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We investigate fractional-charge and fractional-spin errors in range-separated density-functional
theory. Specifically, we consider the range-separated hybrid (RSH) method which combines
long-range Hartree-Fock (HF) exchange with a short-range semilocal exchange-correlation density
functional, and the RSH+MP2 method which adds long-range second-order Møller-Plesset (MP2)
correlation. Results on atoms and molecules show that the fractional-charge errors obtained in
RSH are much smaller than in the standard Kohn-Sham (KS) scheme applied with semilocal
or hybrid approximations, and also generally smaller than in the standard HF method. The
RSH+MP2 method tends to have smaller fractional-charge errors than standard MP2 for the most
diffuse systems, but larger fractional-charge errors for the more compact systems. Even though the
individual contributions to the fractional-spin errors in the H atom coming from the short-range
exchange and correlation density-functional approximations are smaller than the corresponding
contributions for the full-range exchange and correlation density-functional approximations, RSH
gives fractional-spin errors that are larger than in the standard KS scheme and only slightly smaller
than in standard HF. Adding long-range MP2 correlation only leads to infinite fractional-spin
errors. This work clarifies the successes and limitations of range-separated density-functional
theory approaches for eliminating self-interaction and static-correlation errors.

I. INTRODUCTION

The study of systems with fractional electron num-
bers proved to be extremely useful to diagnose the er-
rors of computational electronic-structure methods, in
particular methods based on density-functional theory
(DFT) [1, 2]. Using the grand-canonical ensemble for-
malism, the exact ground-state energy EN of a system
with a fractional electron number N = M+δ, where M is
an integer and 0 ≤ δ ≤ 1, was showed to be a linear func-
tion of δ, interpolating between the ground-state energies
EM and EM+1 of the adjacent M - and (M + 1)-electron
systems [3] (see also Ref. 4 for a pure-state view)

EN = (1− δ)EM + δEM+1. (1)

The deviation from this piecewise linearity behavior of
the energy obtained with a given approximate method
is a measure of the (many-electron) self-interaction er-
ror [5–8], also called the delocalization error or the
fractional-charge error [9], of this method.

For systems with degenerate ground states with differ-
ent spin, another useful condition can be derived. For
example, for a system with a spin-doublet ground state,
such as the hydrogen atom or the lithium atom, the ex-
act ground-state energy EN↑,N↓ with fractional spin-up
and spin-down electron numbers, N↑ = M/2 + 1− δ and
N↓ = M/2+δ where M is an even integer and 0 ≤ δ ≤ 1,
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is independent of δ

EN↑,N↓ = EM/2+1,M/2 = EM/2,M/2+1. (2)

This is known as the constancy condition [10]. The devia-
tion from this constancy condition of the energy obtained
with a given approximate method is a measure of the
static (or strong) correlation error, also called fractional-
spin error in this context. The conditions of Eqs. (1)
and (2) can be unified and extended to the so-called flat-
plane condition [11].

An ideal computational electronic-structure method
should fulfill the two conditions of Eqs. (1) and (2).
Let us first focus on the deviation from Eq. (1),
i.e. on the fractional-charge error. Semilocal density-
functional approximations (DFAs), i.e. the local-density
approximation (LDA), generalized-gradient approxima-
tions (GGA), and meta-GGA approximations, tend to
give convex energy curves as a function of N , i.e. favor-
ing too much electron delocalization [5, 8]. On the oppo-
site, Hartree-Fock (HF) gives concave energy curves, i.e.
favoring too much electron localization [5, 8]. Hybrid ap-
proximations combining a fraction of HF exchange with
a semilocal DFA help to reduce fractional-charge errors,
even though they still give significantly convex energy
curves [5, 8]. Long-range corrected (LC) [12] or Coulomb-
attenuated-method (CAM) [13] approximations intro-
ducing 100% of HF exchange at long-range electron-
electron distances tend to further reduce fractional-
charge errors [5, 8, 14–16]. Moving now to approxima-
tions depending on virtual orbitals, second-order Møller-
Plesset (MP2) perturbation theory was found to give very
small fractional-charge errors [17, 18]. Double-hybrid
(DH) approximations [19], combining HF exchange and
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MP2 correlation with a semilocal DFA, inherit from the
good fractional-charge behavior of standard MP2, and
lead to smaller fractional-charge errors than standard hy-
brid approximations, even though the errors are gener-
ally larger than in standard MP2 [20, 21]. The random-
phase approximation (RPA) in its simplest direct vari-
ant [22] gives quite convex energy curves as a function of
N , corresponding to a large delocalization error [23–25].
This fractional-charge error can be very much reduced
by adding the HF exchange kernel within the standard
(particle-hole) RPA approach [23] or within the particle-
particle RPA approach [26]. Finally, coupled-cluster
methods with single and double excitations (CCSD) and
perturbative triple excitations [CCSD(T)] have also been
extended to fractional electron numbers and have been
found to nearly satisfy the exact piecewise linear behav-
ior [27].

Let us now focus on the deviation from Eq. (2), i.e.
on the fractional-spin error. It turns out that most
of the symmetry-unbroken single-determinant-reference
methods giving small fractional-charge errors tend to
give large fractional-spin errors, and vice versa. For
example, while the addition of HF exchange in hybrid
approximations helps to decrease fractional-charge er-
rors, as previously mentioned, it also increases fractional-
spin errors in comparison to semilocal DFAs [10]. Even
more illustrative is the case of MP2 which is among
the methods giving the smallest fractional-charge errors,
and also gives infinite fractional-spin errors [17]. This
last problem is partly overcome by self-consistent MP2
based on Green-function theory which gives finite (but
not very small) fractional-spin errors in the fractional-
spin H atom [28]. Direct RPA has no fractional-spin er-
rors for the fractional-spin H atom [23, 24], while CCSD
shows fractional-spin errors in systems with more than
two degenerate fractionally occupied orbitals. So far,
only particle-particle RPA seems to be able to give both
small fractional-charge and fractional-spin errors [26].

In this work, we investigate the fractional-charge and
fractional-spin errors in range-separated DFT (see, e.g.,
Refs. 29 and 30) for some atoms (H, He, Li, Be, B, C,
N, O, F) and molecules (N2 and CO). We first focus on
the range-separated hybrid (RSH) approximation which
combines long-range HF exchange with a short-range
exchange-correlation DFA [31–33], which is similar but
not identical to the LC scheme. In particular, we analyze
the contributions to the fractional-charge and fractional-
spin errors coming from the short-range exchange and
correlation DFAs. We then also study the effect of adding
a long-range correlation energy calculated at the MP2
level [32, 34, 35]. Our work helps to clarify the successes
and limitations of range-separated DFT approaches for
eliminating self-interaction and static-correlation errors.

II. RANGE-SEPARATED DFT WITH
FRACTIONAL ELECTRON NUMBERS

A. Range-separated hybrid approximation

The extension of the RSH scheme [32] to fractional
electron numbers is easily performed, just like for HF
or other hybrid Kohn-Sham approximations [5], by in-
troducing fractional occupation numbers nk for the RSH
orbitals ϕk(r). The total electronic energy in the spin-
unrestricted RSH approximation is thus written as, in
atomic units,

ERSH =
∑
k

nk

∫
ϕ∗k(r)

[
−1

2
∇2 + vne(r)

]
ϕk(r)dr

+EH[n] + Elr
x + Esr

xc[n↑, n↓], (3)

where k is a spin-orbital index implicitly including a spin
index (σ =↑, ↓), vne(r) is the nuclei-electron interaction,
EH[n] is the full-range Hartree energy depending on the
total density n(r) =

∑
σ nσ(r)

EH[n] =
1

2

∫∫
n(r1)n(r2)wee(|r2 − r1|)dr1dr2, (4)

with the standard Coulomb electron-electron interaction
wee(r) = 1/r, Elr

x is the long-range HF exchange energy
depending on the spin-resolved one-particle density ma-
trix γσ(r1, r2)

Elr
x = −1

2

∑
σ

∫∫
|γσ(r1, r2)|2wlr

ee(|r2 − r1|)dr1dr2, (5)

with the long-range electron-electron interaction
wlr

ee(r) = erf(µr)/r and the range-separation parameter
µ, and Esr

xc[n↑, n↓] is the short-range exchange-correlation
energy depending on the spin densities nσ(r). The spin
densities and the one-particle density matrix are ex-
pressed with the fractional orbital occupation numbers

nσ(r) =
∑

k of spin σ

nk|ϕk(r)|2, (6)

and

γσ(r, r′) =
∑

k of spin σ

nkϕ
∗
k(r′)ϕk(r), (7)

where the sum is over all spin orbitals k of spin σ.
For µ = 0, fractional occupation number RSH reduces

to Kohn-Sham DFT, while for µ → ∞ it reduces to the
HF method, both in their extended versions to fractional
occupation numbers. The RSH approximation is similar
to the LC scheme [12], except that in the latter a full-
range correlation functional is used instead of a short-
range correlation functional. We note that other defini-
tions of the Hartree and exact exchange contributions for
an ensemble than the ones of Eqs. (4) and (5) are pos-
sible (see, e.g., Refs. 36 and 37). The ones of Eqs. (4)
and (5), based on the ensemble density of Eq. (6) and
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the ensemble one-particle density matrix of Eq. (7), are
the relevant ones for the purpose of analyzing fractional
systems arising for example from molecular dissociations.

In practice, in an atomic-orbital (AO) basis {χµ(r)},
the total RSH electronic energy is calculated as

ERSH =
∑
µν

Pνµ

[
hµν +

1

2

(
Jµν −K lr

µν

)]
+ Esr

xc[n↑, n↓],

(8)

where Pµν =
∑
σ P

σ
µν is the total AO density matrix,

hµν are the one-electron (kinetic + electron-nuclei) in-
tegrals, Jµν =

∑
λγ Pγλ〈µλ|νγ〉 is the Hartree contribu-

tion, K lr
µν =

∑
λγ Pγλ〈µλ|γν〉lr is the long-range HF ex-

change contribution, and the spin densities are calculated
as nσ(r) =

∑
µν P

σ
µνχµ(r)χ∗ν(r) with the spin-resolved

AO density matrix Pσµν . In these expressions, 〈µλ|νγ〉
are the two-electron integrals for the Coulomb interaction
wee(r) and 〈µλ|γν〉lr are the two-electron integrals for
the long-range interaction wlr

ee(r). The fractional occu-
pation numbers nk only appear in the AO density matrix
whose expression is (assuming from now on real-valued
orbitals),

Pσµν =
∑

k of spin σ

nkckµckν , (9)

where ckµ is the coefficient of the spin orbital k over the
basis function χµ.

Three sets of spin orbitals can be defined: Nf fully oc-
cupied spin orbitals for which nk = 1, Np partially occu-
pied spin orbitals for which 0 ≤ nk ≤ 1 (corresponding to
possibly degenerate HOMO spin orbitals for each spin),
and Nu fully unoccupied spin orbitals for which nk = 0.
We always consider fixed occupation numbers nk which
add up to the desired spin-up and spin-down fractional
electron numbers N↑ and N↓. The RSH total energy is
then minimized with respect to the orbital coefficients.

We note that, while for the standard case of
non-fractional occupation numbers the non-redundant
orbital-rotation parameters to optimize corresponds to
occupied → unoccupied excitations, in the present case
of fractional occupation numbers there are a priori more
orbital-rotation parameters to consider: fully occupied →
partially occupied, fully occupied → fully unoccupied, par-
tially occupied → partially occupied, and partially occu-
pied → fully unoccupied (see, e.g., Ref. 38). Hence, the
number of parameters is in principle (Nf+Np)(Np+Nu).
However, in practice, if using canonical spin orbitals di-
agonalizing the Fock matrix, it is sufficient in a program
to change the definition of the density matrix according
to Eq. (9) and perform the orbital optimization as in the
standard case where the partially occupied spin orbitals
would be fully occupied, i.e. only optimizing (Nf+Np)Nu

parameters. Indeed, the energy gradient with respect to
the additional parameters only involve off-diagonal el-
ements of the Fock matrix and are thus automatically
zero with canonical spin orbitals.

B. Long-range MP2 correlation energy

In the RSH total energy, the long-range correlation en-
ergy Elr

c is missing and can be calculated a posteriori, e.g.
with long-range MP2 [32, 34, 35]. The expression of the
MP2 correlation energy extended to fractional electron
numbers was given by Casida [39] and Cohen et al. [17].
The extension to the range-separated case is straightfor-
ward and is described now.

We calculate the long-range MP2 correlation energy as

Elr,MP2
c =

1

2

∑
ia,jb

Bx
ia,jbT

d,(1)
jb,ia , (10)

where Bx
ia,jb = fia,jb〈ab||ij〉lr are the exchange interac-

tion matrix elements and T
d,(1)
jb,ia are the direct first-order

double-excitation amplitudes

T
d,(1)
ia,jb =

−Bd
ia,jb

εa + εb − εi − εj
, (11)

where Bd
ia,jb = fia,jb〈ab|ij〉lr are the direct in-

teraction matrix elements. In these expressions,
〈ab||ij〉lr = 〈ab|ij〉lr − 〈ab|ji〉lr and 〈ab|ij〉lr are
the antisymmetrized and non-antisymmetrized long-
range two-electron integrals over RSH spin orbitals,
respectively, εk are RSH spin-orbital energies, and
fia,jb =

√
ninj(1− na)(1− nb) is the fractional-

occupation-number factor of Ref. 40.
In Eq. (10), the sums over i and j are over all fully

occupied and partially occupied spin orbitals, while the
sums over a and b are over all partially occupied and
fully unoccupied spin orbitals. Note that, in practice,
we restrict these sums to only non-spin-flip excitations
i→ a and j → b (i.e., the spin orbitals i and a have the
same spins, and the spin orbitals j and b have the same
spins) since Bd

ia,jb = 0 for spin-flip excitations. Also, we

exclude from the sums of Eq. (10) all terms for which
Bx
ia,jb = 0, which include in particular the terms with

i = j or a = b.
For the range-separation parameter µ = 0, the long-

range MP2 correlation energy of Eq. (10) vanishes, while
for µ → ∞ it reduces to the post-HF full-range MP2
correlation energy with fractional occupation numbers of
Ref. 17.

C. Computational details

All calculations were done with a development version
of MOLPRO 2015 [41], in which we have implemented the
above-described extensions to fractional occupation num-
bers.

The RSH calculations are done with the short-range
exchange-correlation Perdew-Burke-Ernzerhof (PBE)
density functional of Ref. 42, which is a modified ver-
sion of the short-range functional of Ref. 43 so that it
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reduces to the standard PBE functional [44] for µ = 0.
The range-separated MP2 total energy is obtained as

ERSH+MP2 = ERSH + Elr,MP2
c , (12)

and is referred to as RSH+MP2. In these calcula-
tions, the range-separation parameter is fixed to µ = 0.5
bohr−1, as recommended in previous studies [45, 46].

For comparison, we also perform HF calculations and
Kohn-Sham calculations using the PBE functional and
the PBE0 hybrid approximation [47, 48], as well as full-
range MP2 calculations starting from HF, i.e.

EHF+MP2 = EHF + EMP2
c , (13)

corresponding to Eq. (12) in the limit µ → ∞, which is
referred to as HF+MP2.

The calculations for H, He, H+
2 , He+2 , and H2 were

done with the Dunning cc-pVTZ basis sets [49, 50]. The
calculations for Li, Be, B, C, N, O, and F were done
with the aug-cc-pCVTZ basis sets [51], including core
excitations in the MP2 calculations. The calculations
for N2 and CO were done with the aug-cc-pVTZ basis
sets [52], without core excitations. We note that using
basis sets augmented with diffuse basis functions has an
important impact on the fractional-charge errors for the
negatively charged systems considered (see, in particular,
Ref. 53). The internuclear distances of N2 and CO were
taken as the experimental distances of 1.098 Å [54] and
1.128 Å [55], respectively. Spatial symmetry is not ex-
plicitly imposed in our calculations (but not necessarily
broken either). The calculations with fractional occu-
pation numbers are always done in a spin-unrestricted
formalism. For fractional-charge calculations, either the
spin-up or spin-down HOMO orbital is fractionally occu-
pied so as to connect the lowest-energy states (according
to Hund’s rule of maximum spin multiplicity) at both
adjacent integer-electron numbers.

III. RESULTS AND DISCUSSION

In all figures, the SCF and MP2 results are color- and
symbol-coded in a consistent way; full-range calculations
are always shown with dotted lines while range-separated
calculations are shown with full lines.

A. Dissociation of H+
2 and fractional-charge error
in H

The study of the dissociation of H+
2 reveals the propen-

sity of each computational method to the one-electron
self-interaction error. In the left panel of Figure 1, the
total energy of H+

2 calculated by each method, without
breaking spatial symmetry in the calculation, is plotted
as a function of the internuclear distance R, taking as

zero energy reference the sum of the energies of the iso-
lated ion H+ and atom H (with integer numbers of elec-
trons) calculated with the same method

∆Edissoc(R) = E(H+
2 , R)−

[
E(H+) + E(H)

]
. (14)

On the right panel of Figure 1, for each corresponding
method, we plot twice the error in the total energy of

a fractionally charged hydrogen atom, H+(1−δ), with re-
spect to the linear interpolation of the energies of H+

and H as a function of the fractional number of electron
δ with 0 ≤ δ ≤ 1

2∆Efrac(δ) = 2E(H+(1−δ))− 2
[
(1− δ)E(H+) + δE(H)

]
.

(15)
In the exact case, ∆Efrac(δ) = 0 for any 0 ≤ δ ≤ 1,
according to Eq. (1). For all the SCF methods consid-
ered here, H+

2 dissociates into two half-electron hydrogen

ions, i.e. E(H+
2 , R → ∞) = E(H+0.5 + H+0.5). Since for

all the SCF and MP2 methods considered here the total
energy is additively separable, i.e. E(H+0.5 + H+0.5) =
2E(H+0.5), the dissociation limit of the energy curve is

∆Edissoc(R→∞) = 2E(H+0.5)−
[
E(H+) + E(H)

]
= 2∆Efrac(δ = 0.5). (16)

Thus, the value 2 ∆Efrac(δ = 0.5) corresponds to the one-
electron self-interaction error in H+

2 in the dissociation
limit. More generally, the curve of the fractional-charge
error ∆Efrac(δ) is a convenient way to analyze the self-
interaction error of a method. The equality of Eq. (16)
can be checked by comparing the left and right panels of
Figure 1 (note that the point displayed on the right of all
dissociation figures is at 50 Å).

Clearly, HF is exact for H+
2 (it is one-electron self-

interaction free) and correctly gives ∆Efrac(δ) = 0 for all
0 ≤ δ ≤ 1. By contrast, PBE leads to large fractional-
charge errors. Due to the introduction of 25% of global
HF exchange, PBE0 has a bit smaller fractional-charge
errors. RSH has much smaller fractional-charge errors
than PBE0, which is what was also previously found for
LC-ωPBE [8]. Note that both the PBE and PBE0 dis-
sociation energy curves display a spurious barrier due to
the electrostatic repulsion (proportional to 1/R) between
the charged fragments H+0.5 and H+0.5, as explained in
Ref. 56. This spurious barrier is absent with RSH thanks
to the introduction of the long-range HF exchange which
correctly cancels out the electrostatic repulsion of the
charged fragments.

For this system, the MP2 correlation energy is cor-
rectly zero for any 0 ≤ δ ≤ 1. Indeed, it can be eas-
ily checked that when a single spin orbital i is occupied
Bx
ia,ib = 0 in Eq. (10). Therefore, the HF+MP2 re-

sults are identical to the HF results, and the RSH+MP2
results are identical to the RSH results. The small
fractional-charge errors of RSH+MP2 are thus only due
to the use of the approximate short-range PBE exchange-
correlation density functional.
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FIG. 1. Dissociation of H+
2 and corresponding fractional-charge analysis for the H atom. On the left panel, the dissociation

energy curve ∆Edissoc(R) defined in Eq. (14) is plotted as a function of the internuclear distance R for each method. On the
right panel, the fractional-charge error 2 ∆Efrac(δ) defined in Eq. (15) is plotted as a function of δ for the same methods.
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FIG. 2. Density-functional-approximation contributions to
the fractional-charge error in the H atom as a function of
the fractional electron number δ. For Kohn-Sham PBE cal-
culations, we show the error due to the PBE exchange en-
ergy, ∆EPBE

x = EPBE
x [nδ, 0] + EH[nδ], the PBE correlation

energy ∆EPBE
c = EPBE

c [nδ, 0], and their sum ∆EPBE
xc =

∆EPBE
x + ∆EPBE

c , where the density nδ is from the self-
consistent PBE calculation at the value of δ. For the RSH
calculations, we show the error due to the short-range PBE ex-
change energy, ∆EsrPBE

x = EsrPBE
x [nδ, 0] +Esr

H [nδ], the short-
range PBE correlation energy ∆EsrPBE

c = EsrPBE
c [nδ, 0], and

their sum ∆EsrPBE
xc = ∆EsrPBE

x +∆EsrPBE
c , where the density

nδ is from the self-consistent RSH calculation at the value of
δ. The errors are multiplied by a factor of 2 to be directly
comparable to Figure 1.

We can analyze further the contributions to the
fractional-charge error coming from the approximate ex-
change and correlation density functionals used. For
Kohn-Sham DFT applied to systems with one or less
spin-up electron (see, e.g., Refs. 57 and 58), the exact
exchange energy functional cancels out the Hartree en-
ergy

Ex[nδ, 0] = −EH[nδ], (17)

where the exact exchange functional is defined
as Ex[n↑, n↓] = −(1/2)

∑
σ

∫∫
|γσ(r1, r2)|2wee(|r2 −

r1|)dr1dr2, and the exact correlation energy functional
vanishes

Ec[nδ, 0] = 0, (18)

where nδ is the density for δ spin-up electron with 0 ≤
δ ≤ 1. For range-separated DFT, the same conditions
apply for systems with one or less spin-up electron, i.e.
the exact short-range exchange energy functional cancels
out the short-range Hartree energy

Esr
x [nδ, 0] = −Esr

H [nδ], (19)

where the exact short-range exchange
functional is defined as Esr

x [n↑, n↓] =
−(1/2)

∑
σ

∫∫
|γσ(r1, r2)|2wsr

ee(|r2 − r1|)dr1dr2, and
the exact short-range correlation energy functional
vanishes

Esr
c [nδ, 0] = 0. (20)

The deviations from these exact conditions for the
fractional-charge H atom obtained with the full-range
PBE exchange and correlation density functionals and
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FIG. 3. Dissociation of He+2 and corresponding fractional-charge analysis for the He atom. On the left panel, the dissociation
energy curve ∆Edissoc(R) defined in Eq. (21) is plotted as a function of the internuclear distance R for each method. On the
right panel, the fractional-charge error 2 ∆Efrac(δ) defined in Eq. (22) is plotted as a function of δ for the same methods.

with the short-range PBE exchange and correlation den-
sity functionals are plotted in Figure 2. Clearly, except
near δ = 1 (see below), the fractional-charge errors of
both the PBE and RSH calculations are dominated by
the error in the exchange functional. While the full-range
PBE and short-range PBE correlation functional give
nearly identical correlation energies for the fractional-
charge H atom for all δ(which means that the LC and
RSH schemes are nearly identical with this functional for
this system), the short-range PBE exchange functional
used in the RSH calculation has a fractional-charge er-
ror which is almost an order of magnitude smaller than
that of the full-range PBE exchange functional for most
δ (and it becomes comparable to the fractional-charge er-
ror of the correlation functional). This is consistent with
the fact that, in the limit of a very short-range electron-
electron interaction (i.e., when the range-separation pa-
rameter µ is large), the exact short-range exchange den-
sity functional becomes a local functional of the density
and therefore (semi)local-density approximations become
exact [30]. In fact, a similar reduction of the fractional-
charge errors in the H atom was already observed for the
short-range LDA exchange-correlation density functional
in Ref. 59. Finally, note that the residual self-interaction
error in the present RSH calculation for δ = 1 mainly
comes from the short-range PBE correlation functional.
As a matter of fact, the Kohn-Sham PBE calculation of
the H atom (at δ = 1) largely benefits from a compen-
sation of errors between the errors made by the PBE
exchange and PBE correlation functionals. This com-
pensation of errors is much reduced in the case of RSH.

B. Dissociation of He+
2 and fractional-charge error
in He

The dissociation of He+2 allows one to discuss an ex-
ample of the many-electron self-interaction error [5, 6].
Similarly to the case of H+

2 , we show in Figure 3 the
dissociation curve calculated as

∆Edissoc(R) = E(He+2 , R)−
[
E(He+) + E(He)

]
, (21)

and the corresponding fractional-charge error

2∆Efrac(δ) = 2E(He+(1−δ))−2
[
(1− δ)E(He+) + δE(He)

]
.

(22)
Again, if spatial symmetry is not broken, we must have
∆Edissoc(R→∞) = 2∆Efrac(δ = 0.5), which can be seen
by comparing the left and right panels of Figure 3.

Similar conclusions as in the case of H+
2 can be drawn.

PBE leads to large fractional-charge errors in the frac-
tional He atom, and these errors are decreased a bit when
using PBE0. Again, RSH shows much smaller fractional-
charge errors. Just as for the fractional-charge H atom,
the reduction of these errors essentially comes from the
exchange part of the short-range PBE functional (not
shown). Contrary to the case of H+

2 , here HF is not ex-
act and gives a concave curve as a function of δ, with
a positive fractional-charge error of about 15 kcal.mol−1

at δ = 0.5. This indicates that, if spatial symmetry were
allowed to break, the HF calculation of He+2 would give a
lower energy curve with a dissociation limit correspond-
ing to localized electrons on each fragment, He + He+,
and thus ∆Edissoc(R→∞) would become zero (and the
calculation would properly be size consistent). However,
we are not interested in the case of symmetry breaking
and we use the HF calculation of He+2 as displayed in
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Figure 3 for subsequent MP2 calculations. Full-range
HF+MP2 shows very small fractional-charge errors. The
range-separated RSH+MP2 method gives essentially the
same fractional-charge errors as the errors obtained at
the single-determinant RSH level. This is due to the fact
that the long-range correlation energy is very small in
this system.

C. Fractional-charge errors in larger atoms (Li, Be,
B, C, N, O, F) and in molecules (N2, CO)

We now investigate fractional-charge errors in larger
atoms and in molecules. We consider the atoms Li, Be,
B, C, N, O, F and the molecules N2 and CO, and their
fractional cations and anions with electron numbers N =
Z + δ where Z is the total charge of the nuclei and −1 ≤
δ ≤ 1. In Figure 4, we show the deviation from the exact
piecewise linear behavior, i.e.

∆Efrac(δ) = E(X−δ)−
[
−δE(X+) + (1 + δ)E(X)

]
, (23)

for −1 ≤ δ ≤ 0, and

∆Efrac(δ) = E(X−δ)−
[
(1− δ)E(X) + δE(X−)

]
, (24)

for 0 ≤ δ ≤ 1.
For the atomic systems, a first observation is that the

maximal fractional-charge error tends to increase with
Z. For almost all systems, HF shows a strong concave
deviation. RSH gives fractional-charge errors that can
be either convex or concave, and are generally smaller
than in HF (the only exceptions being Li, and negatively
charged Be and N). The behavior of the RSH fractional-
charge errors can be understood as being intermediate
between the concave fractional-charge errors of HF and
the convex fractional-charge errors of Kohn-Sham PBE.
The RSH fractional-charge errors are generally closer to
the HF ones for negatively charged systems than for pos-
itively charged systems. As pointed in Ref. 8, this can
be rationalized by the fact that negatively charged sys-
tems are more diffuse than positively charged systems,
and long-range HF exchange makes a larger contribution
in such diffuse systems. In comparison to other methods,
RSH gives particularly small errors for negatively charged
F, N2, and CO. The dependence of the accuracy of RSH
on the size of the system suggests to tune the range-
separation parameter in each system so as minimize the
deviation from the exact piecewise linear behavior, as
done in Refs. 60 and 61. However, this approach has the
disadvantage of being non size consistent [62], so we pre-
fer to use a fixed value of the range-separation parameter,
independent of the system. Finally, we mention that we
have checked for the negatively charged F that the LC
scheme (using the same short-range PBE exchange func-
tional used in RSH) gives fractional-charge errors that
are essentially identical to the RSH ones, meaning the
long-range PBE correlation functional makes negligible
contributions to the errors. We expect indeed that RSH
and LC give very similar results in most systems.

Full-range MP2 almost always gives smaller fractional-
charge errors than HF, with the exception of Li and neg-
atively charged N. Depending on the system, the MP2
error curves are convex or concave, or have a S-shape as
already observed in Refs. 17 and 18. The largest MP2
fractional-charge errors are obtained for the negatively
charged atoms and for the molecules N2 and CO. We note
that the fractional-charge errors for negatively charged C
reported in Ref. 17 and for negatively charged O reported
in Ref. 18 appear to be significantly smaller than ours.
We attribute these differences to the fact that we use ba-
sis sets augmented with diffuse basis functions, which has
an important impact for negatively charged systems.

Range-separated MP2 gives fractional-charge errors
than can be either smaller or larger than the RSH
and full-range HF+MP2 ones, depending on the sys-
tem. Specifically, in comparison to full-range HF+MP2,
the RSH+MP2 fractional-charge errors are larger for the
more compact systems (Li, Be, and positively charged
B, C, N, O, F), and smaller for the more diffuse systems
(negatively charged B, C, N, O, F, and the molecules N2

and CO).

D. Dissociation of H2 and fractional-spin error in H

The dissociation of H2 is a prototypical example for
studying the static-correlation error. In the left panel
of Figure 5, the total energy of H2 calculated by each
method, preserving spin symmetry in the calculation, is
plotted as a function of the internuclear distance R, tak-
ing as zero energy reference twice the energy of the iso-
lated atom H calculated with the same method

∆Edissoc(R) = E(H2, R)− 2E(H). (25)

On the right panel of Figure 5, for each corresponding
method, we plot twice the error in the total energy of a
H atom with fractional spin-up and spin-down electron
numbers N↑ = 1−δ and N↓ = δ, denoted as H1−δ,δ, with
respect to the energy of the normal H atom as a function
of δ with 0 ≤ δ ≤ 1

2∆Efrac(δ) = 2E(H1−δ,δ)− 2E(H). (26)

According to the constancy condition of Eq. (2), we
should have ∆Efrac(δ) = 0 for all 0 ≤ δ ≤ 1. For all the
SCF methods considered here, H2 dissociates into two hy-
drogen atoms with each half spin-up and half spin-down
electron, i.e. E(H2, R → ∞) = E(H0.5,0.5 + H0.5,0.5) =
2E(H0.5,0.5). The dissociation limit of each energy curve
is thus

∆Edissoc(R→∞) = 2E(H0.5,0.5)− 2E(H)

= 2∆Efrac(δ = 0.5). (27)

Thus, the value 2∆Efrac(δ = 0.5) corresponds to the
static-correlation error in H2 in the dissociation limit.
More generally, the curve of the fractional-spin error
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FIG. 4. Fractional-charge errors of several methods for some atoms (Li, Be, B, C, N, O, F) and molecules (N2, CO) with
fractional numbers of electrons Z = Z + δ, where Z is the total charge of the nuclei and −1 ≤ δ ≤ 1. The errors ∆Efrac(δ)
defined in Eqs. (23) and (24) are plotted as a function of δ.
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FIG. 5. Dissociation of H2 and corresponding fractional-spin analysis for the H atom. On the left panel, the dissociation energy
curve ∆Edissoc(R) defined in Eq. (25) is plotted as a function of the internuclear distance R for each method. On the right
panel, the fractional-spin error 2∆Efrac(δ) defined in Eq. (26) is plotted as a function of δ for the same methods. The HF+MP2
and RSH+MP2 energies of H2 diverge to −∞ in the dissociation limit and their corresponding fractional-spin errors in the H
atom also diverge for all 0 < δ < 1.

∆Efrac(δ) is a convenient way to analyze the static-
correlation error of a method.

As well known, (spin-restricted) HF gives a large
static-correlation error in H2 in the dissociation limit, or
equivalently a large fractional-spin error in the H atom
at δ = 0.5 (about 180 kcal.mol−1). RSH only decreases a
bit the fractional-spin errors (about 160 kcal.mol−1 at
δ = 0.5). PBE0 has much less fractional-spin errors
(about 80 kcal.mol−1 at δ = 0.5). Expectedly, the PBE
calculation, which does not include any HF exchange,
leads to the smallest fractional-spin errors (about 50
kcal.mol−1 at δ = 0.5). The HF+MP2 and RSH+MP2
energies of H2 diverge to −∞ in the dissociation limit.
Their corresponding fractional-spin errors in the H atom
also diverge for all 0 < δ < 1 due to the contribution
from i = a and j = b in Eq. (11) where i and j are the
degenerate fractionally occupied spin-up and spin-down
orbitals. In fact, as noted in Ref. 17, the MP2 correla-
tion energy always diverges if more than one spin orbital
within a degenerate set is fractionally occupied.

As for the fractional-charge H atom, it is interesting
to analyze the contributions to the fractional-spin er-
ror coming from the approximate exchange and correla-
tion density functionals used. In Kohn-Sham DFT, since
the fractional-spin H atom contains only one electron,
the exact exchange-correlation functional cancels out the
Hartree energy

Exc[n1−δ, nδ] = −EH[n1−δ + nδ], (28)

when n1−δ and nδ are the spin-up and spin-down den-
sities, respectively. However, the correlation part does
not vanish, contrary to the case of the fractional-charge

H atom [see Eq. (18)]. This can be seen as follows. The
Hartree energy can be decomposed as

EH[n1−δ +nδ] = EH[n1−δ] +EH[nδ] +U [n1−δ, nδ], (29)

where U [n1−δ, nδ] is the Coulomb interaction between
the spin-up and spin-down densities

U [n1−δ, nδ] =

∫∫
n1−δ(r1)nδ(r2)wee(|r2 − r1|)dr1dr2.

(30)
Since the exact exchange functional cancels out only the
Hartree energy of each separate spin density

Ex[n1−δ, nδ] = − (EH[n1−δ] + EH[nδ]) , (31)

the exact correlation energy functional must cancel the
term U [n1−δ, nδ]

Ec[n1−δ, nδ] = −U [n1−δ, nδ]. (32)

The correlation energy in Eq. (32) is clearly characteris-
tic of static (or strong) correlation: it is first order in the
electron-electron interaction and it has only a correla-
tion potential contribution (and not a correlation kinetic
contribution). The term U [n1−δ, nδ] is a spurious inter-
action between the densities of the two elements of the
spin-up/down ensemble. As pointed out in Ref. 36, it
is analogous to the unphysical “ghost” interaction of en-
semble DFT for excited states [63] (see, also, Refs. 29
and 59). This term could be removed by an ad hoc
correction [11] or, more generally, by a redefinition of
the Hartree/exchange/correlation decomposition for sit-
uations with fractional-occupation numbers [36]. For
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FIG. 6. “Exact” exchange and correlation energies in the H
atom with fractional spin-up and spin-down electron num-
bers N↑ = 1 − δ and N↓ = δ as a function of δ. For
the full-range case, the exchange and correlation energies
were calculated as Ex[n1−δ, nδ] = − (EH[n1−δ] + EH[nδ]) and
Ec[n1−δ, nδ] = −U [n1−δ, nδ], where the spin densities n1−δ
and nδ are not exact but obtained from a self-consistent
PBE calculation at the value of δ. For the range-separated
case, the short-range exchange and correlation energies were
calculated as Esr

x [n1−δ, nδ] = − (Esr
H [n1−δ] + Esr

H [nδ]) and
Esr

c [n1−δ, nδ] = −U sr[n1−δ, nδ], where the spin densities n1−δ
and nδ are not exact but obtained from a self-consistent RSH
calculation at the value of δ. The energies are multiplied by
a factor of 2 to be directly comparable to Figure 5.

range-separated DFT, similar expressions apply for the
fractional-spin H atom. The exact short-range exchange
functional is

Esr
x [n1−δ, nδ] = − (Esr

H [n1−δ] + Esr
H [nδ]) , (33)

and the exact short-range correlation functional is

Esr
c [n1−δ, nδ] = −U sr[n1−δ, nδ], (34)

where U sr[n1−δ, nδ] is a spurious short-range interaction
between the spin-up and spin-down densities

U sr[n1−δ, nδ] =

∫∫
n1−δ(r1)nδ(r2)wsr

ee(|r2 − r1|)dr1dr2.

(35)
Again, this spurious “ghost” interaction U sr[n1−δ, nδ]
could be removed from the correlation term by a redef-
inition of the short-range Hartree/exchange/correlation
decomposition in the ensemble formalism (see in partic-
ular Ref. 37).

In Figure 6, we show as a function of δ the full-range
exchange and correlation energies of Eqs. (31) and (32),
and the short-range exchange and correlation energies
of Eqs. (33) and (34). In principle, in this system, the
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FIG. 7. Density-functional-approximation contributions to
the fractional-spin error in the H atom with fractional spin-
up and spin-down electron numbers N↑ = 1 − δ and N↓ = δ
as a function of δ. For Kohn-Sham PBE calculations, we
show the error due to the PBE exchange energy, ∆EPBE

x =
EPBE

x [n1−δ, nδ] + EH[n1−δ] + EH[nδ], the PBE correlation
energy ∆EPBE

c = EPBE
c [n1−δ, nδ] + U [n1−δ, nδ], and their

sum ∆EPBE
xc = ∆EPBE

x + ∆EPBE
c , where the spin densi-

ties n1−δ and nδ are from the self-consistent PBE calcu-
lation at the value of δ. For the RSH calculations, we
show the error due to the short-range PBE exchange energy,
∆EsrPBE

x = EsrPBE
x [n1−δ, nδ] +Esr

H [n1−δ] +Esr
H [nδ], the short-

range PBE correlation energy ∆EsrPBE
c = EsrPBE

c [n1−δ, nδ] +
U sr[n1−δ, nδ], and their sum ∆EsrPBE

xc = ∆EsrPBE
x +∆EsrPBE

c ,
where the spin densities n1−δ and nδ are from the self-
consistent RSH calculation at the value of δ. The errors are
multiplied by a factor of 2 to be directly comparable to Fig-
ure 5.

full-range exchange-correlation energy of Eq. (28), or its
short-range variant, is constant with respect to δ since
in the exact theory n1−δ + nδ = n where n is the den-
sity of the H atom independent of δ. However, due to
the fact that we have used approximate spin densities
n1−δ and nδ obtained from a self-consistent PBE or RSH
calculation at each value of δ, in practice the full-range
or short-range exchange-correlation energies are only ap-
proximately constant with respect to δ. For both the full-
range and short-range cases, the correlation contribution
is zero at δ = 0 and δ = 1, and passes by a maximum (in
absolute value) at δ = 0.5, where the exchange and cor-
relation energies are equal. The exchange contribution
exhibits a symmetrically opposite behavior (being mini-
mum in absolute value at δ = 0.5) so as to make the sum
of the exchange and correlation energies approximately
constant with respect to δ. This illustrates the fact that
the decomposition into exchange and correlation is some-
what artificial for strongly correlated systems. The large
HF fractional-spin error reported in Figure 5 obviously
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comes from the fact that in HF only the exchange contri-
bution is included and the equally important correlation
contribution is neglected. The short-range exchange and
correlation energies are about four times smaller than the
full-range exchange and correlation energies, but they be-
have similarly with respect to δ.

The deviations from the exact expressions of
Eqs. (31), (32), (33), (34) obtained with the PBE ex-
change and correlation density functionals and with the
short-range PBE exchange and correlation density func-
tionals are plotted in Figure 7. The fractional-spin er-
rors stemming from the full-range PBE exchange and
full-range PBE correlation functionals are large but of
opposite signs, leading to a large compensation of er-
rors between exchange and correlation and thus to the
relatively good performance of Kohn-Sham PBE for the
dissociation of H2. Both the short-range PBE exchange
and short-range PBE correlation functionals have con-
siderably smaller fractional-spin errors than their full-
range counterparts. We note that, as for the fractional-
charge H atom, the full-range PBE correlation energy
and short-range PBE correlation energy are nearly iden-
tical (not shown) in this system, so the smaller errors
in the short-range PBE correlation functional are in fact
due to the smaller magnitude of the exact short-range
correlation energy −U sr[n1−δ, nδ] compared to the ex-
act full-range correlation energy −U [n1−δ, nδ] (as shown
in Figure 6). However, the compensation of errors be-
tween short-range exchange and short-range correlation
is less dramatic than in the full-range case, and the
fractional-spin errors in the short-range PBE exchange-
correlation functional are reduced by only about of fac-
tor of 2 compared to the full-range PBE exchange-
correlation functional. At first sight, the fact that the
fractional-spin errors in the short-range PBE functional
are smaller than the ones of the full-range PBE func-
tional seems to be in contradiction with the worse per-
formance of RSH compared to Kohn-Sham PBE for the
fractional-spin H atom seen in Figure 5. In fact, the ad-
ditional error seen in the RSH results comes from the
fact that the long-range HF exchange energy is not com-
pensated by an appropriate long-range correlation en-
ergy. If the long-range correlation energy were calcu-
lated by methods capable of dealing with static cor-
relation, such as multiconfiguration self-consistent field
(MCSCF) or density-matrix functional theory (DMFT),
then the fractional-spin errors would only come from the
short-range exchange-correlation density functional and
would be smaller than the errors obtained in Kohn-Sham
calculations. It is indeed what has been observed in

range-separated MCSCF+DFT [31, 33, 64] and range-
separated DMFT+DFT [65, 66] calculations of H2 in the
dissociation limit.

IV. CONCLUSION

In this work, we have investigated fractional-charge
and fractional-spin errors in atoms and molecules ob-
tained with range-separated DFT schemes, namely the
RSH method which combines long-range HF exchange
with a short-range PBE exchange-correlation functional,
and the RSH+MP2 method which adds long-range MP2
correlation. Very similarly to the LC scheme, RSH
gives much smaller fractional-charge errors than stan-
dard Kohn-Sham applied with the semilocal PBE or hy-
brid PBE0 approximation. RSH also generally leads to
smaller fractional-charge errors than standard HF. As
regards RSH+MP2, it tends to have smaller fractional-
charge errors than standard MP2 for the most diffuse
systems (molecules and negatively charged atoms) but
larger fractional-charge errors for the more compact sys-
tems (positively charged atoms).

Even though the individual contributions to the
fractional-spin errors in the H atom coming from the
short-range PBE exchange and correlation density func-
tionals are smaller than the corresponding contribu-
tions for the full-range PBE exchange and correlation
density functionals, RSH gives fractional-spin errors
that are larger than in standard Kohn-Sham PBE and
only slightly smaller than in standard HF. Moreover,
adding long-range MP2 correlation only leads to infinite
fractional-spin errors. This points to the necessity of ac-
counting for long-range static correlation by appropri-
ate methods, e.g. MCSCF, DMFT, or certain variants
of RPA. Only with such approaches, together with im-
proved short-range exchange-correlation approximations,
one can expect to have range-separated schemes with
both small fractional-charge and fractional-spin errors.
Work in this direction is underway.
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[32] J. G. Ángyán, I. C. Gerber, A. Savin, and J. Toulouse,
Phys. Rev. A 72, 012510 (2005).

[33] E. Fromager, J. Toulouse, and H. J. A. Jensen, J. Chem.
Phys. 126, 074111 (2007).

[34] E. Fromager and H. J. A. Jensen, Phys. Rev. A 78,
022504 (2008).
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