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Abstract

This work concerns decision making under risk
with the rank-dependent utility model (RDU), a
generalization of expected utility providing en-
hanced descriptive possibilities. We introduce a
new incremental decision procedure, involving
monotone regression spline functions to model
both components of RDU, namely the probabil-
ity weighting function and the utility function.
First, assuming the utility function is known, we
propose an elicitation procedure that incremen-
tally collects preference information in order to
progressively specify the probability weighting
function until the optimal choice can be iden-
tified. Then, we present two elicitation proce-
dures for the construction of a utility function as
a monotone spline. Finally, numerical tests are
provided to show the practical efficiency of the
proposed methods.

1 INTRODUCTION

Uncertainty is pervasive in human activities and represents
an important source of complexity in individual and col-
lective decision making. As soon as intelligent systems
are used for supporting human decision making or simulat-
ing realistic human decision behaviors, preference model-
ing and preference elicitation becomes particularly impor-
tant. In decision making under uncertainty and risk, prefer-
ence models are used to represent uncertain outcomes and
to provide normative decision rules for choice problems,
but also to describe, predict or simulate observed human
behaviors. Given a mathematical model used to compare
the alternatives of a choice problem, preference elicitation
consists in fitting the parameters of the model to a specific
Decision Maker (DM), to capture her attitude towards risk.
Then the model can be used to support her choices in com-
plex situations involving a large number of alternatives or
to integrate her value system into an autonomous decision

agent. Considering this context, our paper aims at provid-
ing new tools for interactive decision support under risk.

Decision under risk is a standard formal framework for
handling uncertainty in decision making, characterized by
a probabilistic representation of uncertainty. In this frame-
work, risky prospects are represented by probability distri-
butions with a finite support, namely lotteries. In the semi-
nal work of Bernoulli (1738; refer to [1954] for an English
translation) and in the theory of von Neumann and Morgen-
stern (vNM) [1947], the values of lotteries are measured in
terms of expected utility (EU). This well-known decision
criterion is linear in probabilities and characterized by a
utility function encoding the subjective value of any possi-
ble consequence for the DM; EU is used to compare lotter-
ies and choice problems are solved by EU maximization.
This choice model has been axiomatically justified in the
context of risk by vNM [1947], but also in the more gen-
eral context of uncertainty introduced by Savage [1954],
where probabilities are not assumed to exist a priori.

From EU to RDU. Despite these axiomatic results and
the intuitive appeal of EU theory, the model suffers from
well known limitations, from a descriptive viewpoint.
There exist situations where individuals may exhibit behav-
iors that are not consistent with EU theory, as illustrated by
the so-called Allais’s paradox. For example, people often
prefer $3000 with certainty (choice A) to $4000 with prob-
ability .8 (choice B), but they prefer $4000 with probability
.2 (choice D) to $3000 with probability .25 (choice C). Re-
marking that C = .25A + .75O and D = .25B + .75O
where O is the choice to win nothing with probability 1,
it turns out that such preferences violate the vNM inde-
pendence axiom. This example, used by Kahneman and
Tversky [1979] in their experiments, is frequently observed
and known as the certainty effect: a reduction in proba-
bility of winning a reward creates a larger (negative) psy-
chological effect when it is done from certainty than from
uncertainty. Similar observations have been made in ac-
tual decision contexts, for instance in route-choice prob-
lems where evidence was found of violation of EU theory
[Avineri and Prashker, 2004].



These experiments and others in the same spirit suggest that
probabilities are distorted in the decision making process.
More precisely, small probabilities (greater than 0) tend to
be overestimated while large ones (smaller than 1) under-
estimated. This has motivated the introduction of a prob-
abilistic transformation model to generalize EU, leading
to evaluate the lottery (x1, p1; . . . , xn; pn) that yields out-
come xi with probability pi by

∑
i w(pi)u(xi). This gener-

alization of EU dates back to [Edwards, 1955] and appears
also in prospect theory [Kahneman and Tversky, 1979].
However, it can be easily shown that it violates the principle
of stochastic dominance and could lead to select dominated
alternatives; this is often considered as a serious weakness
from a normative viewpoint. To overcome this problem, a
solution proposed by Quiggin [1982] and Yaari [1987] con-
sists in applying the probability transformation to the decu-
mulative probability distribution function, and not to the
probabilities of individual outcomes. This solution leads
to the rank-dependent utility model (RDU) that consists in
evaluating the lottery ` = (x1, p1; . . . , xn; pn) such that
x1 ≥ . . . ≥ xn ≥ 01 by:

V (`) =

n∑
i=1

w

(
i∑

k=1

pk

)
[u(xi)− u(xi+1)]

= w(p1)u(x1)+

n∑
i=2

[
w

(
i∑

k=1

pk

)
− w

(
i−1∑
k=1

pk

)]
u(xi)

where xn+1 = 0 andw : [0, 1]→ [0, 1] is a non-decreasing
function such that w(0) = 0 and w(1) = 1. Note that
the coefficient of u(xi) in RDU depends on the cumulative
probability of the outcomes greater or equal to xi (since
outcomes are indexed to be sorted by decreasing order);
this shows that this coefficient depends on the rank of xi
in the set of possible outcomes. To illustrate the use of
RDU, we compare the two following lotteries ` and `′ with
w(p) = p2 and u(x) =

√
x:

V (`) = (.3)2(6 − 5) + (.8)2(5 − 3) + 123 = 4.37 and
V (`′) = (.6)2(7 − 2) + (1)22 = 3.8, hence ` is preferred
to `′. To give another example, let us remark that, for any
lottery of type ` = (x+, p;x−, 1− p), x+ > x−, we have:

V (`) = w(p)u(x+) + (1− w(p))u(x−)

Function w is referred to as the probability weighting func-
tion. It is worth noting that, when w(p) = p, RDU boils
down to EU as we can see from the second formulation.
On the other hand, RDU is also known to be an instance of
Choquet Expected Utility [Schmeidler, 1989]. More pre-

1As suggested by Gilboa [2008], it is more natural to think
of the object of choice in Quiggin and Yaari’s models as lotteries
over final wealth (with positive outcomes) rather as prospects of
gains and losses, because they did not emphasize gain-loss asym-
metry in their theory.

cisely, it turns out to be the natural instance for decision
making under risk due its compatibility with stochastic
dominance [Wakker, 1990]. For more details about RDU
theory see [Quiggin, 2012, Diecidue and Wakker, 2001].

Let us mention also some well known variants of RDU
theory. First, Yaari [1987] introduced and axiomatized a
dual model to expected utility where transformations are
applied to probabilities rather than to outcomes. This is
a special case of RDU obtained when the utility function
is linear in the outcomes. Moreover, the idea of rank-
dependent weightings was also incorporated by Kahneman
and Tversky [1992] into prospect theory, leading to cumu-
lative prospect theory. This theory extends the RDU theory
to model different risk attitudes towards gains depending
on whether above or below a reference level.

In this paper, we focus on the RDU model, and we ad-
dress the problem of identifying, within a given (possibly
large) set of lotteries, the preferred solution for a given
DM consistent with RDU theory. This solution could be
used for predicting a choice of the DM or even to make
a recommendation. This requires to elicit, at least par-
tially, the probability weighting function and the utility
function. Note that the determination of RDU-optimal so-
lutions has motivated various contributions in the past, e.g.
[Nielsen and Jaffray, 2006, Jeantet et al., 2012].

Incremental decision making. A first approach to elici-
tation, standard in mathematical economics, aims to obtain
a full description of preferences by the decision model, as-
suming that DM’s preferences are observable on all pos-
sible pairs of alternatives. The elicitation process is justi-
fied by the axioms of the underlying theory and the com-
ponents of the models are revealed point by point using
systematic sequences of queries to obtain a precise speci-
fication of the model. To simplify the process, a frequent
option used in economics (but also in artificial intelligence)
consists in postulating a parametric form for each com-
ponent of the decision model; queries are then used to
fit the parameters. Refer to [Wakker and Deneffe, 1996,
Gonzalez and Wu, 1999, Abdellaoui, 2000] for full elic-
itation procedures proposed in economics for RDU,
and to [Fürnkranz and Hüllermeier, 2003, Torra, 2010,
Tehrani et al., 2012] for model-based preference learning.

Recently a number of works have tackled the elicitation
of the components of the decision model in an adap-
tive way [Wang and Boutilier, 2003, Boutilier et al., 2006,
Braziunas and Boutilier, 2007, Benabbou et al., 2014]; the
aims is that of focusing on learning the “important” part
of the utility, allowing to recommend near-optimal de-
cisions with only partial information about the decision
model. These incremental approaches consider all possible
instances of preference model parameters consistent with
the currently known information about the user; the user’s
responses allow to infer constraints on these parameters.



In this work, we consider the problem of incrementally
eliciting the components of the RDU model by interactively
asking queries to the DM; this aims to support the identi-
fication or approximation of an RDU-optimal choice. We
first address the problem of eliciting the weighting func-
tion incrementally (Section 2) assuming that the utility is
known. Afterwards, we will present utility elicitation pro-
cedures adapted to the rank-dependent utility model (Sec-
tion 3). Finally, we provide numerical tests (Section 4).

2 ELICITATION OF THE PROBABILITY
WEIGHTING FUNCTION

Decision makers exhibit various decision behaviors when
they are confronted to choices involving risky prospects.
Within RDU theory, this diversity of attitudes towards
risk can be modeled by controlling the definition of the
two components of the model, namely the utility func-
tion and the probability weighting function. Since these
two components are strongly interlaced in RDU, their
joint elicitation is quite challenging. Fortunately, these
two components concern two separate and well identi-
fied risk-components, on the one hand marginal utili-
ties induced by the shape of the cardinal utility func-
tion [Chateauneuf and Cohen, 1994], and on the other hand
the probabilistic risk-attitude towards probabilistic mix-
tures induced by the shape of the probability weight-
ing function [Wakker, 1994]. They can be observed
separately using proper preference queries as shown in
[Wakker and Deneffe, 1996, Abdellaoui, 2000]. In this
section, the utility is assumed to be known (already elicited
or known to be linear (Yaari’s model), and we focus on the
elicitation of probability weights.

2.1 ON PROBABILITY WEIGHTING FUNCTIONS

The probability weighting function is necessarily non-
decreasing but can take different forms depending on the
attitude of the DM towards risk. For instance, in Yaari’s
model, weak risk aversion which consists, for any lot-
tery `, in preferring E(`) for sure to ` (where E(`) is
the expected value of `) is equivalent to w(p) ≤ p for
all p ∈ [0, 1] [Chateauneuf and Cohen, 1994]. Moreover,
in the RDU model, strong risk aversion which consists in
preferring ` to `′ whenever ` stochastically dominates `′

at second order, is equivalent to using a convex weight-
ing function and a concave utility [Hong et al., 1987]. Fi-
nally, several experiments including those of Kahneman
and Tversky [1979] lead to propose an inverse S-shaped
function. For example, the use of the weighting function
given in Figure 1 in Yaari’s model allows to explain the
preferences observed on lotteries A,B,C,D presented in
the introduction. We have indeed V (A) = 3000 w(1),
V (B) = 4000 w(0.8), V (C) = 3000 w(0.25) and
V (D) = 4000w(0.2). Since w(0.2) ≈ 0.26, w(0.25) ≈

0.29, w(0.8) ≈ 0.60 and w(1) = 1 we obtain V (A) >
V (B) while V (C) < V (D).

Figure 1: Inverse S-shaped function w.

The following parametric expressions for w(p) have been
proposed in the literature [Cavagnaro et al., 2013], among
several others:

TK : w(p) = pr

(pr+(1−p)r)1/r
with 0.28 < r ≤ 1

Prelec : w(p) = e−s(− ln p)r with 0 < r ≤ 1; 0 < s

LinLog : w(p) = s pr

s pr+(1−p)r with 0 < r, s

where TK denotes the parametric form proposed by Tver-
sky and Kahneman (thew plotted in Figure 1 is of this type,
with r = 0.6). Note that Prelec and LinLog make use of
two parameters (r and s) while TK is based on a single pa-
rameter. Karmarkar [1978] proposes a parametric form that
is a special case of LinLog with s = 1.

Choosing a priori a specific parametric form among these
different options and others, with the idea of learning the
parameters, may generate errors due to not taking into ac-
count the specificity of the DM that may be revealed dur-
ing the elicitation process. Instead, we propose a new ap-
proach based on a much more flexible parametric construc-
tion based on the definition of w as a piecewise polynomial
spline function. Moreover, we will adopt an incremental
elicitation approach in order to reason with the possible
functions w that are consistent with the current preference
information of the DM. In the spirit of incremental decision
making, by considering additional preferences (obtained by
asking queries), we will be able to progressively narrow
down our model of the DM until we are able to identify the
preferred alternative.

2.2 INCREMENTAL ELICITATION OF w

We assume here that the utility function is known and we
reason with an incompletely specified weighting function
w ∈W , W being the set of admissible probability weight-
ing functions at a given step of the process. Initially,W can
be all non-decreasing functions on the unit interval such
that w(0) = 0 and w(1) = 1 or an approximation of



them representable by a given family of parametric func-
tions. The utility function u being fixed, we will denote
V (`;w) the RDU value of lottery ` for weighting function
w. Each time a preference statement of type “`+ is at least
as good as `−” is obtained, this induces a new constraint
V (`+;w) ≥ V (`−;w) that further restricts W .

In order to make a decision when probability weights are
imprecisely known, we will use minimax regret which is a
standard decision criterion for robust decision making un-
der uncertainty [Savage, 1954]. It was more recently pro-
posed by Boutilier et al. [2003, 2006] for decision-making
under utility uncertainty. Moreover, minimax regret can be
used as a driver for preference elicitation and incremental
decision making.

Let L be the set of lotteries representing the alternatives
of the decision problem. If we knew the DM’s spe-
cific w, then the optimal choice would be any element
of arg max`∈L V (`;w). However, since w is not known
precisely, we need to provide a recommendation based on
the current information. We are interested in evaluating
the loss that can result from choosing a decision ` instead
of the optimal one. To this end, we use the following
notions of regret. The pairwise maximum regret PMR
of ` against `′ is the maximal value that the difference
Vu(`′;w) − Vu(`;w) can take for any admissible function
of w ∈ W . The max regret MR of a choice ` is defined as
the maximum pairwise regret when the adversary is chosen
among all lotteries in L. Finally, the minimax regret MMR
is the minimum value of max regret. More formally:

PMR(`, `′;W ) = max
w∈W

[V (`′;w)− V (`;w)] (1)

MR(`;W ) = max
`′∈L

PMR(`, `′;W ) (2)

MMR(W ) = min
`∈L

MR(`;W ) (3)

Then we recommend one of the decisions associated with
the minimum value of max regret, i.e. lottery `∗ ∈
arg min`∈LMR(`;W ). This is a regret-optimal decision
given the current preference information. By definition,
recommending `∗ means to be robust with respect to the
possible realizations of w ∈W .

In addition of being a criterion for decision-making, min-
imax regret can be used to drive the elicitation of further
preference information. We assume an interactive setting
where the system (a decision-support agent) can ask addi-
tional queries in order to improve the quality of the recom-
mendation. If the current minimax regret value is higher
than a given positive threshold, we ask another query to the
user. Different types of queries can be asked to the user;
among the many possibilities, comparison queries, asking
the user to state which choice is best among two presented
to him, are particularly natural. It is however important
to ask informative queries in order to quickly converge to
a recommendation of high value. An effective heuristic
to choose the next query is the current solution strategy

[Wang and Boutilier, 2003, Boutilier et al., 2006]; it asks
the user to compare the regret-optimal lottery `∗ with its
adversarial challenger `a = arg max`∈L PMR(`∗, `). This
will often reduce minimax regret: if the user states that `∗ is
preferred to `a, in the next computation of minimax regret,
the adversary will have to choose another lottery, leading
to a reduction of regret (unless there were ties in the max
regret computations). If, instead `a is preferred to `∗, the
regret-optimal choice in the next computation will neces-
sarily be a choice other than `∗, and, again, we will likely
reduce regrets.

Assume P to be a set of pairs (`+, `−) for which we know
that the DM considers that `+ is at least as good as `−.
Let W = {w : ∀(`+, `−) ∈ P, V (`+;w) ≥ V (`−;w)},
our goal is to compute PMR(`, `′,W ). This corresponds
to solving the following optimization problem:

max
w

[V (`′;w)− V (`;w)] (4)

s.t. w(0) = 0, w(1) = 1 (5)
w(p) ≤ w(q), ∀p, q ∈ [0, 1] : p ≤ q (6)

V (`+;w) ≥ V (`−;w), ∀(`+, `−) ∈ P (7)

Such optimization is not however directly feasible. First,
the monotonicity constraint (6) on the unit interval repre-
sents implicitly an infinity of constraints. If we only im-
pose monotonicity on probabilities involved in the lotteries
of L, it still represents a large number of constraints. More-
over, constraint (7) is quite difficult to handle. Even if we
assume that w belongs to one of the families of parametric
curves considered in the previous subsection, the resulting
constraints will not be linear in the parameters. In the next
subsection we will see how these problems can be over-
come by defining w as a monotone spline function.

2.3 A MODEL BASED ON I-SPLINE FUNCTIONS

Spline functions are piecewise polynomials whose pieces
connect with a high degree of smoothness. They are very
useful in data interpolation and shape approximation due
to their capacity to approximate complex shapes through
curve fitting and interactive curve design while preserv-
ing an important property, missing in many other inter-
polation methods: they guarantee that smooth curves will
be generated from smooth data [Beatty and Barsky, 1995].
The use of piecewise polynomials in non-linear regres-
sion extends the advantage of polynomials by providing
greater flexibility, local effects of parameter changes and
the possibility of imposing constraints on estimated func-
tions [Ramsay, 1988].

One important feature of spline functions is that they can be
generated by linear combinations of basis spline functions.
A basis of splines particularly appealing for non-linear re-
gression is the M-spline family [Ramsay, 1988]. M-splines
of order k are functions Mi, i = 1, . . . ,m which are poly-
nomials of degree k − 1. They can be used to approximate



any function defined on a given interval [a, b] by a spline
of the form f =

∑
i λiMi. To define Mi precisely, we

need to introduce a sequence of knots t = {t1, t2, . . . , tl}
such that a = t1 = . . . = tk, b = tl−k+1 = . . . = tl
and ∀i, ti ≤ ti+1. The basis constructed from sequence t
contains m =| t | −k spline functions of order k denoted
Mi(x; k, t), i = 1, . . . ,m, and defined for k = 1 by:

Mi(x; 1, t) =

{ 1
ti+1−ti if x ∈ (ti, ti+1)

0 otherwise

For k > 1 and ti+k > ti, Mi is defined recursively by:

Mi(x; k, t) = k[(x− ti)Mi(x;k−1,t)+(ti+k−x)Mi+1(x;k−1,t)]
(k−1)(ti+k−ti)

and otherwise Mi(x;k,t) = 0. In particular, we have
Mi(x;k,t) = 0 whenever k > 1 and ti+k = ti.

Note that Mi(x;k,t) is strictly positive in (ti, ti+k) and
0 elsewhere, with an integral equal to 1. Moreover, it
is a polynomial of degree k − 1 so that, for any piece-
wise polynomial function of the form f =

∑
i λiMi, ad-

jacent polynomials have matching derivatives up to order
k − 2. Hence, a good choice for k in practice is k = 3
because, in this case, we generate piecewise quadratic f
functions with matching first derivatives while preserving
a local influence of every components. Choosing a lower
k would loose continuity of the first derivative and choos-
ing a higher k would increase the range (ti, ti+k) of influ-
ence of every component Mi, which diminishes controlla-
bility of the model. As an example, the family of splines
Mi(x; 3,t), i = 1, . . . , 5 defined on the unit interval from
subdivision t = (0, 0, 0, 1

3 ,
2
3 , 1, 1, 1) is given in the left

part of Figure 2. Finer spline decompositions could be ob-
tained using finer subdivisions. Moreover, it is possible to
use non-equally-spaced knot sequences to have a finer con-
trol of the shape in some parts of interval [a, b]. However,
practical tests show that using too many nodes is counter-
productive to generate smooth and regular curves.

We may define the probability weighting function w as a
weighted combination of Mi-spline functions with prob-
ably good fitting possibilities. However, this would not
guarantee to obtain a non-decreasing weighting function
w. To get rid of the monotonicity constraint (6), we need
another basis specifically designed for the generation of
non-decreasing spline functions. The solution is given by
monotone regression splines that provide very nice descrip-
tive possibilities, as demonstrated by Ramsey [1988]. Such
spline functions are non-decreasing because they are gen-
erated by conical combinations of basis I-spline functions,
i.e., non-decreasing functions defined as the integrals of the
M-splines (which are positive). Formally, these functions
denoted Ii(x; k, t), i = 1, . . . ,m are defined by:

Ii(x; k, t) =

∫ x

a

Mi (y; k, t) dy

Let j be the index such that tj ≤ x < tj+1, the value of an

I-spline is computed as follows:

Ii(x; k, t) =


1 if i < j − k + 1
0 if i > j
j∑
s=i

ts+k+1 − ts
k + 1

Ms(x; k + 1, t) otherwise

As an illustration, the family of splines Ii(x; 3,t), i =
1, . . . , 5 for subdivision t = (0, 0, 0, 0, 1

3 ,
2
3 , 1, 1, 1, 1) is

given in the right part of Figure 2.

Figure 2: Basis functions Mi(x; 3,t) and Ii(x; 3,t)

2.4 REGRET MINIMIZATION WITH I-SPLINES

The computation of PMR is the main building block to
compute minimax regret. In order to compute MR and
MMR, it is indeed sufficient to perform a quadratic num-
ber of PMR optimizations2. We now focus the discussion
on PMR computations and show that the optimization of
regrets is drastically simplified when weighting function w
is defined by a conical combination of Ii-splines:

w(p) =

m∑
j=1

λjIj(p; k, t), λj ≥ 0, j = 1, . . . ,m (8)

Note that, k and t being fixed, function w is completely
characterized by vector λ = (λ1, . . . , λm) ∈ Rm+ . So the
elicitation of the entire function boils down to the elicita-
tion of vector λ. In that case the RDU criterion reads, for
any lottery ` = (x1, p1; . . . ;xn, pn), as follows:

V (`;λ) =

n∑
i=1

m∑
j=1

λjIj(

i∑
k=1

pk; k, t)[u(xi)− u(xi+1)]

By permuting the two first summations in the above
formulation, we obtain V (`;λ) = λᵀv(`, k, t) where
v(`, k, t) ∈ Rm is a vector whose jth component is equal
to
∑n
i=1 Ij(

∑i
k=1 pk; k, t)[u(xi)− u(xi+1)]. Hence PMR

values can be reformulated using vector λ and a set Λ of
admissible weighting vectors replacing W . We obtain:

PMR(`, `′; Λ) = max
λ∈Λ

[V (`′;λ)− V (`;λ)]

= max
λ∈Λ

λᵀ[v(`′, k, t)− v(`, k, t)]

2In fact, a more efficient strategy consists in implementing
an alpha-beta search procedure, in this way it is possible to
prune several cases and compute a much lower number of PMRs
[Braziunas, 2011].



Moreover, the constraint V (`+;w) ≥ V (`−;w) present
in (7) takes now the form of a linear constraint
λᵀ[v(`+, k, t)− v(`−, k, t)] ≥ 0. Hence the set

ΛP = {λ ∈ Rm
+ : ∀(`+, `−)∈P,λᵀ

[v(`
+
, k, t)− v(`

−
, k, t)]≥0}

is a convex polyhedron. Therefore, under the assumption
that I-spline functions are convenient to describe the prob-
ability weighting function, the computation of PMR for a
given pair of lotteries (`, `′), initially introduced as a dif-
ficult optimization problem, see Equations (4-7), can now
easily be achieved by solving the following linear program:

maxλᵀ[v(`′, k, t)− v(`, k, t)]

s.t. λᵀ[v(`+, k, t)− v(`−, k, t)] ≥ 0,∀(`+, `−) ∈ P
λi ≥ 0, i = 1, . . . ,m.

2.5 THE ELICITATION ALGORITHM

Algorithm 1 details the steps involved in our regret-based
approach for the elicitation of w. Given a dataset of deci-
sions (lotteries) L (for each decision we are given a specifi-
cation of the numerical outcomes and their associated prob-
abilities) and a set of initial preferences P (that could be
empty), we compute the initial minimax regret value v, the
max-regret-optimal decision `∗ and the adversarial decision
`a. We then start asking queries.

Function Query simulates the question/answer protocol.
It takes two lotteries as input and returns the preferred lot-
tery among the two. After each user’s response we recom-
pute the minimax regret value, the regret-optimal decision
`∗, and its challenger `a. We loop until the regret drops
below a positive threshold ε. Queries are asked accord-
ing to the current solution strategy (analogue to the strat-
egy used in [Boutilier et al., 2006]), that requires the user
to compare `∗ with `a. The least preferred among `∗ and
`a is removed from L as it is dominated by the other. This
guarantees a strict reduction of |L| at every step, ensuring a
linear convergence in the number of lotteries. The practical
efficiency of this algorithm is illustrated in Section 4.

Note that when the lotteries in L involve a large number
of branches, we cannot expect a DM to be able to com-
pare them with confidence. In such cases, we recommend
to work with two sets of lotteries: the actual set L of lot-
teries (in which the preferred solution must be found), on
which pairwise regrets are computed, and a second set of
simpler lotteries used only for preference queries. For the
latter, we may use lotteries of type `p = (M,p; 0, 1 − p)
(where M is the top outcome) and ask the DM to compare
`p, for some probability p, to some certain consequence x
in [0,M ]. Under the assumptions u(0) = 0 and u(M) = 1,
we derive from the response either w(p)≥ u(x) or the re-
verse inequality, thus reducing uncertainty on function w
and, in most cases, the MMR on actual lotteries.

Algorithm 1: Regret-based elicitation of w
Input: L,P, ε
Output: `∗
begin

`∗ ← arg min`∈LMR(`; ΛP);
`A ← arg max`∈L PMR(`∗, `; ΛP);
v ← MMR(ΛP);
while v > ε do

p← Query(`∗, `A);
L ← L \ the least preferred in {`∗, `a};
P ← P ∪ {p};
v ← MMR(ΛP);
`∗ ← arg min`∈LMR(`; ΛP);
`A ← arg max`∈L PMR(`∗, `; ΛP);

end
end

3 UTILITY ELICITATION IN RDU

In the previous section, we have discussed the elicitation of
the weighting probability function in the RDU model, as-
suming the utility function was known. We discuss now the
elicitation of function u when w is not known. The main
difficulty to overcome lies in the fact that functions u andw
are strongly interlaced in the computation of RDU values,
due to products of type w(

∑i
k=1 pi)u(xi). A given value

u(xi) may impact differently on preferences, depending
on the probability weighting function. Fortunately, there
is a part of DM preferences that are not impacted by w
and that can be used to elicit u. We present two illustra-
tions of this idea in the two next subsections. The fist one
provides a precise spline function interpolating a sample
of points of the utility curve constructed with the gamble
tradeoff method proposed by Wakker and Deneffe [1996].
The second proposes an alternative approach based on sim-
ple queries aiming at obtaining the certainty equivalent of
simple lotteries.

3.1 USING THE GAMBLE TRADEOFF METHOD

We first recall the principle of the gamble tradeoff method
[Wakker and Deneffe, 1996] to construct points on the util-
ity curve. To start with an example, let us consider the
two following lotteries: ` = (c, p; b, 1 − p) and `′ =
(d, p; a, 1 − p) for a probability p ∈ (0, 1), where a, b, c, d
are four distinct outcomes such that a < b < c < d. Then
it can be easily checked from the definition of RDU that the
DM is indifferent between ` and `′ (i.e., V (`) = V (`′)) if
and only if:

[u(b)− u(a)](1− w(p)) = [u(d)− u(c)]w(p) (9)

To construct some points of the utility function u(x), x in
[0,M ], we need two reference values α and β chosen in
such a way that M < α < β. Then, the gamble trade-
off method consists in generating the increasing sequence



defined by r0 = 0 and ri = Query(`i, `
′
i) for i > 1 where:

`i = (α, p; r, 1− p) `′i = (β, p; ri−1, 1− p)

and Query(`i, `
′
i) is a function asking to the DM which

value r makes the two lotteries indifferent and returns this
value. The sequence is generated until r ≥ M . By con-
struction we have V (ri, 1−p;α, p) = V (ri−1, 1−p;β, p).
Similarly we have V (ri+1, 1−p;α, p) = V (ri, 1−p;β, p).
From these two equalities, we obtain, from equation (9):

[u(ri)− u(ri−1)](1− w(p)) = [u(β)− u(α)]w(p)
[u(ri+1)− u(ri)](1− w(p)) = [u(β)− u(α)]w(p)

Hence u(ri+1)− u(ri) = u(ri)− u(ri−1), therefore:

u(ri+1) = 2u(ri)− u(ri−1) (10)

Since u is defined up to a positive affine transformation, we
can set, without loss of generality, u(r0)=0 and u(r1)=1.
Hence, using (10) we obtain u(ri) = i for all i ≥ 0 which
means that the utility function should interpolate points
(ri, i). Moreover, the density of values ri within a given
interval can be increased (resp. decreased) by changing pa-
rameters α and β to reduce or increase the difference β−α.

Assume that q points (ri, i) have been constructed with
the gamble tradeoff method, these points can be interpo-
lated using I-spline regression. So we define the utility
function as a piecewise quadratic monotone spline u(x) =∑
k λkIk(x, 3, t) for a uniform knot sequence t. Then, co-

efficients λk can be determined by minimizing the distance
of the constructed points to the spline u. This is achieved
by solving the following linear program Π:

min
∑q
i=1 ei

s.t.

{
ei ≥ i−

∑
k λkIk(ri, 3, t), i = 1, . . . , q

ei ≥
∑
k λkIk(ri, 3, t)− i i = 1, . . . , q

λk ≥ 0, k = 1, . . . , q.

This approach leads to a precise utility function; however, it
is not incremental and does not provide an easy control on
the number of points elicited on the utility curve.Moreover,
preference queries involved in the process are somewhat
more complex than in the certainty equivalent method. In
the next subsection we present an incremental approach
with simpler preference queries that gives control on which
points are constructed.

3.2 USING THE CERTAINTY EQUIVALENT

An incremental utility elicitation procedure is proposed by
Hines and Larsen [2010] with the aim of eliciting utili-
ties while removing the effects of probability weighting
from users answers. Using pairwise max regret minimiza-
tion, they propose to elicit preferences in both cumulative
prospect theory and expected utility theory by determining
a specific probability value p∗ that allows to ask outcome

queries where the effect of w cancels out. This idea could
be used here but can be simplified in our context. Note
that their definition of regret is based on the EU model and
would not be the most appropriate to derive robust recom-
mendations with respect to RDU. In order words they as-
sume that EU is the right model to produce recommenda-
tions, but observe preferences biased by distorted probabil-
ities as in cumulative prospect theory and RDU.

We propose here another incremental approach involving
simpler preference queries based on the use of certainty
equivalent. It consists first in identifying a probability p∗

such that w(p∗) = 1/2. To this end, we only need to
construct the two first elements r1, r2 following r0 = 0
in the sequence defined in the previous subsection. Then
we ask the DM for which probability p∗ she is indiffer-
ent between lottery ` = (r2, p

∗; r0, 1 − p∗) and lottery
`′ = (r1, 1) yielding r1 with certainty. Since by con-
struction, u(r0) = 0, u(r1) = 1 and u(r2) = 2, V (`) =
u(r0) + w(p∗)[u(r2) − u(r1)] = 2w(p∗) and u(`′) = 1.
This leads to 2w(p∗) = 1 and therefore w(p∗) = 1/2.

Now the utility curve can be incrementally constructed
on any interval [0,M ] using simple indifference queries
based on the following principle: let r− and r+ be any
two distinct values in [0,M ] such that u(r−) and u(r+)
are known (initially we choose r− = 0 and r+ = M
and we set u(0) = 0 and u(M) = 1). Then a new
point can be constructed between positions r− and r+

by asking the DM for the certainty equivalent of lottery
(r+, p∗; r−, 1 − p∗). If the answer is r (meaning that she
is indifferent between the lottery and winning r for sure)
we obtain u(r) = u(r−) + w(p∗)(u(r+) − u(r−)) =
w(p∗)u(r+) + (1− w(p∗))u(r−). Since w(p∗) = 1/2 we
finally obtain u(r) = (u(r−) + u(r+))/2. When u is de-
fined as a monotone spline, the new point will induce new
constraints further restricting the set of possible utilities.

Denoting (ri, u(ri)), i = 1, . . . , q the points already de-
fined at iteration q, utility uncertainty within interval
[ri, ri+1] is bounded above by δi = u(ri+1)−u(ri) due
to monotonicity of u. The next query is selected to ob-
tain a new point in the interval [rk, rk+1] which maxi-
mizes δk; we ask for the certainty equivalent of lottery
(rk+1, p

∗; rk, 1−p∗). The process can be iterated to re-
fine progressively the intervals until the desired number of
points is reached or the maximal δi drops below a given
threshold. Finally, a monotone regression spline is gener-
ated using the linear program Π introduced in subsection
3.1 to approximate the elicited points.

4 NUMERICAL TESTS

Incremental elicitation of w. In order to model function
w, we used I-spline defined from the non-uniform knot se-
quence t′ = (0, 0, 0, 0, .1, 0.9, 1, 1, 1, 1). The use of knots
at positions .1 and .9 instead of 1/3 and 2/3 induces a small



left shift of I1(x, 3, t′) and a small right shift of I5(x, 3, t′)
so as to include extremely concave or convex transforma-
tions in the family of splines that can be generated. This al-
lows to model extremely risk-averse or risk-prone attitudes
if necessary.

In the first series of experiments, we validate our choice
of monotone splines for identifying the DM’s probability
weighting function w. Defining this function as w(x) =∑5
j=1 λjIj(x, 3, t

′), we used a linear program similar to
Π (see Subsection 3.1) to fit parameters λj to different
standard weighting functions, presenting various curves
from extremely concave to extremely convex, including S-
shaped and inverse S-shaped curves as well. The fitting
possibilities of model w defined from I-splines are shown
in Figure 3. In particular, we are able to approximate, with
a single model, different kinds of distortion functions w
(concave, convex, S-shaped) that usually require different
parametric models (Prelec, TK, LinLog; see Section 2.1).

The instances where the approximation is good but not
ideal are those with an extreme steepness (first instance,
for very small value of p, and fourth instance, for very high
values of p, in Figure 3). These situations (w extremely
steep) will be rare in practice and correspond to shapes that
could be even better described with a more specialized knot
sequence. We conclude that the use of I-splines give us
good approximations; splines allow us to learn w without
committing to a specific parametric form.

In the second series of experiments, we observe the num-
ber of queries needed to determine the winning lotteries
within sets of different sizes. The set L is constructed by
repeatedly generating at most k outcomes in [0, 1000] and
a probability distribution on these outcomes to build a new
lottery (with k branches) at step i; this lottery `i is inserted
in L only if no stochastic dominance holds in {`i} ∪ L.
The process is continued until the desired number of lotter-
ies is obtained. We made experiments with lotteries with
k = 2, 3, 5, 10 branches and a simulated DM. For small sets
of alternatives (typically 100 lotteries) the procedure solves
the problem after very few questions. To test the scalability
of the approach to larger sets we have generated instances
including 1000 or 2000 lotteries. Interactions with the DM
are simulated by generating answers to preferences queries
using RDU with an inverse S-shaped probability weight-
ing function w0, unknown from the elicitation procedure,
and a linear utility function. For each set of lotteries we
observed the reduction of the minimax regret (expressed
in percentage of the initial max regret before asking any
query) as the number of queries increases. For compari-
son, we also observed the regret reduction obtained with
an heuristic that randomly selects the new pair of lotteries
to be compared. The resulting curves are plotted in Fig-
ure 4, respectively in green and red. At the same time, we
observed the reduction of real regrets defined as the differ-
ence V (`∗0;w0)−V (`∗;w0) where `∗0 is the optimal lottery

Figure 3: Monotone approximations of w(p).

for the actual weighting function w0, and `∗ is the solu-
tion minimizing the current max regret MR(`;W ). This
third curve is plotted in blue in Figure 4. This experiment
has been repeated multiple times on randomly generated
instances and the results are very similar.

Considering the green and blue curves showing the diminu-
tion of max regret and real regret in Figure 4, it appears that
the winner can be determined exactly among 1000 lotteries
in about 10 queries (in worst case 15 preference queries).
This considerably improves the results obtained with the
random strategy. Similar tests have been performed for
2000 alternatives. The curves have similar shape and show
that less than 10 additional queries are necessary. In fact,
we could stop earlier, when minimax regret is very small
(even if not exactly zero). The elicitation procedure can in-
deed be seen as an anytime algorithm. It can be interrupted



Figure 4: Regret reduction, |L| = 1000, 100 runs.

Figure 5: The spline approximating u(x)

before reaching a null regret, at any time of the process,
and return the current minimax regret solution. We can also
provide the associated max regret as a performance guaran-
tee on the quality of the returned solution. Typically, as can
be seen from the curves, stopping the elicitation when the
minimax regret drops below a given percentage of the ini-
tial max regret (or below a given absolute threshold) will
save a significant percentage of queries (at least 33% in
our tests) without affecting significantly the quality of the
recommendation. The efficiency of this approach is due
to the fact that in most cases, the parameters of the deci-
sion model do not need to be precisely know to be able
to determine a necessary winner, i.e., a lottery ` such that
V (`;w) ≥ V (`′;w) for all `′ ∈ L and all w compatible
with the available preference information.

Utility elicitation. We present now an example of con-
struction of a monotone spline on the [0,1000] interval, to
reveal and model the implicit utility function of a DM in
RDU theory, from observed preferences involving lotteries
with outcomes in this interval. The answers of the DM to
preference queries have been simulated by a RDU model

with an inverse S-shaped probability weighting function
w(p) defined by the TK model introduced in Section 2
with parameter r = 0.5, and a concave utility defined by
u(x) = 1 − (1 − x/1600)4. We successively use the
two methods proposed in Section 3 to elicit points and
generate the regression spline. We first use the gamble
tradeoff method as described in 3.1 with α = 1050 and
β = 1600 to obtain the sequence r0,. . . ,r6. We compute
by linear programming the parameters λk of the monotone
regression spline f that fits best points (ri, i) and define
u(x) = f(x)/f(1000) to obtain u(1000) = 1. In Figure 5,
points (ri, u(ri)) are represented by round points (in red),
and we show the resulting utility function (in blue).

The construction of the monotone spline with the certainty
equivalent method is also shown in Figure 5; the elicited
points are represented by + (in green), numbered by order
of generation, and the resulting utility function is so close
to the previous one that they are indiscernible.

5 CONCLUSION AND PROSPECTIVES

In this paper we proposed an incremental approach for the
elicitation of the RDU model. A first novelty concerns the
use, within the RDU theory, of minimax regret in order to
incrementally elicit the probability weighting function w
and to produce robust recommendations with respect to the
uncertainty in probability weights. A second novelty is the
use of monotonic regression splines as a model of the prob-
ability weighting function, allowing the representation of a
wide variety of decision behaviors and the optimization of
pairwise max-regrets by linear programming. We also ex-
tend the proposed approach to cases where the utility u is
also unknown. Our experiments show that, despite the ex-
pressivity of the model, the elicitation burden is reasonably
low in practice, due to the fixed and limited number of pa-
rameters used in splines approximating u and w, and the
active learning process implemented for w. There are at
least two natural continuations of this work. The first one
consists in extending the approach for cumulative prospect
theory to model different risk attitudes towards gains and
losses. The second would be to jointly learn functions u
and w using an incremental approach based on regret min-
imization, with the aim to save more preference queries.
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