N
N

N

HAL

open science

Business Rules Uncertainty Management with
Probabilistic Relational Models
Hamza Agli, Philippe Bonnard, Christophe Gonzales, Pierre-Henri Wuillemin

» To cite this version:

Hamza Agli, Philippe Bonnard, Christophe Gonzales, Pierre-Henri Wuillemin. Business Rules Uncer-
tainty Management with Probabilistic Relational Models. RuleML16, Jul 2016, Stony Brook, New

York, United States. 10.1007/978-3-319-42019-6_4 . hal-01345421

HAL Id: hal-01345421
https://hal.sorbonne-universite.fr /hal-01345421
Submitted on 13 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.sorbonne-universite.fr/hal-01345421
https://hal.archives-ouvertes.fr

Business Rules Uncertainty Management with
Probabilistic Relational Models

Hamza AGLI¥, Philippe BONNARD?,
Christophe GONZALES* and Pierre-Henri WUILLEMIN*

1 IBM France Lab, Gentilly, France
* Sorbonne Universités, UPMC Univ Paris 6, CNRS, UMR 7606 LIP6, Paris, France,
{hamza.agli,philippe.bonnard}@fr.ibm.com
{christophe.gonzales,pierre-henri.wuillemin}@lip6.fr

Abstract. Object-oriented Business Rules Management Systems (OO-
BRMS) are a complex applications platform that provide tools for au-
tomating day-to-day business decisions. To allow more sophisticated and
realistic decision-making, these tools must enable Business Rules (BRs)
to handle uncertainties in the domain. For this purpose, several ap-
proaches have been proposed, but most of them rely on heuristic models
that unfortunately have shortcomings and limitations. In this paper we
present a solution allowing modern OO-BRMS to effectively integrate
probabilistic reasoning for uncertainty management. This solution has a
coupling approach with Probabilistic Relational Models (PRMs) and fa-
cilitates the inter-operability, hence, the separation between business and
probabilistic logic. We apply our approach to an existing BRMS and dis-
cuss implications of the knowledge base dynamicity on the probabilistic
inference.

Keywords: Business Rules Management Systems, Uncertainty manage-
ment, Probabilistic Relational Models, Bayesian Networks

1 Introduction and related work

OO-BRMS are very popular tools for decision-making automation. They are
considered as the evolution of rule-based expert systems. In a separation be-
tween application and business logic, these systems facilitate authoring, check-
ing, deploying and executing day-to-day companies operational business policies.
Indeed, business professionals and IT specialists can collaborate relatively inde-
pendently using such systems. This is because they provide double level artifacts
that align IT practices with business needs [3,9].
Whereas BRMS are well adapted to deal with structured and complete data us-
ing classical Boolean inference, they face difficulties when they take into account
uncertain or incomplete data. To tackle the issue of uncertainties in the domain,
three approaches are commonly used:
— Heuristic models to weight rules with a degree of truth, e.g., certainty factors
(CF) and likelihood ratios (LR) [5,10]. These deal with uncertainty in the

2 PRMs for BRMS

knowledge (rules) not the data. However probabilistic interpretation given
to CF is incoherent with probability theory [11]. On the other hand, the
conditional independence between evidence and rules actions in LR is rarely
satisfied in real applications and LR-based expert systems have poor perfor-
mance [16].

— Fuzzy logic (FL) [21] to capture the uncertainty and imprecision by associat-
ing variable values to fuzzy sets, but in essence, FL is not conceived to deal
with incomplete data or to express relations between variables in the knowl-
edge base as in OO frameworks. Besides, fuzzy logic when applied to systems
that performs chains of inference, such as BRMS may lead to inconsistent
conclusions [7].

— Bayesian techniques, which are essentially based on Bayesian Networks (BNs)
[17], to consistently model domains with uncertainty. In addition, several al-
gorithms have been proposed to learn their graphical structure and their
conditional probability tables (CPTs) parameters. Even if they are a very
popular tool to deal with uncertainty, BNs are not suited for complex sys-
tems, in which they involve high design and maintenance costs [15,13]. Be-
sides, they do not support well object-oriented and dynamic systems.

One can also find hybrid approaches that combine, for instance, BNs with CF
[14,4]. Obviously these methods incur in problems discussed previously. More-
over they are developed for specific use and cannot handle effectively the frequent
changes of business policies, where BRMS perform better. Another approach is
Probabilistic Logic Programming [6]. But this is not suited for the BRs proce-
dural side effects and the OO-BRMS upon which we build our application. To
summarize, current BRMS uncertainty management state-of-the-art face theo-
retical and practical limitations, do not exploit structural information encoded
in the knowledge base and face scaling difficulties.

To overcome the previous limitations, we propose to couple BRMS with Prob-
abilistic Relational Models (PRMs) [12,18,19], an object-oriented extension of
BNs that enables handling very large systems. Their object paradigm and re-
lational model allow them to be a good candidate for managing uncertainty in
an OO-BRMS. In addition, PRMs are equipped with sophisticated inference en-
gines that enable to answer efficiently various types of probabilistic queries.

In this paper, we describe a method that allows modern OO-BRMS to reason un-
der uncertainty using a coupling approach that separates uncertainty and rules
management. There are many reasons for this separation. First, trying to man-
age PRM inference and update inside BRMS would be inefficient and difficult
since the rule engine is non-monotonic and is by essence a procedural engine on
object data. Second, separating concepts and architectures simplifies the soft-
ware maintaining and offers more control over the framework complexity. Last,
such a coupling gives a mathematically sound interpretation of the uncertainty
and is based on a framework that is essentially designed to cope with large and
complex systems. This work is the continuation of [1] that proves the feasibility
and describes the coupling framework.

The remainder of this paper is organized as follows: in the next section, we

PRMs for BRMS 3

briefly introduce OO-BRMS and PRMs. Then, we present the coupling appo-
rach in Section 3, as a solution that allows OO-BRMS to deal with uncertainty.
Then Section 4 describes how we implemented this solution in practice. Finally,
some conclusion and future works are provided in Section 5.

2 Preliminaries

2.1 Object-oriented BRs

BRs are rules in the form ” IF condition THEN action” that are exploited for rea-
soning by forward chaining inference engines. OO-BRRMS execute BRs against
an object model (OM) that describes the application objects. Let us illustrate
this through a simplified example from an insurance application. Assume the
model consist of three classes representing a healthcare professional, a subscriber
and a reimbursement request. Fig. 1 gives a UML class diagram for this appli-
cation.

HealthcareProvider

2 subs : Subscriber([] Subscriber Reimbursement
= age:int K >——>{@ reimbs:Reimbursement[] {@——=>< type : enum
< sex :enum = age:int = price : enum
= location : enum

Fig.1: UML diagram for a simplified insurance application

In a fraud detection context, we want to verify, using BRs-based approach,
whether the healthcare professional is fraudulent. In such a way, anomalies that
indicate fraud are detected by executing a set of rules and using scoring heuris-
tics. For instance, if a fraud detection rule says that an excessive invoice alert
must be raised on a healthcare provider who submits a high price reimburse-
ment request for one of his subscribers, the corresponding object-oriented BR in
Rule 1.1 will look for objects in the working memory (WM) that corresponds to
providers with subscribers requesting reimbursements with a high price.

Rule 1.1: detect invoice anomaly

IF hp has type HealthcareProvider & sub has type Subscriber &
reimb has type Reimbursement & sub in hp.subs & reimb in
sub.reimbs & reimb.price == high

THEN raiseAlertExceededInvoicePrice (hp)

Similarly, another rule says that a lens age anomaly alert must be raised on a
healthcare provider who submits a lens reimbursement request for a subscriber
under age 10. Rule 1.2 shows its pseudo-code.

Rule 1.2: detect lens anomaly

1

3

4 PRMs for BRMS

IF hp has type HealthcareProvider & sub has type Subscriber &
reimb has type Reimbursement
& sub in hp.subs & reimb in sub.reimbs & sub.age < 10 &
reimb.type=1lens
THEN raiseAlertLensAgeAnomaly (hp)

When the data is completely known and well adapted to classical logic paradigm,
such rules are well handled using variant of pattern matching algorithms, e.g,
enhanced RETE [8] or stateless sequential execution. However, in front of un-
certain or missing data, such rules cannot be executed. The next paragraph
introduce theoretical foundations to handle such a situation using PRMs.

2.2 PRMs

One reason why standard BNs do not scale well is because they do not exploit
the structure of the data. Instead, PRMs share the same class concept used in
the object models. Indeed, the idea is that in complex systems, one can often
identify repeated patterns, which can be abstracted as classes. Each pattern rep-
resents a fragment of a BN over its random variables. These correspond to the
class descriptive attributes. PRMs also define the mechanism of reference slot
allowing the navigation between attributes of different classes, and hence, the
good definition of conditional probability distribution. They use aggregators to
express many-to-one instance relations and get around the issue of multiple class
definitions w.r.t variable number of configurations depending on relation arities.
Finally, PRMs define a relational skeleton that represents the instance graph.

Reimbursement

|
|
|
|
P B : - Subscriber
\ reimb
|
|
|
|

- J
Fig.2: PRM dependency schema for the fraud example

PRMs for BRMS 5

This corresponds to the PRM system: classes that are instantiated and linked
using reference slots. To sum up, a class corresponds to a set of random variables
that share common relations (abstraction of repeated patterns) and are gathered
in a BN fragment. Classes communicate through reference slots.

It is easy to see that the PRM can, not only represent the object model, but also
the relation or causal/influence directions between the model attributes. Given
an attribute, these relations are expressed through an arc connection between
this attribute and its immediate predecessors, which are called ”parents” in the
graphical structure. In this paper, both relations and CPTs are assumed to be
provided by a domain expert or obtained from a learning process.

One possible PRM representation of the fraud detection example is showed in
Fig. 2. For instance, the attribute reimbs of class Subscriber is a multiple ref-
erence slot, which shows that the class points to a set of Reimbursement. In the
running example, a divide-and-conquer approach is used to build aggreagators:
we first determine whether the Subscriber has a Reimbursement with a high
price (by exists_p aggregator); second, we determine if the HealthcareProvider
is linked to a Subscriber satisfying the previous condition (by exists_sp). We
follow the same reasoning to generate the aggregator exists_st.

Fig. 3 depicts an example of a relational skeleton obtained from the fraud ex-
ample instances. A dashed arc stands for a reference slot, for instance subi
references reimbl and reimb2. Further details bout the PRMs extension used

P *[reimbl :Reimbursement]
-~ 7" " " *(subl:Subscriber} -~"-~__
’ Sa
[hp: HealthcareProvider] [reimb2 :Re imbursement]

~

S~ ____~{sub2:Subscriber

~
~

S~ »[reimbS : Reimbursement]
Fig. 3: An instance relational skeleton for the fraud example

in this work might be found in [20].

3 Coupling BRs and PRMs

In the previous paragraph, we highlighted the common OO paradigm that ties
OO-BRMS and PRMs and we illustrated this through the fraud example. Using
PRMs allows for more model abstraction, while using classical BNs methods re-
sults in a repetition of objects creation, model dependence in rules and inference
inefficiency for large systems. In this paragraph, we suggest to extend the BRs
data meta-model, compilation and runtime to specify relations and probability
model.

6 PRMs for BRMS

3.1 Probabilistic rules

We propose to use the aforementioned similarity to invoke probabilistic instruc-
tions within the rules, e.g, marginal distribution computation and evidence post-
ing. For this reason, probabilistic attributes in the rules are directly mapped to
their equivalent PRM attributes (see Section 2). Assume that the OM against
which the rules are executed is extended to include all the nodes in the de-
pendency network on Fig. 2 as attributes of the corresponding classes. Assume
further that a prob operator ! is introduced in the syntax and allows triggering
inference process of the probabilistic engine. As we discussed previously, PRM
relates attributes of different classes, and those of generated instances conse-
quently, to permit the creation of complex networks covering multiple instances.
Although, RVs are generated from the same classes, they should be regarded as
distinct variables with their own life-cycle. We know from Fig. 2 that price_risk
attribute is linked to attributes of classes Subscriber and Reimbursement in the
PRM by reference mechanism, hence, in this new extension, there is no need to
evaluate conditions that can be processed by probabilistic inference. When the
engine encounters the prob operator, it immediately launches the probabilistic
process, which queries the underlying PRM. In such an extension, probabilis-
tic data is explicitly identified and can be processed by PRM engines. Now,
instead of Rule 1.1, which says basically, that an alert must be raised when a
healthcare provider submits a fraudulently expensive price reimbursement for a
subscriber, we can have Rule 1.3 that says that an excessive invoice alert must
be raised on a healthcare provider if there is a 80% probability that the price of
a reimbursement request is excessive.

Rule 1.3: detect invoice anomaly with probability

IF hp has type HealthcareProvider
& prob(hp.price_risk=high)>.8
THEN raiseAlertExceededInvoicePrice (hp)

3.2 BRs object model extension

We suggest to extend both rules, by adding new attributes as in the previous
section, and their data meta-model by adding probabilistic annotations. This
has two advantages. The first is moving probabilistic definitions from rules to
their data meta-model. In making this move, BRs can externalize probabilistic
inference and allow for separate management of business and probabilistic logic.
Second, this enables the model to be more independent w.r.t the rules, which
means an independent evolution of both. Annotations are a type of meta-data
that enriches the meta-model at hand. In this work, they are added to indicate
that a class contains probabilistic information, as well as that an attribute is
mapped to a PRM attribute and is parametrized by its corresponding CPT and
parents. If the attribute is an aggregator, annotations show its type, its domain

! for probability

PRMs for BRMS 7

and the concerned modalities, i.e, random variables (RVs) possible states. As we
can see, such annotations allow for a natural mapping between OM and PRMs.
Therefore, an OM class (resp. attribute) is mapped to a PRM class (resp. at-
tribute) and the probabilistic data and how classes are related to each other is
extracted from the OM annotations. In the OM, a restricted type represents a
type whose domain is restricted, for instance an integer that is restricted to
{0,1,2}. Only discrete RVs are supported in PRMs, they can be user-labeled
(e.g, state_type) or built-in types (e.g, boolean,int). Thanks to these anno-
tations, rules engine can generate the underlying PRM classes and system at
compile time. Before the generation process, the model is parsed and checked.
For example we check if the given list of a PRM attribute parents is valid and
consistent with its CPT. This latter is also checked to verify it represents a
well defined probability distribution. Actually, there are two possible modes for
PRM system definition. The first is a static declaration, which assumes that all
WM instances are known at compile-time. The PRM system is then generated
either by directly processing the WM instance graph, or by an explicit decla-
ration inside a special annotated class, which also specifies necessary relations.
The second mode allows a dynamic definition in addition to the previous mode.
Here, rules execution may also update the system by incrementally inserting new
instances or modifying relations for instance. The last mode is obviously much
more interesting since it reflects BRs and WM dynamic nature. The mapping we
use allows the rules to generate complex probabilistic networks via the simple
mechanism of class instanciation and reference slot. This power property enables
the rules, for instance to handle many sets of RVs, which are obtained for free,
just by means of linking instantiated classes.

4 Implementation

To illustrate all the concepts introduced in previous sections, we implemented a
prototype that couples IBM Operational Decision Manager (ODM)? as an OO-
BRMS with A Graphical Universal Model (aGrUM) 2 as a probabilistic engine.
However, the methodology we applied can be easily generalized to any OO-
BRMS as we showed previously. ODM execute BRs against an eXecutable OM,
hereafter XOM, using the Ilog Rule Language (IRL). The latter is a Java-like
language, which is also based on the OO paradigm. In practice, this model can be
build from Java sources for instance. The XOM is a class model that describes the
application objects and data of the WM. ODM allows also business professionals
to enter rules using the Business Action Language (BAL), which describes rules*
in a more human readable format. Finally, ODM provides an automated mapping
between both BAL business and IRL technical rules®. To begin with, let us
show the IRL classes obtained for Subscriber and the system of our running

2 http://www-03.ibm.com/software/products/en/odm

3 http://agrum.lip6.fr

4 the series of ”if-then(-else)” statements

5 actually, this automation is not always defined, but may require IT specialist insight.

http://www-03.ibm.com/software/products/en/odm
http://agrum.lip6.fr

10

11

13

14

21

22

23

24

25

8 PRMs for BRMS

example. Consider Fig. 4 line 1, the annotation @PrmClass is a mark to express
that the class contains probabilistic information. The corresponding probabilistic
attributes are annotated with @PrmAttribute and carry information needed to
describe their counterpart PRM attributes. For instance, age in line 7 has no
parents and a CPT describing whether the subscriber is under the age of 10
is given. Note that AgeType at line 7 is an Integer restricted type. @PrmAgg
marks the attribute as an aggregator. In line 15, the annotation specifies a list of
the attribute parents and its CPT. In this example, we implemented the static
mode. So, instances are specified as internal attributes of the system class that
is annotated with @PrmSystemClass in line 19. Reference slots are set inside the
class constructor at line 25. Finally, the relational skeleton in Fig. 3 is generated
from this system class.

@PrmClass
public class Subscriber{
O@PrmMultiReference
public Reimbursement [] reimbs;

@PrmAttribute (parents={},cpt={{.2},{.8}})
public AgeType age;

OPrmAgg (name="exists",attribute="reimbs.type" ,mod="1lens")
public boolean exists_t;

OPrmAgg (name="exists",attribute="reimbs.price",mod="high")
public boolean exists_p;

O@PrmAttribute (parents={"age","exists_t"}, cpt
={{.2,.6,.5,.3},{.8,.4,.5,.7}})
public boolean risk;

}

@PrmSystemClass
public class System{
public HealthcareProvider hp = new HealthcareProvider ();
public Reimbursement[] reimbs = new Reimbursement [3];
public Subscriber [] subs = new Subscriber [2];

public System(){

hp.subs=subs;

sub [0] . reimbs={reimbs [0] ,reimbs [1]};
sub[1].reimbs={reimbs [2]};

}

Fig.4: Subscriber and System classes

©® N o ooa

PRMs for BRMS 9

4.1 Compilation process

The compilation process is based on a series of model rewritings. This is a pow-
erful tool that allows ODM, not only to abstract instructions from their imple-
mentation, but also to conserve the rule paradigm. Practically, the IRL rules
life-cycle is completely separated from that of BAL rules. As a consequence,
changing the implementation is possible without altering every BR.

When BRs are entered using the BAL, they are first translated into IRL rules by
a rewriting procedure. Second, the resulting rule-set is checked and parsed to ob-
tain a rule-set semantic model as Abstract Syntax Tree (AST). At this level, the
result may undergo recursive rewritings, on top of which one can plug different
APIs. Then, the rule-set AST is compiled while taking into account the chosen
algorithm. Again this phase can be parametrized by various plugins according to
the algorithm to be used, e.g RETE. The output at this stage is optimized and
transformed to obtain the semantic OM. This latter is a powerful meta-model,
it can be seen as an extension of the Java meta-model that allows compilation,
sources processing and model definition. There is no longer semantic rule-sets
here, but instead, an object model that encodes the semantics inside the gener-
ated classes and methods. Other operations may appear such as the BAL/IRL
mapping and the linkage with outside application via services mechanism. The
final result is persisted and jitted into an archive that can be deployed in the
desired platform, e.g Java, C# and Script. Note that this chain is executed in
pipe-line and the order is controlled by the plugins execution in the chain. Our
proposed prototype, called BIS for Bayesian Insight System, can be plugged on
top of the rules compilation process as an additional rewriting of the rule-set.
The plugging choice is motivated by our desire to take advantage of an existing
compilation framework, rather than building such a process from scratch. Addi-
tionally, a plugging approach facilitates the conceptual and technical integration
in the product architecture. Fig. 5 depicts an overall schema of the compilation
process. In particular, a compilation factory is implemented to adapt the prob-
abilistic context to the compilation chain. The IRL-based Rule 1.4 illustrates
the results after rewriting the Rule 1.3. In this example, we move from function
rewriting to proper call of the probabilistic engine with current arguments.

Rule 1.4: detect invoice anomaly with probability

rule detectInvoiceAnomaly{

when{

hp:HealthcareProvider (ProbabilisticEngine.this.
calculateProbability (this,"price_risk", "high") > 0.8);
}

then{

raiseAlertExceededInvoicePrice (hp);

}

}

When the extended IRL is compiled, annotations serve to extract PRM at-
tributes, CPTs and relations. When the checking is completed, the final model

© W N O o oA W N =

10 PRMs for BRMS

Ruleset
rewriting

I

Parsing
Checking

SemRuleset

SemObjectModel
O data Q process O plugin
Deployment

Fig.5: ODM compiling chain

is written into the PRM text format and processed for inference. We give an-
other way to introduce the probability in rules using the IRL evaluate operator.
Rule 1.5 evaluates the risk that a Subscriber is participating in a fraud.

Rule 1.5: evaluate subscriber risk with probability

rule evaluatSubscriberRisk{
when{
hp:HealthcareProvider () ;
sub: Subscriber () in hp.subs;
evaluate (prob(sub.risk==true)| hp.risk==true)>.8);
}
then{
alertRiskedSubscriber (sub) ;
}
}

The vertical bar in the rule stands for ”"knowing that” and corresponds formally
to conditional probability of a RV. In this rule, the RV sub.risk is connected to
HealthcareProvider’s attributes through the reference subs. In the expression
prob(sub.risk==true)| hp.risk==true), the conditional context is explicitly
mentioned, which refers to computing the probability of sub.risk given some
information on hp.risk. However, we want to simplify more the syntax by con-
sidering implicitly every fact in the WM. As a consequence, prob should be
stateful to facilitate the rule writing without bothering oneself with the underly-
ing PRM. Thus, the previous expression is reduced to prob(sub.risk==true),
which is implicitly equivalent to prob(sub.risk==true|WM), where WM is sim-
ply reduced to "hp.risk==true". Finally, one can similarly manage the intro-
duction of other operators such as 1ikelihood and entropy.

© W N o G A W N e

[
o

PRMs for BRMS 11

4.2 Advanced probabilistic rules

At rules level, one is interested in decision-making, to which the notion of risk is
relevant®, not in how probabilistic query is performed. So another easy, yet inter-
esting, approach to express probability in the rules, is to parametrize the whole
condition by probabilistic activation threshold while allowing the coupling intro-
duced in Section 3. Doing so helps the rule engine agenda to determine which
rule should be executed. In practice, we need to introduce a general probability
operator that governs rules eligibility by testing if the probability of the corre-
sponding tuple pattern matching equals or exceeds the probabilistic threshold.

Rule 1.6: evaluate subscriber risk with probability

rule evaluatSubscriberRisk{
probability >= .8;
when{
hp:HealthcareProvider () ;
sub:Subscriber (sub.risk==true|hp.risk==true) in hp.subs;
}
then{
alertRiskedSubscriber (sub) ;
}
}

The probability operator in Rule 1.6 involves all the RVs occurring in the condi-
tion part. However, since PRM engines cannot directly deal with such conditions
but only with variables, one must specify the rule conditions, which are really
participating in computations, and identify the underlying probabilistic vari-
ables. This is a challenging task that involves a difficult compilation process.
Actually, in this approach, we need to analyze rules, extract information that
is relevant to probabilistic inference and avoid non probabilistic variables for
instance. Then, one must transform the result into the adequate probabilistic
query ’. Many operators that are present in the compilation process are com-
plex to evaluate and need to be detected. This means introducing new operations
in the compilation in order for the probabilistic engine to deal with different con-
ditions including different tests (variable and class conditions), aggregators and
generators. Fortunately, both models share some high level operators, e.g, min,
maz, for all, erists aggregators, which can be automatically extracted from rules
conditions, thanks to the compilation, and mapped to their PRM counterparts
if any. Otherwise they can be used to complete the PRM definition with new
attributes.

Now, using this general operator, every logical production rule can be given a
probabilistic meaning by considering non probabilistic variables as a Dirac dis-

5 for instance, the risk of not executing a rule that should be executed (false negative)

" in general, one must specify how every language construct is compiled to be processed
by this general operator and assure the preservation of queries operational semantic
after the rewriting, but this is beyond the scope of this paper

© W N e o oA W N =

o
o

.
=

12 PRMs for BRMS

tribution and by imposing probability operator to be equal to 1. In this way, we
can give probabilistic meaning to Rule 1.1 as showed in Rule 1.7

Rule 1.7: detect invoice anomaly

rule detectInvoiceAnomaly{
probability=1;
when{
hp:HealthcareProvider () ;
sub:Subscriber () in hp.subs();

exists Reimbursement (price==’high’) in sub.reimbs();
}
then{
raiseAlertExceededInvoicePrice (hp);
}
}

4.3 A loosely coupling-based execution

The declarative aspect of the rules facilitates efficient instances generation for
the PRM system. At run-time, a hundred of RVs with complex relations can
be easily obtained just by means of instanciation; this is an advantage over the
classical BNs approach. In addition to the compilation API discussed previously,
BIS is also endowed with an execution API. Both insure different services com-
municating following the schema shown in Fig. 6. This allows for a coupling
between both BRs and probabilistic engines, which are implemented as services.
Actually, our framework is not restricted to one implementation, but is open to
any other probabilistic engine, which can be seen as a plugged service imple-
mentation. For instance, the current work is using aGrUM that can deal with

request, change

Business Rules Compile/Exec Probabilistic

APIs

Engine Engine

posteriors

Fig. 6: BIS coupling

© W N o A W N =

PRMs for BRMS 13

PRMs. We have also tested JSmile® as a probabilistic engine, however, we were
limited by the lack of relations and object concepts in such a framework. Recall
that the compilation part performs a rewriting from the rules semantic model,
which encompasses probabilistic data, to run-time functions, which actually call
the probabilistic engine. In our case the PRM is generated by XOM compilation
and read by probabilistic engine. It is also possible to read both models from
external files. Furthermore, our architecture allows for a good inter-operability
between both engines. On the one hand, rules execution can change the state
of the WM and consequently the RVs in the PRM system by posting evidence,
adding, removing new instances or setting new relations. For instance, the ac-
tion part of Rule 1.8, update the WM by adapting the risk attribute. Through
additional process of rewriting and compilation, one can even discover particular
variables to post soft evidence on their corresponding probabilistic ones °

Rule 1.8: detect invoice anomaly with probability

rule detectInvoiceAnomaly{
when{
hp:HealthcareProvider (prob(type_risk==high)>.8));
sub: Subscriber () in hp.subs;
}
then{
update sub{risk=true;}
}
}

On the other hand, when the rules trigger the inference process, the probabilistic
engine computes the needed probability for the query and may also notify the
WM to update some attributes for rules reevaluation.

In Fig. 7 engines are related via an observation mechanism and both are notified,

8 see https://dslpitt.org/genie/wiki/JSMILE_and Smile.NET for more details
9 constrains on probability distribution

update

RuleEngine EngineService EngineObserver

prob query

update notification | ProbaEngine

aGrUMEngine JSmileEngine

Fig. 7: PRM plugin as a service

https://dslpitt.org/genie/wiki/JSMILE_and_Smile.NET

14 PRMs for BRMS

through the observer, when any change occurs in the WM. That is, each time an
incremental change, such as object or relation insertion/retraction occurs in the
WM, the underlying PRM is notified for the update, e.g, reference slot change.
Both probabilistic and rules engine perform inference in a lazy way. The former
records every incremental WM update until the next rule query evaluation. Then
it accordingly updates the PRM system to answer the probabilistic query. The
latter seeks to minimize evaluations in the RETE network.

5 Conclusion

This paper introduced an effective approach to integrate probabilistic reasoning
into modern BRMS. The solution we proposed couples BRMS with PRMs. We
highlighted the natural mapping between both paradigms and gave an opera-
tional method to assure it. Finally we proposed a general architecture of the
coupling platform prototype. The technical contribution is implemented as an
embedded prototype in the ODM product.

Our work opens many other research perspectives. In particular, due to the
dynamic aspect of the WM, a probabilistic inference algorithm should be devel-
oped to insure the PRM inference adaptability. For this purpose, we are currently
working on an adaptation of the incremental junction tree inference algorithm,
which is proposed in [2]. Moreover, as soon as we deal with aggregators/gener-
ators in the rules, e.g, from, in, it becomes necessary to automatically generate
their PRM counterpart as and when we compile the rules. This immediately
opens the issue of PRMs non-supported operators and the idea of extending this
model. Another difficult compilation aspect, yet more interesting, is the use of
several operators within the same rule and how this impacts the PRM construc-
tion.

After each WM update, the RETE algorithm tries to optimize the expression
re-evaluations, while taking into account the previous state. It would be interest-
ing to develop a two-sided optimization that supervises PRM and WM updates,
e.g, take into consideration the PRM variables independence. Or better yet, to
try to optimize updates propagation as part of a tight coupling but to the cost
of algorithmic complexity and finding a trade-off between implementation and
performance. Finally, this work also opens doors to introduce uncertain reason-
ing in rules temporal expressions to process complex events over uncertain data
or events.

Acknowledgments: This work was partially supported by IBM France Lab/ANRT
CIFRE under the grant #421/2014. The authors would like to thank Christian
De Sainte Marie for useful discussions and insights.

References
1. Agli, H., Bonnard, P., Wuillemin, P., Gonzales, C.: Uncertain reasoning for business

rules. In: Proceedings of the 8th International Web Rule Symposium Doctoral
Consortium (2014)

@

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

PRMs for BRMS 15

Agli, H., Bonnard, P., Wuillemin, P., Gonzales, C.: Incremental junction tree in-
ference. In: Proceedings of the 16th Information Processing and Management of
Uncertainty in Knowledge-Based Systems International Conference (2016), to ap-
pear

Berstel-Da Silva, B.: Verification of Business Rules Programs. Springer (2014)
Bobek, S., Nalepa, G.J.: Compact representation of conditional probability for
rule-based mobile context-aware systems. In: Proceedings of the 9th International
Symposium, RuleML. pp. 83-96 (2015)

Buchanan, B.G., Shortliffe, E.H.: Rule Based Expert Systems: The Mycin Exper-
iments of the Stanford Heuristic Programming Project. Addison-Wesley (1984)
De Raedt, L., Kimmig, A.: Probabilistic (logic) programming concepts. Machine
Learning 100(1), 5-47 (2015)

Elkan, C.: The paradoxical success of fuzzy logic. In: IEEE Expert. pp. 698-703
(1993)

Forgy, C.L.: RETE: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence (1982)

Graham, I.: Business Rules Management and Service Oriented Architecture: A
Pattern Language (2006)

Hart, P.E., Duda, R.O., Einaudi, M.T.: PROSPECTOR—a computer-based con-
sultation system for mineral exploration. Journal of the International Association
for Mathematical Geology 10(5), 589-610 (1977)

Heckerman, D.E., Shortliffe, E.H.: From certainty factors to belief networks. Arti-
ficial Intelligence in Medicine 4(1), 35-52 (1992)

Koller, D., Pfeffer, A.: Probabilistic frame-based systems. In: Proceedings of the
15th National Conference on Artificial Intelligence (AAAI). pp. 580-587 (1998)
Koller, D., Pfeffer, A.: Object-oriented Bayesian networks. In: Proceedings of the
Thirteenth Conference on Uncertainty in Artificial Intelligence (UAI). pp. 302-313
(1997)

Korver, M., Lucas, P.J.F.: Converting a rule-based expert system into a belief
network. Medical Informatics 18, 219-241 (1993)

Mahoney, S.M., Laskey, K.B.: Network engineering for complex belief networks. In:
Proceedings of the Twelfth International Conference on Uncertainty in Artificial
Intelligence (UAI). pp. 389-396 (1996)

Ng, K.C., Abramson, B.: Uncertainty management in expert systems. IEEE Ex-
pert: Intelligent Systems and Their Applications 5(2), 29-48 (Apr 1990)

Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann (1988)

Pfeffer, A.J.: Probabilistic Reasoning for Complex Systems. Ph.D. thesis, Stanford
University (2000)

Torti, L., Gonzales, C., Wuillemin, P.H.: Speeding-up structured probabilistic infer-
ence using pattern mining. International Journal of Approximate Reasoning 54(7),
900-918 (2013)

Waillemin, P.H., Torti, L.: Structured probabilistic inference. International Journal
of Approximate Reasoning (2012)

Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338-353 (1965)

	Business Rules Uncertainty Management with Probabilistic Relational Models
	Introduction and related work
	Preliminaries
	Object-oriented BRs
	PRMs

	Coupling BRs and PRMs
	Probabilistic rules
	BRs object model extension

	Implementation
	Compilation process
	Advanced probabilistic rules
	A loosely coupling-based execution

	Conclusion

