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Paris Cité, Rennes, France, 6 Conservatoire National des Arts et Métiers, Chaire Santé et Développement, Paris, France

Abstract

Background: Epidemics of meningococcal meningitis (MM) recurrently strike the African Meningitis Belt. This study aimed at
investigating factors, still poorly understood, that influence annual incidence of MM serogroup A, the main etiologic agent
over 2004–2010, at a fine spatial scale in Niger.

Methodology/Principal Findings: To take into account data dependencies over space and time and control for unobserved
confounding factors, we developed an explanatory Bayesian hierarchical model over 2004–2010 at the health centre
catchment area (HCCA) level. The multivariate model revealed that both climatic and non-climatic factors were important
for explaining spatio-temporal variations in incidence: mean relative humidity during November–June over the study region
(posterior mean Incidence Rate Ratio (IRR) = 0.656, 95% Credible Interval (CI) 0.405–0.949) and occurrence of early rains in
March in a HCCA (IRR = 0.353, 95% CI 0.239–0.502) were protective factors; a higher risk was associated with the percentage
of neighbouring HCCAs having at least one MM A case during the same year (IRR = 2.365, 95% CI 2.078–2.695), the presence
of a road crossing the HCCA (IRR = 1.743, 95% CI 1.173–2.474) and the occurrence of cases before 31 December in a HCCA
(IRR = 6.801, 95% CI 4.004–10.910). At the study region level, higher annual incidence correlated with greater geographic
spread and, to a lesser extent, with higher intensity of localized outbreaks.

Conclusions: Based on these findings, we hypothesize that spatio-temporal variability of MM A incidence between years
and HCCAs result from variations in the intensity or duration of the dry season climatic effects on disease risk, and is further
impacted by factors of spatial contacts, representing facilitated pathogen transmission. Additional unexplained factors may
contribute to the observed incidence patterns and should be further investigated.
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Introduction

Meningococcal meningitis (MM) is caused by Neisseria meningitidis

(Nm), a commensal bacterium of the human nasopharynx

transmitted by direct contact with respiratory droplets from

carriers and causing meningitis after crossing the nasopharyngeal

mucosa. Epidemics of meningococcal meningitis recurrently strike

countries of the African Meningitis Belt [1]. In this sub-Saharan

area, MM dynamics is characterized by seasonality and spatio-

temporal heterogeneity: the disease is endemic all year round but

every dry season, a hyper-endemic or epidemic increase in

incidence is observed, the magnitude of which varies between

years and regions [2,3]. Within a country, localized outbreaks are

reported at sub-district scales [4–6]. Most epidemics have been

caused by meningococci of serogroup A but C, W or X outbreaks

have also been reported [7–9]. Niger, a landlocked country of the

Belt, reported between 1000 and 13500 suspected meningitis cases

annually during 2004–2010, with case-fatality rates of 4–12%

[10]. Over the study period (2004–2010), the surveillance-based

control strategy applied in Niger was to launch reactive

vaccination campaigns with A/C or A/C/W polysaccharide

vaccines once an outbreak has exceeded a threshold defined at the

district level by the World Health Organization (WHO) [11].

More than 100 years after the first major epidemic reported in

the Belt, the reasons for the peculiar epidemiology of MM in

Africa are still poorly understood [12]. A combination of
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concomitant factors is probably necessary to trigger an epidemic in

a particular place at a particular time, involving the organism (e.g.

strain virulence and transmissibility [13]), the host (e.g. immune

status and susceptibility [14,15]) and the environment (e.g. dry

climate and dusty winds [16]).

Previous statistical ecologic studies aiming at explaining the

spatio-temporal dynamics of MM epidemics in the Belt were

mainly focused on climatic risk factors. These studies sought for

drivers of either the seasonality of epidemics (i.e. when the onset/

peak/end of the meningitis season occur) or their intensity (i.e.

magnitude of incidence over a chosen time period) at different

spatial scales. According to most authors, the temporal dynamics

of sub-Saharan climate is the major driver of MM seasonality in

the Belt [2,3,17–19]. The suspected contribution of climatic

factors to the intensity of epidemics is still under debate. At the

country level, Yaka et al partly related annual incidence in Niger

to the northern component of wind during November to

December [20]. At the district level, annual incidence in four

African countries was correlated to rainfall amount and dust load

in the pre-, post- and epidemic season [21] and monthly incidence

in one district of Ghana was modelled by a combination of various

climatic and non-climatic variables [22].

However, to our best knowledge, none of the published

statistical models tried to explain intensity of meningitis

outbreaks at a finer spatial scale than the district, whereas

recent studies in Niger and Burkina Faso demonstrated that

outbreaks occur at sub-district scales in highly localized clusters

[4–6]. Besides, whereas two neighbouring areas (sharing similar

climatic conditions) can have different epidemic behaviours

[4,6], few models combined climatic factors with other types of

risk factors suspected to interact, such as previous epidemics,

vaccination campaigns, population density or proximity to

infected regions.

The objective of our paper was therefore to study the influence

of climatic and non-climatic factors on the spatio-temporal

variations of annual incidence of MM serogroup A, the main

etiologic agent over the study period, at the health centre

catchment area (HCCA) scale in Niger, using a database of

laboratory-confirmed cases and developing an explanatory Bayes-

ian hierarchical model from 2004 to 2010 at the HCCA-year level.

Methods

Ethics statement
This study was approved by the Clinical Research Committee

of Institut Pasteur and authorized by the National Consultative

Ethics Committee of Niger and the two French data protection

competent authorities: CCTIRS (Comité Consultatif sur le

Traitement de l’Information en matière de Recherche dans le

domaine de la Santé) and CNIL (Commission Nationale de

l’Informatique et des Libertés). The data collected involving

patients were anonymized.

Cartographic data
Spatial analyses were based on the National Health Map of

Niger, created by the Centre de Recherche Médicale et Sanitaire

(CERMES) in 2008, at the level of the HCCAs, areas which

include all villages served by the same integrated health centre. We

used the 2010 updated version of this National Health Map of 732

HCCAs, in the WGS84 geodetic system with UTM 32N

projection. On average, a HCCA covers a 40640 km2 area.

Study region
The study region comprised the 669 HCCAs of the southern

most populated part of Niger, located roughly to the south of the

16th parallel (Figure 1). It represents 96% of the national

population of 17 138 707 inhabitants (2012 national census).

The semi-arid tropical climate of this Sahelian region is

characterized by a long dry season from October to May and a

rainy season from June to September. In the North lies the Sahara

desert, with less than one inhabitant per km2.

Meningitis data
The CERMES is the national reference laboratory in charge of

the microbiological surveillance of bacterial meningitis in Niger.

Basically, cerebrospinal fluid (CSF) samples taken from suspected

cases of meningitis by health care workers are routinely collected

throughout Niger and the etiological diagnosis is carried out by

Figure 1. Spatial distribution of meningococcal meningitis A in
Niger from July 2003 to June 2010. Cumulative incidence rates in
each health centre catchment area (cases per 100000 inhabitants).
doi:10.1371/journal.pntd.0002899.g001

Author Summary

Meningococcal meningitis (MM) is a severe infection of the
meninges caused by a bacterium transmitted through
respiratory droplets. During January–May, epidemics of
MM recurrently strike sub-Saharan countries, including
Niger. Understanding why epidemics occur in a particular
place at a particular time would help public health
authorities to develop more efficient prevention strategies.
To date, factors that govern the occurrence of localized
outbreaks are still poorly understood and epidemics
remain unpredictable. In this retrospective study (2004–
2010), we developed a statistical model in order to
investigate the influence of various factors (climatic,
demographic, epidemiologic, etc.) on the annual incidence
of MM serogroup A at a fine spatial scale (the health centre
catchment area) in Niger. We found that mean relative
humidity and occurrence of early rains were protective
climatic factors and that a higher risk was associated with
the presence of a road, the percentage of neighbouring
areas having cases and the occurrence of early cases
before January. These findings contribute to improve our
understanding of MM epidemics in Africa and the
associated factors, and might be used in the future for
the subsequent development of an early warning system.

Spatio-Temporal Factors of Meningococcal Meningitis in Niger
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Polymerase Chain Reaction (PCR) for all CSF. This enhanced

surveillance system is active in the whole country since 2002, and

has been described in detail elsewhere [4]. We used the CERMES

database for a retrospective study on confirmed MM A cases

between 1 July 2003 and 30 June 2010. We aggregated MM A

cases by HCCA and epidemiological year, defined as running

from 1 July of the year n–1 to 30 June of the year n, in order to

cover an entire meningitis season.

Vaccination data
Health districts were contacted to obtain data on polysaccharide

vaccines (number of delivered vaccine doses and/or vaccine

coverage) at the HCCA level over the study period and the

previous two years. Full vaccination records could be collected

only for Tahoua region over 2002–2010. Missing data in records

from other regions did not enable us to use them in our analyses.

We thus studied the effect of previous vaccination campaigns

conducted in Tahoua region during the years n-1 and n-2 on MM

incidence of year n. We considered different forms for the

vaccination covariate: either the coverage rate (as a continuous or

categorized variable), the vaccination status (vaccinated: yes/no),

or the exceedance of several coverage thresholds (above threshold:

yes/no). The cumulative effect of successive vaccination cam-

paigns could not be studied as only one HCCA was vaccinated two

years in a row.

Demographic data
The Institut National de la Statistique (INS) provided the

number of inhabitants per village according to the 2001 national

census. We aggregated the villages’ populations at the HCCA level

and applied a mean annual population growth rate of 3.3%

(provided by the INS). We computed the population density

covariate as the number of inhabitants per HCCA divided by the

HCCA surface area calculated in ArcGIS software (version 10.0,

ESRI Inc. Redlands, CA).

Road network
We retrieved a shapefile of primary roads from the Health-

Mapper application of the WHO. This shapefile was superim-

posed to the National Health Map in ArcGIS. For each HCCA,

we computed its minimum distance to the closest primary road

and expressed it as a binary covariate (road versus no road) or a

categorical covariate (classes of distance).

Landcover data
The landcover classification for Niger was obtained at a 1 km2

resolution, from the Land Cover Map of Africa from the Global

Land Cover 2000 Project [23]. The main vegetation types

represented in our geographical subset were different classes of

shrublands, grasslands and croplands.

Climate and aerosol data
Gridded climate data from 2003 to 2010 were extracted from

ERA-Interim reanalysis, produced by the European Centre for

Medium-Range Weather Forecasts (ECMWF) [24]. We retrieved

relative humidity, temperature, total precipitation, U (west-east)

and V (south-north) wind components at a 0.75u spatial resolution

at a daily time-step. To characterize the wind-blown mineral dust

emission from the Sahara, we used the Absorbing Aerosol Index

(AAI), a dimensionless quantity which indicates the presence of

ultraviolet-absorbing aerosols in the Earth’s atmosphere [25]. The

AAI used in this study is derived from the reflectances measured

by SCIAMACHY (Scanning Imaging Absorption Spectrometer

for Atmospheric Chartography) satellite instrument in the

ultraviolet wavelength range [26]. We retrieved monthly gridded

data (1.00u61.25u latitude-longitude grid) from 2003 to 2010

(www.temis.nl/airpollution/absaai/). As we were interested in

how the climate of a given year or season can influence the annual

epidemic magnitude, we calculated multi-monthly means of each

climatic variable, averaged over periods relevant to the meningitis

season or the seasonal cycles of each climatic variable, both for

each HCCA and for the whole study region (see Figure S1 and

Text S1 for further details).

Altitude data
Shuttle Radar Topography Mission (SRTM) elevation data

were obtained from the processed CGIAR-CSI (Consortium for

Spatial Information) SRTM 90 m Digital Elevation Dataset

version 4.1 [27], available as 5u65u tiles at a 3 arc second

resolution (approximately 90 m). Six tiles were downloaded and

combined in ArcGIS to cover the whole study region.

Database preparation
Finally, we collated these multi-source and multi-format spatio-

temporal datasets and reconciled data at the HCCA level (i.e.

cartographic, epidemiological, vaccination and demographic data)

and gridded data (i.e. landcover, climate, AAI and altitude data)

by averaging the gridded values over each HCCA using the

statistical computing software R (version 2.15.3, R Core Team, R

Foundation for Statistical Computing, Vienna, Austria). Then, in

addition to the covariates described above, we created supple-

mentary variables to include in the statistical analyses. To take into

account potential interactions with bordering countries, we

calculated in ArcGIS the minimum distance of each HCCA to

the closest border and expressed it as a binary variable (border

versus no border) or a categorical variable (classes of distance and

classes of bordering countries). The five bordering countries of our

geographical subset are shown in Figure 1. To account for

potential geographic disparities in accessibility to health centres,

we computed for each HCCA the mean distance (weighted by the

villages’ population) from villages to their health centre. To

represent the tendency of meningitis to occur in spatio-temporal

clusters of neighbouring infected HCCAs, we computed ‘‘neigh-

bourhood’’ variables, using various definitions for this spatio-

temporal interaction (presence/total number of MM A cases in

neighbours, mean/maximum incidence and number/percentage

of neighbours with MM A cases, over an epidemiological year).

Neighbours were defined as adjacent HCCAs (first order

neighbours), since a previous analysis showed that the median

size of spatial clusters was of two neighbouring HCCAs [4]. We

also computed «historical» variables describing what happened the

previous year in terms of presence/number of MM A cases and

incidence, in each HCCA, in its neighbours and in its district

(upper administrative level) as potential proxies for natural

immunity. We computed similar variables for other Nm serogroups

at the HCCA level in order to explore potential interactions

between serogroups. Finally, we included in the analyses the

presence of early cases in each HCCA, defined as cases occurring

before 31 December following [20], as an early start of the hyper-

endemic increase could indicate a higher epidemic risk.

Statistical analysis
First, for descriptive purposes, we explored whether the annual

epidemic magnitude in the study region could be related to the

annual and early geographical distribution of MM A cases and

localized outbreaks, using Pearson correlation coefficient. We

defined localized outbreaks as HCCAs exceeding an annual

Spatio-Temporal Factors of Meningococcal Meningitis in Niger
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incidence threshold of 20/100000, corresponding to the 95th

percentile of incidence, following the primary reference used in

[6].

Then, to investigate the spatio-temporal association of MM A

annual incidence at the HCCA level with climatic and non-

climatic factors, we developed a retrospective hierarchical model

in Niger for 2004–2010, over two geographical subsets: (i) over the

whole study region of 669 HCCAs and (ii) over a subset of 95

HCCAs (located in Tahoua region) for which vaccination data

were fully available.

The modelling approach we adopted was a Bayesian negative

binomial generalized linear mixed model (GLMM). We assumed

that the number of observed MM A cases in each HCCA i and

year t followed a negative binomial distribution with an unknown

scale parameter k and mean mit. We modelled log(mit) as a function

of covariates as described above and appropriate random effects.

Basically, we included spatial random effects at the HCCA level,

separated into a spatially unstructured component to capture the

influence of unknown factors that are independent across areas

and a spatially structured component to capture the influence of

spatially correlated effects. The temporal structure was modelled

by yearly random intercepts. We included the expected number of

cases in each HCCA i and year t as an offset in the model to

estimate the incidence rate ratios (IRRs) associated with a unit

increase in exposure, by exponentiating the regression coefficients.

A preliminary forward stepwise covariate selection was

performed in R software, estimating parameters by maximum

likelihood. The Bayesian multivariate model was subsequently

developed in WinBUGS [28], using Markov chain Monte Carlo

(MCMC) simulation methods. Further details on the modelling

approach are given in Text S2.

Results

Description of the data
In Niger, from 1 July 2003 to 30 June 2010, 5512 cases of Nm

were biologically confirmed. Other aetiologies included Streptococcus

pneumoniae (N = 850) and Haemophilus influenzae (N = 277). Serogroup

A accounted for 72.4% (N = 3988) of Nm cases and was largely

predominant every year, except during 2006 and 2010 when

serogroups X and W represented 48.9% and 71.6% of Nm cases,

respectively. The median age of Nm A cases was 8.3 years

(interquartile range (IQR) 5–13). Among all Nm A cases, 97.0%

originated from our study region and 28.0% from our Tahoua

subset (Figure 1). Nm A cases essentially occurred over a six-month

period: 98.1% of them were observed between December and May,

with a peak during February–April (80.4%). MM A temporal

evolution during July 2003–June 2010 (Figure 2) was characterized

by considerable between-year variations (17-fold increase between

the lowest annual incidence of 0.7 per 100000 in 2005 and the

highest annual incidence of 11.3 per 100000 in 2009).

Among the seven years of the study period, the annual MM A

incidence across the whole study region was correlated to the

number of HCCAs having at least one MM A case (r = 0.95, p,

0.01), to the number of localized outbreaks (r = 0.99, p,0.01), to

the maximum annual incidence of the localized outbreaks

(r = 0.80, p = 0.03), to the number of HCCAs with at least one

early case (r = 0.96, p,0.01) and to the early incidence across the

study region (r = 0.93, p,0.01). The corresponding graphs are

displayed in Figure S2. The median duration of the localized

outbreaks (time between first and last cases) was 45 days (IQR 24–

75).

Bayesian multivariate model over the study region
In the Bayesian multivariate model over the whole study region,

the overdispersion parameter of the negative binomial (k21) had a

posterior mean value of 2.586 (95% CI = 2.223–2.998) (Table 1).

This was significantly different from zero, which confirmed that

the negative binomial formulation was necessary to account for

extra-Poisson variation in the dataset.

Regarding fixed effects, five covariates were significantly

associated with MM A incidence (the 95% CI of their associated

IRR did not contain 1). A reduced risk was associated with higher

average relative humidity during the meningitis season (Novem-

ber–June) over the study region (posterior mean IRR = 0.656,

95% CI 0.405–0.949). Early rains in March in an HCCA

represented a protective spatio-temporal factor (IRR = 0.353, 95%

CI 0.239–0.502). The analyses identified three non-climatic

factors; a positive association was found between disease incidence

and percentage of neighbouring HCCAs having at least one MM

A case during the same epidemiological year (IRR = 2.365, 95%

CI 2.078–2.695), as well as presence of a road crossing the HCCA

(IRR = 1.743, 95% CI 1.173–2.474) and occurrence of early cases

before 31 December in a HCCA (IRR = 6.801, 95% CI 4.004–

10.910).

The variances of the spatially structured and unstructured

random effects were respectively 0.174 (95% CI 0.010–0.488) and

2.579 (95% CI 1.974–3.294) (Table 1). The posterior mean

estimate of the spatial fraction was 0.062 (95% CI 0.004–0.166),

meaning that most of the residual area-specific variability was

spatially unstructured. Spatial correlation was almost totally

captured by the multivariate model. The year-specific random

effects also significantly contributed to the model (Table 1) and the

inclusion of covariates helped to decrease the temporal random

effects variance compared to the null model.

A scatter plot of the 4683 fitted posterior mean MM A cases

versus the observed MM A cases shows the overall goodness of fit

of the model (Figure 3.A). The inter-annual variations of incidence

at the study region level were correctly captured by the model

(Figure 3.B).

Figure 2. Temporal distribution of meningococcal meningitis
(MM) A in Niger from July 2003 to June 2010. Time series of daily
cases smoothed by cubic spline.
doi:10.1371/journal.pntd.0002899.g002
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Bayesian multivariate model over Tahoua subset
In Tahoua subset during 2002–2010, mass campaigns of A/C

or A/C/W polysaccharide vaccination have been conducted in 53

HCCAs-years out of 665; the median reported vaccination

coverage was 80.0% (IQR 53.5–89.2%).

The final multivariate model over Tahoua subset yielded similar

results as the model over the whole study region (see Table S1).

The same covariates were independently associated to disease

incidence, except that early rains were no longer significant over

this smaller geographical subset. No vaccination covariates were

significant.

Discussion

To our knowledge, this study is the first spatio-temporal

statistical model in the African Meningitis Belt developed at a

spatial scale as fine as the health centre catchment areas and using

laboratory confirmed cases of meningococcal meningitis. Relying

Table 1. Results from the Bayesian hierarchical model of meningococcal meningitis (MM) A annual incidence at the health centre
catchment area (HCCA) level over the study region, Niger 2004–2010.

Null Model Multivariate model

Parameters Posterior mean 95% CI* Posterior mean 95% CI*

Fixed effects (IRR{)

Early cases (yes vs. no) 6.801 (4.004,10.910)

Neighbouring HCCAs with MM A cases` (%) 2.365 (2.078,2.695)

Road (yes vs. no) 1.743 (1.173,2.474)

Early rains (yes vs. no) 0.353 (0.239,0.502)

Mean seasonal humidity` (%) 0.656 (0.405,0.949)

Random effects

Spatial structured hyperparameter (su
2) 1.470 (0.799,2.295) 0.174 (0.010,0.488)

Spatial unstructured hyperparameter (sv
2) 1.965 (1.278,2.761) 2.579 (1.974,3.294)

Temporal hyperparameter (sQ
2) 1.755 (0.539,5.154) 0.303 (0.073,0.978)

Overdispersion parameter (k21) 4.009 (3.485,4.601) 2.586 (2.223,2.998)

Posterior mean parameter estimates and their 95% credible intervals (CIs) for the ‘‘null’’ model (no covariates included) and the multivariate model.
* CI: Bayesian credible interval.
{IRR: Incidence rate ratio.
`Standardized variables.
doi:10.1371/journal.pntd.0002899.t001

Figure 3. Multivariate model goodness of fit. (A) Scatter plot of the fitted posterior mean numbers of meningococcal meningitis A cases per
year and health centre catchment area and their 95% credible intervals (CIs) (light-blue shaded region) versus the observed numbers. (B) Observed
incidence rates (horizontal blue lines) per year over the study region and their corresponding fitted posterior mean annual incidence rates (filled dark-
blue circles) and their 95%CIs (vertical dark-blue lines).
doi:10.1371/journal.pntd.0002899.g003

Spatio-Temporal Factors of Meningococcal Meningitis in Niger
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on advanced statistical methods, we demonstrated that both

climatic and non-climatic factors (occurrence of early rains, mean

relative humidity, occurrence of early cases, presence of roads and

spatial neighbourhood interactions) are important for explaining

spatio-temporal variations in MM A annual incidence at the

HCCA level.

Appropriate statistical methods are necessary to investigate the

underlying drivers of observed patterns of count data in small

areas with spatio-temporal correlations. Hierarchical regression

models of the Bayesian family have proven useful to analyse the

spatio-temporal dynamics of infectious diseases in different

settings, such as dengue in Brazil [29], soil-transmitted helminth

infections in Kenya [30] or schistosomiasis in China [31]. The

Bayesian formulation allows to acknowledge the uncertainty

associated with all model (hyper)parameters (fixed and random),

to include a spatial correlation structure within a prior distribution

[32] and leads to more robust estimates in particular when the

geographical level is small and the disease rare [33]. Such models

are still rarely applied to MM in Africa. The modelling approach

we adopted was a negative binomial GLMM using Bayesian

estimation, to control for unobserved confounding factors and take

into account the dependencies over space and time encountered in

our dataset, incorporating year-specific and area-specific random

effects [32,34]. Ignoring these multiple correlations could lead to

overestimate the significance of the covariates [31]. This model

also accounted for extra-Poisson variation (overdispersion) in the

count data via the negative binomial formulation, allowing the

variance to be larger than the mean.

Another noteworthy feature of our analysis lies in its spatio-

temporal resolution, uncommon for a country of the Belt. Since

outbreaks have been shown to occur in spatially localized clusters

at a sub-district level [4–6], we considered primordial to analyse

MM A dynamics at a finer spatial scale than the more usual

country or district levels [17–21,35,36]. From a public health

perspective, the health centre catchment area used in this study is

also a judicious choice. Indeed, the Nigerien health care system is

based on these integrated health centres, which constitute the

lowest health level (sub-district) and whose locations are chosen

according to accessibility for populations. Regarding the time

scale, to comply with our objective of explaining the overall annual

burden of MM A in an area during each meningitis season, we

chose to conduct analyses at the year level. We did not seek in this

paper to model the seasonality of meningitis, which would have

implied working at least at month (like in [22]) or week (like in

[17,18]) level. Our approach did not allow explaining intra-

seasonal temporal dynamics and diffusion patterns – which were

partly described in a previous paper [4]. This would constitute a

distinct research question that the one tackled in this paper and

should be further investigated.

The results of this study bring new insights into the epidemi-

ology of MM in the Belt and the risk factors that play a role in the

spatio-temporal variations of incidence. First, we observed that, at

the study region level, higher annual incidence correlated with

larger number of HCCAs having at least one MM A case, with

larger number of localized outbreaks and, to a lesser extent, with

higher intensity of these localized outbreaks. This brings support to

Mueller and Gessner hypothesis that the magnitude of incidence

during meningitis seasons in a region or country can increase if the

geographical expansion and/or the intensity of localized epidemics

increase [3]. The epidemiology thus changes from a regular year

with a small number of localized epidemics in the region to an

epidemic wave with many localized epidemics. We then sought to

evaluate factors that could be associated with the occurrence of

these localized incidence increases in a particular area during a

particular year. Based on the factors that emerged from our model

and that we discuss below, we hypothesize that spatio-temporal

variations in MM A incidence between years and HCCAs result

from variations in the intensity or duration of the dry season

climatic effects on disease risk, and is further impacted by factors of

spatial contacts, representing facilitated pathogen transmission.

First, the presence of primary roads and neighbourhood effects

in the multivariate model indicates that human contacts and

movements are important contributing factors that we assume to

likely play a role in the transmission of the meningococcus, and/or

an epidemic co-factor (e.g. respiratory virus [3]). HCCAs crossed

by a road would be statistically more prone to re-infections from

distant areas than isolated HCCAs outside the primary road

network, and would experience higher transmission levels due to

higher intensity of human movements and contacts. Yet, we

cannot exclude that differences in accessibility to health centres

contributed to bring out primary roads as a risk factor. One could

also argue that health centres served by a road sent more CSF

samples due to easier logistics. However, another study conducted

in Niger and based on reported suspected cases (not affected by a

potential logistic bias) also showed fewer absences and higher

reappearance rates of meningitis cases in districts along primary

roads [36]. The percentage of neighbours with cases, representing

local spatio-temporal interactions, is not a surprising risk factor.

Indeed, a previous study [4] showed that cases usually tended

to be clustered in space and that these clusters most often

encompassed a small number of HCCAs. Areas with more

infected neighbours would be more likely to be infected by local

spatial transmission.

Then, the presence of climatic parameters in the multivariate

model indicates that, beyond an influence on MM seasonality

agreed by several authors [2,3,17–19], climate can have a

quantitative impact on inter-annual variations of incidence. The

main physiopathological hypothesis for the role of climate is that

dryness and dusty winds would damage the nasopharyngeal

mucosa and increase the risk of bloodstream invasion by a

colonizing meningococcus, and thus the case-to-carrier ratio [2].

Here, we found that annual incidence was negatively correlated to

mean seasonal humidity over the study region. This factor was

purely temporal (equal IRR for all spatial units within the same

year), suggesting that humidity did not have spatial, but only

temporal effect. At the study region level, the seasons of highest

MM A incidence were also the seasons of lowest mean humidity.

The between-year variations in humidity were not large but the

results suggest that even a small decrease in humidity, resulting in

a small increase in the case-to-carrier ratio according to the

physiopathological hypothesis, can have a significant impact on

the global MM A risk in all HCCAs, as these dryer conditions start

in October and persist over several months (cumulative effect) and

over a large geographical region. Similarly, Yaka et al detected a

quantitative effect of climate on inter-annual variations of

meningitis at the country level but November and December

northerly winds were their best predictors [20]. This difference

might be explained by the fact that they only considered the

climatic conditions over the early dry season and not over the

whole meningitis season. Interestingly, a second climatic factor,

the occurrence of early rains in March, has a significant effect at

the HCCA level. It has been noticed that the meningitis season

seemed to stop at the onset of the rainy season, again explained by

a decrease in invasiveness possibly due to less irritating conditions

for the pharyngeal mucosa [2]. Our results are in agreement with

this observation and, more precisely, show that the local

occurrence of first rains in March, i.e. before the real beginning

of the rainy season in the country, is a protective factor. The rains

Spatio-Temporal Factors of Meningococcal Meningitis in Niger

PLOS Neglected Tropical Diseases | www.plosntds.org 6 May 2014 | Volume 8 | Issue 5 | e2899



would thus stop the harmful effect of dryness and prevent local

outbreaks to further develop.

The last and particularly strong factor that emerged from our

model is the presence of early cases in a HCCA (before 31

December). It can be interpreted as a risk factor in itself (an

outbreak would have more time to develop if it starts earlier), as an

indicator of longer exposure to irritating climatic conditions of the

dry season, or as a proxy of other factors responsible for the

presence of the bacteria and higher levels of carriage and/or

invasion. In any case, this parameter remains a strong determinant

of high incidence in a HCCA. At the study region level, we also

showed that the annual MM A incidence was correlated to the

number of HCCAs with at least one early case and to the overall

early incidence. Two other studies stressed the importance of early

cases in the final size of the epidemic: an early onset was a good

predictor of an epidemic at the district level in [37] and the

number of cases during the peak months increased with the

number of early cases occurring between October and December

at the country level (Niger) in [20]. WHO also considers early

cases in the season as a warning sign of large epidemic [11].

Surprisingly, vaccination the previous or the two previous

year(s) was not found to be a protective factor in Tahoua subset.

However, we cannot rule out the possibility that the low number of

vaccinated HCCAs-years in our subset (8%) may have induced a

lack of power to show a true protective effect of vaccination. This

result could also be partially due to the decline of polysaccharide

vaccine efficacy to 87% and 70% at one and two years after

vaccination, respectively [38]. It is also possible that the provided

data lack representativeness and over-estimate the real coverage.

Of note, we decided not to study the impact of year n vaccination

on year n incidence within this model formulation, as reactive

vaccination would be associated with larger outbreaks (those which

required vaccination) and, considering delays in implementing

vaccination campaigns, would artificially appear as a risk factor in

the model [39,40].

Residual spatio-temporal variations that remained unexplained

by the covariates included in our model suggest that other

unknown or unmeasured factors contributed to the observed

incidence. First, because our study concerned an ecologic

investigation, suspected factors at the individual level (e.g. age,

immuno-depression, smoking…) could not be accounted for.

Then, the temporal variations at the country level could be

suspected to be influenced by higher susceptibility due to waning

pre-existing immunity [15] or emergence of a new variant that can

escape herd immunity [13,41]. However, the length of the study

period did not enable us to study these effects: molecular

characterization of Nm A isolates showed that the same sequence

type (ST-7) was predominantly circulating in Niger during 2004–

2010 [42,43]. At the spatial level, the residual purely spatial

variation observed in our model was mainly unstructured. The

covariates better explained the spatial correlation, which both

reflects shared environmental conditions and true epidemic

diffusion, than the unstructured spatial variations. This suggests

that other factors specific to each HCCA, such as quality of local

health services or local behavioural practices, could contribute to

explain the between-area heterogeneity in MM A incidence. The

difficulty to measure such factors made the inclusion of area-level

random effects necessary. Finally, other unexplained factors, such

as respiratory viral co-infections, might contribute to the residual

spatio-temporal heterogeneity, via an effect on transmission,

colonization and/or invasion [3]. Although difficult to collect

retrospectively, these factors should be further investigated at the

health centre level and at least properly accounted for in any

modelling attempt. Mathematical models, still little developed on

this topic [44], could also help us to better understand the role of

carriage and immunity in the epidemic dynamics.

This study relied on a unique dataset which provided a very

precise picture of MM A spatio-temporal dynamics in Niger over

seven years, and has already been used in published spatio-

temporal analyses [4,5]. The cases were all biologically confirmed

by CERMES laboratory, which allowed us to exclude misclassified

infectious agents that give similar clinical signs of meningitis.

Databases commonly used by most statistical studies on MM in the

Belt (e.g. [17–21]) gather clinically-suspected cases of meningitis,

and thus include a mixture of different Nm serogroups and other

bacteria such as S. pneumoniae and H. influenzae. In Niger, over our

study period, 40% of positive CSFs were infected by another agent

that Nm A. Relying only on suspected cases would therefore

introduce a large number of misclassified cases. If etiological

confirmation by conventional PCR may have led to under-

estimation of positive cases [45], this should have affected the data

in a spatially and temporally consistent way, as biological testing

was performed with the same PCR assay by the same laboratory

all along the study period. Our system may also suffer from

underreporting from areas where performing a lumbar puncture

and shipping the samples may represent logistical difficulties. We

therefore excluded from the analyses the remote northern regions

where population is very sparse and mainly nomadic. We can also

consider that the potential variability in reporting rates has been

taken into account through the explicit inclusion of overdispersion

and spatial heterogeneity in our model. Besides, this surveillance

system was extended to the whole country in 2002 (it was only

effective in the capital city before) and might have been unsteady

during the first months following its implementation. To reduce

this potential temporal bias, we started our analyses in 2004, being

confident that the system had thus reached a stable state. Finally,

like in many other settings, the population affected by meningitis

may not be entirely covered by the surveillance system. However,

we can reasonably assume that most meningitis cases, because of

their severity, end up reaching the health centres, with or without

prior self-treatment or consultation of a tradi-practitioner [46].

Moreover, social and spatial disparities in care-seeking behaviours

are probably reduced by free healthcare offered to all people

suffering from meningitis in Niger. For all the reasons above, we

are thus confident that the surveillance system is representative

enough and that underreporting did not substantially affect the

validity of our results, which are more likely to reflect the true

underlying risk factors than the spatial disparities in the

surveillance system efficiency.

To conclude, this study brings new insights into the epidemi-

ology of meningitis in the Belt and allowed us to disentangle the

climatic and non-climatic risk factors that play a role in the spatio-

temporal variations of annual incidence at the health centre level.

Besides, in the light of our results, a potential predictive model

could rely on factors such as early cases in an area and its

neighbours and early climatic conditions, provided their predictive

value is evaluated. This could aid the development of an early

warning system at the beginning of the meningitis season,

following other recent attempts [47]. Despite new hope brought

by the introduction of a meningococcal A conjugate vaccine [48],

the ways in which the meningococcus will adapt to this changing

situation are unknown and other serogroups such as W and X

might replace A as the dominant serogroup. Such modelling could

thus be tested on these serogroups, which would likely be

influenced by most of the identified risk factors due to similar

ways of transmission and invasion, and applied in other sub-

Saharan countries sharing these peculiar epidemiological and

climatic features.
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Supporting Information

Figure S1 Seasonality of climate and aerosols. Annual

cycles of daily meteorological variables (temperature, relative

humidity, precipitation, U wind and V wind) and monthly

Absorbing Aerosol Index (AAI) averaged over the study region

between 2004 and 2010.

(TIF)

Figure S2 Epidemiological characteristics related to
annual incidence. Correlation between the annual meningo-

coccal meningitis (MM) A incidence in the study region and

epidemiological features of the MM A cases distribution (annual in

dark blue and early in light blue) in health centre catchment areas

(HCCAs) over the seven years of the study period.

(TIF)

Table S1 Tahoua model results. Results from the Bayesian

hierarchical model of meningococcal meningitis (MM) A annual

incidence at the health centre catchment area (HCCA) level over

Tahoua subset, Niger 2004–2010: Posterior mean parameter

estimates and their 95% credible intervals (CIs) for the ‘‘null’’

model (no covariates included) and the multivariate model.

(DOC)

Text S1 Explanations on the computation of climate
and aerosol covariates based on the seasonal cycles
shown in Figure S1.

(DOC)

Text S2 Model description.

(DOC)
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