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Abstract. Performing probabilistic inference in multi-target dynamic
systems is a challenging task. When the system, its evidence and/or its
targets evolve, most of the inference algorithms either recompute every-
thing from scratch, even though incremental changes do not invalidate
all the previous computations, or do not fully exploit incrementality to
minimize computations. This incurs strong unnecessary overheads when
the system under study is large. To alleviate this problem, we propose
in this paper a new junction tree-based message-passing inference algo-
rithm that, given a new query, minimizes computations by identifying
precisely the set of messages that differ from the preceding computations.
Experimental results highlight the efficiency of our approach.

Keywords: Bayesian networks, incremental inference, junction tree.

1 Introduction

Bayesian networks (BN) [17, 10] are one of the most popular framework for rea-
soning with uncertainty in expert systems. They are used in a wide range of
real-world applications, including medical diagnosis, risk management and clin-
ical decision support. A BN is a compact graphical representation of a joint
probability distribution. It can be considered as a probabilistic knowledge base,
in which the process of querying/requesting is called inference. Different queries
exist, including the computation of most probable explanations or that of the
posterior marginal distributions of some random variables (hereafter called tar-
gets). In this paper, we focus on the latter. It is known to be NP-hard in general
[2, 3] but many exact and approximate inference algorithms have been proposed
in the literature [12, 15, 20]. Extensions to handle very large systems [11, 18, 21]
and temporal features have also been proposed [6, 16, 19]. Their increased com-
plexity requires even more efficient inference algorithms.

Rule-based systems, which originated our research, are nowadays a very pop-
ular tool for automating decision making. To quantify uncertainties in the do-
main, they most often use heuristic models, e.g., certainty factors [1], which
have theoretical and practical limitations [8] that could be overcome by exploit-
ing probabilities. In this context, BNs could prove to be useful. In addition,
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their efficient inference engines, notably cluster-based and junction tree-based
algorithms [9, 20, 15], seem to be good candidates to speed-up the rules infer-
ence process. But, by essence, rule-based systems are incremental multi-target
environments, so BN inference shall also be performed incrementally. Some al-
gorithms exploit partially this feature (see [15]) but they are far from optimal
when the set of targets is smaller than the set of all the random variables or when
it changes. The problem is even worse when the structure of the junction tree
(JT) evolves over time. This can become an issue in rule-based systems in which
changes in the BN structure, the evidence and the targets, occur frequently.

In [4], 4 incrementality criteria relevant to probabilistic inference were intro-
duced: incrementality w.r.t resources, queries, evidence and representation. In
this paper, we are interested in all these criteria, especially in the last three.
Surprisingly, very few inference algorithms address all these aspects. In [5], for
instance, the query point of view is taken into account by reconfiguring dynam-
ically some join trees when queries change but the BN structure is assumed to
remain static, which may not necessarily be the case in rule-based systems. In
[14], the authors exploit relevance-based reasoning to identify the parts of the
network that are relevant for computations and, then, update several subnet-
works whose union covers the original one. Unfortunately, this algorithm does
not take into account computations performed previously. In [15], an incremen-
tal JT-based inference algorithm has been proposed that exploits independences
induced by incremental evidence updates. But the JT structure never evolves
and it is assumed that all the nodes are targets, which is not optimal in our con-
text. On the opposite, the incremental JT structure is addressed in [7] but not
the queries incrementality nor the exploitation of previous probabilistic compu-
tations. Along similar lines, Li et al. argue that compiling the original BN into
a conjunctive normal form coupled with caching techniques improves inference
when the network structure is updated [13]. But this does not take optimally
into account evidence and queries. In this paper, we investigate a new approach
to overcome the above shortcomings. This approach aims at improving the ef-
ficiency of inference for very large and dynamic systems. The key idea of our
algorithm, called Incremental Junction Tree Inference (IJTI ), consists of re-
stricting the computations only to parts of the JT that are relevant to targets
and that have been invalidated by incremental changes. As a consequence, IJTI
minimizes the probabilistic computations.

The paper is organized as follows. In the next section, we introduce the
necessary background. In Section 3, we present our approach and justify its
correctness. Then we highlight the efficiency of our contribution with a set of
experiments. Finally, some conclusion and future works are provided in Section 5.
All the proofs are given in an appendix.

2 Preliminaries and Notations

A BN is a pair (G, Θ), where G = (V,A) is a directed acyclic graph (DAG).
V is a set of nodes representing random variables. A is a set of arcs and Θ =
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Fig. 1: A JT construction

{P (X|Pa(X)) : X ∈ V} is the set of the conditional probability tables (CPT) of
the variables in V given their parents in G. The BN encodes the joint probabil-
ity over V as the product of these CPTs. In this paper, probabilistic inference
is based on a message-passing algorithm within a JT. Constructing the latter
consists of, first, converting DAG G into an undirected graph by adding, for
each node in V, edges between all of its parents (moralization) and removing
the orientations of the remaining arcs, and, then, by adding an edge between a
pair of non-adjacent nodes in every cycle of at least four nodes (triangulation).
The nodes of the JT correspond to complete maximal subgraphs (cliques) of the
resulting graph. These nodes are linked by edges in such a way that i) the JT
contains no loop; and ii) any pair of cliques with a nonempty intersection are
linked by a path on which all cliques contain this intersection. Fig. 1a shows an
example of a DAG, its moralized and triangulated graph are given in Fig. 1b,
where dashed and dotted edges represent those added during moralization and
triangulation respectively. Finally Fig. 1c depicts a corresponding JT. Note that
a JT can be a forest, e.g., when DAG G is not connected. In our approach,
dealing with a forest is equivalent to iterate the same process on its connected
components. Hence, without loss of generality, we will consider in the sequel that
the JT on which we will perform inference is a tree T . Hereafter, for any JT T ,
we will denote by V(T ) and E(T ) its set of cliques and edges respectively.

The message-passing algorithm consists of performing a collect and a distri-
bution from a predetermined root r ∈ V(T ). During the collect, messages are
sent along edges from leaves toward r and, during the distribution, they are
sent in the opposite direction. To guarantee the correctness of computations, for
any edge (i, j) ∈ E(T ), the message sent from i to j, denoted by ψi→j , is com-
puted only when clique i has received messages from all its neighbors except j.
Fig. 1d shows an example of message-passing with r = ABD (thick clique) and
dotted and dashed arcs representing the collect and distribution messages re-
spectively. The computation of these messages is beyond the scope of this paper
but can be found in [15]. In an incremental environment, not all the messages
need be recomputed each time a modification occurs because, in practice, many
will remain the same. As we shall see, using the following definitions, we can
characterize precisely those that need some update given new set of evidence,
structural changes or/and targets.
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Definition 1 (Path). let T = (V(T ), E(T )) be a JT. i1, . . . , in+1 is said to be
a path in T if (iα, iα+1) ∈ E(T ) for all α ∈ {1, . . . , n}. For simplicity, this path
is denoted by i1−in+1 and its length by len(i1−in+1) (which is equal to n).

Definition 2 (Adjacency). Let i, j ∈ V(T ), i 6= j. i and j are adjacent in
T iff (i, j) ∈ E(T ). The set of cliques adjacent to i is denoted by Adj(i), i.e.,
Adj(i) :=

{
k ∈ V(T ) : (i, k) ∈ E(T )

}
. Let r ∈ V(T ), r 6= i, then Adjr(i) denotes

the singleton set containing the clique adjacent to i that is on the path between
i and r, i.e., Adjr(i) :=

{
k ∈ Adj(i) : k ∈ i−r

}
. We also define Adjr(r) := ∅.

Finally, let Adj-j(i) := Adj(i) \ {j}.

For instance, in Fig. 2a, Adjr(i) = {k3} and Adjr(k3) = {r}. Finally, let
V-j (i) stands for the set of nodes of the maximal subtree in T that contains i
and not Adjj(i), and let Vj(i) = V-j (i) ∪ {j} (see the shadowed area in Fig.2a).

A message ψi→j sent within T is directed by nature. It propagates toward j
(and, by induction, toward V-i(j )) all the relevant information coming from the
cliques in V-j (i), notably all the evidence they received (by abuse, we say that
a clique received evidence when at least one of its random variables received
evidence). As a consequence, if ψi→j has already been computed previously and
no new evidence has been received nor structural changes occured in V-j (i), there
is no need to recompute it. But even if V-j (i) received evidence, ψi→j needs not be
computed/updated if V-i(j ) contains no target. In this case, ψi→j ’s state becomes
“invalid” since the content of ψi→j is now incorrect. This is not an issue for the
current inference but, for future ones, we have to take this state into account to
recompute ψi→j if it is to be used. Let A(T ) be the set of all arcs induced from
E(T ), taking into account orientations, i.e., A(T ) :=

⋃
(i,j)∈E(T ){(i, j)}∪{(j, i)

}
.

To formalize the above conditions, we begin with characterizing the information
that is ”local” to i and j by:

Definition 3 (Local label-message λ). λ : A(T ) 7→ 2{ε,T} is a function s.t.

(i, j) 7−→ λi→j :=


{ε} if ψi→j is in “invalid state” or “new evidence or

structural changes” have affected i (1)
{T} if i contains targets (2)
{T, ε} if (1) and (2)
∅ otherwise

To simplify the notation, hereafter, we will remove braces and denote {T, ε}
by Tε. Then, the idea of our algorithm consists of marking every arc (i, j) in
A(T ) by labels µi→j expressing all the ”local” information that V-j (i) contains.

Definition 4 (Label-message µ). For (i, j) ∈ A(T ), the label-message sent
from i to j is a function µ : A(T ) 7→ 2{ε,T} such that µi→j :=

⋃
k′∈V-j (i)

{k}=Adjj(k
′)

λk′→k.

As an example of the previous discussion, imagine that a first incremental
update impacts the initial DAG and consequently the initial T of Fig. 2a. This
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Fig. 2: Message passing within a JT T .

consists of the removal of k4, the insertion of an evidence on r and a new target on
k1. Fig. 2b depicts the µ-messaging within T after this update, where dashed and
dotted ellipses stand for the cliques containing targets and evidence respectively.
One can easily see that, for instance, µi→j = ε, µj→i = T and µj→k2 = Tε. The
following proposition allows to recursively construct the µ-messages:

Proposition 1 (µ construction). Let (i, j) ∈ A(T ), then we have : µi→j =
λi→j ∪

⋃
k∈Adj-j(i)

µk→i.

3 Inference optimization: IJTI

Let us recall that ψi→j denotes the message exchanged between cliques i and j
during an inference computation. It shall not be confused with the label message
µi→j of Definition 4.

3.1 Optimal roots

Usually, the number of computations performed by a JT-based message-passing
algorithm does not depend on the root clique selected for collect/distribution
because the ψi→j messages are sent on both directions on all the edges of the
JT. For IJTI, this is not the case, since this algorithm computes and sends only
the ψi→j messages necessary for the computation of the posterior distributions
of its target nodes. On some edges, IJTI will therefore not compute some ψi→j
messages because they are irrelevant w.r.t. the targets posterior distributions. As
a consequence, in IJTI, the number of computations performed is sensitive to the
selection of the root: for instance, in the JT of Fig. 2a, if clique i received evidence
and the only target is j, only message ψi→j from i to j is necessary, which is
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precisely what is sent if clique i is selected as root (here, only a distribution
is necessary). But if clique k4 is selected instead, message ψi→k4 needs to be
sent during the collect and messages ψk4→i and ψi→j need to be sent during the
distribution, which is clearly not optimal. To determine the optimal roots, let us
define δi→j(r) as an indicator of whether message ψi→j is recomputed (in this
case, δi→j(r) = 1) or not (δi→j(r) = 0) when r is selected as a root. In IJTI, we
therefore seek to minimize δ(r) =

∑
(k′,k)∈A(T ) δk′→k(r), which corresponds to

the total number of messages recomputed and sent. Based on the discussion of
the preceding section, we can write:

δi→j(r) =

 1 if (ε ∈ µi→j and {j} = Adjr(i)) or
(ε ∈ µi→j and {i} = Adjr(j) and T ∈ µj→i)

0 otherwise
(1)

The first line of Eq. (1) concerns collect messages ({j} = Adjr(i)). It asserts
that collect message ψi→j needs to be recomputed only if it is currently in an
invalid state or if new evidence or structural changes have occurred in V-j (i)
(ε ∈ µi→j). When this is not the case, clearly, this message is up to date and
does not need recomputation. The second line of Eq. (1) concerns distribution
messages ({i} = Adjr(j)). It asserts that ψi→j needs to be recomputed only if
there exists a target farther toward the leaves of the JT (T ∈ µj→i) and if some
evidence has been received on V-j (i) or some message coming from V-j (i) has
been updated (ε ∈ µi→j). Eq. (1) can be rewritten more compactly as:

δi→j(r) =

 1 if ε ∈ µi→j and
({j} = Adjr(i) or ({i} = Adjr(j) and T ∈ µj→i))

0 otherwise
(2)

Fig. 2c and Fig. 2d illustrate that δ(k3) = 5 and δ(i) = 4 respectively. In this case,
it is better to select i as a root rather than k3 since this avoids the unnecessary
computation of one message. The following theorem states the existence of some
optimal roots and characterize them:

Theorem 1 (Optimal roots). Suppose we computed the µ-messages within
T . Then there exists r ∈ V(T ) fulfilling one of the following mutually exclusive
and exhaustive properties:

a) (V(T ), E(T )) = ({r}, ∅)
b) ∃r′ ∈ V(T ) : µr′→r = µr→r′ = Tε
c) ∀k ∈ Adj(r) : µk→r ∈ {T, ε, ∅}

In addition, r ∈ Argmink∈V(T )δ(k), i.e., r is an optimal root w.r.t. inference
computations.

3.2 A new incremental inference

In this section, we propose a new algorithm designed to deal with incremental
inference. We assume that a first inference has been performed by message-
passing within T , using for instance a collect-distribute algorithm in a Lazy
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Algorithm 1: IJTI

input : modified T , Q targets cliques
output : posteriors on targets
// set the number of neighbors

visited during the collect

1 for i ∈ V(T ) do
2 i.nbV N ← 0

3 Compute the µ-labels in T
4 Find r using Theorem 1
5 L← the set of leaves of T

// collect phase

6 foreach clique i ∈ L do
7 p← Adjr(i)
8 if δi→p(r) = 1 then
9 Compute ψi→p

10 p.nbV N ← p.nbV N + 1
11 if p 6= r and p.nbV N = |Adj(p)| − 1

then L← L ∪ {p}
12 L← L \ {i}

// distribution phase

13 L← {r}
14 foreach clique i ∈ L do
15 foreach j ∈ Adj(i) \Adjr(i) do
16 if δi→j(r) = 1 then
17 Compute ψi→j

18 L← L ∪ {j}

19 foreach clique t ∈ Q do
20 Compute the posterior distributions

of the target nodes in clique t

21 return posterior distributions

Propagation-like architecture. Afterwards, incremental changes occur. Then IJTI
is called to optimize the inference process. We recall that we use a target-driven
approach, hence, we recompute only invalidated collect messages and we only
distribute messages up to the targets. Under these assumptions, the proposed
algorithm is described in Algo. 1. It runs a revised message-passing algorithm to
compute ψi→j only when δi→j(r) = 1 for all i, j in the modified junction tree T .
In line 5, a leaf clique i is such that |Adj(i)| = 1. We emphasize that computing
messages is performed similarly to a classic JT-based inference algorithm. The
correctness of IJTI is guaranteed by the following proposition:

Proposition 2. The IJTI algorithm is sound, i.e., computing only messages
ψi→j such that δi→j(r) = 1, for all (i, j) ∈ A(T ), results in the correct compu-
tation of the posterior distributions of the target variables.

4 Experiments

In this section, we highlight the effectiveness of our algorithm by comparing the
gain of using it instead of any non-incremental JT-based inference algorithm.
This gain is equal to 1−δ(r)/(2|E(T )|), i.e., this is the percentage of unnecessary
messages that IJTI avoids to compute compared to the messages sent by classical
inference algorithms on both directions on all the edges.

For this purpose, we performed tests using the aGrUM library1 on 9 real-
world BNs of different complexities as well as on randomly generated BNs. The

1 http://agrum.lip6.fr
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Fig. 3: IJTI gain for real BNs
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latter contained nbNodes Boolean random variables, (6 ≤ nbNodes ≤ 900, see
Fig. 4) and, for each value of nbNodes, 3 BNs were generated with nbArcs arcs,
nbArcs being chosen randomly in the interval [nbNodes− 1, 4/3 ∗nbNodes− 1].

We simulated the incrementality by randomly choosing for each inference a
set of targets and modified cliques. This induced invalid messages in T . Fig. 3 and
Fig. 4 show the average resulting gains and their standard deviations (error bars)
over 20 incremental inference queries. Note that the behavior of the algorithm
is the same for real-world BNs and for randomly generated ones. As could be
expected, the smaller the modifications, the bigger the gain. Note also that the
gain is not too sensitive to the size of the BN.

5 Discussion and future work

In this paper, we introduced IJTI, a new incremental junction-tree-based infer-
ence algorithm for multi-target dynamic systems. Assuming that a first complete
inference has been performed, it extracts an optimal root and optimizes the in-
ference accordingly. The correctness of these two optimizations is proved and
experiments highlight that our approach allows for important savings compared
to classical ones. For future works, we plan to improve our algorithm, notably by
taking into account caching for the determination of the roots. We also plan to
apply IJTI in Probabilistic Relational Models in order to speed-up their infer-
ence. Finally, we aim at coupling our approach with rule-based expert systems
to improve their probabilistic reasoning.

Acknowledgments: This work was partially supported by IBM France Lab/ANRT
CIFRE grant #2014/421.
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Fig. 4: IJTI gain for artificial BNs

0 10 20 30 40 50 60 70 80

% modification of BN

0

20

40

60

80

100

120

%
 g
a
in
 +
 s
td

6
12
18
30

0 10 20 30 40 50 60 70 80

% modification of BN

0

10

20

30

40

50

60

70

80

90

%
 g
a
in
 +
 s
td

45
55
65
80
95

0 10 20 30 40 50 60 70 80

% modification of BN

0

10

20

30

40

50

60

70

80

90
%
 g
a
in
 +
 s
td

120
300
600
900

Appendix: Proofs

Proof of Proposition 1: Note that V-j (i) = {i} ∪
⋃
k∈Adj-j(i)

V-i(k) and, for

k ∈ Adj-j(i), l
′ ∈ V-i(k), we have Adjj(l

′) = Adji(l
′). Using Definition 4, one can

thus rewrite µi→j into:

µi→j =
⋃

l′∈V-j (i)
{l}=Adjj(l

′)

λl′→l = λi→j ∪
⋃

k∈Adj-j(i)

µk→i︷ ︸︸ ︷⋃
l′∈V-i (k)

{l}=Adjj(l
′)

λl′→l = λi→j ∪
⋃

k∈Adj-j(i)

µk→i

�

Proof of Theorem 1 – mutual exclusivity: if property a) is satisfied, then
T contains no edge, therefore properties b) and c) cannot be satisfied.

Now, assume that there exist r1, r
′
1 such that µr′1→r1 = µr1→r′1 = Tε (prop-

erty b). Let r2 be any clique in V(T ). Without loss of generality, assume that
r1 lies on the path i1 = r2, i2, . . . , ip = r′1 between r2 and r′1. Then, by Propo-
sition 1, µi2→r2 ⊇ µi3→i2 ⊇ · · · ⊇ µr′1→r1 = Tε. Therefore, properties b) and c)
cannot hold simultaneously. �

Proof of Theorem 1 – r’s existence: if A(T ) = ∅, then property a) holds
and r is the unique node of T . Now, assume that A(T ) 6= ∅. If there exists an
edge (i, j) ∈ E(T ) such that µi→j = µj→i = Tε, then r = i satifies property b).
Otherwise, neither properties a) nor b) hold. Assume that property c) neither
holds. Then, for all edges (i, j), exactly one of µi→j or µj→i is equal to Tε and the
other one belongs to {∅, ε, T}. Let (i0, j0) be such that µi0→j0 = Tε and µj0→i0 6=
Tε. Then, if |Adj(i0)| = 1, clique i0 satisfies property c), a contradiction. As
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we assume that property b) neither holds, there exists i1 ∈ Adj(i0) such that
µi1→i0 = Tε and µi0→i1 6= Tε. The same reasoning holds for i1, hence either
i1 is a leaf, which contradicts property c) or i1 has another neighbor i2 such
that µi2→i1 = Tε and µi1→i2 6= Tε. By induction, we create a path i1, . . . , in of
maximal size. This path is necessarily finite since T is a finite tree, hence clique
in is a leaf which, therefore, satisfies property c), a contradiction. Consequently,
when properties a) and b) do not hold, property c) holds. �

One can now prove separately the optimality for each property of Theorem 1,
since these properties are mutually exclusive:

Proof of Theorem 1 – property a’s optimality: r is the only node in T .
Choosing it as a root is therefore optimal. �

Lemma 1. Let i, j ∈ V(T ) be such that ε ∈ µj→i and µi→j = ∅, then ∀l ∈
V-j (i) : δ(l) = δ(j) + len(l−j).

Proof. Note that when ε /∈ µj→i, T is up-to-date in the current inference and
there is no need to perform any computation. The proof is achieved by induction
on n = len(l− j). For n = 1, we have l = i , so by Equation (2) and the
fact that ε ∈ µj→i and i ∈ Adji(j), we get δj→i(i) = 1. As a consequence,
δ(i) =

∑
(k′,k)∈A(T )\{(j,i)} δk′→k(i) + 1. Yet, as T /∈ µi→j we have δj→i(j) = 0;

so δ(j) =
∑

(k′,k)∈A(T ))\{(j,i)} δk′→k(j). Since ε /∈ µi→j , δi→j(i) = δi→j(j) = 0.

For (k′, k) 6= (i, j), (j, i), we have Adji(k) = Adjj(k) and Adji(k
′) = Adjj(k

′). In
this case, it follows that δk′→k(i) = δk′→k(j). We conclude that δ(i) = δ(j) + 1.

Now suppose this property is satisfied for n − 1 > 1, let us prove that it
remains true for n. Let l be such that len(l−j) = n − 1. Let {p} = Adji(l).
Then δ(l) = 1+

∑
(k′,k)∈A(T )\{(p,l)} δk′→k(l) because δp→l(l) = 1 (since ε ∈ µp→l

and {l} = Adjl(p)). Knowing that T /∈ µl→p, we get δp→l(p) = 0, it follows that
δ(p) =

∑
(k′,k)∈A(T )\{(p,l)} δk′→k(p). Now using the same reasoning as in the case

n = 1 and by remarking δl→p(p) = δl→p(l) = 0 because ε /∈ µl→p, we conclude
that δ(l) = 1+

∑
(k′,k)∈A(T )\{(p,l)} δk′→k(l) = 1+

∑
(k′,k)∈A(T )\{(p,l)} δk′→k(p) =

1 + δ(p). By applying the induction hypothesis on l, where len(l−j) = n− 1, we
obtain : δ(l) = 1 + δ(p) = 1 + n− 1 + δ(j) = δ(j) + n. �

Lemma 2. Let V1 = {r ∈ V(T ) : ∃k ∈ Adj(r), µr→k = µk→r = Tε}, then for
any r, r′ in V1 we have δ(r) = δ(r′).

Proof. Assume that |V1| > 1. By Proposition 1, the nodes in V1 form a con-
nected subgraph. Let r, r′ ∈ V1 be such that (r, r′) ∈ E(T ). Finally, let (k′, k) ∈
A(T ) \ {(r, r′), (r′, r)}. If k′ /∈ {r, r′}, then either k = r, k = r′ or k /∈ {r, r′} and
in all these cases we have: Adjr(k

′) = Adjr′(k
′), hence δk′→k(r) = δk′→k(r′). Oth-

erwise, let k′ = r′ then k 6= r and we have also 2 Adjr(k) = Adjr′(k) and again
δk′→k(r) = δk′→k(r′). As a consequence:

∑
(k′,k)∈A(T )\{(r,r′),(r′,r)} δk′→k(r) =∑

(k′,k)∈A(T )\{(r,r′),(r′,r)} δk′→k(r′). By Equation (2), we get:

2 if k′ = r then k 6= r′ and the equality also verified.
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δr→r′(r) + δr′→r(r) = δr→r′(r
′) + δr′→r(r

′) = 2. We conclude that
δ(r)−

∑
(k′,k)∈A(T )\{(r,r′),(r′,r)}δk′→k(r) = δ(r′)−

∑
(k′,k)∈A(T )\{(r,r′),(r′,r)}δk′→k(r′).

Hence δ(r) = δ(r′). �

Proof of Theorem 1 – property b’s optimality: Under the notations of
property b), it is sufficient to prove that for any i not in V1, δ(r) ≤ δ(i) 3.
Without loss of generality, assume that i ∈ V-r ′(r). Let (k, k′) ∈ A(i−r), where
A(i−r) is the set of arcs induced from i−r. We either have {k′} = Adjr(k) or
{k} = Adjr(k

′). Assume for instance that {k′} = Adjr(k) , k 6= r, the second
case should be treated similarly. Then µk′→k = Tε and by applying Equation 2,
we summarize the results on the following table:

µk→k′ δk→k′(i) + δk′→k(i) δk→k′(r) + δk′→k(r)
∅ 1 0
T 1 1
ε 2 1

we conclude that
∑

(k′,k)∈A(i−r) δk′→k(r) ≤
∑

(k′,k)∈A(i−r) δk′→k(i).(1)

Now for (k, k′) /∈ A(i−r) it is easy to see that δk→k′(i) = δk→k′(r) and hence :∑
(k,k′)∈A(T )\A(i−r) δk′→k(r)=

∑
(k,k′)∈A(T )\A(i−r) δk′→k(i). (2).

By comparing (1) and (2) we get that δ(r) ≤ δ(i) for i /∈ V1. So far, we obtain,
by Lemma 2, for any i in V1, δ(r) = δ(i) and for any i not in V1, δ(r) ≤ δ(i),
therefore we have r ∈ Argmini∈V(T ) δ(i). �

Proof of Theorem 1 – property c’s optimality: Let i in V(T ) s.t. i 6= r.
first case: µAdji(r)→r = ∅. Assume that T, ε ∈ V-i(r), because otherwise there is
no need to perform any computation, as either there is no query or no modifica-
tion in T ; so by Lemma 1 we have δ(i) = δ(r)+len(i−r) because i ∈ V-r (Adji(r)).
Hence δ(r) < δ(i).
second case: we omit the case µAdji(r)→r ∈ {T, ε}, but one should use the
same methodology as in property b)’s proof and the fact that for any k, k′ in
i−r s.t {k′} = Adjr(k) : µk→k′ = µi→Adjr(i) and examine δk′→k(r) and δk′→k(i).

�

Proof of Proposition 2 : Given a root r, δi→j(r) corresponds, by construc-
tion, to the fact that ψi→j is necessary during the current inference and was
invalidated in the previous one. As a consequence, the current inference needs
to recompute only such a message for any i, j in V(T ). �
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7. Flores, M.J., Gámez, J.A., Olesen, K.G.: Incremental compilation of Bayesian net-
works. In: Proceedings of the Nineteenth Conference on Uncertainty in Artificial
Intelligence. pp. 233–240. UAI’03, Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA (2003)

8. Heckerman, D.E., Shortliffe, E.H.: From certainty factors to belief networks. Artif.
Intell. Med. 4(1), 35–52 (Feb 1992)

9. Jensen, F., Lauritzen, S., Olesen, K.: Bayesian updating in causal probabilistic
networks by local computations. Computational Statistics Quarterly 4, 269–282
(1990)

10. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press (2009)

11. Koller, D., Pfeffer, A.: Probabilistic frame-based systems. In: Proceedings of the
15th National Conference on Artificial Intelligence (AAAI). pp. 580–587 (1998)

12. Lauritzen, S., Spiegelhalter, D.J.: Local computations with probabilities on graph-
ical structures and their applications to expert systems. Journal of the Royal Sta-
tistical Society 50(2), 157–224 (1988)

13. Li, W., van Beek, P., Poupart, P.: Performing incremental Bayesian inference by
dynamic model counting. In: AAAI. pp. 1173–1179. AAAI Press (2006)

14. Lin, Y., Druzdzel, M.J.: Relevance-based sequential evidence processing in
Bayesian networks. In: Proceedings of the Eleventh International Florida Artifi-
cial Intelligence Research Society Conference, May 18-20, 1998, Sanibel Island,
Florida, USA. pp. 446–450 (1998)

15. Madsen, A.L., Jensen, F.V.: Lazy propagation: A junction tree inference algorithm
based on lazy evaluation. Artificial Intelligence 113(12), 203 – 245 (1999)

16. Murphy, K.P.: Dynamic Bayesian networks: Representation, inference and learning
(2002)

17. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1988)

18. Pfeffer, A.J.: Probabilistic Reasoning for Complex Systems. Ph.D. thesis, Stanford,
CA, USA (2000)

19. Robinson, J., Hartemink, A.: Non-stationary dynamic Bayesian networks, pp.
1369–1376 (2009)

20. Shenoy, P., Shafer, G.: Axioms for probability and belief-function propagation. In:
Uncertainty in Artificial Intelligence. vol. 4, pp. 169–198 (1990)

21. Torti, L., Gonzales, C., Wuillemin, P.H.: Speeding-up structured probabilistic infer-
ence using pattern mining. International Journal of Approximate Reasoning 54(7),
900–918 (2013)


