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Hospitalier Pitié-Salpêtrière, Service de Maladie Infectieuse, Paris, France

Abstract

Background: Cutaneous leishmaniasis is caused by several Leishmania species that are associated with variable outcomes
before and after therapy. Optimal treatment decision is based on an accurate identification of the infecting species but
current methods to type Leishmania isolates are relatively complex and/or slow. Therefore, the initial treatment decision is
generally presumptive, the infecting species being suspected on epidemiological and clinical grounds. A simple method to
type cultured isolates would facilitate disease management.

Methodology: We analyzed MALDI-TOF spectra of promastigote pellets from 46 strains cultured in monophasic medium,
including 20 short-term cultured isolates from French travelers (19 with CL, 1 with VL). As per routine procedure, clinical
isolates were analyzed in parallel with Multilocus Sequence Typing (MLST) at the National Reference Center for Leishmania.

Principal Findings: Automatic dendrogram analysis generated a classification of isolates consistent with reference
determination of species based on MLST or hsp70 sequencing. A minute analysis of spectra based on a very simple,
database-independent analysis of spectra based on the algorithm showed that the mutually exclusive presence of two pairs
of peaks discriminated isolates considered by reference methods to belong either to the Viannia or Leishmania subgenus,
and that within each subgenus presence or absence of a few peaks allowed discrimination to species complexes level.

Conclusions/Significance: Analysis of cultured Leishmania isolates using mass spectrometry allows a rapid and simple
classification to the species complex level consistent with reference methods, a potentially useful method to guide
treatment decision in patients with cutaneous leishmaniasis.
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Introduction

Cutaneous leishmaniasis (CL) affects 1.5 million patients each

year and displays a wide spectrum of clinical forms from small self-

resolving papules to severe destructive mucosal lesions. The

infecting Leishmania species influence the clinical presentation of

CL [1] but lesion characteristics are not specific enough for a

robust species determination in a given patient [2–4].While 2

species of the Leishmania subgenus - L. major and L. mexicana - are

associated with frequent spontaneous cure within a few months

[3], the 2 main species of the Viannia subgenus – Leishmania

braziliensis and L. panamensis/guyanensis are associated with a 1–15%

risk of delayed mucosal metastasis [5]. Considering the variable

severity of CL, recent guidelines recommend using local therapy

whenever possible and systemic therapy if local therapy fails or

cannot be performed [3,6,7]. This step-wise decision process

integrates not only lesion number and size, patients status (age and

co-morbidities), but also the infecting species [8].

The influence of the infecting Leishmania species on treatment

outcome is well established [4,9,10]. Thus, species identification is

important to determine the clinical prognosis and to select the

most appropriate therapeutic regimen. In current clinical practice,

treatment decision is generally presumptive, the infecting species

being suspected on epidemiological and clinical grounds [3] but

this approach requires a specific clinical expertise and frequently

updated knowledge of the geographic distribution of Leishmania
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species [3]. A simple, rapid method to type cultured isolates would

facilitate an easier and more robust treatment decision based on

confirmed species identification.

Available methods to type Leishmania in cultured isolates or

directly in lesions are still complex and poorly standardized. At

present, isolation of the parasite in culture is necessary for

identification by multilocus enzyme electrophoresis (MLEE),

which has long been the reference for Leishmania species

identification [11] [12] [13]. Only a few specialized centers

currently perform MLEE, the result of which is available several

weeks after the isolation of the parasite in culture. These difficulties

have led to the development of molecular methods for species

identification, generally based on DNA amplification by PCR,

followed by single or multilocus sequencing (MLST) or restriction

fragment length polymorphism analysis [14] or single strand

conformation polymorphism or sequencing of different targets

including the heat shock protein 70 (hsp70) gene [15,16]. Some of

these methods can be applied directly to biological samples

avoiding the parasite culture step [17]. However, these molecular

methods lack inter-laboratories standardization and require the

use of expensive reagents.

Matrix-assisted laser desorption ionization–time-of-flight

(MALDI-TOF) mass spectrometry (MS) has emerged as a

powerful tool for the identification of microorganisms. Using

MALDI-TOF MS, the protein spectral ‘‘fingerprint’’ of an isolate

is compared to a reference spectral database, yielding results

within 1 hour [18]. Although spectrometers are still relatively

expensive, the initial investment is justified by a broad use

spanning a wide diversity of microbiological samples [19], and the

cost of reagents is very limited. This approach has been applied

with success to bacteria, yeasts and filamentous fungi, but to our

knowledge, no study on direct identification of protozoans has

been published yet [20–23]. We have investigated the value of

mass spectrometry MALDI-TOF for the identification of Leish-

mania species in patients with CL.

Materials and Methods

Medical care and parasite collection
From 2011 through 2013, data and samples were collected each

time treatment advice was sought from an expert at our hospital

for patients with CL. Diagnosis procedures were not modified by

the process, expert treatment advice was part of normal medical

care, data and sample collection was in the context of national

health surveillance. Patients were informed of the process by their

attending physician using a procedure common to all French

National Reference Centers (NRC) (http://www.parasitologie.

univ-montp1.fr/doc/Declaration_pub_2011.pdf). Data were ob-

tained through the standard reporting form of the NRCL. This

form is available online and is anonymous and the anonymisation

process is irreversible. The following characteristics are provided

on the form: age (children defined as ,16 years), sex, clinical form,

and for CL or MCL: number of lesions, the presumed place of

infection. The collection of parasite isolates was performed in the

context of this surveillance program.

Parasitological confirmation of diagnosis – Species
identification

Parasitological diagnosis was performed and analyzed as

previously described by lesion scraping, biopsy or aspirate followed

by direct examination of Giemsa-stained smears, histological

analysis of HES- or Giemsa-stained tissue sections, culture or PCR

[24]. To increase the robustness of the analysis, 10 New World

isolates were obtained from the Tropical institute in Antwerpen

(ITM, Belgium), all strains were re-suspended in 10% glycerol and

stored in liquid nitrogen until use.

Parasite culture
Needle aspirate of skin lesions was performed under local

anesthesia then cultured in both Nicolle-McNeal-Novy (NNN)

medium and Schneider medium supplemented with 20% fetal calf

serum, penicillin and streptomycin [25]. Cultures were kept at

25uC and observed under an inverted microscope in search for

motile promastigotes, twice a week for 1 month. Each week

positive culture was expanded in 20 mL glass bottles with

Schneider medium (20% fetal calf serum, penicillin and strepto-

mycin), one part was frozen in liquid nitrogen 280u, and the other

was used for species identification. Aliquots were thawed

immediately at 37u, re-suspended in 5 ml of Schneider medium

(20% FCS, penicillin streptomycin) and incubated à 27uC.

Subcultures were counted daily and analysed at the end of 3-day

growth period (growth period being defined à. =63 fold

multiplication over 3 day), a growth curve was established for

each isolate to perform the proteomic analysis during the

exponential growth or early stationary phase. For Leishmania

strains isolated only in NNN medium, promastigotes were

concentrated by centrifugation (2500 rpm610 minutes) and

resuspended in 20% HS Schneider medium 24–72 hours before

proteomic analysis.

Molecular identification
Positive cultures were sent to the NRCL for confirmation and

species identification using a multilocus sequence typing (MLST)

approach based on the analysis of seven single copy coding DNA

sequences [26]. Isolates from ITM had already been typed by hsp

70 sequencing [15,16].

Sample preparation for MALDI-TOF MS
Promastigote suspensions from the expanded cultures were

centrifuged 3000 g for 3 minutes and the supernatant removed

before the pellet was washed twice in pure water, the pellet was

then re-suspended in 300 mL of pure water before adding 900 mL

of ethanol. After another round of centrifugation, 10 mL of 70%

formic acid and 10 mL pure acetonitrile were added to the residual

Author Summary

Cutaneous leishmaniasis is a disease due to a small
parasite called Leishmania. This parasite causes disfiguring
skin lesions that last for months or years. There are many
different subtypes of Leishmania, each giving rise to
lesions of different severity and responding to therapies
in its own way. Treating physicians must know as soon as
possible which subtype of Leishmania is involved to
propose the best treatment. Because it is impossible to
differentiate the Leishmania subtypes microscopically, the
identification of the culprit subtype currently requires
complex and expensive typing methods, the results of
which are generally obtained several weeks after the
diagnosis. Here, we have evaluated the ability of a new
method using mass spectrometry to differentiate Leish-
mania subtypes. Our results were consistent with those
provided by reference typing methods and were obtained
rapidly after the parasite had been cultured in vitro. This
new method may help physicians know very soon which
Leishmania subtype is involved thereby facilitating treat-
ment choice.

Mass Spectrometry for Leishmania
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pellet and the subsequent solution was repeatedly and thoroughly

vortexed before a final centrifugation. Each centrifugation step

was performed at 10 000 g for 2 min at room temperature.

MALDI-TOF mass spectrometry
The supernatant was distributed (0.5 ml droplet) in duplicates on

a MALDI ground steel sample slide (Bruker-Daltonics, Bremen,

Germany) then air-dried. The a-cyano-4-hydroxy-cinnamic acid

(CHCA) matrix (Bruker-Daltonics), prepared at a concentration of

50 mg/ml in 50% acetonitrile and 50% water with 2.5% TFA,

was sonicated for 5 min before being spotted (0.5 ml) over the

dried sample. A DH5-alpha Escherichia coli protein extract (Bruker-

Daltonics) was deposited on the calibration spot of the sample slide

for external calibration. MALDI analysis were performed on a

BrukerAutoflex I MALDI TOF mass spectrometer with a nitrogen

laser (337 nm) operating in linear mode with delayed extraction

(260 ns) at 20 kV accelerating voltage. Each spectrum was

automatically collected in the positive ion mode as an average of

500 laser shots (50 laser shots at 10 different spot positions). Laser

energy was set just above the threshold for ion production. A mass

range between 3,000 and 20,000 m/z (ratio mass/charge) was

selected to collect the signals with the AutoXecute tool of

flexcontrol acquisition software (Version 2.4; Bruker-Daltonics).

Only peaks with a signal/noise ratio .3 were considered. Spectra

were eligible for further analysis when the peaks had a resolution

better than 600. For each cultivation condition, we collected mass

spectra from 2 biological replicates and 4 technical replicates.

Data processing
Data were processed with Biotyper version 1.1 (Bruker-

Daltonics) and ClinProTools 3.0 (bruker-Daltonics) as described

[18]. ClinProTools software was used to visualize all spectra as

virtual gels and to calculate variability for each of the defined

markers. The Biotyper software performs smoothing, normalisa-

tion, baseline subtraction, and peak picking using default

parameters. Strain comparison was done by principal component

analysis (PCA) [27]. Distance values were calculated using

Biotyper to build score-oriented dendrograms. Based on these

distance values, a dendrogram was generated using the according

function of the statistical toolbox of Matlab 7.1 (The MathWorks

Inc., USA), which was integrated into Biotyper 1.1. The clustering

approach is based on similarity scores implemented in the

software.

Reproducibility was evaluated by comparing spectra ob-

tained from two independent experiments for each strain. The

repeatability and stability of the profiles over generations was

tested using a series of extracts obtained from subcultures. One

strain was maintained in 2 separate cultures then analyzed in

duplicate every 72 h over 5 weeks.

Results

Of the 46 isolates analyzed, 25 (54%) were from the Old World

and 21 (46%) from the New World (Table 1). L. major was

predominant among Old World isolates (16 isolates/64%),

followed by L. donovani (3/12%), L. tropica (3/12%), L. infantum

(2/8%), and L. killicki (1/4%). One additionnal isolate from a

patient with diffuse cutaneous leishmaniasis acquired in Martini-

que (French West Indies) related to a trypanosomatid described

previously in a very small number of patients [28,29] was also

analyzed. L. braziliensis/L. peruviana were predominant among New

World isolates (13 isolates/62%), followed by L. guyanensis/L.

panamensis (5/24%), and L. mexicana/L. amazonensis (3/14%). Ten

isolates were from ITM in Antwerpen (Belgium), 15 from the

Parasitology laboratory at Pitié-Salpêtrière Hospital (Paris,

France), 1 from the clinical laboratory at Institut Pasteur (Paris,

France). Twenty were collected and analyzed blindly from French

travelers (19 with cutaneous leishmaniasis and 1 with visceral

leishmaniasis) at the Pitié-Salpêtrière Hospital as part of the

routine diagnosis mission of the laboratory between July 2011 and

June 2013. A retrospective analysis of our diagnostic activity from

2010 through 2013 showed that 48%, 68%, 82%, 97% of cultures

from 47 positive clinical samples were positive after 3, 7, 10, 28

days of incubation, respectively.

Process optimization, growth-stage effect and
reproducibility

Preliminary tests showed that stable spectra were obtained with

106 promastigotes but that an optimal discrimination of peaks was

achieved with 107 promastigotes. Because the culture medium

influences spectra (not shown), isolates growing better in NNN

medium were transferred for one cycle (i.e., 48–96 hours) in

Schneider medium before analysis. The growth kinetics of 2 L.

tropica isolates was established over two consecutive cycles and

spectra were obtained at three stages: exponential (24–72 hours),

stationary (72–148 hours) and decay, showing that spectra were

reproducible at the exponential and early stationary stages (data

not shown). All spectra were then obtained from late exponential/

early stationary stages. The reproducibility was further established

by analyzing 16 replicates of the same samples for a L. (L) infantum

and a L. (V) braziliensis isolate (Suppl Fig. S2 & 3), by analyzing

samples from the same isolates of L. (L) infantum maintained in

culture for several days (Suppl Fig. S4), by analyzing samples

from the same isolates of L. (V) braziliensis analyzed at day 0 and a

second culture of the same isolate frozen and thawed for

subculture 6 months later (Suppl Fig. S5) and by analyzing 3

L. (L) infantum and 5 L. (V) braziliensis isolates (Suppl Fig. S6 & 7).

Identification was accurate in all cases. The same approach was

also performed with a L. major isolate maintained in culture in

duplicate for 5 weeks. Spectra lead to the same species

identification at all points (not shown).

Simple, database-independent analysis of spectra:
Mutually exclusive presence of 2 pairs of peaks
discriminated isolates considered by reference methods
as belonging to the Viannia or Leishmania subgenera

Peaks 11121 (+/27) and 7114 (+/24) were both present in all

18 isolates belonging to the Viannia subgenus - 13 L. braziliensis, 5 L.

guyanensis/L. panamensis –and absent in all 28 isolates of the

Leishmania subgenus - 3 L.mexicana/L. amazonensis, 16 L. major, 5 L.

donovani/L. infantum, 4 L. tropica/L. killicki (Table 1, Fig. 1).

Conversely, peaks 6153 (+/23) and 7187 (+/25) were present

in all isolates of the Leishmania subgenus and absent in all isolates

belonging to the Viannia subgenus. Of note, none of these 4 peaks

were present in the isolate identified as L. martiniquensis. The

discriminating power of other peaks was then interpreted in the

context of the 2 subgenera.

Within subgenera, a few peaks allowed classification of
isolates down to the species complex level

Within the Leishmania subgenus, peaks 5589 (+/23) and 11180

(+/26) were present only in L. mexicana/L. amazonensis isolates and

absent in other isolates, identified by reference methods as L.

killicki, L. tropica, L. major, L. infantum, L. donovani (Table 1 & Fig. 1B).

Similarly, within this Leishmania subgenus, peaks 5630 (+/22) &

5937 (+/22), or 5753 (+/23) were present in isolates considered

by reference methods as L. major, L. tropica respectively. Peak 7875

Mass Spectrometry for Leishmania
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ié
-S

al
p

ê
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Figure 1. Cluster analysis of MALDI-TOF MS 184 spectra from 46 Leishmania isolates (A) with distances displayed in relative units
[19], and algorithm for a computer-independent interpretation of MALDI-TOF MS (B) based on presence/absence of peaks as
displayed on Table 1.
doi:10.1371/journal.pntd.0002841.g001

Mass Spectrometry for Leishmania

PLOS Neglected Tropical Diseases | www.plosntds.org 7 June 2014 | Volume 8 | Issue 6 | e2841



Figure 2. Mass spectra from isolates belonging to either L. (V) braziliensis, L. (V) guyanensis ((V) stands for Viannia subgenus), L. (L)
major, L. (L) infantum ((L) stands for Leishmania subgenus). The two pairs of peaks discriminating the Viannia subgenus from the Leishmania
subgenus are labeled in green and blue, respectively and indicated by vertical dotted lines. The 11120+/2(7) peak that identifies the Viannia
subgenus is shown in insert squares at the right side of the figure to improve readability. Peaks differentiating species complexes are labeled with
their corresponding molecular weights in colored squares. The software automatically provides the molecular weights for all peaks above signal
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(+/25) was present in the 5 isolates allocated by MLST to the L.

donovani complex (L. donovani & L. infantum). Peak 5726 (+/26) was

present in the 3 isolates identified as L. donovani by reference

methods and absent in the 2 L. infantum isolates. All those species-

defining peaks (Leishmania subgenus) were absent in the single L.

killicki isolate (Table 1). Within the Viannia subgenus, the pair of

peaks 5987 (+/23) & 6173 (+/23) was present in all L. braziliensis/

L. peruviana isolates and absent in all L. guyanensis/L. panamensis

isolates. All L. guyanensis/L. panamensis isolates expressed either the

6015 (+/25) or the 6234 (+/2) peak that were both absent in all L.

braziliensis/L. peruviana isolates. Slight variations for the value of the

peaks were observed (Table 1) but – in this relatively limited set of

isolates - did not jeopardize the manual, computer independent

identification process.

Figure 2: shows mass spectrometry spectra from four different

isolates of Leishmania included in the reference library (2 from the

Viannia subgenus 2 from the Leishmania subgenus). The four peaks

discriminating subgenera and several peaks discriminating species

complexes are shown on these spectra, and are labeled with their

respective molecular weights thus allowing an easy analysis based

on the algorithm (Fig. 1B).

Automatic dendrogram analysis provided a classification
of isolates consistent with determination species by
reference methods

A cluster analysis based on a correlation matrix was performed

for Old and New world Leishmania isolates, in order to assess the

ability of the MALDI-TOF MS to generate a classification

consistent with that obtained by reference methods. As depicted in

(Fig. 1A), the resulting dendrogram for all Leishmania isolates

showed separate clusters corresponding to the species typed by

reference methods, falling appropriately into the 2 subgenera

(Leishmania and Viannia). Isolates considered by MLST as L. major

were located on one branch, clearly distinguished from isolates

considered as L. donovani/L.infantum and L. tropica. The single L.

killicki isolate analyzed to date was located in the Leishmania

subgenus, close to isolates considered as L. donovani/infantum. The

dendrogram built from PCA differentiated clearly L. guyanensis/L.

panamensis from L. braziliensis/L. peruvianas species complexes but

segregations between L. panamensis and L. guyanensis, L. braziliensis

and L. peruviana were not possible at this stage. Isolates belonging to

the L. mexicana complex fell into the Leishmania subgenus on a distinct

branch. It appeared close to the single trypanosomatid isolate from

the French West Indies (recently named L. martiniquensis, Desbois et

al., personal data, Fig. 1).

Discussion

Applied on a set cultured isolates spanning most Leishmania

species of medical importance, MALDI-TOF MS generated a

classification consistent with results obtained by reference methods

(MLST or heat-shock protein 70 gene sequencing). This was

achieved using a simple, database independent analysis of

MALDI-TOF spectra based on the algorithm. The simplicity of

the analytical procedure allowed a minute output of results as soon

as fair parasite growth was obtained in monophasic medium.

Taken together, these observations suggest that MALDI-TOF

may be a useful tool to facilitate treatment decision in cutaneous

leishmaniasis.

Treatment of CL should indeed be based on species

identification [1,3,4,9,10,30–32]. For example, systemic antimo-

ny is generally more effective in patients infected with L.

braziliensis than in patients infected with L. guyanensis [33,34] or

L. mexicana [9]. Conversely pentamidine is frequently used to treat

L. guyanensis/panamensis CL [35] but is poorly effective in L.

braziliensis CL [36]. Many patients get infected in places where

both species circulate and may therefore receive initially first

course of a suboptimal treatment. In the Old World, L. major can

be treated effectively and easily with a 3rd generation aminogly-

coside ointment [37,38] but the efficacy of this topical formula-

tion in patients infected with L. tropica or L. infantum is as yet

unknown [4]. In all these situations, rapid species identification

should help adopt the most appropriate option in a majority of

patients. Because more than 80% of cultures in our context are

positive in the first 10 days after sampling, and because it takes a

few hours to obtain the MALDI-TOF spectrum, in many

instances time-to-identification is now short enough to with-hold

treatment decision until species identification is available.

Analysis of a higher number of isolates will be necessary to

deliver a more solid dendrogram, particularly to determine

whether MALDI-TOF MS can achieve a robust discrimination

between L. braziliensis and L. peruviana, L. panamensis and L.

guyanensis, L. donovani and L. infantum, L. mexicana and L.

amazonensis. Fortunately, in current algorithms therapeutic deci-

sion in cutaneous leishmaniasis is not heavily impacted by these

differentials [3,6].

The approach presented here has no taxonomic ambition but

was evaluated for potential use in medical practice. We limit our

conclusions to the ability of MALDI-TOF MS to generate

clusters congruent with those raised by reference methods.

Because Leishmania species determination is complex, extension

of explorations will be performed in the context of multinational

networks such as the LeishMan consortium (http://www.

leishman.eu) that merges information from several European

countries and benefits from the presence of experts with strong

expertise in Leishmania species identification [14–16]. Interpreta-

tion of complex spectra in very rare cases of co-infection with two

Leishmania species will be attempted in this context. Optimization

of pre-analytical steps, including culture conditions, parasite

concentration in pellets and protein extraction was important for

a robust interpretation of spectra. We selected a 72–96 h

incubation period, corresponding to the exponential phase or

early stationary phase of growth to limit variations in protein

content. Schneider, an axenic medium (20% fetal calf serum,

penicillin and streptomycin), was chosen as the reference because

its supports rapid growth of most isolates and is associated with

reproducible spectra. The need for a culture step is a weakness of

mass spectrometry shared with several other typing methods. In

rare instances, parasite isolation was difficult or slow. We partially

circumvented this bottleneck by culturing clinical samples

simultaneously on Schneider and NNN medium. Once adapted,

NNN-dependent isolates were transferred for one cycle in

Schneider medium then processed for MALDI-TOF analysis.

In the long-term, the approach may be further simplified by using

dipsticks developed from discriminating peaks. Sensitive protein

detection using immunochromatography directly from a lesion

scraping or aspirate – as currently developed for diagnosis- may

indeed by-pass the culture step and further accelerate species

identification.

background (grey labels). Peaks that identify species in each subgenus are shown in Black. A few peaks above background were not labeled on the
figure to improve readability, the complete spectra are provided as supplementary figure S1.
doi:10.1371/journal.pntd.0002841.g002
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Another relative limitation of mass spectrometry is that the

method is currently handled by reference centers only. However,

because mass spectrometers have a wide spectrum of medical

applications in microbiology, prices are dropping and cheaper

versions are emerging.

In the short term, we found that MALDI-TOF (MS) was a

promising approach to generate spectra from Leishmania

promastigotes with high identification at the species level

consistent with the reference method. A limitation of the

technique is the need for cultivation parasites. Nevertheless, as

compared with molecular biology [39], this approach offers

great advantages, in particular speed, simplicity, cost for isolate

identification and was easy to integrate into the organization of

a clinical laboratory. Not least, the intuitive interpretation of

spectra was well-suited for allowing for close interactions

between parasitologists and clinicians. These strengths should

predictably facilitate rapid treatment decision in cutaneous

leishmaniasis.

Supporting Information

Figure S1 Mass spectra from isolates belonging to
either L. (V) braziliensis, L. (V) guyanensis ((V) stands
for Viannia subgenus), L. (L) major, L. (L) infantum ((L)
stands for Leishmania subgenus). The two pairs of peaks

discriminating the Viannia subgenus from the Leishmania subgenus

are labeled in green and blue, respectively and indicated by

vertical dotted lines. Peaks differentiating species complexes are

labeled with their corresponding molecular weights. The software

automatically provides the molecular weights for all peaks above

signal background (grey labels). Peaks that identify species in each

subgenus are shown in Black.

(TIF)

Figure S2 Virtual gels (based on Mass spectra) and
representative mass spectra from a L. (L) infantum
isolate (see table 1 for origin). The two peaks discriminating

the Leishmania subgenus (6153+/23, and 7187+/25) are labelled

in blue. L. (L) infantum-identifying peak (7875+/25) is shown in

black with labeled molecular weight. Virtual gels and a

representative spectrum from sixteen analyses corresponding to a

single Leishmania (L) infantum isolate.

(TIF)

Figure S3 Virtual gels (based on Mass spectra) and
representative mass spectra from a L. (V) braziliensis
isolate (see table 1 for origin). The two peaks discriminating

the Viannia subgenus (7114+/24, and 11121+/27) are labelled in

green. The L. (V) braziliensis -identifying peaks (5987+/23, and

6173+/23) are labelled in black with their respective molecular

weights. Virtual gels and a representative spectrum from sixteen

analyses corresponding to a single Leishmania (V) braziliensis isolate.

(TIF)

Figure S4 Virtual gels (based on Mass spectra) and
representative mass spectra from a L. (L) infantum
isolate (see table 1 for origin). The two peaks discriminating

the Leishmania subgenus (6153+/23, and 7187+/25) are labelled

in blue. L. (L) infantum-identifying peak (7875+/25) is shown in

black with labeled molecular weight. Virtual gels and a

representative spectrum from 4 samples from a L. (L) infantum

culture analyzed at day 0, day1, day3 and day7. In 2 occasions no

signal was detected from the sample (*).

(TIF)

Figure S5 Virtual gels (based on Mass spectra) and
representative mass spectra from a L. (V) braziliensis
isolate (see table 1 for origin). The two peaks discriminating

the Viannia subgenus (7114+/24, and 11121+/27) are labelled in

green. The L. (V) braziliensis -identifying peaks (5987+/23, and

6173+/23) are labelled in black with their respective molecular

weights. Virtual gels and a representative spectrum from 3 samples

from a first culture analyzed at day 0 and a second culture

analyzed twice of the same Leishmania (V) braziliensis isolate frozen

and thawed for subculture 6 months later.

(TIF)

Figure S6 Virtual gels (based on Mass spectra) and
representative mass spectra from a L. (L) infantum
isolates (see table 1 for origin). The two peaks discriminating

the Leishmania subgenus (6153+/23, and 7187+/25) are labelled

in blue. L. (L) infantum-identifying peak (7875+/25) is shown in

black with labeled molecular weight. Virtual gels and a

representative spectrum from 3 different strains of L. (L) infantum.

(TIF)

Figure S7 Virtual gels (based on Mass spectra) and
representative mass spectra from a L. (V) braziliensis
isolates (see table 1 for origin). The two peaks discriminating

the Viannia subgenus (7114+/24, and 11121+/27) are labelled in

green. The L. (V) braziliensis -identifying peaks (5987+/23, and

6173+/23) are labelled in black with their respective molecular

weights. Virtual gels and a representative spectrum from 5

different strains of L. (V) braziliensis.

(TIF)
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