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Abstract Mobile robot networks emerged in the
past few years as a promising distributed comput-
ing model. Existing work in the literature typically
ensures the correctness of mobile robot protocols
via ad hoc handwritten proofs, which, in the case
of asynchronous execution models, are both cum-
bersome and error-prone.
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Our contribution is twofold. We first propose
a formal model to describe mobile robot protocols
operating in a discrete space i.e., with a finite set
of possible robot positions, under synchrony and
asynchrony assumptions. We translate this formal
model into the DVE language, which is the in-
put format of the model-checkers DiVinE and ITS
tools, and formally prove the equivalence of the
two models. We then verify several instances of
two existing protocols for variants of the ring ex-
ploration in an asynchronous setting: exploration
with stop and perpetual exclusive exploration. For
the first protocol we refine the correctness bounds
and for the second one, we exhibit a counter-exam-
ple. This protocol is then modified and we estab-
lish the correctness of the new version with an in-
ductive proof.

1 Introduction

The variety of tasks that can be performed by au-
tonomous robots and their complexity are both in-
creasing [1]. Many applications envision groups of
mobile robots self-organizing and cooperating to-
ward the resolution of common objectives, in the
absence of any central coordinating authority. Pos-
sible applications for such multi-robot systems in-
clude environmental monitoring, map construction,
urban search and rescue, surface cleaning, surround-



2 Béatrice Bérard et al.

ing or surveillance of risky areas, exploration of
unknown environments, etc. Some of these appli-
cations can be critical, implying the need for for-
mal and exhaustive verification.

In this paper we focus in particular on patrolling
problems [1,2]. Patrolling consists in moving around
an area in order to inspect or to protect it, which
can be useful for domains where distributed surveil-
lance is required. These problems have thus a broad
area of applications ranging from military to civil
[2] and are typically critical systems. They can be
solved by so-called exploration protocols, for which
two variants are studied in this work: exploration
with stop and perpetual exclusive exploration, re-
spectively proposed in [3] and [4]. The first one
corresponds to a finite exploration phase followed
by a termination phase. Exploration with exclusiv-
ity corresponds to a particular form of patrolling
where the locations to be visited are too small to
be occupied by more than one robot at a time.

Robot protocols. The model introduced by Suzuki
& Yamashita [5] features a distributed system of
k mobile robots with limited capabilities: they are
identical and anonymous (they execute the same
algorithm and they cannot be distinguished using
their appearance), they are oblivious (they have no
memory of their past actions) and they have nei-
ther a common sense of direction, nor a common
handedness (chirality). Furthermore these robots
do not communicate by sending or receiving mes-
sages. However they have the ability to sense the
environment and see all positions of other robots.
They are also able to evaluate any predicate on the
set of positions.

A recent trend was to shift from the original
continuous setting where robots evolve in a con-
tinuous two-dimensional Euclidian space, to a dis-
crete one, partitioned into a finite number of loca-
tions. The discretization process is motivated by
practical aspects with respect to the unreliability
of sensing devices used by the robots as well as
inaccuracy of their motorization [6]. This discrete
space is described by a graph, where nodes repre-
sent locations, and edges represent paths for robots
from one location to the other. While the discrete
setting permits to simplify the design of robot mod-

els by reasoning on finite structures, it is more sen-
sitive to the size of constants. This can lead to a
significant increase of the number of symmetric
configurations when the underlying graph is also
symmetric (e.g. a ring) and thus of the size of cor-
rectness proofs [7,8,9].

Robots operate in cycles of three phases: Look,
Compute and Move. During the Look phase robots
take a snapshot of the graph together with other
robot positions. The collected information is used
in the Compute phase where robots decide to move
or to stay idle. In the Move phase, a robot may
move to one of its adjacent nodes according to the
computation of the previous phase, if it is sched-
uled.

In the original model of [5], some non-empty
subset of robots execute the three phases synchron-
ously and atomically, giving rise to two variants:
FSYNC, for the fully-synchronous model where
all robots are scheduled at each step, and SSYNC,
for the semi-synchronous model, where a strict sub-
set of robots can be scheduled. This model was
later generalized by Flocchini et al. [10] to handle
full asynchrony and remove atomicity constraints
(this model is called ASYNC [1], for asynchronous,
in the sequel). One of the key differences between
the fully or semi-synchonous models, and the asyn-
chronous model in the discrete setting is that in the
ASYNC model, a robot can compute its next move
based on an outdated view of the system. It is no-
torious that handwritten proofs for protocols oper-
ating in the ASYNC model are hard to write and
read, due to many instances of case-based reason-
ing that is both cumbersome and error-prone.

Comparison with classical distributed algorithms.
Several particularities of robot networks, as defined
by [5], make robot protocols different from clas-
sical distributed systems. First, while concurrent
snapshots return an identical output in the usual
setting, the lack of a common coordinate system
makes robots interpret differently the snapshot of
the system. Another important point is the fact that
outputs of the same function computed at differ-
ent nodes may be different. For example, consider
the minimum function on a set of robot positions.
Since these positions can be interpreted differently
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by each robot, the minimum function will return
different values. Therefore, just executing a classi-
cal distributed algorithm for agreement on top of
these networks does not necessarily solve a robot
agreement task. New algorithms should be designed
and hence verified.

Verification. Model checking [11,12] is an appeal-
ing technique that was developed for the verifica-
tion of various models: finite ones but also in some
cases infinite, parameterized, or even timed mod-
els. It has been successfully used for the verifica-
tion of distributed systems from classical shared
memory (consensus, transactional memory) to pop-
ulation protocols [13,14,15,16,17,18,19,20]. Un-
fortunately, it was proved in [21] that parameter-
ized model checking is undecidable, and this gen-
eral result was followed by several stronger ones
for specific models, for instance in [22,23,24].

In such cases, there are mainly two approaches.
The first one consists in finding decidable proper-
ties for subclasses. This was done in [22] for safety
properties in Broadcast protocols. Other decidabil-
ity results were obtained by reducing model check-
ing of a parameterized system to model checking
of a finite model called a cutoff, for ring proto-
cols [25] and Rendezvous systems [24]. A sec-
ond line of work investigates the combination of
model checking with other techniques like abstrac-
tion, induction, etc., as first proposed in [26] or
[27]. These ideas were largely used since, for in-
stance in [28,29,30,31,32]. Decidability can also
be obtained when the abstractions considered are
complete, as done in [32] for a class of threshold-
based fault tolerant algorithms. Discrete robot pro-
tocols have two parameters: the number of robots
and the graph size. Although the problem is still
open, we conjecture that parameterized model check-
ing is undecidable in this case, which leads to fol-
low combined approaches.

To our knowledge, in the context of mobile
robots operating in discrete space, only two previ-
ous attempts, by Devismes et al. [33] and by Bon-
net et al. [34], investigate the possibility of auto-
mated verification of mobile robots protocols. The
first paper uses LUSTRE [35] to describe and ver-
ify the problem of exploration with stop of a 3×3

grid by 3 robots in the SSYNC model, and to show
by exhaustive searching that no such protocol can
exist. The second paper considers the perpetual ex-
clusive exploration by k robots of n-sized rings,
and mechanically generates all unambiguous pro-
tocols for k and n in the SSYNC model (that is, all
protocols that do not have symmetrical configura-
tions). Those two works differ from our proposal
in several aspects. First, they are restricted to the
simpler SSYNC model rather than the more gen-
eral and more complex ASYNC model. Second,
they are either specific to a hardcoded topology
(e.g., a 3× 3 grid [33]) that prevents easy reuse
in more generic situations, or make additional as-
sumptions about configurations and protocols to
be verified (e.g. unambiguous protocols [34]) that
prevent combinatorial explosion but forbid reuse
for proof-challenging protocols, which would most
benefit from automatic verification.

Contribution. In this paper, our contribution is two-
fold: First, in Section 3 and 4, we provide a for-
mal automata-based model for a network of mo-
bile robots operating under the three execution mod-
els described above, namely FSYNC, SSYNC and
ASYNC. We use the logic LTL (Linear Temporal
Logic) to specify the requirements corresponding
to robot tasks. Then we transform this model into
DVE, the input model of two model checking tools
DiVinE [36] and ITS-tools [37], and we formally
prove the equivalence of the two models (in terms
of possible executions). These implementation is-
sues are discussed in Section 5.

Second, we formally verify several instances
of two known protocols for variants of the ring ex-
ploration in an asynchronous setting: exploration
with stop from [3] and perpetual exclusive explo-
ration from [4]. Modeling these protocols starting
from informal descriptions given in the original
paper is an arduous task. Nevertheless this leads
us either to a formal proof of correctness of the
analyzed algorithms for particular instances or to
a counter-example that shows a subtle flaw in the
algorithm.

– We study the case of exploration with stop, and
more particularly the protocol from [3] in Sec-
tion 6. This protocol was manually proved cor-
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rect when the number of robots is k > 17, and
n (the ring size) and k are co-prime. As the
necessity of this bound was not proved in the
original paper, our methodology demonstrates
that for many instances of k and n not covered
in the original paper, the protocol is still cor-
rect. More precisely, we propose the following
conjecture for all cases with n< 18 and k < 17:
When k is even the algorithm is correct as long
as n < k+dk/2e and k≥ 10. When k is odd the
algorithm is correct for any k ≥ 5.

– In Section 7 we study the case of the perpet-
ual exclusive exploration protocol [4]. In this
case, model checking with DiVinE produces
a counter-example in the completely asynchr-
onous setting, where safety is violated. We cor-
rect the original protocol and verify the new
one via model checking for several instances
of n. Additionally, we prove the correctness of
the protocol for any ring size with an inductive
approach.

2 Finite automata and LTL logic

We denote by N the set of natural numbers and we
first recall the definitions of finite automata, syn-
chronized products and LTL specifications.

Definition 1 (automaton) A finite automaton is a
tuple M = (S,s0,A,T ) where S is a finite set of
states, s0 ∈ S is the initial state, A is a finite alpha-
bet of actions and T ⊆ S× (A∪{ε})×S is a finite
set of transitions.

A transition (s,a,s′), written s a−→ s′, represents
a transition of the automaton from state s to state s′

by executing the action a. The empty word ε (in the
set A∗ of words over alphabet A) is used as a label
to represent an unobservable (or internal) action.

An execution of M is a sequence of transitions
(s0,a1,s1), (s1,a2,s2), . . . written s0

a1−→ s1
a2−→ . . . ,

beginning in the initial state s0.
For the synchronized product, we introduce a

new symbol −, denoting the absence of action for
a component. This label implies that the state of
the corresponding component does not change and
should not be confused with a non observable ac-
tion labeled by ε.

Definition 2 (product of automata)
Let M1 = (S1,s1,0,A1,T1), M2 = (S2,s2,0,A2,T2)

be two finite automata, let A be an alphabet, and
let f : (A1∪{ε,−})×(A2∪{ε,−})→A∪{ε} be a
partial synchronization function, such that f (ε,ε)=
f (ε,−) = f (−,ε) = ε, and f (−,−) is undefined.

The product M = (S,s0,A,T ) = M1⊗ f M2 is
defined as follows:

– S = S1× S2 is the cartesian product of S1 and
S2, with initial state s0 = (s1,0,s2,0),

– the set T of transitions contains the transition
(s1,s2)

c−→ (s′1,s
′
2) iff

– there is (a,b) ∈ (A1∪{ε})× (A2∪{ε}) on
which f is defined with c = f (a,b), and

s1
a−→ s′1 ∈ T1, s2

b−→ s′2 ∈ T2,

– or there is a ∈ A1 ∪{ε} such that f (a,−)
is defined with c = f (a,−), s1

a−→ s′1 ∈ T1,
and s′2 = s2,

– or there is b ∈ A2 ∪{ε} such that f (−,b)
is defined with c = f (−,b), s′1 = s1, and

s2
b−→ s′2 ∈ T2.

This definition can be easily extended to a set
of n automata M1, . . . , Mn with a n-ary synchro-
nization function.

Given a set P of atomic propositions, the tem-
poral logic LTL (for Linear Temporal Logic) is a
specification language interpreted on infinite se-
quences over 2P . The LTL formulae are defined by
the following grammar:

ϕ ::= p | ϕ1∨ϕ2 | ¬ϕ | Xϕ | ϕ1Uϕ2

where p∈ P , ∨ is the boolean disjunction, ¬ is the
negation and X (next) and U (until) are temporal
operators described below.

To interpret LTL formulae on executions of an
automaton M = (S,s0,A,T ), the transition rela-
tion is assumed to be non blocking: for each s ∈
S, there is at least one transition starting from s.
Moreover, a labeling function L : S→ 2P is added
to M. This function maps each state of M to a set
of atomic propositions that hold in this state.

For execution e : s0
a1−→ s1

a2−→ s2
a3−→ . . . of M

and formula ϕ, we note e, i � ϕ when ϕ is satisfied
at position i of e i.e., on the execution starting in
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q0

q1

q2

x < 2, x
:= 2

a1

x ≥ 2, x := 2a2

true, x := x+ 1

i1

(a) An automaton with a variable x initially 0

q0, 0 q0, 1 q0, 2

q1, 2 q2, 1

i1

a1 a1 a2

i1

(b) Unfolding into a finite automaton

Fig. 1: Unfolding an automaton with a variable

e, i � p iff p ∈ L(si)

e, i � ¬ϕ iff e, i 2 ϕ

e, i � ϕ1∨ϕ2 iff e, i � ϕ1 or e, i � ϕ2
e, i � Xϕ iff e, i+1 � ϕ

e, i � ϕ1Uϕ2 iff ∃ j ≥ i | e, j � ϕ2
and ∀i≤ k < j, e,k � ϕ1

Table 1: LTL satisfaction relation.

si. The satisfaction relation is defined inductively
by the rules given in Table 1.

Moreover two temporal operators ♦ and � are
usually defined from U by: ♦ϕ= trueUϕ and �ϕ=

¬♦¬ϕ. The formula ♦ϕ states that ϕ holds even-
tually, and �ϕ is satisfied iff ϕ holds forever from
now on.

Temporal and boolean operators can be nested.
For instance ♦�ϕ expresses that from some posi-
tion in the future ϕ always holds, and �♦ϕ states
that ϕ is satisfied infinitely often.

Definition 3 An automaton M, with labeling L ,
satisfies ϕ if for each execution e of M, e,0 � ϕ.

Given an automaton M that represents all pos-
sible behaviors of a system and an LTL formula ϕ

describing a requirement on the system, LTL model
checking answers the question whether M |= ϕ or
not. When the answer is negative, a counter-exa-
mple can be exhibited.

3 Formal Model for Mobile Robot Protocols

In this section we propose a model for the robots
(in Section 3.1), the schedulers (in Section 3.2),

and the system resulting from their interactions (in
Section 3.3).

To describe the model, we use a classical ex-
tension of finite automata by adding variables with
bounded range and decorating the actions labeling
transitions by predicates on these variables, called
guards, and assignment to these variables, called
updates. Note that this extension does not add any
expressive power to finite automata and is largely
used as input in most verification tools [38,39,40,
41], to permit more compact and readable mod-
els. A translation into standard finite automata can
be obtained by unfolding the model according to
variable values [42], we give an example below.

Example 1 The automaton A in Figure 1(a) han-
dles a variable x ∈ {0,1,2} initialized to 0. Un-
folding yields the standard finite automaton of fig-
ure 1(b). Note that this result can also be obtained
by a synchronized product between A and the fi-
nite automaton X depicted in Figure 2, represent-
ing the bounded variable x. The synchronization is
performed via the updates on x.

0 1 2
x := 1, x := x+ 1

x := 0

x := 2, x := x+ 1

x := 1

x := 2

x := 0

Fig. 2: Automaton X for variable x

We consider a set Rob = {r1, . . . ,rk} of robots,
evolving on a graph. A node of this graph is called
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a position, and the set of positions is denoted by
Pos = {0, . . . ,n− 1} ⊆ N. A configuration of the
system is a mapping c : Rob → Pos associating
with each robot r its position c(r) ∈ Pos. We de-
note by C = PosRob the set of all configurations,
which is then of cardinality nk in a graph of n
nodes with k robots.

3.1 Robot Modeling

All robots execute the same algorithm [1], operat-
ing in Look, Compute, and Move cycles, without
any memory of previous actions. Hence the be-
haviour of each of them can be described by the
generic finite automaton of Figure 3.

Ready
to look

Ready to
compute

Ready
to move

Look Compute

Move

Fig. 3: A generic automaton for the robot behavior.

In the Look transition, the robot takes a snap-
shot of its environment, observing the current con-
figuration c. Then, it computes its future position
from this observation in the Compute transition.
Finally the robot moves along an edge of the graph
according to its previous computation: this effec-
tive movement corresponds to the Move transition.

Note that the original model of [5] abstracts the
precise time constraints (like the computational po-
wer or the locomotion speed of robots) and keeps
only sequences of instantaneous actions, assuming
that each robot completes each cycle in finite time.
The model can be reduced by combining the Look
and Compute phases to obtain the LC phase. This
is simply done by merging the two states “Ready
to look” and “Ready to compute” into a single state
“Ready to Look-Compute”.

A robot algorithm is implemented in the LC
phase, as a set of guarded actions. A guarded ac-
tion is written as [guard]→ action, where the guard
is a predicate on the current configuration and the
action is the movement assigned to the robot by the
protocol under study. In the robot automaton, the
“Ready to move” state must then be divided into

as many parts as possible movements. The Move
transition actually performs the computed move by
updating the configuration.

3.2 Scheduler Modeling

The scheduler organizes robot movements to ob-
tain all possible behaviors with respect to FSYNC
(Fully Synchronous), SSYNC (Semi Synchronous)
or ASYNC (Asynchronous) models. Hence, unlike
robots that have the same behavior regardless of
the model, the scheduler is parameterized by the
execution model and the number of robots. Given
a fixed number of robots and a variant of the exe-
cution model, the associated scheduler can be de-
scribed by a finite automaton.

We denote by LCi (respectively Movei), the LC
(resp. Move) phase of robot ri. For a subset Sched⊆
Rob, we denote the synchronization of all LCi (re-
spectively Movei) actions of all robots in Sched by
∏ri∈Sched LCi (respectively ∏ri∈Sched Movei).

In the SSYNC model, a non-empty subset of
robots is scheduled for execution at every phase,
and operations are executed synchronously. In this
case, the model is also a cycle, where a set Sched⊆
Rob is first chosen. Then the LC and Move phases
are synchronized for this set of robots. This generic
automaton for SSYNC is described in Figure 4(a).

The FSYNC model is a particular case of the
SSYNC model, where all robots are scheduled for
execution at every phase, and operate synchronously
thereafter: In each global cycle, Sched=Rob, hence
all global cycles are identical.

The ASYNC model is totally asynchronous.
Any finite delay may elapse between LC and Move
phases: During each phase a set Sched is chosen,
and all robots in this set execute an action: the ac-
tion Acti is either in LCi or in Movei depending
on the current state of robot ri. Hence, a robot can
move according to an outdated observation. The
generic automaton for this scheduler is depicted in
Figure 4(b).

To obtain more concrete versions of the sched-
uler models, we actually use a classical extension
of automata consisting in labeling a transition by a
sequence of actions instead of a single one [43].
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Move
Done

Sched
chosen

LC
Done

Choose Sched

∏
ri∈Sched

LCi

∏
ri∈Sched

Movei

(a) SSYNC model.

Act
Done

Sched
chosen

Choose Sched

∏
ri∈Sched

Acti

(b) ASYNC model.

Fig. 4: The generic scheduler automata.

The automata represented in Figure 4 are com-
pacted into a one state automaton with 2k−1 loops,
each one containing the choice of a non empty sub-
set Sched of Rob, followed by the associated se-
quence of operations. The corresponding SSYNC
scheduler automaton is depicted in Figure 5.

Move
Done

. . .

. . .

Sched = {r1} LC1 Move1

Sched = {rk} LCk Movek

Sched = {r1, r2} LC1LC2

Move1Move2
Sched = Rob
LC1 . . .LCkMove1 . . .Movek

Fig. 5: The concrete version of the SSYNC sched-
uler automaton for k robots.

3.3 System Modeling

A global state is a tuple s = (s1, . . . ,sk,c) where
si is the local state of robot ri, and c the config-
uration. We denote by S the set of global states.
The alphabet of actions is A = ∏ri∈Rob Ai, with
Ai = LCi∪Movei for each robot ri.

A transition of the system is labeled by a tuple
a = (a1, . . . ,ak), where ai ∈ Ai∪{ε,−} for all 1≤
i≤ k and (s1, . . . ,sk,c)

a−→ (s′1, . . . ,s
′
k,c
′) if and only

if for all i, si
ai−→ s′i and c′ is obtained from c by

updating the positions of all robots for which ai ∈
Movei. To represent the scheduling, we denote by

∏ri∈SchedActi the scheduler action which will be
synchronized with (a1, . . . ,ak) such that ai = − if
ri /∈ Sched and ai ∈ LCi ∪Movei ∪{ε} otherwise.
We denote by T the set of transitions.

The model of the system is a family of au-
tomata (Mc0)c0∈C , where Mc0 = (S,sc0 ,A,T ) has
initial state sc0 = (s1,0 . . . ,sk,0,c0) where si,0 is the
initial local state of robot ri, and c0 ∈ C is a fixed
configuration.

Note that Mc0 is obtained by a synchronized
product according to the definition of Section 2
as follows. We consider a configuration automa-
ton Mconf = (C ,c0,A,Tconf) with transitions c a−→
c′ labeled by a ∈ A describing configuration up-
dates. Then Mc0 is the synchronized product of
the k robot automata, the scheduler automaton and
Mconf. Since there is a single state for the scheduler
component, it can be omitted in the product.

Among the protocols designed for discrete set-
tings we choose as case studies two protocols where
robots are positioned on a ring. Our model needs
to be refined to take into account this particular
shape.

4 Methodology for the ring

In this section, we give more details for the specific
case of ring algorithms. In particular, the nodes in
the set Pos = {0, . . . ,n− 1} are numbered in the
clockwise direction and we implicitly use arith-
metic modulo n on this set.

4.1 Robot views

The robots take a snapshot of their environment to
compute their future movement. Since this snap-
shot represents the graph, it depends on the ring
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topology. This is formally described by the notion
of view:

Definition 4 (View) In a given configuration of
the system, we denote by d j the number of robots
at node j, called the multiplicity of node j. A tower
at node j thus corresponds to d j > 1: (strictly) more
than one robot on this node. We note:
δ+ j = 〈d jd j+1 . . .d j+n−1〉 and
δ− j = 〈d jd j−1 . . .d j−(n−1)〉.
The view at node j is the set δ j = {δ+ j,δ− j} de-
scribing the configuration of the system viewed
from this node.

In a configuration c : Rob→ Pos, the view of
robot r is thus δc(r). Ordering the tuples by lexico-
graphical order, we define the maximal and mini-
mal observation of robot r respectively by:
δmax r = max{δ+c(r),δ−c(r)},
δmin r = min{δ+c(r),δ−c(r)}.

This definition of view as a set (with no or-
der between the elements) takes into account the
absence of chirality of robots. In particular, when
δmax r = δmin r, the view contains a single element:
in this case, robot r cannot distinguish between the
two directions on the ring: this corresponds to a
disoriented robot. Also note that two robots on the
same node (i.e., on a tower) have the same view.

An element of a view can also be described
more succinctly by what we call an F-R-T sequence:
an alternating sequence of symbols F , R and T in-
dexed by natural numbers: Fx stands for x consec-
utive free nodes, Rx for x consecutive nodes, each
one occupied by a single robot, and Tx for a tower
of x robots.

Example 2 Consider for instance the ring config-
uration c depicted in Figure 6 where white nodes
are free nodes and black nodes are the occupied
ones. Writing δc(r) = (R1,F1,T2,R2,F3,R1,F1), in-
dicates that this set contains:
δmax r = 〈1,0,2,1,1,0,0,0,1,0〉
and δmin r = 〈1,0,1,0,0,0,1,1,2,0〉.

Since the configurations give absolute positions
to the robots and robot protocols only depend on
the robot views, we want to gather all configura-
tions for which the robot views are the same. For

r

Fig. 6: Robot r of Example 1.

this, we consider the permutations of the set Pos
in a ring of size n. We denote by ◦ the compo-
sition of applications, with id the identity. Recall
that for any permutation π of Pos, π0 = id, and
πm+1 = π ◦πm, for any m ∈ N. Only specific per-
mutations will produce the same views:

– If a configuration c′ is obtained from c by a
rotation of the absolute positions on the ring,
the views will be the same. These operations
are obtained by iterating the permutation σ de-
fined by σ(i) = i+1 for all i ∈ Pos, which cor-
responds to a one step shift in the clockwise di-
rection. Then σn = id, and we denote by σ−m

the inverse σn−m of σm.
– Two configurations that are symmetric with re-

spect to the diameter of the ring containing node
m also produce the same views. For node 0,
this corresponds to the permutation σ defined
by σ(i) = n− i for i ∈ Pos, with σ

2 = id, and
σ
−1 = σ. For node m, the associated permuta-

tion is σm ◦σ◦σ−m.
– Finally, when n and k are even, two configura-

tions that are symmetric with respect to the di-
ameter of the ring containing edge m− (m+1)
also produce the same views. This corresponds
to the permutation σm+1 ◦σ◦σ−m.

Form these observations and the fact that σ◦σm =

σ−m ◦σ for any m, the set of permutations on posi-
tions producing the same views is in fact the group
generated by σ and σ.

In particular, all permutations containing σ cor-
respond to symmetries and reflect the absence of
chirality of robots. Moreover, to take into account
robot anonymity, we introduce permutations of the
set Rob. These considerations lead to the following
definition:

Definition 5 (Equivalence and symmetry)
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– The binary relation∼ on the set PosRob of con-
figurations is defined by:
c∼ c′ if there exist an integer m and some per-
mutation β of Rob such that c′ = σm ◦ c ◦β or
c′ = σ◦σm ◦ c◦β.

– Configurations c and c′ are symmetric, written
c sym c′, if there are some m and β such that
c′=σm◦σ◦σ−m◦c◦β or c′=σm+1◦σ◦σ−m◦
c◦β (when n and k are even).

– Configuration c is symmetric if c sym c.

The relation ∼ is an equivalence relation and
an F-R-T sequence is a representent of an equiva-
lence class. A class is symmetrical if it contains a
symmetric configuration. In the sequel, when de-
scribing a configuration (class), we simply give an
F-R-T sequence.

4.2 Robot movements

The possible movements along edges also depend
on the graph shape: on a ring there are only three
possibilities, to stay idle, to move in the clock-
wise direction or in the anti-clockwise direction.
The state “Ready to Move” (from Figure 3) is then
divided into three states r.Front, r.Back and r.Idle.
When a robot r is in state r.Front, it means that it
will shift to its neighboring node in the direction
given by δmax r. Symmetrically, the robot in state
r.Back will go in the opposite direction.

r.RLC

r.Frontr.Back

r.Idle

Back, Doubt Front, Doubt

Move Move

ε Idle

Fig. 7: Generic automaton of robot r on a ring.

These moves, determined by the algorithm, are
described by the LC actions, which can be Front,
Back, Doubt or Idle. Hence the alphabet of each
robot ri is Ai = {Front,Back,Doubt, Idle,Move}.

For a given robot r, the choice of an action de-
pends on its own view of the configuration. If the
robot chooses not to move, its action is Idle. If
δmax r 6= δmin r, the robot can choose between the
two directions, producing actions Front or Back.
Otherwise the action is Doubt, corresponding to a
non-deterministic choice between Front and Back.
As explained above, the Move transitions actually
update the configuration. A generic robot automa-
ton for the case of the ring is depicted in Figure 7
where the state “Ready to Look Compute” is writ-
ten as r.RLC.

4.3 Verification methodology

Once the system is modeled with robot automata
implementing some protocol to be verified, the re-
quirements are expressed in LTL, and model-check-
ing is applied.

To ensure the progress of the protocols, an im-
plicit fairness assumption states that all robots must
be infinitely often scheduled, which is expressed in
LTL by:

Fairness :
k∧

i=1

�♦
(
RMi

)
∧

k∧
i=1

�♦
(
RLCi

)
where RMi (respectively RLCi) is the label corre-
sponding to one of the states “Ready to Move”
(resp. to the state “Ready to Look-Compute”) of
robot ri.

5 Implementation

5.1 Guarded actions formalism

Robot protocols (in FSYNC, SSYNC, or ASYNC
models) are usually described by a set of rules that
give a move to a robot, according to its view. We
illustrate the successive translations with a toy pro-
tocol for 3 robots on a 10-nodes ring, described by
the following rules for any robot r:

– if the robot view δc(r) is a singleton, i.e., δmax r =

δmin r, then the robot r moves in any direction,
– otherwise, if there are at least 4 free nodes ad-

jacent to r, then it moves toward these free nodes,
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– otherwise r stays idle.

Since most verification tools (like SPIN [40]
or UPPAAL [44] used in [45]) use guarded actions
of the form [predicate]→ action, we first apply
a pre-processing phase to express the rules of the
algorithm in this formalism. The predicate is eval-
uated on the robot view and associated with an LC
action. In our example we have:

1. [GSym]→ r.Doubt,
where GSym := δmax r = δmin r.

2. [GBack]→ r.Back,
where GBack := δc(r) ∈ {(R1,Fx,R1,Fy,R1,Fz) |
x≥ 4,z < 4}.

3. [GIdle]→ r.Idle,
where GIdle :=

(
δmax r 6= δmin r

)
∧

δc(r) /∈ {(R1,Fx,R1,Fy,R1,Fz) | x < 4,z < 4}.

In the implementation, these rules are then trans-
lated into clockwise or anti-clockwise moves, ac-
cording to the current configuration considered as
a global variable. For each robot r, the associated
automaton has as local variables the robot identity
and its position c(r). The expressions for guards
become:

1a [
∧

i∈{1,...9}
dc(r)+i = dc(r)−i]→ CounterClockwise

1b [
∧

i∈{1,...9}
dc(r)+i = dc(r)−i]→ Clockwise

2a [
∧

i∈{1,...4}
dc(r)−i = 0∧dc(r)−5 6= 2]→ CounterClockwise

2b [
∧

i∈{1,...4}
dc(r)+i = 0∧dc(r)+5 6= 2]→ Clockwise

3


¬
( ∧

i∈{1,...9}
dc(r)+i = dc(r)−i

)
∧¬
( ∧

i∈{1,...4}
dc(r)−i = 0∧dc(r)−5 6= 2

)
∧¬
( ∧

i∈{1,...4}
dc(r)+i = 0∧dc(r)+5 6= 2

)
→ Idle

We thus obtain the automaton of Figure 8 that rep-
resents a robot implementing the above protocol.

For our modeling purpose, we opt for the lan-
guage DVE, supported by several verification tools:
DiVinE [36], for which DVE is the original model-
ing language, but also ITS-tools [37] and LTSmin
[41]. The first one is an explicit model checker (op-
erating on the actual synchronized product), inte-
grating partial order reduction techniques. The two
others are symbolic model checkers, operating on
reduced state spaces based on decision diagram
representations. For our experimentations, we use

both types: the explicit one DiVinE and ITS-tools
developed in our LIP6 team.

A DVE system is composed of processes, that
are automata equipped with guarded actions on tran-
sitions. When two transitions can be fired, one of
them is chosen nondeterministically. Transitions
have so-called effects that actually are assignments
to local or global variables. In our case, the LC
transitions update the robot states, while the Move
transitions update the configuration.

The DVE file containing the system is com-
posed of a table conf that represents the configura-
tion initialized at c0, a process for each robot and
a process for the scheduler.

5.2 Implementation issues

To obtain a first basic reduction of the state space
in the case of the ASYNC model, we implement
synchronized actions using a reordering of the Acti
actions, where look/compute actions (LCi) are ex-
ecuted first, and the move actions (Movei) after-
ward. All intermediate states are considered tran-
sient.

More precisely, we define the following sys-
tem: M′ = (S′,s0,A,T ′) where S′ is defined simi-
larly to S, with the addition of a labeling of states
(explained below), to indicate if the state is a tran-
sient or a steady state. The transition relation is de-
fined as follows: Any transition s a−→ s′ in M is re-
placed in M′ by a sequence of transitions, where all
intermediate states are labeled as transient, while s
and s′ are steady states. More precisely, we note
âi = (−, . . . ,−,ai,−, . . . ,−) the tuple of actions
where only the robot ri executes ai ∈ Ai. An ac-
tion a = ∏ri∈SchedActi is executed as the sequence
of actions ˆ̀1, . . . , ˆ̀k, m̂1, . . . , m̂k where `i ∈ LCi if
Acti ∈ LCi and − otherwise, and similarly, mi ∈
Movei if Acti ∈Movei and − otherwise. Note that
for each i, ˆ̀i and m̂i are either (−, . . . ,−) (contain-
ing only −, which corresponds to no action from
any robot), or belong to { ˆAct i | ri ∈ Sched}.

Let Exec(M) and Exec(M′) be respectively the
set of executions of M and M′. We denote by cf(e)
the sequence of configurations in e∈ Exec(M) and
by cfs(e′) the sequence of configurations of the
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Ready to
Look-Compute

ClockwiseCounterClockwise

Idle

[
∧

i∈{1,...4}
dc(r)−i = 0 ∧ dc(r)−5 6= 2] Back,

[
∧

i∈{1,...9}
dc(r)+i = dc(r)−i] Doubt

[
∧

i∈{1,...4}
dc(r)+i = 0 ∧ dc(r)+5 6= 2] Back,

[
∧

i∈{1,...9}
dc(r)+i = dc(r)−i] Doubt

Move Move

ε




¬
( ∧
i∈{1,...9}

dc(r)+i = dc(r)−i

)

∧¬
( ∧
i∈{1,...4}

dc(r)−i = 0 ∧ dc(r)−5 6= 2
)

∧¬
( ∧
i∈{1,...4}

dc(r)+i = 0 ∧ dc(r)+5 6= 2
)




Idle

Fig. 8: Automaton of robot r implementing the toy protocol

steady states in e′ ∈ Exec(M′). This notation is ex-
tended to the set of executions of M and M′ by:

cf(Exec(M)) = {cf(e),e ∈ Exec(M)},
cfs(Exec(M′)) = {cfs(e),e ∈ Exec(M′)}.

We say that two executions e ∈ Exec(M) and e′ ∈
Exec(M′) are equivalent if cf(e) = cfs(e′).

Definition 6 The models M and M′ are equivalent
if cf(Exec(M)) = cfs(Exec(M′)).

The following theorem states that our DiVinE
implementation is equivalent to the original ASYNC
model.

Theorem 1 The models M and M′ are equivalent.

Proof Let M be the abstract ASYNC model and
M′ the model obtained from M as described above.
Since M represents the most general behavior and
contains all possible executions of the system, we
clearly have cfs(Exec(M′))⊆ cf(Exec(M)). To ob-
tain the converse inclusion, we must prove that for
each execution e ∈ Exec(M) we can find an exe-
cution e′ ∈ Exec(M′) such that e and e′ are equiv-
alent. This amounts to prove that M′ simulates M
for a simulation relation linking a state of M with
the corresponding steady state of M′, as well as
with all the consecutive transient states.

Let e ∈ Exec(M). With any transition t : s a−→ s′

in e, with a = (a1, . . . ,ak), we associate the execu-
tion et in M′ defined above by:

s
ˆ̀1−→ s1 . . .

ˆ̀k−→ sk
m̂1−→ s′1 . . .

m̂k−→ s′k

with all look actions before all move actions. We
now define the execution e′ ∈ M′ by replacing all
transitions t in e by et . We must now prove that e
and e′ are equivalent.

For this, we show that each transition t : s a−→ s′

is equivalent to et by examining the ordering of
actions. We say that two actions âi and â j com-
mute, written âi ∼ â j if for any system state p, if

r
ai−→ p1

a j−→ p′, there exists p′1 such that p
a j−→ p′1

ai−→
p′. This expresses the fact that the state reached
is independent of the order of actions âi and â j.
Clearly, any two LC actions commute since they
only modify the local state of the robot they be-
long to, and only depend on the current configura-
tion that is not updated by LCi. Similarly, any two
Move actions on different robots ri and r j com-
mute, since they successively update the positions
of robots i and j in c. Moreover, from the defini-
tion of M, all actions âi being simultaneous, the
LC actions must observe the initial configuration c
in the initial steady state s. Therefore, since all LC
actions appear before the move actions in et , this
(sequential) execution is equivalent to the (simul-
taneous) version t. Combining all transitions in e′,
we obtain that e′ and e are equivalent, which con-
cludes the proof. ut

Example 3 Consider for instance a system com-
posed of 4 robots: Rob = {r1,r2,r3,r4}, and the
transition between global states s and s′ labeled by
the tuple a = (Move1,−,LC3,LC4), with Sched =

{r1,r3,r4}. The schema below depicts all the exe-
cutions equivalent to this transition,

s

s1

s′1

s2 s′

L̂C3

L̂C4

L̂C4

L̂C3

M̂ove1
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where the actions are: M̂ove1 = (Move1,−,−,−),
L̂C3 = (−,−,LC3,−), and L̂C4 = (−,−,−,LC4).
As depicted in this figure, the LC actions com-
mute. Hence any execution can represent the above

transition, including s
L̂C3−−→ s1

L̂C4−−→ s2
M̂ove1−−−→ s′.

Among the protocols designed for discrete set-
tings we choose as case studies the ring explo-
ration with stop and perpetual exclusive ring ex-
ploration, with [3] and [4] respectively, as repre-
sentative protocols of these two classes. The next
sections are devoted to these case studies. In each
case, starting from the informal description of the
algorithm, we give the associated formal model
and LTL formulas for the properties that these algo-
rithms have to satisfy. We end by the verification
results.

6 Ring Exploration with Stop

Flocchini et al. first defined in [3] the problem of
exploration with stop on a ring of size n and proved
that this problem cannot be solved by a determin-
sitic algorithm when the number k of robots di-
vides n. The authors also proposed a determinis-
tic protocol to solve exploration with stop when
k ≥ 17, provided that n and k are co-prime.

The original paper only contains an informal
description of the algorithm, thus our first contri-
bution is to formally express the algorithm in or-
der to remove ambiguities. Then we translate this
protocol in the DiVinE language and automatically
verify it on several instances.

6.1 Specification

For any ring and any initial configuration where
robots are located on different vertices, a proto-
col solves the problem of exploration with stop if
within finite time and regardless of the initial posi-
tions of the robots, it guarantees the following two
properties:

(i) Exploration: Each node of the ring is visited
by at least one robot, and

(ii) Termination: Eventually, the robots reach a con-
figuration where they all remain idle (their LCi
action leads to ri.Idle).

Note that this last property requires robots to “re-
member” how much of the ring has been explored
i.e., these oblivious robots must be able to distin-
guish between various stages of the exploration
process simply by their current view.

These two properties can be expressed in LTL
as follows:

– Exploration:
n−1∧
j=0

♦
(
d j > 0).

– Termination:
k∧

i=1
♦�
(
¬ri.Front∧¬ri.Back).

Definition 7 A protocol solves the problem of ring
exploration with stop if from any initial configura-
tion, the following formula holds:

Fairness ⇒ (Exploration ∧ Termination)

6.2 Algorithm Description

In this algorithm, a set of k identical robots explore
an unoriented ring of n anonymous (i.e., identical)
nodes, with n > 0 and k > 0. Initially there is at
most one robot in each node, thus k ≤ n. Since the
case where n = k is trivial, we assume from now
on that k < n. Moreover n and k must be co-prime.
The algorithm is divided into three phases, the Set-
Up phase, the Tower-Creation phase and the Ex-
ploration phase. In the Set-Up phase, all robots are
gathered in one group or two groups of the same
size. In the second phase, the goal is to create one
or two towers per block according to the parity of
the blocks. The last phase is the exploration of the
ring.

In order to express the algorithm in a guarded
action language, some definitions and notations are
introduced, related to a given configuration, and
examples from the rings of Figure 9 are given along
these definitions.

– The interdistance d is the minimum distance
between all pairs of distinct robots in the con-
figuration, where distance is counted in num-
ber of edges. Hence, an interdistance d = 0
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r3

r2

r1

b1 b2

(a)

r3

r2

r1

b1
b2

(b)

Fig. 9: Illustration of the definitions.

corresponds to the presence of (at least) two
robots on a same node.
For the configuration (a) of Figure 9, the inter-
distance is 1, while it is 2 for (b).

– A block is a maximal set of at least 2 robots
that are located every d nodes (where d is the
interdistance of the configuration). Maximality
means that (at least) the d adjacent nodes of a
block in both directions are free. Note that a
block contains at most d− 1 consecutive free
nodes. We denote by Blocks the set of blocks
(recall that Rob is the set of robots).

– The size of a block b, denoted by b.size, is the
number of robots in this block.
In configuration (a), there are two blocks of
size 3 and 5, while there are two blocks of size
3 in (b).

– Between(b1,b2) is a pair of natural numbers
counting the number of blocks between two
blocks b1 and b2 (one integer for each direc-
tion). In both (a) and (b), Between(b1,b2) is
equal to (0,0).

We also define the following predicates:

Isolated(r): this predicate is true if r is an isolated
robot. A robot is isolated if it is not part of a
block, that is, if in both directions its d adjacent
nodes are free.
In (a), Isolated(r1) = true, Isolated(r2) = true
and in (b), Isolated(r2) = true

Border(r,b): this predicate is true if robot r is a
border of the block b. A robot r is a border of
a block if it is one of the extremal robot that
forms this block.
For example Border(r1,b1) is false in (a) and
true in (b).

Neighbor(x,y): this predicate is true if x and y are
neighbors, x and y being either robots or blocks.
Two robots, two blocks or a robot and a block
are neighbors if there exists at least one direc-
tion such that only free nodes exist between
them.
Neighbor(r1,r2) and Neighbor(r2,b2) are true
in both (a) and (b), but Neighbor(r2,b1) is false
in (a) and true in (b).

Leading(x): this predicate is true if x is a lead-
ing block or a leading robot. A robot is lead-
ing if its view is maximal (among the differ-
ent δmax r). Such a robot is called a leader. A
block b is leading if it has a border robot which
is a leader.
In Figure 9 (a), only Leading(r3) is true, hence
also Leading(b2). In Figure 9 (b), Leading(r1)

and Leading(r3) are both true.
Finally, the distance dist(x,y) between two neigh-
bors x and y in Blocks∪Rob is the minimum length
of a path between them containing only free nodes.

We now formally describe each phase of the
algorithm as performed by each robot.

6.2.1 The Set-Up Phase

The aim of this phase is to gather robots on partic-
ular configurations called the Set-Up final config-
urations, defined by: d = 1, there are no isolated
robots, and each block is a leading block. It can be
proved that in such a case, either all robots are in
the same block or the robots are divided into two
blocks of the same size, since otherwise k and n
are not co-prime anymore.

Starting from a tower-free configuration, ab-
sence of tower will be maintained throughout the
Set-Up phase. This is expressed by the predicate:
Set-Up := d > 0.

There are four types of configurations, namely
A, B, C, D, that form a partition of all possible
tower-free configurations. Configurations of type
A contain isolated robots and configurations of type
B, C or D contain only blocks of robots. Configu-
rations of type D are the Set-Up final configura-
tions, configurations of type C are similar (there
are no isolated robots, and each block is a leading
block) to these configurations but with an interdis-
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tance d ≥ 2. Configurations of type B are all the
remaining configurations without isolated robot.

For each of these configuration types, we intro-
duce some notations, sets and predicates to define
the protocols executed by the robots.

Configurations of Type A. In these configurations
with at least one isolated robot, the protocol is as
follows: an isolated robot that is the nearest to the
biggest blocks adjacent to some isolated robot, moves
toward these biggest blocks (with Doubt in case of
equality).

These movements are made in order to remove
isolated robots by increasing the size of their biggest
and nearest neighbor blocks. Hence, after a finite
number of transitions, the configuration must be of
type B, C or D, with the same interdistance (recall
that the interdistance is denoted by d) as the start-
ing configuration of type A.
We define:
SizeMax = max{b.size | b ∈ Blocks s.t. ∃r ∈ Rob :

Neighbor(r,b)∧ Isolated(r)}

Move(r,b) =


r.Doubt if δmax r = δmin r

r.Back if δmax r 6= δmin r and
dist(r,b)> n−dist(r,b)
−(b.size−1)×d

r.Front otherwise
We also need the following predicates and sets:
TypeA := Set-Up∧∃r ∈ Rob : Isolated(r)
NearS(r,b) := Isolated(r)∧Neighbor(r,b)

∧ b.size = SizeMax
Closest = {(r,b) ∈ Rob×Blocks | NearS(r,b)

∧ ∀(r′,b′) ∈ Rob×Blocks :
NearS(r′,b′)⇒ dist(r,b)≤ dist(r′,b′)}

The guarded action in type A for a robot r is thus:
[TypeA∧ (r,b) ∈ Closest]→Move(r,b).

Example 4 This action is illustrated in Figure 10,
where the isolated robot r is at distance 9 of b1
(which is of maximal size) and 3 of b2. Since the
two views of r are different and

dist(r,b1)> n−dist(r,b1)− (b1.size−1)×d
holds with n = 21 and d = 2, its move must be
r.Back, in the direction opposite to its maximal view,
as indicated by the arrow on Figure 10.

Configurations of types C or D. For type C or type
D configurations, there is no isolated robot and

r

b1

b2

Fig. 10: Movement in a type A configuration.

each block is a leading block. They are defined by
the following predicates:
TypeCD := Set-Up ∧ ¬TypeA

∧ ∀b ∈ Blocks : Leading(b)
TypeC := d ≥ 2∧TypeCD
TypeD := d = 1∧TypeCD

It can be seen that all C and D configurations
are symmetrical. In a configuration of type C, all
blocks are leading, with a maximal view for all
leader robots, and no isolated robot. Hence, there
are two leaders in each block. The aim of the pro-
tocol here is to reduce the interdistance. Hence the
two leaders of a block will move inside their block,
so that from a C configuration with interdistance d,
a configuration of type A with interdistance d− 1
will be reached. The protocol executed by robot r
in this case is:
[TypeC∧Leading(r)]→ r.Front,
meaning that the robot moves in the direction of
its maximal view.

From a configuration of type D (Set-Up final)
the Tower-Creation phase begins. Then, denoting
by Tower-Creation the predicate satisfied in the
Tower-Creation phase, we set:
[TypeD]→ Tower-Creation.

Configurations of type B. When the current con-
figuration is neither a type A configuration nor a
type C or D configuration, then it is a type B con-
figuration, which is by far the most complicated
part of the algorithm:
TypeB := Set-Up∧¬(TypeA∨TypeCD).
Configurations of type B are divided into the two
types B1 and B2: if all blocks have the same size
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then the configuration is of type B1, otherwise it is
of type B2.

In a configuration of type B, the aim of the pro-
tocol is to reduce the number of blocks. This is
done according to the following cases which parti-
tion the B type:

– If the configuration is asymmetric, of type B1,
then after a finite number of transitions, the
configuration is of type B2, with the same in-
terdistance, and there is one block less.

– If the configuration is symmetric, of type B1,
with blocks of size 2 then after a finite number
of transitions, the configuration is of type C or
D, with the same interdistance.

– If the configuration is symmetric, of type B1,
with blocks of size≥ 3, then after a finite num-
ber of transitions, the configuration is of type
B2, C or D, with the same interdistance, and
there are fewer blocks.

– If the configuration is of type B2, then after a
finite number of transitions, the configuration
is of type B, C or D, with the same interdis-
tance, and strictly fewer blocks.

Before presenting the formal rules of the algo-
rithm for the configurations of type B1, we define
the following predicates:
TypeB1 :=TypeB∧∀b,b′ ∈Blocks : b.size= b′.size
symRobots(r,r′) := δmax r = δmax r′ ∧ r 6= r′

symBlocks(b,b′) := b 6= b′∧∃(r1,r2) ∈ Rob2 :
Border(r1,b)∧Border(r2,b′)
∧ symRobots(r1,r2)

and the sets:
L = {r ∈ Rob | Leading(r)}
SymR = {(r1,r2) ∈ Rob2 | symRobots(r1,r2)∧

∃b ∈ Blocks : Border(r1,b)}
SymB = {(b1,b2) ∈ Blocks2 | symBlocks(b1,b2)

∧∃(x1,x2) ∈ N2 : Between(b1,b2) =

(x1,x2)∧ x1 ≥ 3 ∧ x2 ≥ 3}.
For subsets prob of Rob2, and Bs of Blocks:
NearPair(prob) = {(r1,r2) ∈ prob | dist(r1,r2)

= min{dist(r,r′),(r,r′) ∈ prob}
∧¬Neighbor(r1,r2)}

minView(Bs) = {r ∈ Rob | ∃b ∈ Bs,∃r′ ∈ Rob
Border(r,b)∧Border(r′,b)∧
δmin r < δmin r′}

The guarded actions in type B1 for a robot r are:

– [TypeB1∧L = {r}]→ r.Back
– [TypeB1∧|L|= 2∧∃b ∈ Blocks : b.size = 2
∧Border(r,b)∧ r ∈minView(SymB)]
→ r.Back

– [TypeB1∧|L|= 2∧∃b ∈ Blocks : b.size 6= 2
∧Border(r,b)∧ r ∈ NearPair(SymR)]
→ r.Back

To explain how the algorithm works for the
type B2, we define:
TypeB2 := TypeB ∧¬TypeB1
m = min{b.size | b ∈ Blocks}
M = max{b1.size | b1 ∈ Blocks s.t. ∃b2 ∈ Blocks:

Neighbor(b1,b2)∧b2.size = m}
dmin = min{dist(b1,b2) | (b1,b2) ∈ Blocks2 s.t.

Neighbor(b1,b2)∧b2.size = m ∧
b1.size = M}

For a subset rob of Rob:
MaxV(rob) = max{δmax r | r ∈ rob}
T = {r ∈ Rob | ∃(b1,b2) ∈ Blocks2 : Border(r,b1)

∧ b1.size = m∧Neighbor(r,b2)∧b2.size = M
∧ dist(b1,b2) = dmin}

The guarded action for a robot r is:
[TypeB2∧ r ∈ T ∧δmax r = MaxV(T )∧
∃b ∈ Blocks : (Neighbor(r,b)∧b.size = M∧
dist(r,b) = dmin)]→ r.Back

The Set-Up phase movements are summed up
in Table 2, where scheduled robots stay idle in all
cases not covered in this table. The predicates de-
fined above to describe robots views would give
rise to numerous F-R-T sequences, according to
the number of blocks, between 1 and bn/2c.

In the next two phases, this number of blocks
is in {1,2,3}, and it will be possible to give the
rule presentation with F-R-T sequences.

6.2.2 The Tower-Creation Phase

The aim of this phase is to form towers from the
Set-Up final configurations. The configurations thus
obtained are called tower-completed and are com-
posed of one block or two symmetrical blocks.

Informally, for each odd block one tower is
formed by the central robot moving to its neigh-
boring node containing the robot with the larger
view. For each even block two towers are formed
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Tower-Creation Phase:
T SA1:: TypeA∧ (r,b) ∈ Closest∧δmax r = δmin r → r.Doubt
T SA2:: TypeA∧ (r,b) ∈ Closest∧δmax r 6= δmin r ∧dist(r,b)> n−dist(r,b)− (b.size−1)×d → r.Back
T SA3:: TypeA∧ (r,b) ∈ Closest∧δmax r 6= δmin r ∧dist(r,b)≤ n−dist(r,b)− (b.size−1)×d → r.Front
T SB11:: TypeB1∧L = {r} → r.Back
T SB12:: TypeB1∧|L|= 2∧∃b ∈ Blocks : b.size = 2∧Border(r,b)∧ r ∈minView(SymB) → r.Back
T SB13:: TypeB1∧|L|= 2∧∃b ∈ Blocks : b.size 6= 2∧Border(r,b)∧ r ∈ NearPair(SymR) → r.Back
T SB2:: TypeB2∧ r ∈ T ∧δmax r = MaxV(T )∧∃b ∈ Blocks : (Neighbor(r,b)∧b.size = M∧dist(r,b) = dmin) → r.Back
T SC:: TypeC∧Leading(r) → r.Front

Table 2: Rules of the Tower-Creation Phase for a robot r.
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Fig. 11: Tower-Creation phase from Set-Up final configurations.

by the two central robots moving to their other
neighbors.

These moves are described in Table 3. In this
table, as well as in Table 4, the view is given by an
F-R-T sequence as described in Definition 4 and
brackets for guards are omitted. Figure 11 illus-
trates the process of tower creation from the pos-
sible Set-Up final configurations. Each configura-
tion in Figure 11(a) will produce the one just be-
low in Figure 11(b). Big circles contain a set of
adjacent nodes which are all free or all occupied.
A big gray node Rx represents x adjacent occupied
nodes, a big white node Fx represents x adjacent

free nodes, and a white node containing dots rep-
resents a positive number of free nodes.

There are four cases:

– If there is only one block of odd size then the
Set-Up final configuration looks like the first
one of Figure 11(a). A unique robot can move
according to rule TC10, which produces the
configuration just below in Figure 11(b) (or the
symmetrical one with the tower in the upper
half instead of the lower half).

– If there is only one block of even size (second
column), then two robots will move according
to rule TC20. If one has moved before the other
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Tower-Creation Phase:
TC10:: 2a+1 = k ∧ δc(r) = (Ra+1,Fx,Ra) → r.Doubt
TC20:: 2a = k ∧ δc(r) = (Ra+1,Fx,Ra−1) → r.Back
TC21:: 2a = k ∧ δc(r) = (Ra,Fx,Ra−2,T2,F1) → r.Front
TC30:: 2a+1 = k, y < x ∧ δc(r) = (Ra+1,Fy,Rk/2,Fx,Ra) → r.Back
TC31:: 2a+1 = k, y < x ∧ δc(r) = (Ra+1,Fy,Ra,F1,T2,Ra−1,Fx,Ra) → r.Back
TC40:: k/2 = 2a+2 ∧ δc(r) = (Ra+2,Fx,Rk/2,Fy,Ra) → r.Back
TC411:: k/2 = 2a+2 ∧ δc(r) = (Ra+1,Fx,Rk/2,Fy,Ra−1,T,F1) → r.Front
TC412:: k/2 = 2a+2 ∧ δc(r) = (Ra+2,Fx,Ra−1,F1,T2,Ra−1,Fy,Ra) → r.Back
TC413:: k/2 = 2a+2 ∧ δc(r) = (Ra+2,Fx,Ra−1,T2,F1,Ra+1,Fy,Ra) → r.Back
TC421:: k/2 = 2a+2 ∧ δc(r) = (Ra+2,Fx,Ra−1,T2,F2,T2,Ra−1,Fy,Ra) → r.Back
TC422:: k/2 = 2a+2 ∧ δc(r) = (Ra+1,Fx,Ra+1,F1,T,Ra−1,Fy,Ra−1,T,F1) → r.Front
TC423:: k/2 = 2a+2 ∧ δc(r) = (Ra+1,Fx,Ra−1,T,F1,Ra+1,Fy,Ra−1,T,F1) → r.Front
TC43:: k/2 = 2a+2 ∧ δc(r) = (Ra+1,Fx,Ra−1,T,F2,T,Ra−1,Fy,Ra−1T,F1) → r.Front

Table 3: Rules of the Tower-Creation Phase for a robot r.

Exploration Phase:
E1:: 2a+1 = k, x≥ 1 ∧ δc(r) = (R1,Fx,Ra,F1,T2,Ra−2,Fy) → r.Front
E2:: 2a = k, x > 0, z < (n− k+2)/2 ∧ δc(r) = (R1,Fx,R1,Fy,Ra−3,T2,F2,T2,Ra−3,Fz) → r.Front
E31:: 2a+1 = k/2, g < (g+b+ c)/2 ∧ δc(r) = (R1,Fb,R1,Fc,Ra−2,T2,F1,Ra−1,Fd ,

R1,Fe,R1,Ff ,Ra−1,F1,T2,Ra−2,Fg) → r.Front
E32:: 2a+1 = k/2, d < (d + e+ f )/2 ∧ δc(r) = (R1,Fe,R1,Ff ,Ra−1,F1,T2,Ra−2,Fg,R1,

Fb,R1,Fc,Ra−2,T2,F1,Ra−1,Fd) → r.Front
E4:: 2a+2 = k/2, g < (g+b+ c)/2 ∧ δc(r) = (R1,Fb,R1,Fc,Ra−2,T2,F2,T2,Ra−2,Fd ,

R1,Fe,R1,Ff ,Ra−2,T2,F2,T2,Ra−2,Fg) → r.Front

Table 4: Rules of the Exploration Phase for a robot r.

one could take a snapshot of the configuration
then its movement is given by rule TC21.

– If there are two symmetrical blocks of odd size
(third case), then two robots will move accord-
ing to rule TC30. If one has moved before the
other one could take a snapshot of the config-
uration then its movement is obtained by rule
TC31. In this case, the two free segments Fx
and Fy have different sizes, and the robots move
in the direction opposite to the shortest one.

– If there are two blocks of even size (rightmost
column) then robots move according to rule
TC40. In this case also, the two free segments
have different sizes. If one tower is formed, the
other robot movement is given by rules TC411,
TC412 and TC413 according to the robot view.
If two of them have moved, and two towers are
formed, then the moving robots compute their
movements according to one of the rules in
{TC421,TC422,TC423}, depending of which
robots have moved before. And when all robots

but one have moved, the last one moves ac-
cording to rule TC43.

6.2.3 The Exploration Phase

The exploration phase is the last phase of the al-
gorithm. It starts from tower-completed configu-
rations and is described in Table 4 (where again
robots stay idle for non covered cases). No new
towers are created during this phase.

Note that the empty nodes adjacent to towers
have already been explored, so the segments of
empty nodes between the blocks are the only ones
possibly not yet explored. Each of these segments
is explored in the current phase by one or two robots
closest to the segment.

When k is odd, the configuration starting the
exploration phase is made of two blocks, one of
them containing a tower (leftmost configuration of
Figure 11(b)). The explorer is the robot at the bor-
der of the block with the tower, the tower being the
other border of the block. The destination of this
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robot is the neighbor free node toward the block
that does not contain the tower. The algorithm for
the moving robot is given by rule E1.

When k is even, there are as many explorers
as blocks from the tower-completed configuration.
An explorer is a robot at a border of a block, and
which is adjacent to an empty segment not vis-
ited. Their destinations are their adjacent node to-
wards the center of the empty segment. The ex-
plorers keep being isolated robots until they either
are neighbors in the middle of the segment (when
the empty segment is even) or they form another
tower (when the empty segment has odd size). The
corresponding rules of the algorithm are: E2, E31,
E32 and E4.

6.3 Verification Results

Experiments on this algorithm were performed with
the model-checker ITS-tools, hence using a sym-
bolic state space. As usual with this type of tools,
heuristics with various variables orders have been
tested, in order to optimize the exploration.

The results show that the algorithm satisfies
the exploration and termination properties under
fairness hypothesis (see Section 6.1). Hence the al-
gorithm is correct for all tested instances of k and
n that satisfy the constraints given in the original
paper: n, k are co-prime and n,k ≥ 17.

k n Time Mem (MB)
17 18 00:00:04 61
18 19 00:00:04 66
17 19 00:25:29 1 622
19 20 00:00:08 88
18 20 00:12:10 2 131
17 20 08:08:00 22 045
20 21 00:00:08 100
19 21 01:08:12 3 632
18 21 03:00:52 9 428
17 21 18:40:07 55 287
21 22 00:00:12 124
20 22 01:58:27 5 914
19 22 08:25:22 30 243
18 22 20:32:45 100 328

Table 5: Set-Up phase model-checking.

k n States Transitions Mem (kB)
5 6 147 436 163 600
5 7 500 1 410 171 084
5 8 2 786 10 596 183 840
5 9 5 533 18 746 207 788
5 10 5 123 204 25 755 007 668 396
5 11 7 827 23 898 299 980
5 12 13 996 61 822 380 244
5 13 17 149 82 902 491 708
5 14 30 680 157 829 637 840
5 15 19 784 312 130 057 237 2 667 850
5 16 12 418 73 688 1 081 736
5 17 33 004 207 642 1 401 280
5 18 10165 66 120 1 790 644
7 8 680 1860 171 396
7 9 2 764 7 576 201 096
7 10 3 022 9 220 270 676
7 11 16 471 56 390 437 876
7 12 18 347 42 448 754 680
7 13 20 272 83 706 1 352 120
10 11 839 1942 190 884
10 12 3 834 8 868 460 750
10 13 7 924 23 731 756 000
10 14 8 357 27 524 2 135 987

Table 6: Model-checking small instances.

Since the most complex phase of the algorithm
is the Set-Up phase, we present in Table 5 the ver-
ification results (time and memory) for the restric-
tion to this particular phase, model-checking the
property: every run reaches a configuration satis-
fying the TypeD predicate (corresponding to a Set-
Up final configuration). The state space explosion
occurring during the model-checking can be seen
on these results.

We also tested the entire algorithm for some
small instances not covered by the original set-
ting, for initial configurations that are not periodic
(where not periodic means that there is at most one
symmetry axis in the ring). Hence, our methodol-
ogy permits to refine the correctness bounds for
these cases. The performances can be seen in Ta-
ble 6, where the algorithm satisfies the correctness
property for all values of n and k appearing in the
table. In particular, we can notice that correctness
holds for values ok k and n that are not co-prime
(k = 5 and n = 10,15), again for non periodic ini-
tial configurations.
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From these experiments, we conjecture that the
algorithm is correct for n < 18 in the following
cases even when n and k are not co-prime, as long
as the initial configuration is not periodic:

– When k is even the algorithm is correct as long
as n < k+ dk/2e and 10≤ k < 17.

– When k is odd the algorithm is correct if 5 ≤
k < 17.

Unfortunately, the combinatorial explosion made
the verification exceed reasonable time for some
cases. For instance, the computation was stopped
for k = 7 and n = 14 after 1 day.

We outline here the number of states and the
number of transitions in order to show that the mem-
ory and the time used increase as the number of
transitions and states of the system. Moreover when
k and n are not co-prime these numbers explode,
due to the the complexity of the algorithm to en-
sure the exploration when there are symmetries.

7 Perpetual Ring Exploration

We now recall the problem of perpetual exclusive
ring exploration, and present the verification re-
sults for the Min-Algorithm [4]. Note that the same
arguments as in [3] apply to obtain impossibility
when the number k of robots divides the size n of
the ring. For this algorithm, model checking tools
are used to exhibit a counter-example. After identi-
fying the rule producing this counter-example, we
correct the algorithm and establish the correctness
of the new version by model checking small in-
stances and providing an inductive proof.

7.1 Specification

For any ring and any initial configuration where
each node is occupied by at most one robot, an al-
gorithm solves the perpetual exclusive exploration
problem if it guarantees the following two proper-
ties:
(i) Exclusivity: There is at most one robot on any

vertex and two robots never traverse the same
edge at the same time in opposite directions.

(ii) Liveness: Each robot visits each node infinitely
often.

These properties can be expressed in LTL as fol-
lows: the Exclusivity property is the conjunction
of the No collision and the No switch properties
below :

– No collision:
n−1∧
j=0

�
(

d j < 2
)

– No switch:
n−1∧
j=0

k∧
i=1

k∧
h=1
¬ ♦
(

c(ri) = j ∧ c(rh) =

j+1 ∧ ri.Front ∧ rh.Back
)

The No collision property states that there is al-
ways at most one robot on each node, while the
No switch property states that two neighbor robots
cannot exchange their position by moving in oppo-
site directions along an edge: one of them moves
Front while the other moves Back. Note that the
No collision property implies the No switch prop-
erty in the asynchronous model, since one of the
possible executions that form a tower is obtained
when two neighbors want to switch their positions,
and their moves are executed asynchronously.

In order to express that each robot visits all ver-
tices infinitely often, we use the Live property:

Live :
n−1∧
j=0

k∧
i=1

�♦
(
c(ri) = j

)
.

The Liveness property needs the fairness as-
sumption. Hence it can be expressed by:

Liveness : Fairness⇒ Live.

7.2 Algorithm Description and Definitions

The Min-Algorithm from [4] is designed to ensure
that 3 robots always exclusively and perpetually
explore any ring of size n ≥ 10 where n is not a
multiple of 3. It is based on a classification of the
set of tower-free configurations. The Min-Algorithm
operates in two phases: the Convergence phase and
the Legitimate phase. In the Convergence phase
system states converge towards so-called Legiti-
mate states. In the Legitimate phase the system cy-
cles between its legitimate states, performing the
exploration.

In Definitions 8 and 9 below, each set of con-
figurations is an equivalence class of configura-
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tions, given by an F-R-T sequence, according to
Definition 4.

Definition 8 Legitimate configurations are defined
for n≥ 10 by Ln = L1n∪L2n∪L3n where:

– L1n = (R2,F2,R1,Fn−5)

– L2n = (R1,F1,R1,Fn−6,R1,F2)

– L3n = (R1,F3,R2,Fn−6)

All other (tower free) configurations are called
non legitimate configurations. We denote by NLn

the set of non legitimate configurations and we also
partition NLn according to the number of consec-
utive robots. This leads to the five classes An, Bn,
Cn, Dn, En defined below (robots occupying adja-
cent nodes are themselves called adjacent).

Definition 9 Non legitimate configurations are de-
fined for n ≥ 10, when n and 3 are co-prime, by
NLn = An∪Bn∪Cn∪Dn∪En as follows.

When one robot is at the same positive distance
of the two others, then it is a Bn configuration:

Bn = {(R1,Fx,R1,Fy,R1,Fx) | x > 0 ∧ x 6= y
∧ n = 2x+ y+3}.

Otherwise, we distinguish three sub cases depend-
ing on the number of adjacent robots.

– If no robots are adjacent, it is a Cn configura-
tion:

Cn = {(R1,Fx,R1,Fy,R1,Fz) | 0 < x < z < y
∧ (x,z) 6= (1,2)∧ n = x+ y+ z+3}.

Note that the case (x,z) = (1,2) corresponds to
a L2n configuration. Hence Cn configurations
only appear when n≥ 11.

– If only two robots are adjacent, if the minimal
distance between these two robots and the third
one is equal to 2 or 3, then it is a L1n or a L3n

configuration. Otherwise:
– If the minimal distance is equal to 1, then

it is an En configuration:

En = (R1,F1,R2,Fn−4).

– Otherwise the distance is larger than 3 and
then it is an An configuration:

An = {(R1,Fx,R2,Fz) | 4≤ x < z
∧ n = x+ z+3}.

Note that this type of configuration only
exists when n > 12, since n and k = 3 must
be co-prime.

– If the three robots are adjacent then the config-
uration is a Dn configuration:

Dn = (R3,Fn−3).

From the disjunction of cases in Definitions 8
and 9 above, and observing that no two classes of
configurations overlap, we have:

Proposition 1 The sets of configurations: An, Bn,
Cn, Dn, En, L1n, L2n, L3n, form a partition of the
set of all tower-free configurations of a ring of size
n≥ 10, when n and k = 3 are co-prime.

We now detail the two phases, described in Ta-
ble 7. In the Legitimate phase the idea is to autho-
rize, by exploiting the asymmetry of the network,
a single robot to move at each step. Rule RL1 au-
thorizes only the robot which is the farthest from
the isolated robot to move. This robot goes to the
only free neighboring node. Rule RL2 authorizes
the robot which is the nearest to the other robots to
move in order to minimize the distance between
itself and its nearest neighbor. Rule RL3 autho-
rizes the isolated robot to come closer to the other
robots. After the execution of n rounds (each one
of the three robots has moved n times), all robots
have explored the ring once.

The Convergence phase brings non-legitimate
configurations into legitimate ones. The main point
of this algorithm is to break possible symmetries
and to converge to a pattern that allows the ex-
ecution of one of the RL rules. Rule RC1 (resp.
RC2, RC3, RC4 and RC5) is only applied for con-
figurations in An (resp. Bn, Cn, Dn, En). Rule RC1
is applied in order to reduce the distance between
the isolated robot and the two other robots. Rule
RC2 is applied when a robot is at equal distance
from the two other robots. This robot will break
the symmetry by a shift of one position in any di-
rection. Rule RC3 is applied when robots are scat-
tered on the ring at distances x < z < y. The robot
authorized to move is the one that is adjacent to the
free spaces of size x and z. This robot will move
such that the free space x is reduced by 1. The
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Legitimate Phase:
RL1:: δc(r) = (R2,F2,R1,Fn−5) → r.Back
RL2:: δc(r) = (R1,F1,R1,Fn−6,R1,F2) → r.Front
RL3:: δc(r) = (R1,F3,R2,Fn−6) → r.Front

Convergence Phase:
RC1:: 4≤ x < z ∧ δc(r) = (R1,Fx,R2,Fz) → r.Front
RC2:: x 6= y, x > 0 ∧ δc(r) = (R1,Fx,R1,Fy,R1,Fx) → r.Doubt
RC3:: 0 < x < z < y∧ (x,z) 6= (1,2) ∧ δc(r) = (R1,Fx,R1,Fy,R1,Fz) → r.Front
RC4:: δc(r) = (R3,Fn−3) → r.Back
RC5:: δc(r) = (R1,F1,R2,Fn−4) → r.Back

Table 7: Rules of Min-Algorithm [4] for a robot r with n≥ 10.

idea behind this movement is to create a block of
robots. Rule RC4 captures the situation when the
three robots are adjacent. In this case, due to the
symmetry the two robots on the border can move.
Rule RC5 is applied when the isolated robot is too
close (at distance 1) to the block of robots. In this
case it will move away from the block.

The specification for this algorithm is refined
as follows:
(a) The No collision and No switch properties are

satisfied.
(b) From any non-legitimate configuration a legit-

imate configuration is reached.
(c) The exploration is performed by cycling within

the legitimate configurations (ensuring the Live-
ness property).

7.3 Verification Results

Recall that the setting of the Min-Algorithm fea-
tures 3 robots in a ring of size n ≥ 10 where n is
not a multiple of 3. Thus we first construct a model
for this protocol and its properties in the model
checker DiVinE [36]. Then we verify this algo-
rithm for the smallest possible ring of size 10, for
all models (FSYNC, SSYNC and ASYNC). These
results are presented in Table 8, with number of
states, transitions, memory used, and time spent.

More importantly, our results show that the al-
gorithm does not satisfy the Exclusivity property
in the ASYNC model. A counter-example is auto-
matically generated, exhibiting a sequence of tran-
sitions leading to a collision (a tower), hence a vi-
olation of the Exclusivity property. It is presented

States Transitions Mem(kB) Model ?
256 315 737 810 248 668 FSYNC ok
407 175 881 437 248 840 SSYNC ok

3 429 715 13 218 742 1 269 432 ASYNC col

Table 8: Model checking of Min-Algorithm in the
three models for the smallest ring

in details in Figure 12, with a sequence of con-
figurations obtained by successive robot moves. In
each configuration a computation is represented by
an arrow, which is dotted when the computation is
made from an outdated snapshot.

In the starting configuration after the LC phase
of all robots, the gray one and the black one have
decided to move according to the RC4 rule, and the
light gray one to stay idle. The black robot moves,
which produces the second configuration. Before
the gray robot could move, the black one performs
its LC phase and according to the RC5 rules, it
chooses to roll away from the two other robots.
The gray robot moves from the decision taken pre-
viously and the third configuration is reached. From
this configuration the light gray robot performs its
LC phase and chooses to move in any direction
(as the configuration has a symmetry axe passing
through this robot). The scheduler makes it move
toward the gray one. From the fourth configura-
tion thus obtained, the gray robot had to move ac-
cording to rule RL1 after its LC phase. This move-
ment permits to obtain the fifth configuration, from
where the light gray robot chooses to move ac-
cording to rule RL2. We obtain the sixth config-
uration thanks to the movement of the black robot
(movement that it had chosen in the second config-
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Fig. 12: Counter-example.

uration). From this configuration the black robot
chooses to move according to rule RC4, and the
move is performed. In the last configuration the
gray robot performs its LC phase and according to
the RL2 rule, it chooses to move toward the light
gray one, on the same node where the light gray
one had chosen to go in the fifth configuration.
From there if these two robots move, they collide.

In this counter-example, we can see that the
collision is due to the fact that there is always one
movement that can be made from an outdated snap-
shot, hence we need to stop these movements. We
now present a correction of the algorithm referred
to as Min-Algorithm-Corrected. The modification
concerns the convergence phase, leaving the le-
gitimate phase unchanged. More precisely, only
rule RC5 is modified to avoid collisions induced by
the previous rules, when movements computed on
obsolete observations are taken into account. The
new RC5 rule is:

RC5 :: δ
c(r) = (R2,F1,R1,Fn−4) → r.Back

Note that the moving robot has changed with
respect to the old rule. If this new rule is applied
in the counter-example, then from the second con-
figuration, no movements from outdated snapshots
can be made any more since the RC5 rule requires
a configuration where the light gray and the black
robots have stayed idle.

n States Transitions Mem(kB) Time
10 1 581 961 6 090 209 1 416 880 00:06:45
11 1 926 385 7 421 315 1 568 748 00:09:09
13 2 716 637 10 476 317 2 252 600 00:20:46
14 3 162 409 12 307 905 2 560 724 00:26:54
16 4 155 385 16 041 365 2 772 188 00:36:22

Table 9: Model checking of the Min-Algorithm-
Corrected for the ASYNC model.

Verification results given in Table 9 show that
correctness is achieved in the ASYNC model for
several instances of n. We can observe a limited
blow up, due to the fact that when the number k =
3 of robots is fixed, the total number of configura-
tions (and of states) is of order n3.

Since this protocol is parameterized by the ring
size n, model-checking does not permit to verify
whether it is valid for all values of n. Therefore,
while automated verification was used to prove the
required properties for small values of n, we pro-
vide an inductive proof to obtain the correctness
for arbitrary values of n.

7.4 Inductive approach

With respect to the refined specification in Sec-
tion 7.2, we first prove point (c): the exploration is
performed by cycling within the legitimate config-
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urations and point (b): from all non-legitimate con-
figurations a legitimate configuration is reached.

Given a configuration type TC (like A, B or
L1), we express how it is parametrized by the dis-
tances (given as the numbers of free nodes) be-
tween consecutive robots. For this, we use a triple
of natural numbers (x,y,z) such that the F-R-T se-
quence (R1,Fx,R1,Fy,R1,Fz) belongs to the type
TC.

Notation 7.1 The notation [TCn(x,y,z), ϕ] repre-
sents the set of configurations of type TC, with dis-
tances x,y,z between consecutive robots, restricted
by the additional constraint ϕ on x,y,z.

Recall that n = x+y+z+3 remains constant, with
n≥ 10. Constraints defining the type itself are omit-
ted. For instance,

[Bn(x,y,z) | x = z∧x 6= y∧x > 0∧ n = y+2x+3]

is simply denoted by [Bn(x,y,x)].

Notation 7.2 The tuple

(sx,sy,sz, [TCn(x,y,z),ϕ])

denotes the set

{(sx,sy,sz,c) | c ∈ [TCn(x,y,z),ϕ]}

of system states, where sx (respectively sy, sz) is the
local state of the robot positioned before the x (re-
spectively y, z) free nodes.
For w ∈ {x,y,z}, state sw belongs to Front, Back,
RLC, where RLC represents the robot state Ready
to Look-Compute. Moreover for the sake of read-
ability, we do not represent Idle states, hence only
scheduler choices about robots that can move are
seen.

For a set P of system states, we denote by C (P)
the set of configurations of P and by R (P) the set
of rules of the algorithm that can be applied on P.
For a rule R ∈ R (P), we define:

succR(P) = {s′ | s R−→ s′ for some s ∈ P}

the set of states produced by applying R to states
of P.

An abstracted view of the algorithm is shown
in Figures 13 and 14 using these notations. Gray
states are initial states, more particularly the light
grey ones are legitimate states. Each Move tran-
sition is guarded by a condition between brackets
and corresponds to the choice of the scheduler to
let all robots move. In the Moveany transition, the
scheduler lets only a single robot move. While this
graph was merely intended to illustrate the proof,
it was pointed out by an anonymous referee that it
can also be viewed as a kind of visual abstraction,
as proposed by Z. Manna and A. Pnueli in [26] and
further studied in [28,29,30]. More precisely this
graph, with three robot processes and variables x,
y, z and n, is similar to a generalized verification
diagram from [29], used by the STeP group, or to
a predicate diagrams from [30].

7.4.1 Exploration from legitimate configurations

We prove the following theorem:

Theorem 2 From any legitimate configuration the
ring (of size n≥ 10, co-prime with 3) is perpetually
explored.

The result holds if from a legitimate config-
uration (L1,L2,L3) only legitimate configurations
are reached, and if from any legitimate configura-
tion, an identical configuration is reached, where
all positions have been shifted p times to the same
direction, for any p ∈N. In particular, when p > 0
is a multiple of n, all robots have visited all nodes.
These two properties are expressed by the follow-
ing LTL formulas:

1. � (L⇒� L)
2. ∀ j ∈ {0,1, . . . ,n−1}, ∀p ∈ N,

�(Lk∧ r[ j] = ri⇒ ♦(Lk∧ r[ j+ p] = ri))

for all i,k = 1,2,3.
where Lk is the predicate indicating that the con-
figuration belongs to the corresponding set and r[ j] =
ri is the binary predicate giving the absolute posi-
tion j for robot ri.

By construction and for all n ≤ 10, the first
formula is satisfied since the only possible moves
from L1, L2 and L3 for scheduled robots not stay-
ing idle are:
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(RLC,RLC,RLC, [Dn(0, 0, z)])

(RLC,RLC,RLC, [En(0, 1, z)])

(Back,RLC,RLC, [Dn(0, 0, z)]) (RLC,RLC,Back, [Dn(0, 0, z)])

(Back,RLC,RLC, [En(0, 1, z)])(Back,RLC,Back, [Dn(0, 0, z)])

(RLC,RLC,RLC, [Bn(x, y, x)])

RC4 RC4

RC4

Move Move

Moveany

Move

RC5

Move

(RLC,RLC,RLC, [L3n(3, 0, z)])(RLC,RLC,RLC, [L1n(0, 2, z)])

(Front,RLC,RLC, [L3n(3, 0, z)])
(Back,RLC,RLC, [L1n(0, 2, z)]) (Front,RLC,RLC, [L2n(1, y, 2)])

(RLC,RLC,RLC, [L2n(1, y, 2)])

RL1

Move RL2

Move
RL3Move

Lower convergence phase

Upper convergence phase

Legitimate phase

Fig. 13: Graph of Min-algorithm.

(RLC,RLC,RLC, [Bn(x, y, x)])

(Back,RLC,RLC, [Bn(x, y, x)]) (Front,RLC,RLC, [Bn(x, y, x)])

(RLC,RLC,RLC, [L3n(3, 0, z)])(RLC,RLC,RLC, [L1n(0, 2, z)])

(Front,RLC,RLC, [An(x, 0, z)])

(RLC,RLC,RLC, [An(x, 0, z)])

(Front,RLC,RLC, [Cn(x, y, z)])

(RLC,RLC,RLC, [Cn(x, y, z)])

RC2 RC2
[y = x+ 1 ∨ y = x− 1],Move

[y = 0 ∧ x > 4],Move

[y = 0 ∧ x = 4],Move

[x = 1],Move

[x = 1],Move

[y 6= 0 ∧ (y 6= x+ 1 ∨ y 6= x− 1)],Move

[y = x+ 1 ∨ y = x− 1],Move

[y
=

0 ∧
x
=

4
],M

o
v
e

[y 6= 0 ∧ (y 6= x+ 1

∨y 6= x− 1)],Move

RC3[x 6= 1 ∧ z 6= y − 1],Move

[x = 1 ∧ z 6= y − 1],Move

RC1[y > 4],Move

[y
=

0 ∧
x
>

4
],M

o
v
e

[z = y − 1],Move

[z = 4],Move

Fig. 14: Lower convergence phase.
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L1n L2n L3n

· · · · · · · · · · · · · · · · · ·

RL1

RL2

RL3

Fig. 15: A step for the exploration.

• succRL1((RLC,RLC,RLC, [L1n(0,2,n−5)]))
= (Back,RLC,RLC, [L1n(0,2,n−5)]),
succMove((Back,RLC,RLC, [L1n(0,2,n−5)]))
= (RLC,RLC,RLC, [L2n(1,2,n−6)]),

• succRL2((RLC,RLC,RLC, [L2n(1,2,n−6)]))
= (RLC,Front,RLC, [L2n(1,2,n−6)]),
succMove( (RLC,Front,RLC, [L2n(1,2,n−6)]))
= (RLC,RLC, RLC, [L3n(0,3,n−6)]),

• succRL3((RLC,RLC,RLC, [L3n(0,3,n−6)]))
= (RLC,RLC,Front, [L3n(0,3,n−6)]), and
succMove((RLC,RLC,Front, [L3n(0,3,n−6)]))
= (RLC,RLC,RLC, [L1n(0,2,n−5)]).

As mentioned previously, the second formula
ensures the perpetual exploration. The proof is an
easy induction over p, for an arbitrary size n.

The base case for p = 0 is trivial. For the in-
duction step, assume that the property holds for p,
hence: (Lk∧ r[ j] = ri) =⇒ ♦(Lk∧ r[ j+ p] = ri).
Setting j′ = j + p and chaining the three moves
described above, as illustrated in Figure 15, we
obtain : (Lk∧ r[ j′] = ri)⇒ ♦(Lk∧ r[ j′+ 1] = ri).
Hence (Lk∧ r[ j] = ri)⇒ ♦(Lk∧ r[ j+ p+1] = ri)
and the property holds for p+1.

7.4.2 Convergence from illegitimate
configurations

We prove:

Theorem 3 From any non legitimate configuration,
a legitimate configuration is eventually reached (for
a ring of size n≥ 10, co-prime with 3).

To establish the convergence result, we asso-
ciate with any subset P of system states a tree T (P)
rooted in P, with nodes the subsets of states ob-
tained by applying the rules of the algorithm. Reach-

ing a set of successors in L without pending moves
results in a leaf. More precisely:

Definition 10 Given the set R of rules of the Min-
Algorithm, let P0 be a subset of system states. The
tree T (P0) has P0 as root and for each node P:

– If C (P) ⊆ L and for any s ∈ P, w ∈ {x,y,z},
sw /∈ {Front,Back}, then the node has no suc-
cessor.

– Otherwise the node P has a successor succR(P)
for each R ∈ R (P).

We now prove that for any set of states P such
that C (P) is contained in one of the non legitimate
configuration types, the tree T (P) is finite. This
yields the desired convergence proof. If for some
P, the tree T (P) is infinite, then there exists an
infinite sequence of rules (on an infinite path of
this tree) such that for all successor sets P′ of P
along this sequence, either C (P′) * L or there is
some s ∈ P′ such that sw ∈ {Front,Back} for some
w∈ {x,y,z}, meaning that the corresponding robot
has a pending move.

To prove this result, we exhaustively verify the
property for all types An, Bn, Cn, Dn or En, by in-
ductive proofs, in Lemmas 1 to 5 (where we as-
sume n ≥ 10 and n co-prime with 3). Note that
these lemmas must be proved in the order A, C,
B, E and D. Since NLn = An ∪Bn ∪Cn ∪Dn ∪En

the result follows.

Lemma 1 The tree T (P) is finite for
P = (RLC,RLC,RLC, [An(x,0,z),4≤ x < z]).

Proof The idea of the proof is as follows: recall
that from an An configuration (R1,Fx,R2,Fz) with
4≤ x < z, written [An(x,0,z),4≤ x < z], only one
movement is feasible, leading to an [L3n(3,0,z)]
configuration if x = 4 and to an [An(x−1,0,z+1)]
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configuration otherwise. Hence the number of free
nodes in the x part decreases until an L3 configu-
ration is reached.

We first prove the property for an arbitrary z
when x = 4 (base case). Then we prove the induc-
tion step on x.

Base-case: For any z≥ 6, the tree T (P) is finite for
P=(RLC,RLC,RLC, [An(4,0,z)]), with the moves:

(RLC,RLC,RLC, [An(4, 0, z)])

(Front,RLC,RLC, [An(4, 0, z)])

(RLC,RLC,RLC, [L3n(3, 0, z + 1)])

RC1

Move

Induction step: Assume that for any z> x, the tree
with root P = (RLC,RLC,RLC, [An(x,0,z)]) is fi-
nite. For x+1 < z, the moves are:

(RLC,RLC,RLC, [An(x+ 1, 0, z)])

(Front,RLC,RLC, [An(x+ 1, 0, z)])

(RLC,RLC,RLC, [An(x, 0, z + 1])

RC1

Move

they lead to (RLC,RLC,RLC, [An(x,0,z + 1]) for
which the tree is finite from the induction hypoth-
esis. This ensures the desired result.

Lemma 2 The tree T (P) is finite for
P = (RLC,RLC,RLC, [Cn(x,y,z),0 < x < z < y])

with (x,z) 6= (1,2).

Proof We first fix parameter x and show that the
tree for P is finite, for any y,z with 0 < x < z < y.
Then we prove by induction that it holds for any x
using the first proof as base case.

Base-case: x=1

– If z = y−1, the tree is:

ALAL

BFBB

(RLC,RLC,RLC, [Bn(0, y, y)])

(Front,RLC,RLC, [Cn(1, y, y − 1)])

(RLC,RLC,RLC, [Cn(1, y, y − 1)])

MoveMove

RC2RC2

Move

RC3

where:
BB = (RLC,RLC,Back, [Bn(0,y,y)])
BF = (RLC,RLC,Front, [Bn(0,y,y)])
and if y = 4,
AL = (RLC,RLC,RLC, [L3n(3,0,5)])
otherwise (y > 4),
AL = (RLC,RLC,RLC, [An(y−1,0,y+1)])
Note that in both cases, the move from BB or
BF leads to the same equivalence class of con-
figurations: an L3n class when y = 4 and an
An class otherwise. From Lemma 1, the result
holds for x = 1 and z = y−1.

– If 2 < z < y− 1 (Recall that if z = 2, since
x = 1, it is a L2n configuration), the moves are:
succRC3((RLC,RLC,RLC, [Cn(1,y,z)]))
= (Front,RLC,RLC, [Cn(1,y,z)]),
succMove((Front,RLC,RLC, [Cn(1,y,z)])
= (RLC,RLC,RLC, [An(0,y,z+1)]).
The last configuration is an An configuration
since 2 < z < y− 1. Similarly as above, the
property results from Lemma 1.

Finally, it results from the above cases that the tree
T (RLC,RLC,RLC, [Cn(1,y,z)]) is finite for any y,z.

Induction step: We now assume that the tree of
root (RLC,RLC,RLC, [Cn(x,y,z)]) is finite for
any y, z, and prove that the same is true for
T (RLC,RLC,RLC, [Cn(x+1,y,z)].

– If z = y−1, the tree is
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CC

BFBB

(RLC,RLC,RLC, [Bn(x, y, y)])

(Front,RLC,RLC, [Cn(x+ 1, z, z − 1)])

(RLC,RLC,RLC, [Cn(x+ 1, y, y − 1)])

MoveMove

RC2RC2

Move

RC3

where
BB = (RLC,RLC,Back, [Bn(x,y,y)])
BF = (RLC,RLC,Front, [Bn(x,y,y)])
C = (RLC,RLC,RLC, [Cn(x,y+1,y−1)])
Thanks to the induction hypothesis, we can con-
clude that the property holds in this case.

– If 2 < z < y−1, applying the algorithm yields
the movements:
succRC3((RLC,RLC,RLC, [Cn(x+1,y,z)]))
= (Front,RLC,RLC, [Cn(x+1,y,z)]),
succMove((Front,RLC,RLC, [Cn(x+1,y,z)])
= (RLC,RLC,RLC, [Cn(x,y,z+1)]).
The last configuration is a Cn configuration since
2 < z < y− 1, hence the property holds from
the induction hypothesis.

Finally all trees T (RLC,RLC,RLC, [Cn(x,y,z)]) with
0 < x < z < y and (x,z) 6= (1,2) are finite.

Lemma 3 The tree T (P) is finite for
P = (RLC,RLC,RLC, [Bn(x,y,x),x > 0∧ x 6= y]).

Proof We handle two cases: x > y and x < y.

Case x > y: We first handle the subcases y = 0 and
y = 1.

– When y = 0, applying the algorithm yields the
moves:

ALAL

BFBB

(RLC,RLC,RLC, [Bn(x, 0, x)])

MoveMove

RC2RC2

where
BB = (Back,RLC,RLC, [Bn(x,0,x)])
BF = (Front,RLC,RLC, [Bn(x,0,x)])
and if x = 4,
AL = (RLC,RLC,RLC, [L3n(3,0,5)])
otherwise (x > 4),
AL = (RLC,RLC,RLC, [An(x−1,0,x+1)])
From Bn configurations, where y= 0, the moves
lead to an L3n configurations when x = 4, and
to an An configuration otherwise. Hence from
Lemma 1, the property holds when y = 0 for
any x.

– When y = 1, the tree representing the algo-
rithm is the following:

CLCL

BFBB

(RLC,RLC,RLC, [Bn(x, 1, x)])

MoveMove

RC2RC2

where
BB = (Back,RLC,RLC, [Bn(x,1,x)])
BF = (Front,RLC,RLC, [Bn(x,1,x)])
and if x = 3,
CL = (RLC,RLC,RLC, [L2n(1,4,2)])
otherwise (x > 3):
CL = (RLC,RLC,RLC, [Cn(1,x+1,x−1)]).
Similarly as above there are two cases when
x = 3 or x > 3. In the first case the moves reach
L2n configurations, and in the second one to
Cn configurations. From Lemma 2, the prop-
erty holds when y = 1 for any x.
We now show the moves for any x,y when x >

y > 1. We need two subcases when x− 1 = y and
x−1 > y.

– If x−1 = y, the moves are:
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(RLC,RLC,RLC, [Bn(x, x− 1, x)])

BFBB

BFBB

BFFBFBBBFBBB

CCCC

RC2 RC2

MoveMove

RC2 RC2RC2 RC2

MoveMoveMoveMove

where
BB = (Back,RLC,RLC, [Bn(x,x−1,x)])
BF = (Front,RLC,RLC, [Bn(x,x−1,x)])
BB = (RLC,RLC,RLC, [Bn(x+1,x−1,x−1)])
BF = (RLC,RLC,RLC, [Bn(x−1,x−1,x+1)])
BBB = (RLC,RLC,Back, [Bn(x+1,x−1,x−1)])
BBF = (RLC,RLC,Front, [Bn(x+1,x−1,x−1)])
BFB = (RLC,Back,RLC, [Bn(x−1,x−1,x+1)])
BFF = (RLC,Front,RLC, [Bn(x−1,x−1,x+1)])
C = (RLC,RLC,RLC, [Cn(x−2,x+1,x)])

The property holds in this case, thanks to Lemma 2.
– If x−1 > y, and y > 1 the tree is:

CC

BFBB

(RLC,RLC,RLC, [Bn(x, y, x), x− 1 > y])

Move Move

RC2RC2

where
BB = (Back,RLC,RLC, [Bn(x,y,x)])
BF = (Front,RLC,RLC, [Bn(x,y,x)])
C = (RLC, RLC,RLC, [Cn(x+1,y,x−1)])
and Lemma 2 entails the result.

Hence T (RLC,RLC,RLC, [Bn(x,y,x),x> y])) is fi-
nite.
Case x < y: We handle two subcases when y >

x+1 and y = x+1.

– If x+1 < y, then the moves are:

CLCL

BFBB

(RLC,RLC,RLC, [Bn(x, y, x), x+ 1 < y])

MoveMove

RC2RC2

where
BB = (Back,RLC,RLC, [Bn(x,y,x),x+1 < y)])
BF = (Front,RLC,RLC, [Bn(x,y,x),x+1 < y)
and if x = 1
CL = (RLC, RLC,RLC, [L1n(2,y,0)])
otherwise (x > 1):
CL = (RLC,RLC,RLC, [Cn(x−1,y,x+1)])
When x = 1 the moves lead to L1n configura-
tions and to Cn configurations otherwise. Hence,
again thanks to Lemma 2, the property holds
for any x,y when x+1 < y.

– If x+1 = y, the tree is:

(RLC,RLC,RLC, [Bn(x, x+ 1, x)])

BFBB

BFBB

BFFBFBBBFBBB

CCCC

RC2 RC2

MoveMove

RC2 RC2RC2 RC2

MoveMoveMoveMove
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where
BB = (Back,RLC,RLC, [Bn(x,x+1,x)])
BF = (Front,RLC,RLC, [Bn(x,x+1,x)])
BB = (RLC,RLC,RLC, [Bn(x+1,x+1,x−1)])
BF = (RLC,RLC,RLC, [Bn(x−1,x+1,x+1)])
BBB = (RLC,Back,RLC, [Bn(x+1,x+1,x−1)])
BBF = (RLC,Front,RLC, [Bn(x+1,x+1,x−1)])
BFB = (RLC,RLC,Back, [Bn(x−1,x+1,x+1)])
BFF = (RLC,RLC,Front, [Bn(x−1,x+1,x+1)])
C = (RLC,RLC,RLC, [Cn(x,x+2,x−1)])

Since T (RLC,RLC,RLC, [Cn(x,y,z)]) is finite
(by Lemma 2), the property holds.

Finally the trees

T (RLC,RLC,RLC[Bn(x,y,x),x < y])

are also finite, which concludes the proof.

Lemma 4 The tree T (P) is finite for
P = (RLC,RLC,RLC, [En(0,1,z)]).

Proof In the case of En configurations, we have:

(RLC,RLC,RLC, [En(0, 1, z)])

(Back,RLC,RLC, [En(0, 1, z)])

(RLC,RLC,RLC, [Bn(1, 1, z − 1)])

RC5

Move

and the result holds thanks to Lemma 3.

Lemma 5 The tree T (P) is finite for
P = (RLC,RLC,RLC, [Dn(0,0,z)]).

Proof From a Dn configuration, it is also possi-
ble to schedule two robots with their respective
planned moves. The various cases lead to either an
En configuration with or without a pending move-
ment, or a Bn configuration:

(RLC,RLC,RLC, [Dn(0, 0, z)])

D13D1 D3

E EBE1 E3

B B

RC4 RC4RC4

MoveMove MoveMove

Move

Move

Move

where
D1 = (Back,RLC,RLC, [Dn(0,0,z)])
D13 = (Back,RLC,Back, [Dn(0,0,z)])
D3 = (RLC,RLC,Back, [Dn(0,0,z)])
E = (RLC,RLC,RLC, [En(0,1,z−1)])
E1 = (RLC,RLC,Back, [En(1,0,z−1)])
E3 = (Back,RLC,RLC, [En(0,1,z−1)])
B = (RLC,RLC,RLC, [Bn(1,1,z−2)])
and the result holds from the previous lemmas 3
and 4.

Together these lemmas imply Theorem 3. Fi-
nally, Theorems 2 and 3 give the result for per-
petual exploration. Moreover, since all reachable
configurations from any of the initial configura-
tions are tower-free, the Exclusivity property fol-
lows (recall that the No collision property implies
the No switch property in the asynchronous case,
as mentioned in Section 7.1). This concludes the
correctness proof of the algorithm.

8 Conclusion

We demonstrated the feasibility of formal verifi-
cation through model checking for mobile robot
protocols in a discrete space. We verified several
instances of two protocols for ring exploration. In
the first case model checking helped in refining
the correctness bounds of the protocol and in the
second case it produced a counter-example, which
permitted to correct the protocol. We then proved
the correctness of this protocol by induction.

Our approach leads not only to find and correct
bugs in the protocols (which is especially useful in
the more challenging execution model ASYNC),
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but also relieves protocol designers from the bur-
den of manually checking small instances of the
problem, thus permitting them to concentrate on
abstract configurations where some global invari-
ants hold.

Going one step further, we would like to pro-
vide an automated version for the proof of Theo-
rem 3. The graph of Figures 13 and 14 could be
used as a hand made start for a theorem prover,
in order to exhibit all cases. Moreover, since these
cases are dependent, the order in which the proof
has to be carried over should be done manually.
Such a proof could also be based on visual abstrac-
tions as proposed in [29] or [30], by translating
the graph into a suitable diagram. A first challenge
would be to define ranking functions for general-
ized verification diagrams or well-founded order-
ings for predicate diagrams.

A further step is to generate the protocol auto-
matically from the problem. This would provide
solutions that are correct by design. We believe
that controller synthesis [46] and more generally,
algorithm synthesis for synchronous robots in the
spirit of [47], can be extended to obtain such guar-
antees in the asynchronous case.

Finally, it would be worthwhile to investigate
the decidability issues that remain open for the robot
model.
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References

1. P. Flocchini, G. Prencipe, and N. Santoro. Distributed
Computing by Oblivious Mobile Robots. Synthesis
Lectures on Distributed Computing Theory. Morgan &
Claypool Publishers, 2012.

2. A. Almeida, G. Ramalho, H. Santana, P. Azevedo
Tedesco, T. Menezes, V. Corruble, and Y. Chevaleyre.
Recent advances on multi-agent patrolling. In Ad-
vances in Artificial Intelligence - SBIA 2004, 17th
Brazilian Symposium on Artificial Intelligence, São
Luis, Maranhão, Brazil, September 29 - October 1,
2004, Proceedings, pages 474–483, 2004.

3. P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro.
Computing without communicating: Ring exploration

by asynchronous oblivious robots. Algorithmica,
65(3):562–583, 2013.

4. L. Blin, A. Milani, M. Potop-Butucaru, and S. Tixeuil.
Exclusive perpetual ring exploration without chirality.
In Proc. of 24th Int. Symp. in Distributed Comput-
ing (DISC’10), volume 6343 of LNCS, pages 312–327.
Springer, 2010.

5. I. Suzuki and M. Yamashita. Distributed anonymous
mobile robots: Formation of geometric patterns. SIAM
Journal on Computing, 28(4):1347–1363, 1999.

6. A. Clerentin, M. Delafosse, L. Delahoche, B. Marhic,
and A. Jolly-Desodt. Uncertainty and imprecision
modeling for the mobile robot localization problem.
Autonomous Robots, 24(3):267–283, 2008.

7. G. D’Angelo, G. Di Stefano, and A. Navarra. Gath-
ering of six robots on anonymous symmetric rings.
In Proc. of 18th Int. Coll. on Structural Information
and Communication Complexity (SIROCCO’11), vol-
ume 6796 of LNCS, pages 174–185. Springer, 2011.

8. S. Kamei, A. Lamani, F. Ooshita, and S. Tixeuil. Asyn-
chronous mobile robot gathering from symmetric con-
figurations without global multiplicity detection. In
Proc. of 18th Int. Coll. on Structural Information and
Communication Complexity (SIROCCO’11), volume
6796 of LNCS, pages 150–161. Springer, 2011.

9. A. Lamani, S. Kamei, F. Ooshita, and S. Tixeuil. Gath-
ering an even number of robots in an odd ring with-
out global multiplicity detection. In Proc. of Int. Conf.
on Mathematical Foundations of Computer Science
(MFCS’12), volume 7464 of LNCS, pages 542–553.
Springer, 2012.

10. P. Flocchini, G. Prencipe, N. Santoro, and P. Wid-
mayer. Gathering of asynchronous robots with lim-
ited visibility. Theoretical Computer Science, 337(1-
3):147–168, 2005.

11. E. Clarke, O. Grumberg, and D. Peled. Model Check-
ing. MIT Press, 2001.

12. C. Baier and J. P. Katoen. Principles of model check-
ing. MIT press, 2008.

13. L. Lamport and S. Merz. Specifying and verify-
ing fault-tolerant systems. In Proc. of Third Int.
Symp. on Formal Techniques in Real-Time and Fault-
Tolerant Systems (FTRTFT’94), organized jointly with
the Working Group Provably Correct Systems - Pro-
CoS, volume 863 of LNCS, pages 41–76. Springer,
1994.

14. S. S. Kulkarni, B. Bonakdarpour, and A. Ebnenasir.
Mechanical verification of automatic synthesis of
fault-tolerant programs. In Proc. of 14th Int. Symp.
on Logic Based Program Synthesis and Transforma-
tion (LOPSTR’ 04), volume 3573 of LNCS, pages 36–
52. Springer, 2004.

15. R. Guerraoui, T. A. Henzinger, and V. Singh. Model
checking transactional memories. Distributed Comput-
ing, 22(3):129–145, 2010.

16. I. Chatzigiannakis, O. Michail, and P. G. Spirakis. Al-
gorithmic verification of population protocols. In Proc.
of 12th Int. Symp. on Stabilization, Safety, and Secu-
rity of Distributed Systems (SSS’10), volume 6366 of
LNCS, pages 221–235. Springer, 2010.



Formal Verification of Mobile Robot Protocols 31

17. J. Clément, C. Delporte-Gallet, H. Fauconnier, and
M. Sighireanu. Guidelines for the verification of pop-
ulation protocols. In Proc of 31st Int. Conf. on Dis-
tributed Computing Systems (ICDCS’11), pages 215–
224. IEEE, 2011.

18. B. Charron-Bost, H. Debrat, and S. Merz. Formal veri-
fication of consensus algorithms tolerating malicious
faults. In Proc. of 13th Int. Symp. on Stabilization,
Safety, and Security of Distributed Systems (SSS’11),
volume 6976 of LNCS, pages 120–134. Springer, 2011.

19. T. Lu, S. Merz, and C. Weidenbach. Towards verifi-
cation of the pastry protocol using TLA+. In Proc
of Joint 13t Int. Conf. (FMOODS’11) 2011, and 31st
Int. Conf. (FORTE’11) on Formal Techniques for Dis-
tributed Systems, volume 6722 of LNCS, pages 244–
258. Springer, 2011.

20. T. Tsuchiya and A. Schiper. Verification of consen-
sus algorithms using satisfiability solving. Distributed
Computing, 23:341–358, 2011.

21. K. R. Apt and D. Kozen. Limits for automatic verifi-
cation of finite-state concurrent systems. Information
Processing Letters, 22(6):307–309, 1986.

22. J. Esparza, A. Finkel, and R. Mayr. On the verification
of broadcast protocols. In 14th Annual Symp. on Logic
in Computer Science, pages 352–359. IEEE, 1999.

23. Ichiro Suzuki. Proving properties of a ring of finite-
state machines. Inf. Process. Lett., 28(4):213–214, July
1988.

24. B. Aminof, T. Kotek, S. Rubin, F. Spegni, and H. Veith.
Parameterized model checking of rendezvous systems.
In Paolo Baldan and Daniele Gorla, editors, CONCUR
2014 Concurrency Theory, volume 8704 of Lecture
Notes in Computer Science, pages 109–124. Springer
Berlin Heidelberg, 2014.

25. E. Allen Emerson and Kedar S. Namjoshi. Reason-
ing about rings. In Proceedings of the 22Nd ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’95, pages 85–94, New
York, NY, USA, 1995. ACM.

26. Z. Manna and A. Pnueli. Temporal verification dia-
grams. In Proc.of Int. Conf. on Theoretical Aspects of
Computer Software (TACS’94), volume 789 of LNCS,
pages 726–765. Springer, 1994.

27. E. M. Clarke, O. Grumberg, and S. Jha. Veryfying
parameterized networks using abstraction and regular
languages. In Proc. of 6th Int. Conf. on Concurrency
Theory (CONCUR’95), volume 962 of LNCS, pages
395–407. Springer, 1995.

28. N. Bjørner, A. Browne, E. Y. Chang, M. Colón, A. Ka-
pur, Z. Manna, H. Sipma, and T. E. Uribe. Step:
Deductive-algorithmic verification of reactive and real-
time systems. In Proc. of 8th Int. Conf. on Computer
Aided Verification (CAV’96), volume 1102 of LNCS,
pages 415–418. Springer, 1996.

29. L. de Alfaro, Z. Manna, H. B. Sipma, and T. E. Uribe.
Visual verification of reactive systems. In Proc. of
3d Int. Workshop on Tools and Algorithms for Con-
struction and Analysis of Systems (TACAS’97), volume
1217 of LNCS, pages 334–350. Springer, 1997.
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