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Interchange (ISI), Torino, Italy

Abstract

Human mobility is a key component of large-scale spatial-transmission models of infectious diseases. Correctly modeling
and quantifying human mobility is critical for improving epidemic control, but may be hindered by data incompleteness or
unavailability. Here we explore the opportunity of using proxies for individual mobility to describe commuting flows and
predict the diffusion of an influenza-like-illness epidemic. We consider three European countries and the corresponding
commuting networks at different resolution scales, obtained from (i) official census surveys, (ii) proxy mobility data
extracted from mobile phone call records, and (iii) the radiation model calibrated with census data. Metapopulation models
defined on these countries and integrating the different mobility layers are compared in terms of epidemic observables. We
show that commuting networks from mobile phone data capture the empirical commuting patterns well, accounting for
more than 87% of the total fluxes. The distributions of commuting fluxes per link from mobile phones and census sources
are similar and highly correlated, however a systematic overestimation of commuting traffic in the mobile phone data is
observed. This leads to epidemics that spread faster than on census commuting networks, once the mobile phone
commuting network is considered in the epidemic model, however preserving to a high degree the order of infection of
newly affected locations. Proxies’ calibration affects the arrival times’ agreement across different models, and the observed
topological and traffic discrepancies among mobility sources alter the resulting epidemic invasion patterns. Results also
suggest that proxies perform differently in approximating commuting patterns for disease spread at different resolution
scales, with the radiation model showing higher accuracy than mobile phone data when the seed is central in the network,
the opposite being observed for peripheral locations. Proxies should therefore be chosen in light of the desired accuracy for
the epidemic situation under study.
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Introduction

One of the biggest challenges that modelers have to face when

aiming to understand and reproduce the spatial spread of an

infectious disease epidemic is to accurately capture population

movements between different locations or regions. In developed

countries this task is generally facilitated by the existence of data or

statistics at the national or regional level tracking individuals’

movements and travels, by purpose, mode, and other indicators if

available (see e.g. transport statistics in Europe [1], commuting,

migration data or other types of mobility at country level [2–6]).

Access to highly detailed and updated data may however still be

hindered by national privacy regulations, commercial limitations,

or publication delays. The situation becomes increasingly compli-

cated in less-developed regions of the world, where routine data

collection may not be envisioned at similar levels of details [7], but

which, most importantly, may be characterized by a high risk of

emergence and importation of infectious disease epidemics or may

suffer of endemic diseases.

Depending on the infectious disease under study, different

mobility processes may play a relevant role in the spatial

propagation of the epidemic while others appear to be negligible,

as determined by the typical timescales and mode of transmission

of the disease, and the geographic scale of interest. For rapid

directly transmitted infections, daily movements of individuals

represent the main mean of spatial transmission. At the worldwide

scale, air travel appears to be the most relevant factor for

dissemination, as observed during the SARS epidemic [8,9] and

the 2009 H1N1 pandemic [10,11]. On smaller regional scales,

instead, daily commuting is significantly linked to the spread of

seasonal influenza [12,13], affecting the epidemic behavior at the

periphery of the airline transportation infrastructure [14].
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To overcome issues in accessing commuting data when

simulating spatial influenza spread, epidemic models have

traditionally relied on mobility models to synthetically build

patterns of movements at the desired scale [14–16]. The gravity

model [17] and the recently proposed radiation model [18] have

been shown to fit well the commuting patterns observed in reality

on different spatial scales [12,14–16,18–20].

Next to mobility modeling approaches, alternative tools for

understanding daily human movements have more recently

flourished thanks to the availability of individual data obtained

from different sources, namely mobile phone call records carrying

temporal and spatial information on the position of the cell phone

user at the level of tower signal cells [21–23]. Such direction of

research has gained great popularity, leading to the discovery of

universal characteristics of individual mobility patterns, and the

possibility to study mobility in space and at timescales that were

unreachable before [21–26]. Such increasing volumes of finely

resolved human mobility data, thanks to the near ubiquity of

mobile phones, also offered an opportunity to contrast the huge

deficit of quantitative data on individual mobility from underde-

veloped regions. They were indeed used to shed light on malaria

diffusion and identify hotspot areas [24,26,27], to monitor human

displacements in case of natural disasters [25,28] and to study

disease containment strategies in Ivory Coast [29].

Despite the variety of modeling approaches and data sources,

the impact of using different proxies for human commuting in

epidemic models for rapidly disseminated infections is still poorly

understood. Each approach or source of data clearly has its own

intrinsic strengths and weaknesses, related to accuracy and

availability of the dataset.

More specifically, mobility models require some assumptions or

input data for calibration and fit to the real commuting behavior.

The gravity model requires full knowledge of mobility data for its

parameter fitting and can be extended to other regions where data

is not available in case of empirical evidence pointing to

‘‘universal’’ commuting behavior at a given resolution scale, i.e.

well described by the same set of parameter values [14], or by

making assumptions on generalizability. The radiation model

requires population distribution values and the total commuter

flows out of a given region, a quantity that may not be easily

accessible at the desired level of resolution or with sufficient

coverage. While mobile phone data can provide mobility

information at a high granularity level, they are also characterized

by a number of issues that may hinder their use. Phone data are

inevitably affected by biases related to the population sampling:

coverage is usually not homogenous across space and it depends

on the market share of the operator providing the data. Phone

ownership and usage may differ across social groups, gender or

age classes depending on the country under study [30,31], and

access to users’ metadata to evaluate the representativeness of the

sample is limited by privacy concerns [32]. Given the recent

availability of these data, the impact of such biases on mobility

estimates is still poorly understood.

Recent studies have assessed the effects of using gravity models

in mathematical epidemic models [12,33], however similar works

on the use of data-saving options like the radiation models or of

alternative strategies like mobile phone activity data for epidemic

applications are still missing.

The aim of this paper is therefore to assess the adequacy of two

specific proxies – mobile phone data and the radiation model – to

reproduce commuter movement data for the modeling of the

spatial spread of influenza-like-illness (ILI) epidemics in a set of

European countries. We first compare the commuting networks

extracted from the official census surveys of three European

countries (Portugal, Spain and France) to the corresponding proxy

networks extracted from three high-resolution datasets tracking

the daily movements of millions of mobile phone users in each

country. More specifically, we examine through a detailed

statistical analysis the ability of mobile phone data to match the

empirical commuting patterns reported by census surveys at

different geographic scales. We then examine whether the

observed discrepancies between the datasets affect the results of

epidemic simulations. To this aim, we compare the outcomes of

stochastic SIR epidemics simulated on a metapopulation model for

recurrent mobility that is based either on the mobile phone

commuting networks or the radiation model commuting networks,

with respect to the epidemics simulated by integrating the census

data. We evaluate how the simulated epidemic behavior depends

on the underlying mobility source and on the spatial resolution

scale considered, by investigating the time to first infection in each

location and the invasion epidemic paths from the seed.

Materials and Methods

Ethics statement
The study relied on billing datasets that were previously

recorded by a mobile provider as required by law and billing

purposes, and not for the purposes of this project. To safeguard

personal privacy, individual phone numbers were anonymized by

the operator before leaving storage facilities, in agreement to

national regulations on data treatment and privacy issues, and they

were identified with a security ID (hash code). The research was

reviewed and approved by the MIT’s Institutional Review Board

(IRB). As part of the IRB review, authors, who handled the data,

and the PI participated in ethics training sessions at the outset of

the study.

Commuting networks
Commuting networks extracted from census sur-

veys. The census commuting networks are extracted from three

Author Summary

The spatial dissemination of a directly transmitted infec-
tious disease in a population is driven by population
movements from one region to another allowing mixing
and importation. Public health policy and planning may
thus be more accurate if reliable descriptions of popula-
tion movements can be considered in the epidemic
evaluations. Next to census data, generally available in
developed countries, alternative solutions can be found to
describe population movements where official data is
missing. These include mobility models, such as the
radiation model, and the analysis of mobile phone activity
records providing individual geo-temporal information.
Here we explore to what extent mobility proxies, such as
mobile phone data or mobility models, can effectively be
used in epidemic models for influenza-like-illnesses and
how they compare to official census data. By focusing on
three European countries, we find that phone data
matches the commuting patterns reported by census well
but tends to overestimate the number of commuters,
leading to a faster diffusion of simulated epidemics. The
order of infection of newly infected locations is however
well preserved, whereas the pattern of epidemic invasion
is captured with higher accuracy by the radiation model
for centrally seeded epidemics and by phone proxy for
peripherally seeded epidemics.
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census surveys, one for each of the countries under study: Portugal,

Spain and France. Each survey tracks the number of people who

daily commute for work or study reasons between any two

locations within the country. Locations are identified as political

subdivisions of the country, usually corresponding to their lowest

administrative level. Commuting flows directed to or coming from

abroad are not considered in the analysis (see Section 3.1 in Text

S1 for a sensitivity analysis on cross-border commuting). Networks

are generated by creating a directed weighted link between two

nodes, representing the locations of origin and destination, and the

weight indicates the number of commuters traveling on that

connection on a typical working day.

Census surveys used in the present study are not homogeneous

in terms of collection date and geographic resolution at which data

is collected. They represent however the most accurate and

reliable description of commuter movements that is available for

the countries under study. Commuting data for Portugal is

extracted from the database of the National Institute of Statistics

[5] and refers to the 2001 National Census Survey. The survey is

nationwide and data is collected at the level of freguesia (namely,

parish) that is the smallest local administrative unit of Portugal. For

the purpose of making a comparison between census and mobile

phones data feasible, we need to coarse-grain the commuting data

on larger spatial scales corresponding to higher administrative

levels of the country. This ensures the establishment of a resolution

level that is common to both approaches and that allows the

coarse-graining of each dataset maintaining the quality of the data.

Parishes are indeed very heterogeneous in terms of surface area

(from 100 m2 to 100 km2) and are not structured in a hierarchical

form with respect to tower cells as the latter can be smaller than a

parish or encompass a full parish.

We thus consider: (i) the Portuguese concelhos (roughly

corresponding to municipalities and typically including tens of

freguesias) and (ii) the distritos (districts), the largest administrative

unit of Portugal. We exclude from our analysis all municipalities

located on the islands.

Commuting data for Spain is extracted from the database of the

National Institute of Statistics [6] and refers to the national

workforce survey for the year 2005. The survey is conducted over

a population sample and data is provided at the geographical level

of provinces. We project the data to the full population of the

country and restrict our analysis to continental Spain only.

Commuting data for France is extracted from the database of

the French National Institute of Statistics and Economic Studies

[4] and refers to the 2007 National Census Survey. The survey is

nationwide and data is collected at the level of communes, the

smallest local administrative unit of France. Similarly to the case of

Portugal, we coarse-grain the original network on two higher

administrative levels, corresponding to: (i) the French arrondisse-
ments (districts) and (ii) the French departments. For consistency,

we exclude from our analysis all the overseas regions and

territories of France.

In the following we indicate with wc
ij the census flux of

commuters from the administrative unit i to the administrative

unit j. In Section 1 of Text S1 we report additional details about

the sources and the definitions of the census data.

Commuting networks extracted from mobile phones

records. Mobile phone commuting networks are extracted

from three high-resolution datasets, based on mobile phone’s

billing information of a large sample of anonymized users in each

country under study (2006 data for Portugal, 2007 for Spain and

France), and already used in previous works [34–37].

The data provides information about the time of usage of the

mobile phone and the coordinates of the corresponding mobile

phone tower handling the communication. The data allows us to

identify the set of locations visited by each user (georeferenced in

terms of tower cells) and to rank them according to the total

number of calls placed by a user from each of them. Only users

with more than 100 calls are included in the study, to enable the

estimation of the individual’s commuting mobility pattern. Since

mobile phone trajectories clearly include different sorts of daily

movements, we need therefore to extract commuter movements

only for the comparison with census data, and disregard other

types of displacement. Following previous work [22], we assume

that a user’s residence corresponds to his/her most visited location,

and that his/her workplace corresponds to the second most visited

location, both identified in terms of placed calls. We performed a

sensitivity analysis on this minimal assumption, by imposing in

addition some constraints on the time of the call, to refine our

identification of locations of residence and workplace (see Text S1

for additional details) [35,38]. We thus define a commuting

network at the level of cell sites, creating a directed link between

each residence and workplace and assigning a weight equal to the

total number of users that commute between the two locations. We

coarse-grain the mobile phones commuting network from the

tower cell scale to the country’s administrative subdivisions for

comparison with the census data (see Section 1.3 in Text S1 for

additional details). The coarse-grained mobile phone commuting

data is available as supporting information (Dataset S1).

Once defined on the same geography, the two datasets also need

to refer to the same population. The census dataset represents the

benchmark, as it comprises the entire population of a country

(commuters and non-commuters at a given scale) and its mobility

features, whereas the commuting data obtained from the mobile

phone dataset is affected by the sampling bias corresponding to the

operator’s coverage and to the selection of the subset available for

the analysis (it only therefore represents a fraction of the total

population) and by the algorithm used to identify commuting-like

movements. We explored the geographic coverage of the mobile

phone dataset for the three countries (see the Analyses subsection

for the corresponding methodology adopted). With no additional

information on the subset of individuals included in the mobile

phone datasets, we opt for a basic normalization approach that

simply rescales the populations of the mobile phone networks at

the administrative unit level by the population sampling ratio

n
mp
i =Ni, where n

mp
i is the resident population of region i tracked by

the mobile phone dataset and Ni is the resident population of

region i according to the official census.

More sophisticated choices can be made to account for the

sampling biases in a more accurate way, as discussed in the

Discussion section, however they would require additional

information that may not be easily available for a large set of

countries. Our baseline choice for the basic normalization is

motivated by imposing minimal requests on additional metadata

that may be needed to correctly calibrate the dataset. With the

chosen normalization, the total population assigned to each node

of the network (including commuters and non-commuters) is equal

in the two systems, whereas the relative fraction of commuters may

be different in the two cases.

As a sensitivity analysis, and for further comparison with the

radiation model (see following subsection), we also consider a

refined normalization that assumes the same knowledge required

by the radiation model – namely, the total number of commuters

per administrative unit. Once normalized to the census population

of each given region, this amounts to assume that the mobile

phone commuting network has the same number of commuters

per region as in the census dataset, the same total population per

region, and therefore also the same ratio of commuters vs. non-

Human Mobility Proxies and Epidemic Modeling
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commuters. Differences may arise in the number and identity of

commuting destinations per region of residence, and in the

distribution of commuter flows on such directions.

In the following we indicate with w
mp
ij the normalized flux of

commuters from the administrative unit i to the administrative

unit j obtained from cell phone activity data using the basic

normalization, and with w
mp�
ij the one obtained with the refined

normalization.

Commuting networks simulated with the radiation

model. We create synthetic commuting networks using the

radiation model [18]. The model has been specifically developed to

reproduce commuter movements and has the additional desirable

feature of being parameter-free, i.e. it does not require regression

analysis or fit on existing data. These characteristics make it the

ideal candidate to generate a synthetic commuting network in

absence of empirical data to be fitted. The model is based on a

stochastic decision process assigning work locations to each

potential commuter, thus determining the daily commuting fluxes

across the country. In detail, networks are generated by creating a

fully connected topology between country’s locations, where the

weight of the edge connecting a node i with a node j is defined by

the formula [18]:

wr
ij~

NiNj

(NizPij)(NizNjzPij)

X

i=j

wij , ð1Þ

with Ni and Nj being the populations of origin and destination, Pij

the total population living between location i and location j
(computed as the total population living in a circle of radius rij

centered at i, excluding the populations of origin and destination

locations), and
P
j=i

wij the total number of commuters daily leaving

their home in location i. Equation (1) assumes the knowledge of

population data (Ni, Nj , Pij ) similarly to what we consider

available for the census commuting networks and for the basic

normalization of mobile phone mobility commuting fluxes, but it

also requires additional information, i.e. the total number of

residents who commute in each administrative unit. While the

latter information may be easily accessible in developed countries,

it is important to note that it may not be routinely collected or

available in other regions. Given these quantities, the radiation

model yields a commuting flux for each pair ij of administrative

units of the country under study; after removing connections

having wr
ijv1, a synthetic commuting network at the given

resolution scale is obtained. Previous works have already shown

the ability of the radiation model to match census data well from

the structural and traffic point of view, in a number of countries

[18]. Additional comparisons between the radiation model and

gravity models have been performed in the UK [39]. Here

therefore we do not consider the radiation model in the

comparison analysis of commuting networks and discuss instead

its adequacy in the framework of spatial epidemic spreading.

Epidemic metapopulation model
We use a metapopulation modeling approach [40,41] to

perform numerical simulations of epidemic scenarios. We assume

the national population of every country to be spatially structured

in subpopulations defined by the administrative subdivisions

described in the previous subsection. We focus on rapid directly

transmitted infections, such as influenza-like-illnesses, for which

daily regular movements of individuals for commuting purposes

were found to correlate well with the observed regional spread

[12,13]. We consider a simple SIR compartmental model [41],

where individuals can be either susceptible (S), infectious (I) or

recovered (R) from the infection, assuming a life-long immunity for

recovered individuals. The dynamics is discrete and stochastic and

individuals are assumed to be homogeneously mixed within each

subpopulation. No additional substructure of the population is

considered (e.g. schools or workplaces), as our aim is to introduce a

rather simple epidemic model to test the adequacy of different

commuting sources for the simulation of ILI dissemination within

a country. We therefore neglect unnecessary details that may

hinder the interpretation of results. Subpopulations are coupled by

directed weighted links representing the commuting fluxes

between two locations, thus defining the metapopulation structure

of the model [40,41]. No other type of movement is considered.

Human mobility is described in terms of recurrent daily

movements between place of residence and workplace so that

the infection dynamics can be separated into two components,

each of them occurring at each location [42]. The number of

newly infected individuals during the working time in location i is

randomly extracted from a binomial distribution considering

Siiz
P

j Sji trials (susceptible individuals living and working in

location i, Sii, and susceptible individuals living in j and working in

i, Sji) and a probability equal to the force of infection

lwork
i ~b

(Iiiz
P

j
Iji)

(Niiz
P

j
Nji)

being b the transmissibility of the disease,

Nhk and Ihk the total population and the total number of infectious

individuals living in location h and working in k, respectively.

Similarly, the infection events taking place at the resident location

during the remaining part of the day are randomly extracted from

a binomial distribution considering Siiz
P

j Sij susceptible

individuals and probability equal to the force of infection

lhome
i ~b

(Iiiz
P

j
Iij )

(Niiz
P

j
Nij )

. We model an influenza-like-illness transmis-

sion characterized by an exponentially distributed infectious

period with average m{1~3 days [43,44], and explore three

epidemic scenarios by varying the transmissibility b and corre-

sponding to the following values of the basic reproductive number

(average number of secondary cases per primary case in a fully

susceptible population [41]): R0~1:1, R0~1:5, R0~3:0, repre-

senting a mild, moderate, and severe epidemic, respectively.

Simulations are fully stochastic, individuals are considered as

integer units and each process is modeled through binomial and

multinomial extractions (more details on the simulation algorithm

are reported in Section 4 in Text S1). Each day of the simulation is

modeled with commuting movements informed by the three

sources considered for a typical working day; therefore no

weekends or holidays are envisioned in the model. Simulations

are initialized with 10 individuals localized in a given seed. As

seeds we consider the country’s capital (Lisbon, Madrid and Paris),

a peripheral location with a small population (Barrancos, Lleida

and Barcelonnette), and a medium size location, characterized by

an average population and an average number of connections

through commuting links (Braga, Jaen and Rennes). Although the

countries under study are geographically contiguous, they are

considered as independent entities since the investigated datasets

do not include refined data about cross-border commuters. A

sensitivity analysis on the role of cross-border commuting in the

spread of ILI is reported in Section 3 in Text S1.

Once a set of initial conditions is defined (mobility network, R0,

and seeding location), we simulate 1,000 stochastic realizations for

each epidemic scenario, for a total duration of 8 months. Such

timeframe is chosen as a reference estimate of the expected time

comprising the interval from the initial seeding of a pandemic

event to the international alert (approximately two months in the

Human Mobility Proxies and Epidemic Modeling
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case of the 2009 H1N1 pandemic [45]) and the average time

period needed to develop a vaccine against the circulating virus

(approximately six months) [46]. During this timeframe the value

of the basic reproductive number is kept constant, and no change

in behavior that could be self-initiated in response to the epidemic

[47,48], or imposed by public health interventions is considered,

for the sake of clarity in the comparison of the results.

Analyses
Coverage of mobile phone dataset. For each country

under study, we assess the coverage of the population in the mobile

phone dataset by calculating the national average,
P

i n
mp
i =N (with

N~
P

i Ni being the country population), and the geographic-

dependent values at the scale of the administrative units under

consideration. By rescaling for the national coverage, we thus

measure the ratio
n

mp

i

Ni

: NP
i
n

mp
i

for each region of the countries under

study. Values close to 1 would correspond to a geographic

distribution of the sample in agreement with the national

coverage. The Pearson correlation coefficient is also measured to

quantify the correlation between the census population Ni and the

rescaled population of mobile phone users n
mp
i
: NP

i
n

mp
i

across all

administrative units.

Comparison between mobile phone commuting networks

and census commuting networks. We compare the structural

and fluxes properties of the commuting networks extracted from

census surveys with those of the networks extracted from mobile

phones records, to test the quality of mobile phones data as a

proxy for commuting at national level. We analyze the topology of

the networks obtained from the two sources of data and extract the

intersection and its associated travel fluxes. We perform different

statistical tests (Spearman’s rank correlation coefficient, Lin

coefficient, and Wilcoxon test) on the correlation between

commuting flows connecting any pair of nodes in each dataset,

and between the total numbers of commuters per node in each

dataset. We also check for non-trivial correlations between the

discrepancies found in the two datasets and nodes’ populations

and distances between connected vertices. The same analysis is

run for all countries, at all resolution scales.

Comparison of the metapopulation epidemic outcomes

obtained integrating different mobility sources. In all

realizations and for each subpopulation, we keep track of the

following epidemic observables. The temporal information about

the epidemic spreading is encoded in the arrival time (ta) of the

infection at each subpopulation. The arrival time is defined as the

first day an infected individual is recorded (either as a worker or as

a resident) in a location with no previously notified cases. The

probability distribution of the arrival time and its average value are

evaluated for every location. In addition, we discount systematic

anticipation/delay effects by subtracting the average arrival time

difference SDtaT obtained from the arrival times of all nodes when

two different mobility datasets are used (e.g. mobile phone

commuting network vs. census commuting network).

The spatial diffusion of the disease is investigated through the

epidemic invasion tree representing the most probable transmis-

sion route of the infection from one subpopulation to another

during the history of the epidemic [14]. In detail, considering a

disease-free location i, as soon as Iji(t)=0 or Iij(t)=0 a directed

link between i and j is added to the invasion path, meaning that an

infectious individual traveled between the two locations importing

the infection, or that a susceptible individual acquired the infection

at the destination and then returned back to the previously

uninfected place of residence. The invasion paths collected from

every realization are successively cumulated by assigning to each

link a weight equal to the fraction of runs where a certain seeding

event has been observed; a minimum spanning tree is finally

extracted to obtain the invasion tree.

Since the stochasticity of the seeding events can induce small

weights variations in the invasion paths and thus different invasion

tree topologies, for every scenario we build 50 invasion trees, each

of them obtained from randomly selecting 400 stochastic

realizations out of the total of 1,000 run for each scenario (this

approach allows us to minimize the random fluctuations in the

final invasion tree with a limited computational effort). We then

compare the invasion trees describing the spatial spreading on

different mobility networks through the Jaccard similarity index.

Given a tree Ca(na,ja), obtained for scenario a (integrating either

the mobile phone commuting network or the radiation model

commuting network) identified by na nodes and ja edges, we

calculate the Jaccard index with the tree Cc(nc,jc) obtained from

the census commuting network as J(Ca,Cc)~ ja\jc

ja|jc
, measuring the

number of common transmission paths over the total paths. The J-

value is evaluated between all pairs of invasion trees extracted

from the scenarios under comparison on the ensembles of 50 trees

per scenario. Average values and reference ranges are calculated.

Incidence and prevalence curves are defined as the density of

newly secondary cases and density of infected individuals at every

time step. From the ensemble of 1,000 stochastic realizations,

average and reference ranges are then evaluated for every location

as well as the peak time of the epidemic.

Results

Datasets descriptive analysis
The census commuting networks for Portugal include (i)

1,643,938 commuters traveling between the 278 municipalities

through 25,634 weighted directed connections, and (ii) 469,089

commuters traveling between the 18 districts on a fully connected

network. In Spain we consider the provinces’ geographical scale

only, as constrained by the information available in the census

survey. The commuting network is formed by 47 nodes and 722

weighted directed edges, representing the daily travel flows of

537,331 commuters. The commuting networks for France are

defined at the district scale (8,019,636 commuters moving along

38,077 weighted directed edges connecting 329 nodes), and at the

department level (4,957,193 commuters for 7,994 weighted

directed links among 96 nodes). For all countries, at all scales

considered, all administrative units are included in the datasets (i.e.

they have at least one incoming or outgoing commuting flux to

another administrative unit in the country). A summary of the

basic statistics of the networks extracted from census data is

reported in Table 1.

Commuting patterns from mobile phone records are extracted

from a sample of 1,058,197 anonymous users in Portugal,

1,034,430 in Spain, and 5,695,974 in France. Records referred

to 2,068 towers in Portugal, 9,788 towers in Spain, and 18,461 in

France. Once mapped onto the administrative units, we find

452,113, 460,211 and 1,676,103 total commuters in the mobile

data samples in Portugal, Spain, and France, respectively,

corresponding to the lowest administrative hierarchy.

Population tracked by the operators’ samples is distributed

nationwide and approximately equal to 9% of the census

population in Portugal and France, and 2% of the census

population in Spain. By taking into account these scaling factors,

cell phone population correlates well with the census population at

the highest geographical resolution considered, with a Pearson

correlation coefficient between the two quantities equal to Rw0:9
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(pv0:001) for Spanish provinces, Portuguese municipalities and

French districts. Population coverage is rather uniform in France

with more than half of the districts in the interval ½0:8{1:2� of the

national coverage value (grey colored units in Figure 1), while

larger discrepancies are observed in the geographic distribution of

the tracked population in Spain and Portugal. In Spain we observe

a significant undersampling of the population in Galicia and

Basque regions. In Portugal, we observe larger regional fluctua-

tions around the national coverage value: most of the municipal-

ities report an undersampled population, whereas the region close

to the capital, Lisbon, shows an oversampling as large as 3 times

the national coverage.

Statistical comparison of commuting networks
Commuting networks obtained from census data and mobile

phone activity data share the same number of nodes at all

hierarchies considered in all countries, given that all administrative

units were covered by both datasets, however variations are

observed in the number of commuting links (Table 1). The set of

links common in both datasets in the Portugal case at the

municipality level account for about 60% of the total links of each

network and include more than 96% of the total travel flux of both

networks. Aggregating the datasets at the level of Portuguese

districts, both networks become very close to fully connected,

almost achieving a perfect overlap (more than 99% of links falling

in the intersection). Similar figures are obtained for French

districts, though the common 95% of traffic is distributed over

82% of the census links and only 52% of the mobile phone links.

Spain displays a different situation, with the census commuting

network topology being completely included into the mobile

phone one. Census commuting links represent only 37% ofT
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Figure 1. Spatial differences in coverage of the mobile phones
and census datasets. Map showing the ratio N

mp
i =Ni for each region

i of the countries under study. N
mp
i indicates the population in the

mobile phone dataset estimated as n
mp
i
: NP

i
n

mp
i

(see Materials and

Methods), and Ni represents the official census population. Values close
to unity (in grey) indicate that the coverage of the mobile phone
dataset is similar to the national coverage; larger (in red) or smaller
values (in blue) indicate that the mobile phone dataset is over or under
sampling those regions, respectively, compared to the national average.
The map was made exclusively for this manuscript and is not subject to
copyright.
doi:10.1371/journal.pcbi.1003716.g001
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connections of the mobile phone dataset, however accounting for

87% of its total traffic.

We compare the probability density distributions of the travel

fluxes wij in both networks (Figure 2), after considering the basic

normalization scaling to the population Ni of each administrative

unit (see Methods). All distributions display a broad tail and very

similar shapes in each country, and differences are observed in

particular for small traffic values. In Portugal and France, the very

weak commuting flows are not captured by the mobile phone

dataset, clearly as an outcome of the smaller users’ sample size in

the mobile phones case with respect to census. Such discrepancy

disappears when we move to larger spatial scales, as in the case of

Spain.

Restricting our analysis on the topological intersection, a side-

by-side weight comparison on each link shows a high correlation

between the two datasets (Spearman’s rank correlation coefficient

.0.7 for the largest administrative units, Table 2), however

commuting fluxes in the mobile phone network are found to be

larger than the census ones across almost the entire interval of

values (panels d-f of Figure 2). Deviations appear larger for smaller

fluxes (wc
ijƒ100 commuters) in Portugal and France, with a good

agreement for the largest values, whereas they are uniform in the

case of Spain. Similar results are obtained when we analyze the

total number of commuters leaving a given administrative unit i,
as well as the total number of incoming commuters in a given unit.

A strong correlation between the two datasets is found for both

quantities, generally independent of the level of aggregation

considered (Spearman’s coefficient .0.88 for Portugal and

France), whereas small values of the Lin’s coefficient indicate the

presence of strong differences in the absolute values for the two

datasets (,0.53 across all countries and for all administrative

levels, for both quantities, Table 2). Spain has a rather low

Spearman’s coefficient for the incoming fluxes of commuters with

respect to the other countries (0.54 vs. values .0.88), showing a

poor capacity of the mobile phone data to properly account for the

attraction of commuters of a given location.

The correlations found along the various indicators do not

ensure the statistical equivalence of the two datasets (a Wilcoxon-

test for matched pairs would reject the null hypothesis of zero

median differences between paired values of the same quantities).

We further analyze whether the observed discrepancies between

the weights in the mobile phone networks and the census networks

show any dependency on the variables that characterize the

underlying spatial and social structure, namely the Euclidean

distance between the connected nodes (calculated from the

coordinates of the administrative unit’s centroid), the population

of the origin node and the population of the destination node

(Figure 3). The overestimation of the magnitude of commuting

fluxes in the mobile phone dataset does not show a significant

dependence on the population sizes. Fluxes are instead found to be

Figure 2. Comparing the weights of the census networks and the mobile phone networks. Top: probability density distributions of the
weights (wij ) of the census commuting network (grey) and the mobile phone commuting network (red) in Portugal (a), Spain (b) and France (c).
Bottom: comparing weights in the mobile phone network (wmp) and weights in the census networks (wc) in Portugal (d), Spain (e) and France (f). Grey
points are scatter plot for each connection. Box plots indicate the 95% reference range of values within a bin.
doi:10.1371/journal.pcbi.1003716.g002
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more similar when they connect units at shorter distances with

respect to longer distances across the countries. Such variation

disappears if we consider the topological distance defined by a

neighbor joining approach (see Section 3.4 in Text S1). Spatial

aggregation into larger administrative units does not alter this

overall picture but weakens the effect observed on distance (see

details in Section 2.1 in Text S1).

If we refine the normalization of the mobile phone networks by

taking into account the total number of commuters in each

administrative unit, the agreement with the census dataset

improves in the side-by-side weight comparison on every link

(see Section 3 in Text S1). This approach allows us to explicitly

discount the systematic overestimation found with the basic

normalization, resulting in higher Lin concordance coefficients

(Table S1 in Text S1); discrepancies between mobile phone and

census data are however still observed for very small and very large

commuting flows.

Epidemic simulations
We examine whether the observed non-negligible discrepancies

in the commuting fluxes of the two datasets are also significant

from an epidemic modeling perspective, altering substantially the

outcome of disease spreading scenarios. We compare scenarios

obtained from stochastic metapopulation models equally defined

and initialized, except for the mobility data they integrate (see

Methods). In addition to the census commuting network and the

mobile phone commuting network, we also consider the synthetic

commuting network generated with the radiation model.

Epidemics starting from different seeds in the three countries,

and characterized by different values of the basic reproductive

number, yield large variations of the Jaccard index value J
measuring the similarity in the epidemic invasion paths produced

by the use of mobile phone data and of the radiation model with

respect to the census benchmark (J in ½0:1,1�, see Figure 4).

Epidemic invasion trees obtained from proxies for mobility are

more similar to the ones obtained from the model integrating

census data when the seed is located in the capital city of the

country. In addition, J increases with larger values of R0.

If the seed is instead located in a peripheral node, values of the

Jaccard similarity index fall always below 0.4 in the three

countries, and decrease with larger values of the transmissibility.

Mobile phone data performs similarly to the radiation model

once the corresponding epidemic models are seeded in a central

location, except for the case of Lisbon, and performs better or

similar when they are seeded in a peripheral location. If the

epidemic starts from a mid-size populated region, the relative

performance of the radiation model against mobile phone data in

the epidemic outcomes depends on R0, with improvements

observed as R0 increases.

To test for the role of overestimation of flows, we also performed

the same analysis by considering the refined normalization of the

mobile phone commuting data that keeps the same total number

of commuters per administrative region as in the census dataset

and explicitly discounts overestimation biases. The refined

normalization allows the mobile phone data to better reproduce

the invasion paths obtained from census commuting flows for

central and medium-type locations for all R0, and to perform

slightly worse in case the seed is located in a peripheral location

(Figure 5 for the case of France).

When focusing on the time of arrival in a given location, we find

a systematic difference between models based on proxy networks

and the benchmark model integrating census data. Mobile phone

data, overestimating the census commuting fluxes if a basic

normalization is considered, leads to a positive difference
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Dta~tC
a {tMP

a corresponding to a faster spreading (Figure 4). On

the other hand, epidemics on the radiation model tend to unfold

slower than simulations on the census network, with later arrival

times as indicated by negative values of Dta (except in the case of

France where the median of Dta is approximately equal to zero in

all cases). For small values of R0, the arrival times of simulations

running on a proxy network may be substantially different from

the ones obtained with census data, with Dta of the order of

months. While the transmission potential of the disease drives the

magnitude of the impact of the discrepancies, the role of the seed

location appears to be less relevant here than what previously

observed in the study of the invasion paths. A slightly decreasing

trend in the positive median values of Dta is observed in the mobile

phone vs. census results, going from peripheral to medium to

central location, the effect being more pronounced in Spain and in

France.

By discounting a posteriori the average anticipation of the model

built on mobile phone data, which is trivially due to the

overestimation of the census commuting fluxes, we find a very

good correlation between arrival times for the models built on the

census network and on the mobile phone network, with most of

the points lying close to the identity line (Lin concordance

correlation coefficient ranging from 0.77 to 0.88, panels c, f and i

of Figure 4). If we consider the refined normalization, anticipation

effects produced with the mobile phone data are preserved but

reduced in magnitude (Figure 5).

Epidemic peak times are also affected by the different

distributions of commuting flows in the two networks (see

Section 2.2 in Text S1). As soon as the disease reaches most of

the nodes, the epidemic model integrating the mobile phone

network displays a more homogeneous behavior, with epidemic

peaks that follow very shortly after each other in all the

subpopulations, while peak times in the census networks span a

wider time frame.

On coarser spatial scales (Portuguese districts, French depart-

ments), we obtain a higher similarity between simulated results

with proxies vs. census (see Section 2.1 in Text S1), closer to the

results observed for Spanish provinces. The performance of the

epidemic model built on the radiation is noticeably poorer than

the mobile phone network if we consider the coarse-grained scale,

for all seeds but the capital. The differences between arrival times

are generally reduced by the coarse-graining, but remain

significant when the reproduction number is small (Dta ranging

between 0 and 120 days).

Discussion

Next to traditional census sources or transportation statistics,

several novel approaches to quantifying human movements have

become recently available that increase our understanding of

mobility patterns [21–28,49–52]. Adequately capturing human

movements is particularly important for improving our ability to

simulate the spatiotemporal spread of an emerging disease and

Figure 3. Effects of geography and demography on commuting fluxes. Panels show the ratio between the weights of the mobile phone
networks wmp and the census networks wc in Portugal (top panels), Spain (middle) and France (bottom), as function of the Euclidean distance
between nodes (a, d and g), the population of origin (b, e, and h) and the population of destination (c, f and i). The solid red line indicates the unit
value.
doi:10.1371/journal.pcbi.1003716.g003
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enabling advancements in our predictive capacity [53,54].

Previous work has focused on testing mobility models’ perfor-

mance in reproducing the movements of individuals [18,19], and

its impact on epidemic simulation modeling results when fully

supported by data [19]. The full knowledge of mobility data from

national statistics is however largely limited to few regions of the

world [14], whereas in many others it may not be routinely

collected nor accessible. If mobility models often require

aggregated input data from national statistics on movement habits

[18] or the full mobility census database [19] for the fitting

procedure, mobile phone data may be thought as an ideal

alternative candidate for a proxy of human movements in absence

of (complete and/or high-resolution) mobility data from official

sources [24,26,27].

To systematically test this hypothesis exploiting the full

resolution of both the proxy data and the official census data for

commuting, we have compared these two datasets in three

European countries and performed a rigorous assessment of the

adequacy of proxy commuting patterns – extracted from mobile

phone data or synthetically modeled – to reproduce the

spatiotemporal spread of an emerging ILI infection.

Mobility data from mobile phones is able to capture well the

fluxes of the commuting patterns of the countries under study,

reproducing the large fluctuations in the travel flows observed in

the census networks. In all countries the intersection between the

two networks includes the vast majority of the commuting flows

and the correlation measured on links’ traffic and nodes’ total

fluxes of incoming or outgoing commuters is high (though not

statistically equivalent). This suggests that mobile phone data can

be used as a surrogate tracking the commuting patterns of a given

country, identifying the relative importance of its mobility

connections in terms of flows’ magnitude, with a resolution that

is equivalent to the one adopted by official census surveys or

higher. This is a particularly relevant result for data-poor

situations, where census data may not be available and official

statistics may not be enough to correctly inform a mobility model.

Figure 4. Epidemic spreading. Comparing the epidemic behavior on the census network and two proxy networks, mobile phone (red symbols)
and radiation model (blue symbols), in Portugal (top panels), Spain (middle) and France (bottom). a, d, g Jaccard similarity index measured between
the epidemic infection tree of the census network and the infection tree of the proxy network, for three values of the basic reproduction number R0 .
Each symbol corresponds to a different initial infection seed, displayed on the map (right panels). b, e, h Differences between the arrival times in the
census network and in the proxy network, for different values of R0 and infection seed. Box plots indicate the 90% reference range, measured on all
the network nodes. c, f, i Comparing the arrival times in the mobile phone network tmp

a with those in the census network tc
a , for R0~1:5 and the

epidemic starting from the capital city. Red points are scatter plot for each node of the network and we subtracted the average systematic difference
SDtaT from each tmp

a .
doi:10.1371/journal.pcbi.1003716.g004
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Discrepancies are however found, especially in the overesti-

mation of commuting flows per link and in the larger variations

observed for weaker flows and longer distances, that appear to be

responsible for the differences observed in the simulated

epidemics.

Epidemics run on mobile phone commuting networks repro-

duce well the invasion pattern simulated on the census commuting

when the seed is located in a central location and R0 is large. The

capital city is indeed strongly connected to the rest of the country;

therefore it behaves as a potential seeder of the direct transmission

to the majority of the other cities, leading to very similar star-

shaped infection trees from the seed. These rather similar sets of

infected locations at the first generation of the invasion path

provide a twofold contribution to the increase of J : on the one

side, they correspond to a large fraction of the total number of

infected subpopulations, so they contribute a large relative weight

in the computation of J; on the other, common infected locations

are likely to maintain the similarity of the invasion paths at the

second generation too, repeating the process in an avalanche

fashion. Such behavior becomes increasingly stronger as R0 grows

larger.

The opposite situation is instead found when seeds are located

in peripheral nodes, reporting low values of the Jaccard index. The

analysis of the commuting networks has indeed shown that larger

discrepancies exist for small weights. Once considered in the

framework of an epidemic propagation, such discrepancies are

expected to lead to strong differences in the invasion already at the

first generation of infected locations. If these locations directly

infected by the seed strongly differ, their contribution to the

decrease of the similarity of the invasion paths will become

increasingly stronger for further generations: different nodes are

infected and likely different neighbors of those nodes will be

affected by the disease, so that deviations cumulate at each

successive step of the invasion (Figure 6).

Diseases with a higher transmission potential would enhance

this behavior, as with a large value of R0 the peripheral seed can

more quickly infect a large fraction of the system in the mobile

phone network, than in the census dataset. Such effect is also

present in the radiation model that is not able to describe the

epidemic behavior better than the mobile phone data when the

seeding location is characterized by a small population or degree.

Not being able to capture well the mobility coupling between

peripheral regions and the rest of the country, the radiation model

misses most of the seeding events on long distances even when R0

is large (Figure 6). Using a synthetic proxy is therefore not always

preferable to data alternatives, and mobile phones appear to be

more reliable in matching the spatial epidemic spread starting

from peripheral locations.

A clear bias, which is observed consistently across all countries

and for all resolution scales considered, is the faster rate of spread

of the simulation based on the mobile phone commuting network

with respect to the census one. This is clearly induced by the larger

commuting flows obtained following the extraction of commuting

patterns from mobile phone data using a basic normalization. The

effect is stronger for R0~1:1 as it is enhanced by the intrinsic large

fluctuations characterizing epidemics close to the threshold. In

such scenarios, even relatively small differences between networks’

topologies can strongly alter the invasion path of the disease,

consistently with the results of previous work on the effect of

network sampling on simulated outbreaks [53]. Increasing the

value of the reproduction number leads to narrower Dta ranges,

because the larger disease transmissibility accelerates the spread-

ing, synchronizing the epidemic behavior at distant locations and,

in general, reducing the system’s heterogeneity.

Time of arrival of the infection in a given location is better

matched by the epidemic model built on the radiation model,

though with large fluctuations for small values of R0. However, it is

important to keep in mind that the total number of commuters per

administrative unit is an input of the radiation model and no

overestimation effects, as the ones resulting from the use of mobile

phone data in the basic normalization approach, are possible in

the model. If we inform the extraction of commuting patterns from

mobile phone data with the same input data of the radiation

model, i.e. through the refined normalization, predictions on the

time of arrival consistently improve with respect to the basic

normalization approach. Fixing the total number of commuters

equally in the two datasets is however not enough to obtain an

equivalent picture in terms of arrival times, as a considerable

anticipation for small values of the transmissibility is still observed.

These results need to be taken into account when considering

epidemic simulations integrating mobility proxies, as a high

accuracy in predicting arrival times can be used for assessing the

Figure 5. Epidemic spreading considering the refined normalization. Comparing the epidemic behavior of mobile phone proxy vs. census,
when basic and refined normalization are considered. Only the case of France is shown. a Jaccard similarity index of the epidemic infection tree. Each
symbol corresponds to a different initial infection seed, displayed on the map (on the right). b Differences between the arrival times in the census
network and in the proxy network, for different values of R0 and infection seed. Box plots indicate the 90% reference range, measured on all the
network nodes. c Arrival times in the mobile phone network tmp

a compared with those in the census network tc
a , for R0~1:5 and the epidemic starting

from the capital city. Red points are scatter plot for each node of the network and we subtracted the average systematic difference SDtaT from each
tmp
a .

doi:10.1371/journal.pcbi.1003716.g005
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epidemic situation at the source of the infection, estimating

important epidemiological parameters during the early phase of

the outbreak in a backtracking fashion [11,45,54].

Nodes ranking according to time to first infection also improve

in the epidemic simulations based on the refined normalization

with respect to the baseline one. The similarity in the invasion

paths equals (or even improves) the levels reached once the

radiation model is considered. Similar results are therefore

obtained from two different sources however employing the same

type and amount of input data (for calibration/normalization).

Jaccard index values display anyway the presence of important

differences in the way the epidemic propagates on proxies with

respect to census, being Jw0:7 only when the outbreak is seeded

in Paris.

Effects of flows overestimation are visible in the analysis of the

epidemic peaks too, but less prominent. The larger number of

commuters that travel in the mobile phone networks tends to

synchronize the epidemic peak between different subpopulations,

leading to shorter overall timespan for all subpopulations to peak

in the mobile phone case with respect to census. Differences

between the datasets mostly range in a time interval of 2–3 weeks,

a time resolution that still allows a meaningful comparison of

epidemic results with the average reporting period of standard

surveillance systems.

In the case of France and Portugal we have also studied multiple

hierarchical levels of the administrative units, by aggregating both

datasets. Overall, our analysis indicates that the epidemic behavior

on aggregated proxy network better matches the results obtained

on census data, with respect to higher resolution level. This is

however obtained at the cost of studying the epidemic on a lower

geographic resolution, which would then provide less information

on the predicted time course of the epidemic and may compromise

our ability to use models to extract valuable public health

information for epidemic control [54]. On the other hand, the

radiation model displays an opposite behavior when aggregating

on space. This suggests that at each scale of resolution there exists

an optimal proxy for the description of the spatial spread of an

infectious disease epidemic, similar to what observed in a

comparison of mobility models [55].

The overall picture we presented clearly shows that proxies

integrated into epidemic models can provide fairly good estimation

of the ranking of subpopulations in terms of time to first infection.

A good agreement in the simulated arrival times is intrinsically

related to proxies’ calibration and normalization aspects, and

observed biases can be reduced by using additional information,

such as the knowledge of the total number of commuters in each

location. On the other hand, the most probable path of infection

from one subpopulation to another appears to be affected by more

substantial discrepancies between the different sources of data or

synthetic flows that cannot be overcome through a simple

normalization. To further improve predictions on the path of

invasion, we would need to comprehensively understand the

causes behind the differences observed in the data analysis. These

are inevitably related to the methods used to account for the

Figure 6. Epidemic invasion trees. The full invasion trees for R0~3:0 are shown for Portugal (top row) and France (bottom row) in the cases of
the census network (a, d), the mobile phone network (b, e) and the radiation network (c, f). Seeds of the simulations (black nodes) are Lisbon for
Portugal and Barcelonnette for France. Nodes belonging to the first shell of the tree, i.e. those directly infected from the seed are fully colored. Grey
nodes have been infected by secondary infected nodes.
doi:10.1371/journal.pcbi.1003716.g006
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population sample considered in the mobile phone data and to

define the commuting mobility per user.

First, in extracting the commuting behavior of each user from

mobile phone data we necessarily have to make assumptions on

the identification of home and work locations (in absence of

metadata on the user). If we identify these two locations as the two

most visited ones [22], by definition, we are assuming that place of

residence and place of work are two distinct locations, yielding that

every mobile phone user is a commuter at the resolution level of

the cell phone towers. Once aggregated at a larger scale (i.e. the

various administrative units under consideration), we obtain a

population made of individuals living and working in the same unit

(non-commuters) and of individuals commuting between two

different units. While aggregation leads to a certain fraction of

non-commuters, the resulting commuting behavior – expressed by

the ratio of commuters vs. non-commuters – is anyway more

pronounced likely because of the intrinsic assumption made on the

original identification of home/work locations from the data.

Different choices can be made that can improve the correct

identification of home/work locations, leveraging on the avail-

ability of additional data. If timing of the call activity is provided,

one possible refined definition would be to identify as home

location the tower cell with the largest activity during nighttime,

and the work location as the one with the largest activity

constrained to daytime (with variations of the definition of these

intervals) [32,33,38,56]. We tested this approach in the Portuguese

dataset and found that the identification of the two locations was

not substantially altered by the time-constrained definition chosen,

and did not affect our results (see Text S1).

Increasingly sophisticated approaches can also be envisioned,

based on clustering methods applied to calling behavior [57,58].

In addition to the need for access to the metadata associated to

the activity data, results from time-constrained or clustering

methods may anyway be affected by biases induced by users’

call plans (influencing the pattern of calls to given timeframes

during the 24 h or depending on the day of the week, e.g.

weekday vs. weekend), job types (altering the expected timing

pattern of call activity from work), and more generally the

definition of normal business hours that may have a strong

cultural component.

Second, our basic normalization may be too simplistic, thus

inducing strong overestimation because the population sampled

through the mobile phone data is not representative of the general

population, being characterized by specific different features

affecting the resulting mobility behavior. Biases may be induced

by mobile phones ownership, with fluctuations strongly dependent

on socio-economic status [31,58], and by market share of the

specific operator providing the data, In Spain, for example, the

strong undersampling of the population in Galicia and Basque

region, characterized by a strong political and cultural identity,

may be due to the presence of local operators that account for a

larger market share than what observed at national level. In

Portugal, we observe larger fluctuations per region around the

average national coverage than in other countries. Predictions for

the invasion path obtained with mobile phones for epidemics

starting in the capital of the country are not in good agreement

with those obtained with census flows (Jv0:5, Figure 4). In this

case, the central role of the capital, responsible for leading to

higher similarity as discussed before, is reduced by the presence of

larger (and overestimated) flows connecting less central regions in

the mobile phone dataset. This leads to the creation of leaves

stemming from peripheral nodes and infecting the closest

neighbors, thus strongly reducing the role of the seed in infecting

the large majority of nodes at the first generation of invasion. This

phenomenon is effectively similar to the one encountered when the

epidemic is seeded in a peripheral location.

Small-scale studies targeting specific populations (such as e.g. a

city or a college town) with additional metadata accompanying the

activity records may possibly shed more light in the identification

of such biases.

In poorer countries these effects are expected to be of a larger

magnitude, given that mobile phone users still represent a

privileged minority of the population [31]. Recent work has

however showed that mobility estimates in Africa are very robust

to biases in phone ownership [59].

The introduction of a refined normalization to account for the

non-representative nature of the mobile phone sample fixes the

total number of commuters equally in the two datasets and leads to

an improvement of the comparison of the commuting fluxes on a

link-by-link basis. Discrepancies on traffic flows along links are

however still observed that are responsible for differences in the

resulting epidemic observables, even though the overall systematic

overestimation obtained with the basic normalization has been

discounted. Increasingly sophisticated approaches can be devel-

oped that use iterative proportional fitting, fixing two marginal

values that need to be assumed, i.e. the total numbers of incoming

commuters and of outgoing commuters per location (or additional

data, such as points of interest in the case of intra-city commuting)

[60]. Knowledge of these quantities may however not be largely

accessible across different regions of the world.

Third, there may be inconsistencies in the definition of

commuting for both datasets, or differences in the year of

collection of each dataset. We have no information on users’ age

in the mobile phone dataset, therefore movements for work or

study are both tracked in users’ trajectories. Commuting for study

reasons is included in the Portuguese and French census data,

whereas Spain reports about workflows only. The impact of not

considering students’ commuting in the Spanish case is however

estimated to be rather low. Spanish data is indeed collected at a

high administrative level (provinces), where students’ commuting

flows may be very weak given that they are usually more localized

than those of workers. Data from France shows that 95% of

students (aged,15) travel on distances less than 10 km [4]. To

estimate the impact of missing students in the Spanish dataset on

the province scale, we examined the fraction of commuter

movements of students in the French census commuting network

aggregated at the level of regions, i.e. similar to the size of Spanish

provinces. In France, students represent about 10% of the total

commuting flows across regions. If we assume a similar statistics

for Spain too, such ratio is not sufficient to explain the discrepancy

observed between the normalized mobile phone commuting flows

and the census commuting flows in Spain (Table 1). In addition,

the lack of a portion of individuals in the dataset (e.g. students)

would have no impact when using the refined normalization

because, in that case, the total number of commuters is set to be

equal in both data sets by definition.

Discrepancies in the year of data collection for the two sources

range from two years for Spain (2005 is the year of collection of

census data, 2007 the year of collection of phone data) to five years

for Portugal (2001, 2006). In the case of France, the two datasets

belong to the same year (2007). To assess the possible changes in

commuting flows with time, we analyzed French yearly data

between 2006 and 2009, given their availability (see Table S1 in

Text S1). In three years, the total number of commuters in the

country increased by about 3%, and every year, the total number

of commuters increased by 1% or less. Assuming that similar

trends apply to the other countries, we conclude that the total

census commuting flows of Spain and Portugal may have
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increased by 2% and 5%, respectively, a difference being much

smaller than the average discrepancy observed between census

data and mobile phone data.

Finally, the epidemic model considered adopts some approx-

imations that we would like to discuss in the following. Even if

countries under consideration belong to a contiguous area in

continental Europe, numerical simulations for the epidemic

spread were performed for each country in isolation. This choice

is driven by the lack of mobile phone data for cross-border

movements (given their national nature), and by the negligible

fraction of commuting across countries with respect to national

commuting (about 780,000 people in the EU, including EEA/

EFTA, were cross-border commuters in the year 2006/2007 [61]

over a total of more than 100 million national commuters). For

the sake of completeness, we also checked our results against the

inclusion of cross-border commuting in the census network of

France, where international movements are predominant in a

subset of districts (for instance, in those bordering Switzerland).

Results reported in Text S1 show that including cross-border

movements in the census commuting networks does not

significantly alter the simulated epidemic patterns, keeping our

conclusions unchanged.

The modeling approach we proposed was fairly simple and did

not consider additional substructure of the population, interven-

tions, change of behavior or weekend vs. weekday movements.

Our aim not being to reproduce historical epidemics, we chose to

include only the basic ingredients that were the object of the

analysis in order to achieve a clearer understanding and

interpretation of results. Simulations were performed assuming a

continuous series of working days, given the purpose of the study

and the knowledge that the inclusion of weekend movements has

little or no effect in the resulting epidemic profile [42]. To apply

this framework to real case studies, more refined compartmental

models, movements and interactions between individuals may

need to be considered.

Our study was performed on three European countries, and we

expect that our conclusions are applicable to other developed

countries in the world characterized by similar cultural, social, and

economic profiles.

Our approach for the extraction of commuting patterns from

mobile phone data was based on minimal assumptions in order to

facilitate its generalizability in other settings where data knowledge

may be limited or completely absent. Further work is necessary to

extend this work to the analysis of the adequacy of mobile phone

data as proxy for human mobility in underdeveloped countries

where cultural and socio-economic factors may affect differently

the biases here exposed. We also note that diseases other than ILI

may be of higher interest for these regions, and in that case the

relevant mobility mode and epidemic model would need to be

updated in the approach we presented.

For instance, the transmission of the disease under study may

be strongly affected by seasonal forces, such as the variations in

human density and contact rates due to agricultural cycles that

drive the spatial spread of measles in Niger [62], or other

factors, such as poor sanitation standards that were linked to the

persistence of the poliovirus in India [63]. Also, long-term

migration may play a more significant role than commuting

movements in the spread of the polio virus. On the other hand,

the concern for the emergence of new infectious diseases with

pandemic potential, as in the recent cases of the H7N9 flu in

China [64] and the MERS-CoV virus in the Middle East

[65,66], is significant for developing countries as well, given they

may have access to fewer resources for preparedness and

control. In this context, our work can provide useful insights for

the development of epidemic models for the spatial spread of

such rapidly disseminated directly transmitted emerging

diseases.

Supporting Information

Dataset S1 We provide the mobile phone commuting dataset in

.zip format containing the OD matrices extracted from the mobile

phone data at the highest geographical resolution in Portugal,

Spain and France. Specific information about the format of the

data is inside the archive file.

(ZIP)

Text S1 The file contains: additional information on data sources

(Section 1). Additional results for lower geographic resolutions and

epidemic peak times (Section 2). Sensitivity analysis on cross-border

commuting, refined definitions of workplace and residence, refined

normalization of phone data (Section 3). Additional details on the

simulation algorithm (Section 4).

(PDF)
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47. Funk S, Salathé M, Jansen VA (2010) Modelling the influence of human
behaviour on the spread of infectious diseases: a review. J Roy Soc Interface

7(50):1247–1256. doi:10.1098/rsif.2010.0142

48. Meloni S, Perra N, Arenas A, Gomez S, Moreno Y, et al. (2011) Modeling

human mobility responses to the large-scale spreading of infectious diseases. Sci
Rep 1:62. doi:10.1038/srep00062

49. Stoddard ST, Morrison AC, Vazquez-Prokopec GM, Paz Soldan V, Kochel TJ,
et al. (2009) The role of human movement in the transmission of vector-borne

pathogens. PLoS Negl Trop Dis 3(7) : e481. doi:10.1371/journal.pntd.0000481.

50. Vazquez-Prokopec GM, Stoddard ST, Paz-Soldan V, Morrison AC, Elder JP, et

al. (2009) Usefulness of commercially available GPS data-loggers for tracking
human movement and exposure to dengue virus. Int J Health Geogr 8:68.

doi:10.1186/1476-072X-8-68

51. Bharti N, Tatem AJ, Ferrari MJ, Grais RF, Djibo A, et al. (2011) Explaining

seasonal fluctuations of measles in Niger using nighttime lights imagery. Science
334: 1424–1427.

52. Lu X, Wetter E, Bharti N, Tatem AJ, Bengtsson L (2013) Approaching the Limit
of Predictability in Human Mobility. Sci Rep 3:2923. doi:10.1038/srep02923

53. Dalziel BD, Pourbohloul B, Ellner SP (2013) Human mobility patterns predict
divergent epidemic dynamics among cities. Proc R Soc B Biol Sci 280(1766):

1471–2954. doi: 10.1098/rspb.2013.0763.

54. Tizzoni M, Bajardi P, Poletto C, Ramasco JJ, Balcan D, et al. (2012) Real-time

numerical forecast of global epidemic spreading: case study of 2009 A/
H1N1pdm. BMC Medicine 10:165.

55. Cross PC, Caillaud D, Heisey DM (2012) Underestimating the effects of spatial
heterogeneity due to individual movement and spatial scale: infectious disease as

an example. Landscape Ecol, 28: 247–257.

56. Isaacman S, Becker R, Caceres R, Kobourov S, Martonosi M, et al. (2011).

Identifying Important Places in People’s Lives from Cellular Network Data. In:
Lyons K, Hightower J, Huang EM, editors. Pervasive Computing, 9th

International Conference, Pervasive 2011, Proceedings. Springer Berlin
Heidelberg. 133–151 p.

57. Csaji BC, Browet A, Traag VA, Delvenne J-C, Huens E, et al. (2013) Exploring
the mobility of mobile phone users. Physica A 392:1459.

58. Soto V, Frias-Martinez V, Virseda J, Frias-Martinez E (2011) Prediction of
Socioeconomic Levels Using Cell Phone Records. In: Konstan JA, Conejo R,

Marzo JL, Oliver N, editors. User Modeling, Adaption and Personalization.
19th International Conference UMAP Proceedings. Springer Berlin Heidelberg.

pp. 377–388.

59. Wesolowski A, Eagle N, Noor AM, Snow RW, Buckee CO (2013) The impact of

biases in mobile phone ownership on estimates of human mobility. J R Soc

Interface 10: 20120986.

60. Bishop YMM, Fienberg SE, Holland PW (1975) Discrete Multivariate Analysis:
Theory and Practice. MIT Press.

61. MKW Wirtschaftsforschung GmbH & Empirica Kft (2009) Scientific Report on
the Mobility of Cross-Border Workers within the EU-27/EEA/EFTA

Countries. Final report to the European Commission. Available at: http://ec.
europa.eu/social/BlobServlet?docId = 3459&langId = en

62. Ferrari MJ, Djibo A, Grais RF, Bharti N, Grenfell BT, et al. (2010) Rural–urban
gradient in seasonal forcing of measles transmission in Niger. Proc R Soc B Biol

Sci 277: 2775–2782. doi: 10.1098/rspb.2010.0536

63. Grassly NC, Fraser C, Wenger J, Deshpande JM, Sutter RW, et al. (2006) New

Strategies for the Elimination of Polio from India. Science 314: 1150–1153.

64. Gao R, Cao B, Hu Y, Feng Z, Wang D, et al. (2013) Human infection with a

novel avian-origin influenza A (H7N9) virus. N Engl J Med 368(20):1888–97.
doi:10.1056/NEJMoa1304459

65. Corman V, Eckerle I, Bleicker T, Zaki A, Landt O, et al. (2012) Detection of a
novel human coronavirus by real-time reverse-transcription polymerase chain

reaction. Euro Surveill 217: 20285

66. Poletto C, Pelat C, Levy-Bruhl D, Yazdanpanah Y, Boëlle P-Y, et al. (2014)
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