
HAL Id: hal-01343686
https://hal.sorbonne-universite.fr/hal-01343686v1

Submitted on 9 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Language-Centric Performance Analysis of OpenMP
Programs with Aftermath

Andi Drebes, Jean-Baptiste Bréjon, Antoniu Pop, Karine Heydemann, Albert
Cohen

To cite this version:
Andi Drebes, Jean-Baptiste Bréjon, Antoniu Pop, Karine Heydemann, Albert Cohen. Language-
Centric Performance Analysis of OpenMP Programs with Aftermath. IWOMP 2016 - 12th Interna-
tional Workshop on OpenMP, Oct 2016, Nara, Japan. pp.237-250, �10.1007/978-3-319-45550-1_17�.
�hal-01343686�

https://hal.sorbonne-universite.fr/hal-01343686v1
https://hal.archives-ouvertes.fr

Language-Centric Performance Analysis of
OpenMP Programs with Aftermath

Andi Drebes1, Jean-Baptiste Bréjon3, Antoniu Pop1, Karine Heydemann2, and
Albert Cohen3,4

1 The University of Manchester, School of Computer Science, Manchester, UK
2 Sorbonne Universités, UPMC Paris 06, CNRS, UMR 7606, LIP6, Paris, France

3 INRIA, Paris, France
4 École Normale Supérieure, Paris, France

Abstract. We present a new set of tools for the language-centric per-
formance analysis and debugging of OpenMP programs that allows pro-
grammers to relate dynamic information from parallel execution to OpenMP
constructs. Users can visualize execution traces, examine aggregate met-
rics on parallel loops and tasks, such as load imbalance or synchroniza-
tion overhead, and obtain detailed information on specific events, such
as the partitioning of a loop’s iteration space, its distribution to work-
ers according to the scheduling policy and fine-grain synchronization.
Our work is based on the Aftermath performance analysis tool and a
ready-to-use, instrumented version of the LLVM/clang OpenMP run-
time with negligible overhead for tracing. By analyzing the performance
of the MG application of the NPB suite, we show that language-centric
performance analysis in general and our tools in particular can help im-
prove the performance of large-scale OpenMP applications significantly.

Keywords: OpenMP, Performance Analysis, Tracing

1 Introduction

Optimizing OpenMP programs to exploit modern hardware e�ciently is a chal-
lenging task. Performance depends on many aspects, such as the amount paral-
lelism exposed by a program, the interaction of the run-time system and the op-
erating system, the locality of memory accesses, and optimizations for sequential
performance by the compiler. To identify and eliminate performance bottlenecks,
it is crucial for the programmer to understand each of the components involved in
the execution as well as their interactions. Such interactions between the parallel
program, the hardware and system software is generally out of reach of static
analysis. Hence, it is customary to capture dynamic events into a trace file at ex-
ecution time and to perform post-mortem analyses of the trace with appropriate
tools [16, 15, 1]. Many existing tools enable the analysis of performance metrics,
such as function call profiles, hardware performance counter data and memory
allocation. However, only few tools are able to relate performance data to the
OpenMP programming and execution model, e.g., to quantify the time spent in

2

barriers, to attribute idle time to parallel regions, or to analyze the load imbal-
ance in parallel loops—information that is essential for choosing the appropriate
partitioning schemes for work and data, OpenMP constructs, synchronization
and architecture-specific optimizations. Due to the diversity and complexity of
the interplay between hardware, run-time programming constructs, and appli-
cation behavior, it is crucial to rely on both quantitative metrics and detailed
information on specific events related to the programming and execution model.

We present a method to analyze the performance of OpenMP applications
that suits the needs of synergistic language and hardware analyses, as stated
above. Our solution consists of a graphical user interface for performance anal-
ysis and visualization, an instrumented OpenMP run-time for trace generation,
and a portable library for the generation of trace files. We designed our solution
as an extension to Aftermath [8], a tool for trace-based performance analysis,
supporting interactive exploration, visualization, filtering and quantitative anal-
ysis of programs with dependent tasks. In addition to our extension of the graph-
ical user interface with OpenMP specific tools, we provide Aftermath-OpenMP,
an instrumented OpenMP run-time for trace generation and libaftermath-trace,
a library that allows programmers to generate trace files that can be analyzed
using Aftermath. In contrast to existing tools, we do not only provide a visual
representation, aggregate metrics and statistics, but also detailed information for
parallel loops, including information on the partitioning of the iteration space
among workers. All components are available under free software licenses.

We illustrate the capabilities of our solution by analyzing the performance of
MG from the NAS Parallel Benchmarks (NPB), executing on a platform with
192 cores and 24 NUMA nodes. We show how this information can be used
to determine the cause of bottlenecks and to improve the code, resulting in a
speedup of more than 35⇥. Finally, we demonstrate that the tracing overhead
is negligible and thus allows for the collection of precise data for performance
analysis.

The paper is organized as follows. Section 2 introduces the components of
our solution. In Section 3, we characterize and analyze NPB’s MG application,
then locate and fix two major performance bottlenecks. The overhead induced
by trace generation is analyzed in Section 4. Section 5 presents related work on
performance analysis, in particular for OpenMP, and we conclude in Section 6.

2 Aftermath: Trace Generation and Analysis

The trace-based analysis of parallel programs requires a component that records
dynamic events at execution time into a trace file and a tool for post-mortem
analysis of generated traces. As a result, our performance analysis approach
needs two separate components: a trace generator called Aftermath-OpenMP—
an instrumented OpenMP run-time, and a graphical user interface for trace
analysis. We present both components in this section.

3

2.1 Trace Generation

The Aftermath-OpenMP run-time is based upon LLVM’s run-time [3], itself
derived from the Intel OpenMP run-time [2]. Our contribution to the run-time
consists in adding a lightweight profiling layer to gather information about dy-
namic events (e.g., execution of parallel loops, barrier synchronization, task cre-
ation and execution) through instrumentation of run-time functions. This layer
also interfaces the libaftermath-trace library, providing functionality to write all
recorded events to a trace file. Libaftermath-trace is a library that provides a
common infrastructure for generating trace files compatible with Aftermath and
is independent of run-time systems and applications.

To precisely define the tracing capabilities of Aftermath-OpenMP, we intro-
duce the following terms in addition to the terminology of the OpenMP spec-
ification [7]: iteration set, iteration period, and task period. We illustrate these
terms on the following example with a parallel region composed of two parallel
loops and a task.

1 for(int i = 0; i < 2; i++) {

2 #pragma omp parallel

3 {

4 #pragma omp for schedule(static , 10)

5 for(int j = 0; j < 100; j++)

6 foo ();

7

8 #pragma omp for schedule(dynamic , 10)

9 for(int k = 0; k < 100; k++)

10 bar ();

11

12 #pragma omp task

13 baz ();

14 }

15 }

As the parallel region is located in the body of a loop, each parallel loop
will be executed twice. Each execution of a parallel loop is referred to as a loop

and each execution of a task as a task. These terms are usually associated with
constructs in the source code, yet overloading these terms allows for a simple
terminology for dynamic analysis and remains unambiguous within the respec-
tive context. We use the terms loop construct and task construct to distinguish
constructs and instances when necessary.

Assume that five workers are involved in the execution of the parallel region in
the example. The schedule and the chunk size specified for the first loop imply
that the first worker executes loop iterations 0 to 9 and 50 to 59, the second
worker executes iterations 10 to 19 and 60 to 69, and so on. For a loop with a
static schedule, the generated code usually contains only one call to the run-time
at the beginning and at the end of the execution of the loop. This means that
an instrumented run-time usually cannot distinguish the execution intervals for
a worker’s chunks. For example, it cannot determine when the first worker has
finished executing the chunk [0; 9] and starts executing the chunk [50; 59]. We
refer to the entire, not necessarily contiguous portion of the iteration space of
a loop instance associated to a worker as an iteration set. Depending on the
schedule, the increment and the chunk size, a worker can have multiple iteration

4

3 1
2

4

5

Fig. 1: Main window: timeline (1), filters (2), statistics (3), selected task/event
information (4), derived metrics menu (5).

sets, and its iteration sets might comprise one or multiple chunks, each of which
might be composed of multiple iterations. Nested parallel regions and barriers
can lead to preempting and resuming an iteration set. We refer to a contiguous
interval of execution of an iteration set as an iteration period. Similar to the loop
terminology, we define a task as the execution of a task and a task period as a
contiguous interval of the execution of a task instance.

The Aftermath-OpenMP run-time is capable of tracing each loop and each
task executed at least once. For each invocation of a parallel loop or task, the
run-time traces loops and tasks, respectively. For loops with a static schedule,
for each worker involved in its execution the run-time traces a single iteration
set with all information about the set of chunks associated to the worker. For
loops with a dynamic or guided schedule, an iteration set is traced each time a
worker requests an additional portion of the iteration space. Iteration periods
and task periods are recorded according to preemption through events related
to barrier synchronization and recursive invocations of parallel loops.

2.2 A Graphical Interface for Trace Analysis

We call Aftermath a language-centric visualization and analysis tool, as its
graphical user interface exposes hardware and runtime library events at the
level of the programming model. The main window is composed of five parts,
shown in Figure 1: the timeline (1), a panel for statistics (2), an interface to
configure filters (3), a detailed text view (4) and a menu bar (5) providing access
to dialogs.

The information displayed on the timeline depends on the activated timeline
mode. In the default state mode, the timeline shows which run-time states each
core has traversed over time (e.g., execution of a single/master construct, waiting

5

on a barrier, execution of a critical region). In loop construct mode, Aftermath
assigns a di↵erent color to each parallel loop construct in the application’s source
code. This allows the user to obtain a rapid visual overview of which loops
have been executed by which processors, when these were executed and how
much time their execution has taken. Similarly, in loop mode, iteration set mode,
iteration period mode, task construct mode, and task mode, Aftermath assigns a
di↵erent color to each loop instance, iteration set, iteration period, task construct
and task instance, respectively. The timeline can be overlaid with additional
information, e.g., graphs showing the evolution of performance counters recorded
for the di↵erent cores. In order to explore performance data interactively, the
timeline can be zoomed and shifted arbitrarily without noticeable delays, even for
large trace files. Intervals without activity (i.e., for which no run-time state was
recorded or during which no parallel loop has been executed) are transparent,
such that the background of the timeline with an alternating pattern of gray
(even cores) and black (odd cores) becomes visible.

The filter interface allows the user to limit the information on the timeline
and the statistics panel to specific loop constructs, loop instances, iteration sets,
iteration periods, task constructs, task instances, task periods and performance
counters. The panel also provides an interface that allows the user to modify the
default assignment of colors. All updates are immediately taken into account
by the timeline and the statistics panel. The statistics shown in the statistics
panel are based on the interval on the timeline selected by the user. For example,
the panel shows the duration of the selected interval, how much time has been
spent in the di↵erent run-time states and a histogram for the distribution of
the duration of iteration periods. The text view displays detailed information
about a specific item selected from the time line. For a state, it shows its type
and duration and for an iteration period, it displays its associated iteration set,
loop instance and loop construct, including the number of iterations. The menu
bar at the top allows the user to select dialogs to create advanced metrics (e.g.,
combine two performance counters) or to export data to files (e.g., the contents
of the timeline).

On the implementation side, Aftermath is based on libaftermath-core, the
interface to load and analyze trace files in Aftermath’s native trace format,
GTK [20] for standard graphical user interface components, and the Cairo
graphics library [19] for rendering. More information about the algorithms in-
volved for scalable rendering and language-centric visualization can be found
in [8].

3 Use case: Optimization of MG

In this section, we show how the user interface presented in the previous section
can be used to identify and locate performance bottlenecks in theMG application
from the NAS Parallel Benchmarks [5], computing the solution of the three-
dimensional scalar Poisson equation using a V-cycle multigrid method. In the
experiments, we have used the implementation in the C programming language of

6

In
iti

al
iz

at
io

n

W
ar

m
up

Actual computation

(a) Global view with the benchmark’s main phases

Decre
ase

Increase

(b) Between iterations

Fig. 2: Execution phases of MG

NPB-2.3 by the Omni Compiler Project [4]. The test system is an SGI UV2000,
composed of 24 Intel Xeon E5-4640 CPUs running at 2.4GHz, with a total
of 192 cores and 756GiB RAM (Hyperthreading disabled). The system runs
SUSE Linux Enterprise Server 11 SP3 with kernel 3.0.101-0.46-default. Unless
mentioned otherwise, we have set the number of OpenMP workers to 192 with
a fixed, round-robin assignment of workers to cores. For a reasonable execution
time of several seconds, we have chosen the C input class with 512⇥ 512⇥ 512
elements. The benchmark was compiled with LLVM/clang, version 3.8.0, and
NPB’s default compiler flags for optimization.

We first characterize the benchmark’s execution phases, then we analyze the
execution of parallel loops using Aftermath’s timeline, detailed text view and
statistics panel in order to locate bottlenecks for performance.

3.1 Identifying Execution Phases

Figure 2a shows Aftermath’s timeline in OpenMP loop mode, as presented in
Section 2.2. This visual representation indicates three di↵erent phases of activity
during which the workers execute parallel loops, indicated by the colored sections
surrounded by dotted rectangles in the figure. These phases are separated by
intervals without loop execution, during which the timeline’s background is visi-
ble. In the first phase, the benchmark allocates a set of global, multi-dimensional
matrices and initializes them in parallel. In the subsequent warm-up phase, a
single iteration of the algorithm is performed, resulting in the execution of mul-
tiple parallel for loops. The third phase consists of the actual computations of
the benchmark. This main phase can be identified on the timeline by the long,
repetitive pattern, spanning approximately two thirds of the execution time.

Each iteration of the algorithm in the main phase is characterized by a series
of parallel for loops with a decreasing number of iterations, followed by a series
of parallel for loops with an increasing number of iterations. This pattern can
be spotted by zooming on the timeline between two iterations, as shown in Fig-
ure 2b. In the first half of the figure, the height of the colored section decreases,
indicating that fewer cores can take part in the execution of loops. In the second

7

(a) Interval covering two iterations (b) Imbalance for a single loop

Fig. 3: Load imbalance between workers in the main computation phase

24.15 Mcycles 1.4 Gcycles
0%

21.88%

Fig. 4: Histogram of the duration of iteration sets of the selected loop

half, the colored section becomes taller again, which indicates that an increasing
number of cores can be used.

3.2 Identifying Load Imbalance Resulting From NUMA

As the application’s source code neither specifies the schedule of parallel loops,
nor the size of chunks, the default static schedule and chunk size are applied.
That is, the iteration space is divided into approximately equal-sized chunks,
which are assigned in a round-robin fashion to the workers. The trip count of
512 iterations of most of the loop instances greatly exceeds the number of cores
of the test system, such that most of the time all cores can contribute to the
computation. The intervals with low parallelism, shown in Figure 2b above, only
make up a fraction of the execution time. However, a zoom into the main phase
on the timeline also reveals a distinct pattern of imbalance on all of the loops,
shown in Figure 3a. To investigate the cause of this imbalance, we arbitrarily
pick one of the loops for a detailed analysis.

Figure 3b shows a zoom on one of the loops. The workers with the shortest
execution time for this instance are located on cores 88 to 95. As each NUMA
node of the machine is composed of eight cores with consecutive core numbers,
cores 88 to 95 belong to NUMA node 11. After a click onto one of the associated
intervals on the time line, Aftermath provides detailed information about the
portion of the iteration space that was executed during this interval. Each of
the workers on node 11 executes two iterations of the loop, which takes between
24.15Mcycles and 29.53Mcycles. The workers with the longest execution time
are located on cores 0 to 15 and 32 to 47 (NUMA nodes 0, 1, 4, and 5). Although

8

these workers only execute one additional iteration in comparison to the worker
on cores 88 to 95, their execution time of about 1.4Gcycles is more than 40 times
higher. For other workers, the execution time is between these two extremes.
Figure 4 shows the histogram for the duration of iteration sets from the statistics
panel for the interval from the beginning of the loop to its end. The distant peaks
in this diagram confirm the strong imbalance.

Imbalance is either related to the benchmark itself (e.g., if the amount of work
per iteration of a loop varies) or related to unequal access to shared resources
due to the topology of the machine (e.g., memory accesses). The parallel loop
corresponds to the outermost loop in function psinv , with a constant amount of
work across iterations, as shown in the listing below.

1 static void psinv(double ***r, double ***u, int n1, int n2 , int n3,

2 double c[4], int k)

3 {

4 int i3, i2, i1;

5 double r1[M], r2[M];

6

7 #pragma omp for

8 for (i3 = 1; i3 < n3-1; i3++) {

9 for (i2 = 1; i2 < n2-1; i2++) {

10 for (i1 = 0; i1 < n1; i1++) {

11 r1[i1] = r[i3][i2-1][i1] + r[i3][i2+1][i1] +

12 r[i3-1][i2][i1] + r[i3+1][i2][i1];

13 r2[i1] = r[i3-1][i2-1][i1] + r[i3-1][i2+1][i1] +

14 r[i3+1][i2-1][i1] + r[i3+1][i2+1][i1];

15 }

16

17 for (i1 = 1; i1 < n1-1; i1++) {

18 u[i3][i2][i1] = u[i3][i2][i1] +

19 c[0] * r[i3][i2][i1] +

20 c[1] * (r[i3][i2][i1-1] + r[i3][i2][i1+1] + r1[i1]) +

21 c[2] * (r2[i1] + r1[i1-1] + r1[i1+1]);

22 }

23 }

24 }

25 }

This supports the hypothesis that the imbalance is related to the topology of
the machine. In fact, Figure 3b also shows that the execution time for workers on
the same node is approximately the same. A comparison of the average execution
time and the distance5 of each node to node 11 reveals a correlation between
these two metrics. We thus assume that memory accesses are causing the im-
balance, with a high fraction of the data placed on the node with the fastest
workers, node 11. This suggests a detailed analysis of the memory allocations
and initialization of the benchmark.

The initialization routine of MG allocates arrays to double precision floating
point elements using three and four levels of indirection. The allocation of these
hierarchical structures is done stepwise by calling malloc from within loopnests:

1 u = (double ****) malloc ((lt+1)* sizeof(double ***));

2

3 for (l = lt; l >=1; l--) {

4 u[l] = (double ***) malloc(m3[l]* sizeof(double **));

5

5 As reported by the numactl command line tool of libnuma, invoked with the
--hardware option.

9

6 for (k = 0; k < m3[l]; k++) {

7 u[l][k] = (double **) malloc(m2[l]* sizeof(double *));

8

9 for (j = 0; j < m2[l]; j++)

10 u[l][k][j] = (double *) malloc(m1[l]* sizeof(double));

11 }

12 }

The innermost call of malloc (Line 10) allocates the space for the actual data.
For the input class C, used in the experiments, these allocations have a size that
varies between 32 bytes and 4112 bytes. Hence, all of the allocated data regions
are smaller than the smallest page size of 4KiB of the test system, except the
largest allocations, which exceed this size by only 16 bytes. Meta data written
by the malloc function in front of each allocated memory region is likely to be
located in the first page of the allocated region. This causes the default first-
touch page placement mechanism of the Linux kernel to place the first page of
an allocation on the NUMA node associated to the allocating core. Hence, as a
side e↵ect of the small allocations of the benchmark, all data pages are placed
on a single node. Most of the memory accesses of the main computation phase
thus target a single NUMA node, resulting in high memory access latencies due
to memory controller contention and remote accesses stressing the machine’s
interconnect.

To mitigate the early page placement, we have added simple, yet e↵ective
custom allocator to the benchmark’s source code and replaced the calls to malloc

in with calls to the new allocator. The revised allocation strategy consists in the
allocation of a large, contiguous region of memory on startup and in returning a
portion of this region on each invocation of its allocation function. The absence
of meta data write accesses delays page placement until the initialization phase
of the benchmark. As this initialization is performed in parallel, the first-touch
page placement leads to an even distribution across all nodes of the machine,
resulting in less contention and thus better performance. With this modification,
the execution time is reduced from 48 s to 2.23 s on average for 10 runs.

3.3 Identifying Parallelism Degree Limitations and Imbalance

Figure 5 shows a trace of MG after modification of the memory allocation. Al-
though the execution time could be reduced significantly, imbalance between
workers is still present. Though, the imbalance pattern has changed, as high-
lighted by Figure 5b that provides a zoom into one iteration of the algorithm.

The left side of the figure corresponds to the part of the computation where
the number of iterations of the parallel loops is below the number of cores. As
the execution time of the main loops has decreased, these phases now represent
a larger part of the execution. The loops on the right side of the figure have
a high iteration count, exceeding the number of workers. In all of the loops,
the first workers at the top of the figure spend significantly more time in the
loop than the last workers at the bottom. This is due to a mismatch between
the trip counts and the number of cores, making it impossible to partition the
iteration space evenly across workers. For the dark green and the beige loop

10

(a) Multiple iterations (b) Di↵erent types of imbalance

Fig. 5: Load imbalance with optimized memory allocation

(a) Main computation phase (b) Zoom on two iterations

Fig. 6: Execution using 128 cores

with 512 iterations, the first 128 workers perform three iterations, while the last
64 workers perform only two iterations. Similarly, the first 64 workers executing
the gray and light green loops with 256 iterations perform two iterations, while
the last 128 workers perform only one iteration. However, for the loops with
256 iterations, the pattern of imbalance is less sharp than for the loops with
512 iterations. This is due to the fact that the memory regions accessed in the
additional iterations are placed remotely. Thus, the imbalance pattern resulting
from the uneven partitioning is overlaid with an imbalance pattern resulting
from the machine topology.

The analysis above implies that an execution with only 128 cores leaves the
critical path unchanged with respect to the partitioning of the iteration spaces.
Figure 6a shows the main computation phase with this reduced number of cores.
The zoom in Figure 6b shows that both the imbalance from the previously un-
evenly distributed iteration space and the remote memory accesses have dis-
appeared. The latter e↵ect helped reduce the execution time to 1.35 s, which
represents a speedup of more than 35⇥ over the initial execution.

11

Fig. 7: Relative change of the execution time of tracing wrt. tracing disabled

4 Overhead of Tracing

In this section, we study the overhead induced by the instrumentation of the
runtime. In our experiments, we have compared the execution using the un-
modified LLVM/clang run-time, version 3.8.0 with the execution using our
instrumented run-time for a total of 11 applications on the 192-core test system.
As the base metric we have used the execution time reported by the benchmarks,
i.e., the wall clock execution time, excluding initialization and termination and
thus excluding the time needed for disk I/O to write the trace file.

To stress a significant part of the instrumentation code, we have chosen
benchmarks from di↵erent benchmark suites, covering both benchmarks based
on parallel loops and tasks. Loop-based benchmarks are CG, EP, FT, LU and
MG from the C implementation of NPB-2.3 with the C input class, already used
in the previous section. For task-based benchmarks, we have chosen alignment,
↵t, floorplan, sort, sparselu and strassen from the Barcelona OpenMP Task
Suite (BOTS, [9]), version 1.1.2. We have used the omp-tasks version of the
benchmarks where available, otherwise the for-omp-tasks version and the largest
available inputs.

Some of the benchmarks had to be excluded from the evaluation due to
segmentation faults (BT of NPB, nqueens, uts of BOTS), excessive execution
time (SP of NPB), missing information on the execution time (IS of NPB) and
unsuccessful verification of the results (health of BOTS).

Figure 7 shows the relative change of the execution time in percent when
tracing is enabled for a total of 50 executions of each benchmark. These values
have been obtained by dividing the execution time of each run with tracing by
the average execution time for 50 runs without tracing. Error bars indicate the
standard deviation and the values printed above error bars indicate the average
change of execution time. The absolute value of the di↵erence is below 6% for
all and below 1% for the majority of the benchmarks shown in the graph. We
have excluded floorplan from the plot, as its tracing overhead of 380% is two
orders of magnitude higher than for the other benchmarks. A quick analysis of
this benchmark with Aftermath revealed that the huge increase of the execution
time is the result of the creation of a large amount of tasks with a very short
duration of only a few thousand cycles. However, the geometric mean of the

12

absolute values of the mean di↵erences excluding floorplan is below 0.4%, such
that the overhead can be considered negligible.

5 Related Work

We compare our approach with the main tools and methodologies for the per-
formance debugging of OpenMP programs. Regarding trace generation, a col-
laborative API called OMPT is gathering momentum [10]. It is based on the
experience of POMP [12] and the Sun/Oracle collector API [13] and is primar-
ily designed for first-party performance tools (i.e., running in address space of
the application). OMPT provides limited support for sampling-based perfor-
mance measurement as well as blame shifting, shifting the attribution of costs
from symptoms to causes. Depending on the OpenMP implementation, it may
be implemented entirely by the compiler, the run-time or both. In its current
state, it provides callbacks for thread, parallel region and task begin/end and
tracks the state of mutexes, but it does not track loop scheduling, iteration set
or iteration period information. This limitation is shared with other tools such
as OPARI2 6, or Extrae 7, the library to generate Paraver trace files. Although
the latter has wrappers for major OpenMP libraries the semantical information
about OpenMP loops is not available. All the later also lack precise information
about OpenMP tasks, such as the spawning tree, array sections and dependences.

On the visualization side, Vampir [15] is a well-known commercial tool used
in high performance computing for almost two decades. It provides a rich user
interface for interactive exploration and analysis of huge traces and has an elab-
orated filter interface. Multiple connected views with di↵erent granularity from
cluster level to function calls are supported. But unlike Aftermath, the tool is
optimized for the analysis of massively parallel applications based on message
passing. OpenMP is supported at the granularity of parallel regions only. Par-
aver [16] provides powerful independent views on trace data. However, Paraver
focuses on interactive filtering mechanisms for multiple graph types and inde-
pendent views on trace data. The tool focuses on computation resources rather
than loop chunks, task memory access and communication patterns, which are
essential to the characterization of performance anomalies of OpenMP programs.
On the other hand, Intel’s VTune 8 provides finer grained, per-parallel-region
analysis of load imbalance, potential performance gain, and enables correlations
with hardware counters, but it neither models detailed chunk information, nor
nested parallelism.

Unlike the former tools, ParaProf [6] is a retargetable analysis and visu-
alization toolkit, part of TAU [18]. It does not provide ready-to-use solutions
for task-based performance analysis. One such solution based on ParaProf is
PerfExplorer [11], an interactive data mining application for performance

6 http://www.vi-hps.org/tools/opari2.html
7 http://www.bsc.es/computer-sciences/extrae
8 https://software.intel.com/en-us/articles/profiling-openmp-applications-with-intel-
vtune-amplifier-xe

13

analysis. However, ParaProf’s existing components and those of PerfEx-
plorer have little overlap with the specialized ones required for OpenMP loops
and tasks applications. As a result, building Aftermath within these frameworks
would have been close to the cost of development from scratch.

Finally, Grain Graphs [14] di↵erentiate for the former, chronogram-based
frameworks. Its hierarchical graph representation is aimed at OpenMP program-
mers with little performance debugging experience, and at improving productiv-
ity of performance tuning. It facilitates the localization of performance anoma-
lies on the source code, including load imbalance, limited parallelism degree, and
synchronization granularity issues. But it su↵ers from scalability issues on larger
traces and—by design—it does not provide a consistent timeline to correlate
specific loop chunk or task events. Complementarities between grain graphs and
chronogram-based visualization deserve to be investigated in the future.

6 Conclusion and Future Work

We presented a synergistic language and hardware approach to the performance
analysis of OpenMP programs. It is designed and implemented as an extension
to the Aftermath trace analyzer and the LLVM/clang OpenMP run-time.
We contributed an e�cient, low-overhead instrumentation of a state-of-the-art
OpenMP run-time and a graphical user interface that provides a visual repre-
sentation of OpenMP constructs, aggregate metrics for statistics, and methods
for the detailed inspection of dynamic loop instances, iteration sets, iteration pe-
riods, tasks constructs and task instances. We demonstrated that performance
analysis at the level of the parallel programming model is essential to charac-
terize and to correct performance bottlenecks on large-scale parallel machines.
Application to the MG benchmark led to 35⇥ improvement over the baseline
OpenMP implementation on a 192-core non-uniform memory access system. We
also showed that our solution for trace file generation only causes negligible
overhead on the execution time.

We plan to extend the components presented in this paper and the coverage
of the programming model. In particular, we will provide support for the tracing
of dependent tasks introduced with OpenMP 4, and add tools for the analysis of
the task graph, similar to the analyses Aftermath provides for dependent tasks
in OpenStream [17, 8].

References

1. http://vite.gforge.inria.fr. Accessed 05/2016.
2. Intel openmp runtime library. https://www.openmprtl.org. Accessed 05/2016.
3. LLVM OpenMP support. http://openmp.llvm.org. Accessed 05/2016.
4. Omni compiler project. http://www.hpcs.cs.tsukuba.ac.jp/omni-

compiler/download/download-benchmarks.html. Accessed 05/2016.
5. D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fa-

toohi, S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, and
V. Venkatakrishnan. The NAS Parallel Benchmarks. Technical report, 1994.

14

6. Robert Bell, Allen D Malony, and Sameer Shende. Paraprof: A portable, extensible,
and scalable tool for parallel performance profile analysis. In Euro-Par 2003 Par.
Processing, pages 17–26. Springer, 2003.

7. OpenMP Architecture Review Board. OpenMP Application Program Interface
Version 4.5, November 2015.

8. Andi Drebes, Antoniu Pop, Karine Heydemann, and Albert Cohen. Interactive
visualization of cross-layer performance anomalies in dynamic task-parallel appli-
cations and systems. In 2016 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), April 2016.

9. Alejandro Duran, Xavier Teruel, Roger Ferrer, Xavier Martorell, and Eduard
Ayguade. Barcelona openmp tasks suite: A set of benchmarks targeting the ex-
ploitation of task parallelism in openmp. In Proceedings of the 2009 International
Conference on Parallel Processing, ICPP ’09, pages 124–131, Washington, DC,
USA, 2009. IEEE Computer Society.

10. Alexandre Eichenberger, John Mellor-Crummey, Martin Schulz, Nawal Copty, Jim
Cownie, Robert Dietrich, Xu Liu, Eugene Loh, and Daniel Lorenz. OpenMP Tech-
nical Report 2 on the OMPT Interface. Technical report, 2014.

11. Kevin A. Huck and Allen D. Malony. Perfexplorer: A performance data min-
ing framework for large-scale parallel computing. In Proceedings of the 2005
ACM/IEEE Conference on Supercomputing, SC ’05, pages 41–, Washington, DC,
USA, 2005. IEEE Computer Society.

12. Marty Itzkowitz, Oleg Mazurov, Nawal Copty, and Yuan Lin. An OpenMP Run-
time API for Profiling. http://www.compunity.org/futures/omp-api.html. Ac-
cessed 05/2016.

13. G. Jost, O. Mazurov, and D. An Mey. Adding new dimensions to performance
analysis through user-defined objects. In Intl. Conf. on OpenMP shared memory
parallel programming, IWOMP’05/IWOMP’06, pages 255–0266. Springer-Verlag,
2008.

14. Ananya Muddukrishna, Peter A. Jonsson, Artur Podobas, and Mats Brorsson.
Grain graphs: Openmp performance analysis made easy. In Proceedings of the 21st
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’16, pages 28:1–28:13, New York, NY, USA, 2016. ACM.

15. Matthias S. Müller, Andreas Knüpfer, Matthias Jurenz, Matthias Lieber, Holger
Brunst, Hartmut Mix, and Wolfgang E. Nagel. Developing scalable applications
with Vampir, VampirServer and VampirTrace. In Proc. of ParCo ’07, volume 15
of Advances in Parallel Computing, pages 637–644. IOS Press, 2008.

16. Vincent Pillet, Vincent Pillet, Jesús Labarta, Toni Cortes, and Sergi Girona. PAR-
AVER: A tool to visualize and analyze parallel code. Technical report, In WoTUG-
18, 1995.

17. Antoniu Pop and Albert Cohen. OpenStream: Expressiveness and Data-flow Com-
pilation of OpenMP Streaming Programs. ACM Trans. Archit. Code Optim.,
9(4):53:1–53:25, January 2013.

18. Sameer S. Shende and Allen D. Malony. The tau parallel performance system. Int.
J. High Perform. Comput. Appl., 20(2):287–311, May 2006.

19. The Cairo Graphics Team. Cairo graphics. http://www.cairographics.org. Ac-
cessed 05/2016.

20. The GTK+ Team. The GTK+ project. http://www.gtk.org. Accessed 05/2016.

