R. Hajjeh, A. Sofair, L. Harrison, G. Lyon, and B. Arthington-skaggs, Incidence of Bloodstream Infections Due to Candida Species and In Vitro Susceptibilities of Isolates Collected from 1998 to 2000 in a Population-Based Active Surveillance Program, Journal of Clinical Microbiology, vol.42, issue.4, pp.1519-1527, 2004.
DOI : 10.1128/JCM.42.4.1519-1527.2004

L. Ostrosky-zeichner, J. Rex, P. Pappas, R. Hamill, and R. Larsen, Antifungal Susceptibility Survey of 2,000 Bloodstream Candida Isolates in the United States, Antimicrobial Agents and Chemotherapy, vol.47, issue.10, pp.3149-3154, 2003.
DOI : 10.1128/AAC.47.10.3149-3154.2003

F. Odds, A. Brown, and N. Gow, Antifungal agents: mechanisms of action, Trends in Microbiology, vol.11, issue.6, pp.272-279, 2003.
DOI : 10.1016/S0966-842X(03)00117-3

A. Warrilow, C. Martel, J. Parker, N. Melo, and D. Lamb, Azole Binding Properties of Candida albicans Sterol 14-?? Demethylase (CaCYP51), Antimicrobial Agents and Chemotherapy, vol.54, issue.10, pp.4235-4280, 2010.
DOI : 10.1128/AAC.00587-10

A. Sucher, E. Chahine, and H. Balcer, Echinocandins: The Newest Class of Antifungals, Annals of Pharmacotherapy, vol.53, issue.10, pp.1647-57, 2009.
DOI : 10.1345/aph.1M237

D. Ellis, Amphotericin B: spectrum and resistance, Journal of Antimicrobial Chemotherapy, vol.49, issue.suppl 1, pp.7-10, 2002.
DOI : 10.1093/jac/49.suppl_1.7

M. Ghannoum and L. B. , Rice3 Antifungal Agents: Mode of Action, Mechanisms of Resistance, and Correlation of These Mechanisms with Bacterial Resistance, Clin Microbiol Rev, vol.12, pp.501-517, 1999.

T. White, K. Marr, and R. Bowden, Clinical, Cellular, and Molecular Factors That Contribute to Antifungal Drug Resistance, Clin Microbiol Rev, vol.11, pp.382-402, 1998.

H. Zhang, A. Gao, F. Li, G. Zhang, and H. Ho, Mechanism of Action of Tetrandrine, a Natural Inhibitor of Candida albicans Drug Efflux Pumps, YAKUGAKU ZASSHI, vol.129, issue.5, pp.623-630, 2009.
DOI : 10.1248/yakushi.129.623

C. Martins, D. Da-silva, A. Neres, T. Magalhaes, and G. Watanabe, Curcumin as a promising antifungal of clinical interest, Journal of Antimicrobial Chemotherapy, vol.63, issue.2, pp.337-339, 2009.
DOI : 10.1093/jac/dkn488

M. Sharma, R. Manoharlal, S. Shukla, N. Puri, and T. Prasad, Curcumin Modulates Efflux Mediated by Yeast ABC Multidrug Transporters and Is Synergistic with Antifungals, Antimicrobial Agents and Chemotherapy, vol.53, issue.8, pp.3256-3265, 2009.
DOI : 10.1128/AAC.01497-08

A. Gomes-de-elvas, A. Palmeira-de-oliveira, C. Gaspar, P. Gouveia, and R. Palmeirade-oliveira, Activity, Gynecologic and Obstetric Investigation, vol.74, issue.2, pp.120-124, 2012.
DOI : 10.1159/000338899

S. Dhamgaye, F. Devaux, R. Manoharlal, P. Vandeputte, and A. Shah, In Vitro Effect of Malachite Green on Candida albicans Involves Multiple Pathways and Transcriptional Regulators UPC2 and STP2, Vitro Effect of Malachite Green on Candida albicans Involves Multiple Pathways and Transcriptional Regulators UPC2 and STP2, pp.495-506, 2012.
DOI : 10.1128/AAC.00574-11

URL : https://hal.archives-ouvertes.fr/hal-01389304

W. Tan, Y. Li, M. Chen, and Y. Wang, Berberine hydrochloride: anticancer activity and nanoparticulate delivery system, International Journal of Nanomedicine, vol.6, pp.1773-1780, 2011.
DOI : 10.2147/IJN.S22683

T. Birdsall and G. Kelly, Berberine: Therapeutic potential of an alkaloid found in several medicinal plants, Altern Med Rev, vol.2, pp.94-103, 1997.

R. Iwazaki, E. Endo, T. Ueda-nakamura, C. Nakamura, and L. Garcia, In vitro antifungal activity of the berberine and its synergism with fluconazole, vitro antifungal activity of the berberine and its synergism with fluconazole, pp.201-205, 2010.
DOI : 10.1007/s10482-009-9394-8

S. Nicholls, M. Leach, C. Priest, and A. Brown, Role of the heat shock transcription factor, Hsf1, in a major fungal pathogen that is obligately associated with warm-blooded animals, Molecular Microbiology, vol.5, issue.4, pp.844-861, 2009.
DOI : 10.1111/j.1365-2958.2009.06883.x

K. Mukhopadhyay, A. Kohli, and R. Prasad, Drug Susceptibilities of Yeast Cells Are Affected by Membrane Lipid Composition, Antimicrobial Agents and Chemotherapy, vol.46, issue.12, pp.3695-3705, 2002.
DOI : 10.1128/AAC.46.12.3695-3705.2002

C. Bauer, V. Herzog, and M. Bauer, Improved technique for electron microscope visualization of yeast membrane structure, Microsc Microanal, vol.7, pp.530-534, 2001.

D. Li, Y. Xu, D. Zhang, H. Quan, and E. Mylonakis, Fluconazole Assists Berberine To Kill Fluconazole-Resistant Candida albicans, Antimicrobial Agents and Chemotherapy, vol.57, issue.12, pp.6016-6043, 2013.
DOI : 10.1128/AAC.00499-13

R. Menezes, C. Amaral, L. Batista-nascimento, C. Santos, and R. Ferreira, adaptation to arsenic-mediated oxidative stress, Biochemical Journal, vol.414, issue.2, pp.301-311, 2008.
DOI : 10.1042/BJ20071537

URL : https://hal.archives-ouvertes.fr/hal-00478913

A. Bambach, M. Fernandes, . Ghosh, M. Kruppa, and A. D. , Goa1p of Candida albicans Localizes to the Mitochondria during Stress and Is Required for Mitochondrial Function and Virulence, Eukaryotic Cell, vol.8, issue.11, pp.1706-1720, 2009.
DOI : 10.1128/EC.00066-09

S. Jantová, L. Cipák, and M. Cernáková, Effect of berberine on proliferation, cell cycle and apoptosis in HeLa and L1210 cells, Journal of Pharmacy and Pharmacology, vol.103, issue.8, pp.1143-1152, 2003.
DOI : 10.1211/002235703322277186

J. Morschhä-user, Regulation of multidrug resistance in pathogenic fungi, Fungal Genetics and Biology, vol.47, issue.2, pp.94-106, 2010.
DOI : 10.1016/j.fgb.2009.08.002

R. Franz, L. Kelly, D. Lamb, D. Kelly, and M. Ruhnke, Multiple molecular mechanisms contribute to a stepwise development of fluconazole resistance in clinical Candida albicans strains, Antimicrob Agents Chemother, vol.42, pp.3065-3072, 1998.

R. Franz, M. Ruhnke, and J. Morschhauser, Molecular aspects of fluconazole resistance development in Candida albicans, Mycoses, vol.42, issue.7-8, pp.453-458, 1999.
DOI : 10.1016/S0014-5793(96)01360-9

D. Davis, V. Bruno, L. Loza, S. Filler, and A. Mitchell, Candida albicans Mds3p, a conserved regulator of pH responses and virulence identified through insertional mutagenesis, Genetics, vol.162, pp.1573-81, 2002.

V. Letscher-bru and R. Herbrecht, Caspofungin: the first representative of a new antifungal class, Journal of Antimicrobial Chemotherapy, vol.51, issue.3, pp.513-534, 2003.
DOI : 10.1093/jac/dkg117

A. Coste, M. Karababa, F. Ischer, J. Bille, and D. Sanglard, TAC1, Transcriptional Activator of CDR Genes, Is a New Transcription Factor Involved in the Regulation of Candida albicans ABC Transporters CDR1 and CDR2, Eukaryotic Cell, vol.3, issue.6, pp.1639-52, 2004.
DOI : 10.1128/EC.3.6.1639-1652.2004

S. Znaidi, S. Weber, O. Al-abdin, P. Bomme, and S. Saidane, Genomewide Location Analysis of Candida albicans Upc2p, a Regulator of Sterol Metabolism and Azole Drug Resistance, Eukaryotic Cell, vol.7, issue.5, pp.836-883, 2008.
DOI : 10.1128/EC.00070-08

A. Kumar, S. Dhamgaye, I. Maurya, A. Singh, and M. Sharma, Curcumin Targets Cell Wall Integrity via Calcineurin-Mediated Signaling in Candida albicans, Antimicrobial Agents and Chemotherapy, vol.58, issue.1, pp.167-75, 2014.
DOI : 10.1128/AAC.01385-13

M. Cruz, A. Goldstein, J. Blankenship, D. Poeta, M. Davis et al., Calcineurin is essential for survival during membrane stress in Candida albicans, The EMBO Journal, vol.21, issue.4, pp.546-59, 2002.
DOI : 10.1093/emboj/21.4.546

O. Blokhina, E. Virolainen, and K. Fagerstedt, Antioxidants, Oxidative Damage and Oxygen Deprivation Stress: a Review, Annals of Botany, vol.91, issue.2, pp.179-194, 2003.
DOI : 10.1093/aob/mcf118

S. Meeran, S. Katiyar, and S. Katiyar, Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation, Toxicology and Applied Pharmacology, vol.229, issue.1, pp.33-43, 2008.
DOI : 10.1016/j.taap.2007.12.027

C. Lin, J. Yang, J. Chen, S. Fan, and F. Yu, Berberine induces apoptosis in human HSC-3 oral cancer cells via simultaneous activation of the death receptor-mediated and mitochondrial pathway, Anticancer Res, vol.27, pp.3371-3379, 2007.

G. Pereira, A. Branco, J. Matos, and S. Pereira, Mitochondrially Targeted Effects of Berberine [Natural Yellow 18, 5,6-dihydro-9,10-dimethoxybenzo(g)-1,3-benzodioxolo(5,6-a) quinolizinium] on K1735-M2 Mouse Melanoma Cells: Comparison with Direct Effects on Isolated Mitochondrial Fractions, Journal of Pharmacology and Experimental Therapeutics, vol.323, issue.2, pp.636-685, 2007.
DOI : 10.1124/jpet.107.128017

N. Chauhan and R. Calderone, Two-Component Signal Transduction Proteins as Potential Drug Targets in Medically Important Fungi, Infection and Immunity, vol.76, issue.11, pp.4795-4803, 2008.
DOI : 10.1128/IAI.00834-08

S. Hameed, S. Dhamgaye, A. Singh, S. Goswami, and R. Prasad, Calcineurin Signaling and Membrane Lipid Homeostasis Regulates Iron Mediated MultiDrug Resistance Mechanisms in Candida albicans, PLoS ONE, vol.7, issue.1, p.18684, 2011.
DOI : 10.1371/journal.pone.0018684.s013

S. Ferrari, M. Sanguinetti, D. Bernardis, F. Torelli, R. Posteraro et al., Loss of Mitochondrial Functions Associated with Azole Resistance in Candida glabrata Results in Enhanced Virulence in Mice, Antimicrobial Agents and Chemotherapy, vol.55, issue.5, pp.1852-60, 2011.
DOI : 10.1128/AAC.01271-10

URL : https://hal.archives-ouvertes.fr/hal-01389297

N. Sun, W. Fonzi, H. Chen, X. She, and L. Zhang, Azole Susceptibility and Transcriptome Profiling in Candida albicans Mitochondrial Electron Transport Chain Complex I Mutants, Antimicrobial Agents and Chemotherapy, vol.57, issue.1, pp.532-574, 2013.
DOI : 10.1128/AAC.01520-12

A. Singh, V. Yadav, and R. Prasad, Comparative Lipidomics in Clinical Isolates of Candida albicans Reveal Crosstalk between Mitochondria, Cell Wall Integrity and Azole Resistance, PLoS ONE, vol.48, issue.4, p.39812, 2012.
DOI : 10.1371/journal.pone.0039812.s012

R. Prasad and A. Singh, Lipids of Candida albicans and their role in multidrug resistance, Current Genetics, vol.282, issue.6, pp.243-250, 2013.
DOI : 10.1007/s00294-013-0402-1

S. Dhamgaye, M. Bernard, G. Lelandais, O. Sismeiro, and S. Lemoine, RNA sequencing revealed novel actors of the acquisition of drug resistance in Candida albicans, BMC Genomics, vol.13, issue.1, p.396, 2012.
DOI : 10.1093/bioinformatics/btp616

URL : https://hal.archives-ouvertes.fr/inserm-00733893