission of
effort-induced physiological perturbation. First, the dissipation of
cost evidence could be linked to the preparation of the next effort.
Such preparation is reflected by motor signals such as the
readiness potential [29,30] or the de-synchronization of beta
oscillations [31,32]. We showed in a previous publication [33] that
the last process is modulated by incentive level; it could therefore
mediate the effect of motivation on cost dissipation in the posterior
insula. Second, the dissipation of cost evidence could be
accentuated by analgesic mechanisms. The posterior insula region
that signals cost evidence is also involved in pain perception
[34,35] and placebo effect [36]. The placebo effect suggests that
the brain has an endogenous means to control pain, possibly
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through the opioid system [37–39]. Another possibility would be
serotonin, which contributes to the analgesia induced by common
pain killers such as acetaminophen [40] and to the sensation of
fatigue during effort [1,5]. Thus, through opioids or serotonin, the
brain might be able to regulate cost-related signals depending on
motivation level.

Before concluding, we must acknowledge some limitations and
inconsistencies. First, the situation explored in our paradigm is
highly restricted. Notably, subjects are only allowed to adjust the
duration of their effort and not the intensity, which we can usually
adjust in ecological situations. We have conducted a series of
studies where the payoff was based on effort intensity [41–43], but
we still have to explore a situation where the two dimensions can
vary. Second, the model does not account for a number of
observations, for instance the fact that fatigue accumulates at
longer time scales. Indeed, we observed in some tasks an effect of
trial and/or session number on effort duration, which could mean
that cost was not fully dissipated after each rest period, or that
slower effort-induced perturbations were accumulated elsewhere
and imposed constraints on performance. Third, it cannot be
formally concluded that subjects have no explicit access to the cost-
evidence signal driving effort allocation, as one can always object
that the inability to report a variable is due to the question not
being appropriately formulated. This objection should neverthe-
less be tempered since our negative result is not an absence of
effect: the question about exhaustion did elicit subjective ratings
that were sensitive to the cost parameters (effort duration and
difficulty) but not in the way that is relevant to cost monitoring
(multiplicative and not additive). It remains interesting that,
although participants spontaneously explain why they stopped
their effort in terms of exhaustion, they failed to report the variable
(difficulty times duration) that exhausted their resources.

Despite these limitations, the results of the present studies taken
together provide strong evidence that costs are implicitly
monitored in order to adapt effort duration on the fly, which
can be dissociated from anticipatory adjustments depending on
explicit costs and benefits. Moreover, this dissociation was
computationally tractable and might be of clinical relevance. It
suggests the existence of two different kinds of apathy: effort could
be limited because the expected cost is over-estimated, or because
the actual effort-induced cost is inflated. The first category
(perhaps in depression disorders) would rest a lot but would
encounter little difficulty in maintaining their effort once it is
engaged, whereas the other (perhaps in chronic fatigue) would
easily initiate efforts but then would rapidly renounce.

Methods

Ethics statement
The study was approved by the Pitie´-Salpétrière Hospital ethics

committee (protocol number: 106-07). All subjects were recruited
via email within an academic database and gave inform consent
prior to participating in the study.

Participants
The study was approved by the Pitie´-Salpétrière Hospital ethics

committee. All subjects were recruited via email within an
academic database and gave inform consent prior to participating
in the study. There was no restriction of handedness, excepted for
the original (Implicit) Effort Allocation Task, in which participants
were all right handed for neuroimaging purposes. Other inclusion
criteria were: age between 20 and 39 years, absence of
self-reported psychiatric or neurological history and of current
psycho-active substance consumption.

In all studies, participants were told that they would win the
money accumulated during the task. In the previous study
(Implicit task), the payoff was eventually rounded up to a fixed
amount (100J ) credited by bank transfer. In all new studies
participants were paid in cash at the end of the experiment. The
payoff was partitioned into a fixed amount and variable amount
depending on the money won during the task. For the Cost Rating
Task, the amount earned during the task was eventually down-
scaled (divided by 2.48) to fit in a budget of 30J per subject while
maintaining the correspondence between payoff and incentive
during the task. Participants were informed about this correction
prior to the experiment.

The Implicit task was performed in a MRI scanner for half the
subjects and under a MEG helmet for the other half. One subject
in the MRI group was excluded from the analysis because of
calibration issues. For the Adaptation Task 3, one participant was
excluded because of calibration issues and another for cheating
(repeated, direct manipulation of the air tube). For the Dissoci-
ation Task, one participant was excluded due to an instruction
issue: she could not understand the meaning of the percentage
displayed on the screen, which indicated the difficulty level in
proportion of the maximal force. Two other participants were
excluded due to calibration issues. The task-specific information is
summarized in Table 1.

Experimental set up
We used homemade power grips composed of two plastic or

wood cylinders compressing an air tube when squeezed. The tube
was connected to a transducer converting air pressure into voltage.
Thus, grip compression resulted in the generation of a differential
voltage signal, linearly proportional to the force exerted. The
signal was amplified and digitized by a signal conditioner (CED
1401, Cambridge electronic design, UK) for Implicit, Explicit and
Dissociation tasks, and by a homemade device for the Adaptation
Tasks and Cost Rating task. The digitized signal was read by a
Matlab program (The MathWorks Inc., USA).

Pre-processing of force data
In the Adaptation Tasks (1 to 3), the effort onsets were identified

on-line and used to update the screen displayed to the participants.
The effort onset was determined as the first sample exceeding 20%
of the participant maximal force.

In the Effort Allocation Tasks (‘implicit’, ‘explicit’ and
‘dissociation’), effort onsets and offsets were identified off-line
with an algorithm using the same two criteria for all conditions: 1)
force temporal derivative higher than one standard deviation and
2) force level lower (for effort onset) or higher (for effort offset) than
half the maximal force. The first rest period started with coin
presentation and the subsequent effort and rest periods were
defined by force onsets and offsets.

Maximal force estimate
For all tasks, we measured the maximal force for each hand

before starting task performance, following published guidelines
[1]. Participants were verbally encouraged to squeeze continuously
as hard as they could, until a growing line displayed on a computer
screen reached a target. The growing rate was proportional to the
force produced to motivate subjects to squeeze hard. Maximal
force was set to the average of data points over the last half of the
squeezing period exceeding the median. Then subjects were
provided a real-time feedback about the force produced on the
handgrip, which appeared as a fluid level moving up and down
within a thermometer, the maximal force being indicated as a
horizontal bar at the top. Subjects were asked to produce a force
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such that fluid level would reach this horizontal bar and to state
whether it truly corresponded to their maximal force. If not, the
calibration procedure was repeated.

The procedure was slightly simplified for the Adaptation Tasks
and Cost Rating Task: 1) the rate of the growing bar was held
constant and not indexed on the participants’ exerted force level,
2) the duration during which the participants had to squeeze as
hard as they could was fixed to 5 s, and 3) all data points were used
for the estimate (and not the last half of recorded levels).

Behavioral tasks
All tasks were presented on a computer screen, and were

programmed with Matlab using Cogent 2000 (Wellcome Depart-
ment of Imaging Neuroscience, London, UK) for the Implicit and
Explicit Tasks, and Psychtoolbox (http://psychtoolbox.org) for the
Dissociation Task, Adaptation Tasks, and Cost Rating Task.

Adaptation Tasks. The display was quite similar in all
adaptation tasks, which included a total of 8 sessions. The exerted
force level was always displayed as a fluid moving up a
thermometer, the target bar on the top of the thermometer
indicating 60% of the participant maximal force. The 60% level
was chosen to ensure that effort could be maintained by all
subjects and for all the imposed durations. All trials included a first
effort (with imposed duration), a rest period, and a second effort
(with free duration). The payoff was proportional (with a fixed
rate) to the time spent above the target force level during the
second effort. The color of the fluid in the thermometer instructed
what to do: red for the first effort, blue for rest (with ‘STOP!’
displayed above the thermometer), green for the second effort,
which participants initiated either immediately (in Tasks 1 and 2),
or at their convenience (in Task 3). When participants stopped
squeezing, more precisely at the first force sample under 50% of
their maximal force, the color turned to white, instructing that
they should rest until the following trial. In all Tasks, ‘PLUS
FORT’ (meaning ‘harder’) was displayed above the thermometer
during the imposed effort when the force being exerted was under
the target level (60%). For Tasks 1 and 2, the color turned to white
and the message ‘VOUS AVEZ APPUYE TROP TARD’
(meaning ‘you squeezed too late’) was displayed if the participant
initiated the trial too late (more than 1s after the color change). In
all three tasks, a flickering dollar symbol was displayed when the
force was above the target level, during the second effort whose
duration was free (green color), to indicate that money was being
accumulated. Both the trial payoff and the cumulated payoff were
displayed on screen at the end of each trial.

Adaptation Task 1 (variable effort/constant rest/free
effort). Each trial presented the following events successively:
imposed effort (at 60% of maximal force), imposed rest (2s), go
signal to initiate an effort of free duration (20s allowed), feedback
(2s), inter-trial interval (2s). Imposed effort durations were drawn
from a set of 36 points regularly spaced between 1 and 10s. The
same 36 durations, divided into 4 sessions of 9 trials each, were
presented once to the left hand and once to the right hand in the
same randomized order. For each session, effort durations were
picked up every 4 points in the randomized sequence of 36 values,
starting at a sample randomly drawn (without replacement)
between 1 and 4. This procedure ensures that over subjects, all
sessions have the same average effort duration.

Adaptation Task 2 (constant effort, variable rest, free
effort). Each trial presented the following events successively:
imposed effort (7s at 60% of maximal force), imposed rest
(between 1 and 12.5s), go signal to initiate an effort of free duration
(20s allowed), feedback (2s), and no inter-trial interval. Imposed
rest durations were defined so as to sample small durations more
than long durations. We simulated a mixture of Gaussians (10000
points), with 75% of points drawn from N(3,2), and 25% drawn
from N(10,2), where N(m,s ) denotes a Gaussian distribution with
mean m and standard deviations . This distribution was cut off to
retain values higher than 1s and divided into 37 bins. The first 36
bins were then retained for our sampling rest durations to avoid
extreme values from the Gaussian distribution. The same 36
durations were presented to the left and right hands in the same
randomized order, using the same randomization technique as was
implemented for Task 1.

Adaptation Task 3 (variable effort, free rest and free
effort). Each trial presented the following events successively:
imposed effort (at 60% of maximal force), imposed rest (2s), a
signal indicating to the participant that the second effort can be
initiated (20s allowed in total for first resting and then exerting
effort), feedback (2s), inter-trial interval (2s). Imposed effort
durations were 36 points equally spaced between 1s and 10s.
The same 36 durations were presented to the left and right hands
in the same randomized order, using the same randomization
technique as was implemented for Task 1.

Cost Rating Task. The task included 7 sessions, using right
and left hands alternatively. Each session comprised 21 trials. The
design was fully factorial, crossing all factor levels: 3 incentive
levels (10c, 20c, 50c), 7 duration levels (equally spaced from 3 to
7s) and 7 difficulty levels (equally spaced from 40 to 60% of the
participant maximal force). Each cell was presented only once, as
there were 147 cells for 147 trials. The order of presentation was

Table 1. Task-specific information on participants.

Task Exp. Period
N after
exclusion N male N excluded

Mean age ±
s.e.m. Fix (J ) Var (J )

Var (J )
range

Adaptation Task 1 FM 03/2012 12 2 0 22.76 0.8 10 10.1 7–13

Adaptation Task 2 FM 03/2012 12 0 0 21.96 0.4 10 9.6 4–15

Adaptation Task 3 FM 03/2012 12 4 2 21.76 0.7 10 10.3 6–15

Cost Rating Task FM 02/2013 18 7 0 22.26 0.5 0 29.8 29–30

Implicit Task FM 04–05/2010 38 16 1 24.26 0.65 50 31.6 15–48

Explicit Task FM 03/2011 14 10 0 23.76 0.4 15 13 8–19

Dissociation Task LS 10/2011 15 5 3 25.46 0.8 10 6 3–10

‘Exp.’ refers to the author who collected the data. The payoff was fractioned into a fixed amount (‘Fix’) for participation and a variable amount (‘Var’) depending on
performance, for which we report the mean value and the range (minimum and maximum) across participants.
doi:10.1371/journal.pcbi.1003584.t001
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pseudo-randomized such that the different sessions had exactly the
same incentive and difficulty level on average, and little variation
in mean duration.

Every trial started with baseline (1s), followed by incentive
display (1s) and then by the appearance of a thermometer that
served as a ‘go’ signal to trigger effort exertion. The fluid level
within the thermometer provided online feedback on the force
being exerted, with scaling adjusted such that the target bar
corresponded to difficulty level (40% to 60% of the maximal
force). The thermometer was displayed as long as the participant
had to sustain the effort. The imposed duration was applied
starting when the target force was reached and not when the
thermometer appeared. Exhaustion rating was done just following
the effort. ‘Avez-vous e´puisévos ressources?’ (‘Have you exhausted
your resources?’) was written on screen, and participants indicated
their rating from ‘Pas du tout’ (‘not at all’) to ‘Totalement’
(‘completely’) with a cursor that could be moved with left/right key
press. We framed the question in terms of exhaustion instead of
the perceived exertion [44] because the rating occurred after (not
during) the effort. The rating scale had 50 steps but no visible
graduation. Rating and validation (by pressing the space bar) were
self-paced. The last screen lasted 1.5 s and summarized the payoff
earned in the current trial and the cumulated payoff over all
preceding trials. The amount earned during a trial was calculated
as the incentive value multiplied by the proportion of the imposed
duration spent above the target force level.

Effort Allocation Tasks (Implicit, Explicit and
Dissociation Tasks). The Implicit task is described in [10];
we reproduce here the relevant details. Participants performed 8
sessions of 9 trials corresponding to the 9 cells of the factorial
design (3 incentive6 3 difficulty conditions), which were presented
in a random order. Subjects performed 8 sessions in total,
switching hands as instructed between sessions to avoid muscular
fatigue. After baseline measurement of the pressure at rest, each
trial started by revealing the monetary incentive with a coin image
(10, 20 or 50 cents) displayed for 1s. Then subjects had 30s to win
as much money as possible. They knew that the payoff was
proportional to both the incentive and the time spent above the
target bar, which was always placed at the same height in the
thermometer. The force needed to reach the bar (70, 80 or 90% of
subject’s maximal force), i.e. trial difficulty, was not indicated to
subjects. Subjects only knew that task difficulty would vary across
trials. They were provided with online feedback on both the
exerted force (with a fluid level moving up and down within a
thermometer) and the trial-wise cumulated payoff (with a counter
displayed above the thermometer). Each trial ended with a 2s
display of the session-wise cumulated payoff.

The only change from the Implicit to the Explicit Task is that
the difficulty level was displayed on the right and left of the coin
image, as percentages of maximal force (70%, 80% or 90%).

In the Dissociation Task, monetary incentive (10c or 20c),
actual difficulty (75% or 85%) and cued difficulty (75% or 85%)
were combined into a factorial design comprising 8 cells. Cued
difficulty level was indicated on the screen as in the Explicit task
but was congruent with the actual difficulty level (actual force
needed to reach the target bar) in half the trials only. The
experiment was divided into 8 sessions presenting one trial for
each of the 8 cells in a random order. The randomization avoided
to present identical pair of cues (for incentive and difficulty levels)
in two consecutive trials. Apart from the potential mismatch
between the cued and actual difficulty levels, the trial settings were
identical to those of the Explicit Task.

Statistical analysis
Adaptation Tasks. We first verified that subjects complied

with the instructions, meaning that they sustained their effort at
the required level (60% of maximal force) and for the imposed
duration. As we found no significant deviation from instructed
effort, all trials were included in the analysis. Effort and rest
durations were analyzed using multiple linear regressions. For
Task 1, the dependent variable (second effort duration) was fitted
with four regressors: first effort duration, session number, session-
wise cumulated effort, and the residual effort initiation delay (i.e.,
delay between go signal and effort onset, after removing the
variance explained by the three other regressors). Significance of
parameter estimates was assessed with a random-effect analysis at
the group level using a two-sided t-test. For Task 2, the same four
regressors were used to explain the dependent variable (second
effort duration), except that the manipulated factor was rest
duration (not first effort duration). For Task 3, the two dependent
variables (rest and second effort durations) were fitted with the
same linear model as was done for Task 1, except that there was
no initiation delay.

We also analyzed the relationship between imposed and
observed durations in Tasks 1 and 2, by fitting linear and
saturation models, which we compared using Bayesian model
selection (BMS). The linear model was:T1~ b1z b2T2. We tested
two models for saturation: a bounded linear model:

T1~
b1z b2T2 if T 2v c

b1z b2c otherwise

�

and a model with exponential saturation:
T1~ (c{ b1)(1{ e{ b2T2)z b1, in which b1 is the intercept,b2

the increase rate andc the asymptote. The BMS procedure is
described in the next section. In principle, the cost-evidence model
predicts that recovery during rest should be bounded, such that
after a certain time, more rest does not increase the duration of the
subsequent effort. For simplicity we assumed a linear dynamics for
accumulation and dissipation, which implies that the saturation
should manifest as a linear increase followed by a constant plateau.
However, we reasoned that white noise in data generation should
render this function closer to an exponential saturation. We
confirmed this intuition with a simulation, proceeding as follows.
1) We fitted a bounded linear model to individual data and
retained the median parameter estimates and the residuals
standard deviation for each subject. 2) With these parameter
estimates and the durations manipulated experimentally, we
simulated 100 sets of noisy effort data per subject, using a white
noise of the same magnitude as residuals standard deviation. 3) We
fitted both the bounded linear model and the exponential model to
these individually simulated data, and calculated their respective
log-evidence. 4) We averaged these log-evidences over simulations
and performed a group-level BMS, which favored the exponential
model with high confidence (chance level isK , expected
frequency ef = 0.75, exceedance probability xp = 0.97). We
noticed, as expected, that this exceedance probability decreased
when decreasing the noise magnitude. Therefore, we included the
exponential model in the BMS performed on our observed data,
since it was more likely to capture the saturation effect at the
observed noise magnitude.

Cost Rating Task vs. Implicit Task. We first submitted the
ratings obtained from the Cost Rating Task to a multiple
regression analysis, so as to estimate the effect of several factors.
The regressors comprised the manipulated factors (incentive,
difficulty and duration level) and covariates (a constant per session
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to capture the mean, a linear trend per session to capture drift over
trials, and the initial position of the rating cursor). Two-way
interaction terms were also included. Regressors were z-scored
over all trials, except trends that were z-scored within their sessions
and padded with 0, and constant regressors. The significance of
the parameter estimates was assessed with a random-effect analysis
at the group level using a two-sided t-test.

To compare with the Effort Allocation (implicit) Task, we
modeled cost evidence as follows:
C~ b0z b1T l 1z b2Dl 2z b3T l 1Dl 2, where D and T are difficulty
and time (duration). To make the estimation of D and T betas
independent of their unit (force versus time), they were divided by
their mean value. Setting thel terms to 1 made the model linear
with respect to experimental factors, settingb3 to zero made the
model purely additive and settingb1 and b2 to zero made the
model purely interactive. All three possibilities (including non-
linearities, including additive terms, including interaction) were
combined, resulting in a total of 8 models. Note that formally, the
linear and non-linear constant models (C =b0) are strictly
equivalent. In the Cost Rating Task, the dependent variable was
subjective rating of cost (sensation of exhaustion), which could be
directly regressed against the cost evidence model. In the Effort
Allocation (implicit) Task, costs had to be inferred from the
behavior. The probability to stop the effort after a given exertion
duration was derived from the cumulated distribution of effort
duration, for each difficulty level. This probability was regressed
against a sigmoid (or logit) function of the modeled cost evidence:
P~ 1

1z e{ C. This sigmoid was not parameterized (i.e., C was not
transformed with scaling and offset parameters), since this would
be redundant with the beta parameters included in the definition
of C itself. Apart from the sigmoid transformation, the same
procedure was thus applied to the Cost Rating and Effort
Allocation Tasks.

A constant elasticity of substitution (CES) model was also fitted
to characterize the curvature of cost evidence. The CES model is

C~ aDdz 1{ að ÞT d
� � 1

d, in which a ranges from 0 to 1 and
characterizes the equivalence between D and T (or substitution
ratio), andd is strictly positive and characterizes the curvature of
this equivalence. We introduced an offset and a scaling factor to
the CES model as two additional free parameters, which were
independent from the estimation of alpha and delta since D and T
had a mean of one. Following the same procedure as in the model
comparison, cost evidence was fitted onto subjective rating in the
Cost Rating Task, and passed through a logit function to be fitted
onto stop probability in the Effort Allocation task.

Effort Allocation Tasks (Implicit, Explicit and
Dissociation Tasks). Effort and rest durations were submitted
to multiple regression analysis. The regressors comprised the
manipulated factors (incentive and difficulty levels for the Implicit
and Explicit Task; incentive, cued and actual difficulty levels for
the Dissociation Task), temporal factors (the session number, the
trial position within a session and the effort or rest position within
a trial), and interaction terms (the two-way interactions of
manipulated and temporal factors, and the two-way interactions
between manipulated factors, which was extended to a third-way
interaction between the three manipulated factors in the
Dissociation task). All the regressors were z-scored to provide
standardized effect size.

The significance of parameter estimates (regression coefficients)
was assessed with a random-effect analysis at the group level using
a two-sided t-test. Dissociation between cued and actual difficulty
in the Dissociation Task was estimated using a two-sided paired t-
test on the parameter estimates. For non-parametric t-tests, we

estimated the null t-distribution using all possible permutations
(n = 215) between the ‘cued’ and ‘actual’ labels, and estimated the
probability of t-values more extreme than observed (two-sided
test).

Bayesian model selection
To perform model selection, models were first estimated for

each subject following a variational Bayes approach under the
Laplace approximation [45,46], using a toolbox by Jean
Daunizeau [47] (available at http://code.google.com/p/mbb-vb-
toolbox/). Note that all the models developed here are determin-
istic: they are meant to provide a mechanistic link from factors of
interest (monetary incentive or task difficulty) to observations
(effort or rest duration). The aim of model estimation was to find
the distribution of free parameters that best fitted the observations,
and not to explain their stochasticity. The variational Bayes
algorithm not only estimates linear and non-linear models but also
calculates their evidence based on a free-energy approximation
[45]. The evidence of a model is the probability of observing the
data given this model. This probability corresponds to the
marginal likelihood, which is the integral over the parameter
space of the model likelihood weighted by the prior on free
parameters. This probability increases with the likelihood (which
measures the accuracy of the fit) and is penalized by the
integration over the parameter space (which measures the
complexity of the model). The model evidence thus represents a
trade-off between accuracy and complexity and can guide model
selection [48]. Model selection was performed with a group-level
random-effect analysis of the log-evidence obtained for each model
and subject, using Gibbs sampling in SPM8 (Statistical Parametric
mapping, Wellcome Department of Imaging Neuroscience,
London, UK) [48]. This procedure estimates the expected
frequency (denoted ef) and the exceedance probability (denoted
xp) for each model within a set of models, given the data gathered
from all subjects. Expected frequency quantifies the posterior
probability, i.e. the probability that the model generated the data
for any randomly selected subject. This quantity must be
compared to chance level (one over the number of models or
families in the search space). Exceedance probability quantifies the
belief that the model is more likely than all the other models of the
set, or in other words, the confidence in the model having the
highest expected frequency [48]. Family-level inference was
conducted similarly to model-level inference after defining a
partition within the model space as described in [49] and
implemented in SPM8.

Computational models (Implicit, Explicit and Dissociation
Tasks)

We first defined a class of models that can a priori produce the
results that we intended to explain. These models were then
submitted to a Bayesian model selection in order to identify the
most plausible model among all the possible models. The model
space was defined by simplifying a full model, starting with the
Implicit Task. The model is based on accumulation-dissipation
processes: cost evidence ramps up during effort to a bound that
triggers effort cessation, and ramps down during rest to a bound
that triggers effort resumption. As for simplicity the fluctuations
were modeled as linear, the effort and rest durations (Te and Tr)
are just the ratios between the amplitudeA (distance between
bounds) and the accumulation or dissipation slope (Seand Sr). In
the full model, the free latent parametersA, Se, Srcan vary across
trials around their mean values (am, bm, cm), depending linearly on
experimental factors: in this case the incentiveI and the difficulty
D. The full model is thus:
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Te~
A
Se

; Tr~
A
Sr

A~ amz aI I z aDD

Se~ bmz bI I z bDD

Sr~ cmz cI I z cDD

8
>><

>>:

Simpler models can be designed by setting one or more weights to
zero. As there are 6 weights (3 latent parameters times 2
experimental factors), all combinations give a total of 26 = 64
models. However, some of these models are not worth considering
as they cannot account for the effect that we want to explain. The
most extreme case is when all weights are null: such a model
cannot produce any of the effect of incentive and difficulty that we
observed in the data. After discarding all models with which at
least one of the significant results reported in Figure 5 could not be
produced (shown with red in Figure 6A), the search space was
restricted to 24 models. Note that predicting an effect which was
not significant in our data was not a criterion for rejection.

To illustrate the logic of model selection, we can take the case of
the opposite effects of incentives on effort and rest duration (Te
and Tr). This behavioral pattern cannot be accounted for by
models which would have no incentive effect at all or an effect on
one latent parameter only (A, Se or Sr). These models can
therefore be excluded from the model space retained for Bayesian
comparison. On the contrary, modulations of both A and Se (# 1),
or both A and Sr (# 2), or all three parameters (# 3) can a priori
produce the observed incentive effects on Te and Tr; these models
should therefore be compared. Model# 1 predicts that incentive
effect on Tr should be linear (because it only affects the numerator
A) and the effect on Te non-linear (because it also affects the
denominator Se). Model# 2 generates the opposite predictions.
The data can thus disambiguate between these models, depending
on which effect is non-linear. Model# 1 and# 2 are special cases
of model# 3 which is more complex and thereby, more likely to
provide a better fit. Yet model# 3 will be preferred over model# 1
and # 2 only if the improvement of fit surpasses the inflation of
complexity in the calculation of model evidence. Note that this
example is a simplification of our model comparison, as all factors
(not just incentives) should be considered at the same time, which
also makes predictions on the pattern of interaction between
factors. However, detailing the specific predictions of all the
models included in the Bayesian comparison would require much
more length than that allowed in a research paper.

The same approach was applied for defining linear models of
the Explicit Task, leading to a search space of 16 models
(Figure 6C). For the Dissociation Task, another modulator was
included as there were two types of difficulty (cued and actual).
The full model has therefore 9 weights, which gives 29 = 512

possible models, which were reduced to 144 models after rejection
of irrelevant models (Figure 6B).

Te~
A
Se

; Tr~
A
Sr

A~ amz aI I z aDaDaz aDcDc

Se~ bmz bI I z bDaDaz bDcDc

Sr~ cmz cI I z cDaDaz cDcDc

8
>><

>>:

Since these models provided poor fit and unclear evidence in favor
of a particular model, we also tested a class of hyperbolic models
for the Explicit and Dissociation Tasks. As opposed to the linear
formulation, the discount of incentive by cued difficulty was
assumed to be hyperbolic, as in some economic models of
temporal discounting. The full hyperbolic model is:

Te~
A
Se

; Tr~
A
Sr

A~ amz aI I
1z aDcDc z aDaDa

Se~ bmz bI I
1z bDcDc z bDaDa

Sr~ cmz cI I
1z cDcDc z cDaDa

8
>>>><

>>>>:

The D term that denoted difficulty in the first linear model has
been decomposed intoDa and Dc, denoting actual and cued
difficulty in the Dissociation Task. Note that in the Explicit Task,
De and Dc have exactly the same values. The model can
nonetheless be estimated unambiguously in this task since the
effect ofDa is linear whereas that ofDc is hyperbolic. Also note
that with hyperbolic formulation, there are dependencies between
weights since a null numerator prevents the denominator from
impacting the model fit. Thus we discarded models with a null
numerator and a non-null weight at the denominator (this is
shown with red in Figure 6D). After discarding the models that
were not able to produce all the significant results shown in
Figure 5, the search space was eventually restricted to 78 models
for the Explicit and Dissociation Tasks.
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