
HAL Id: hal-01345678
https://hal.sorbonne-universite.fr/hal-01345678v1

Submitted on 6 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Linking Virtual Machine Mobility to User Mobility
Stefano Secci, Patrick Raad, Pascal Gallard

To cite this version:
Stefano Secci, Patrick Raad, Pascal Gallard. Linking Virtual Machine Mobility to User Mo-
bility. IEEE Transactions on Network and Service Management, 2016, 13 (4), pp.927-940.
�10.1109/TNSM.2016.2592241�. �hal-01345678�

https://hal.sorbonne-universite.fr/hal-01345678v1
https://hal.archives-ouvertes.fr

ACCEPTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 1

Linking Virtual Machine Mobility to User Mobility
Stefano Secci, Senior Member, IEEE, Patrick Raad, Graduate Student Member, IEEE, Pascal Gallard

Abstract—Cloud applications heavily rely on the network com-
munication infrastructure, whose stability and latency directly
affect the quality of experience. As mobile devices need to
rapidly retrieve data from the cloud, it becomes an extremely
important goal to deliver the lowest possible access latency at the
best reliability. In this paper, we specify a cloud access overlay
protocol architecture to improve the cloud access performance in
distributed data-center (DC) cloud fabrics. We explore how link-
ing virtual machine (VM) mobility and routing to user mobility
can compensate performance decrease due to increased user-
cloud network distance, by building an online cloud scheduling
solution to optimally switch VM routing locators and to relocate
VMs across DC sites, as a function of user-DC overlay network
states. We evaluate our solution (i) on a real distributed DC
testbed spanning the whole France, showing that we can grant a
very high transfer time gain, and (ii) by emulating the situation
of Internet Service Providers (ISPs) and over-the-top (OTT)
cloud providers, exploiting many thousands real France-wide
user displacement traces, finding a median throughput gain from
30% for OTT scenarii to 40% for ISP scenarii, the large majority
of this gain being granted by adaptive VM mobility.

Index Terms—Virtual Machine Mobility, Mobile Cloud Net-
working, Distributed Data-Center, LISP routing.

I. INTRODUCTION

Cloud computing has witnessed a rapid growth over the last
decade, with small and large companies increasingly migrating
to cloud-based Infrastructure as a Service (IaaS) solutions.
Experts believe that this trend will continue to develop further
in the next few years [2].

Cloud providers are increasingly relying on virtualization
to ease network and service management and to decrease
expenses by disentangling the software from the hardware.
Server virtualization also allows taking control over the guest
operating system use of CPU, memory, storage and network
resources, and to deploy advanced applications that can bal-
ance processing between the cloud and the client device.
The common denominator goal in mobile cloud computing
research is to build a cloud access infrastructure that is tailored
to the mobility and the actual computing capabilities of client
device. Very low latency and high reliability requirements are
leading to a reduced wide area networks (WAN) segment
between the cloud and the user, with a higher geographical
distribution of data-centers (DCs) facilities. On the one hand,
a recent study in [3] shows that about 25% of collocation DCs

Submitted on Dec. 8, 2015, revised on Apr. 28 and July 12, 2016, accepted
on July 14, 2016. Editor: Prof. Paolo Bellavista

Stefano Secci is with Sorbonne Universites, UPMC Univ. Paris 06, UMR
7606, LIP6, F-75005, Paris, France. Email: stefano.secci@upmc.fr.

Patrick Raad, Pascal Gallard are with NSS, 215 avenue Georges
Clemenceau, 92024 Nanterre Cedex, France. Email: {praad, pgallard}@nss.fr

A preliminary version is in the proceedings of IEEE NETSOFT 2015 [1].
This work was supported by the LISP-Lab [25] (Grant No. ANR-13-INFR-
0001), ABCD [26] (Grant No. ANR-INFR-0009), PODIUM (Grant No.
15016552), and FP7 MobileCloud (Grant No. 612212) projects.

have three or more sites, and that about 5% have more than
10 sites. On the other hand, the so-called cloudlet solution [4]
is gaining momentum: the idea is to bring cloud servers even
closer to users, with small DCs directly in the access network.
These concerns by cloud and network providers recently led to
the creation of a new Industry Specification Group on Mobile
Edge Computing at ETSI [6].

Cloud applications are increasingly accessed on the move:
when the distance, in terms of network latency, between the
user and the application gets larger, especially for interactive
computing-intensive services, the quality of experience starts
declining. To overcome this limitation one key approach is
to relocate services (server virtual machines) to the closest
data-center according to user’s movement [7], [8]. Mobile
devices using applications such as remote desktop, real-time
voice/video recognition and augmented reality heavily rely
on the cloud back-end and require a very low cloud access
latency, between the user and the computation servers, to
guarantee a pleasant user experience. Voice recognition and
augmented reality constitute the rising star of this industry;
for instance, the introduction of Google Voice Search [9] and
Apple Siri [10] on mobile phones and wearable smart devices,
is revolutionizing the way mobile devices interact with the
cloud. Such services require a cloud network infrastructure
that can handle large amount of data on the go, with minimum
disruption or loss in the quality offered to the user.

In this paper, we focus on giving mobile users a more
efficient access to their cloud applications in a distributed
data-center environment making use of our controller solution,
named Protocol Architecture for Cloud Access Optimization
(PACAO), based on the Locator/Identifier Separation Protocol
(LISP). The goal is to satisfy user’s needs by improving the
Cloud access network latency as a function of user mobility
and user-cloud link quality by switching the entry DC in the
distributed cloud fabric, and operating virtual machines at a
cloud facility closer to its user.

The paper is organized as follows. Section II gives an
overview of related work. Section III describes the PACAO
architecture. Section IV presents experimental results. Finally,
section VI concludes the paper.

II. BACKGROUND

In this section we overview the state of the art on distributed
DC architectures, cloud performance metrics and LISP.

A. Geographically distributed cloud architectures

The current trend in the design of cloud fabrics is to
geographically distribute it over multiple DC facilities [3].
Distributing DC facilities allows, from one hand, to increase
the reliability of hosted services and, from the other hand,
to offer better cloud access performance to customers, thus

ACCEPTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 2

decreasing the network distance between users and computing
facilities. Modular DC architectures [11] have been designed
and evaluated to support this evolution. The common de-
sign goal is to allow building DCs incrementally starting
by regular small building blocks, grouping a few switches
to interconnect a number of virtualization servers, using
regular wiring [12] [13]. As opposed to legacy hierarchical
architectures, modular DCs better accommodate horizontal
traffic between virtualization servers in support of various IaaS
operations such as VM migrations/replications and storage
synchronization.

The conception of small local cloud facilities is at a
good experimental and design stage today. Commonly called
‘cloudlets’ [?], [5], they can support computational offload-
ing [14], granting high network availability and energy gains
to computational intensive applications especially for mobile
devices, such as for instance remote desktop or gaming appli-
cations [15]. The decision to offload application and comput-
ing tasks can be a mere remote decision or local decision taken
by the device. As explained in [16], the decision making can
take into account a number of metrics, including the device
energy gain, the VM migration time when VM migration
is needed, and other system level metrics. Less attention is
devoted in [16] to network-level metrics, whose importance
become higher for geo-distributed cloud deployments.

B. Cloud access performance

In our work we address the following limited set of measur-
able Quality of Service (QoS) goals that directly affect cloud
access performance:
• Availability: it is a measurable metric that indicates the

expected availability rate of a service accessible via a
network, i.e., the probability that a service is available
when a user tries to access it. It often appears as a
binding service-level-agreement (SLA) related to network
services, especially when the customer is a business entity
that requires a very high reliability level . For DC fabric,
the reference availability rates are typically 99.671% for
Tier-1 DCs, 99.741% for Tier-2 DCs, and 99.982% for
Tier-3 DCs [20]. For long-haul network providers, the
carrier-grade network availability rate offered to business
services is often higher than 99,99%, especially for crit-
ical services. Surrounding a failure affecting the access
to one DC of a distributed DC architecture by automat-
ically switching the server routing locator is therefore a
desirable property of a Cloud access solution.

• Network Latency: it is the delay incurred in the delivery
and processing of service data delivered through the net-
work. From the area of usability engineering for legacy
Internet services, the time threshold that could affect
the user’s perception range from a few hundreds of ms,
under which the user feels that the service is no longer
reacting instantaneously, to a few seconds, when the user
clearly perceive the delay [21], and above which there is a
risk that the user abandons the service. For more recent
and forthcoming mobile services, related to augmented
reality, video/voice recognition, remote desktop, network
gaming, much more stringent delay requirements are

Fig. 1: Mobile cloud access reference scenario.

expected - for instance, research on 5G systems actually
targets solutions for 1 ms access latency.

• Network Jitter: it is the variation in the delay experienced
by received packets. Due to congestion, the steady stream
could become lumpy and cause packets to arrive out of
order. Although the tolerance to network jitter is high,
beyond a certain threshold the effects could resemble that
of network loss: packets out of order could be discarded
at the receiver, which directly affects user experience
especially for real-time services.

Our protocol architecture is such that the DC entry and VM
mobility decisions are made accordingly to metrics such as the
availability, the latency and the jitter that are monitored by a
cloud network overlay protocol architecture.

C. Locator/Identifier Separation Protocol (LISP)

The basic idea of the Locator/ID Separation Protocol
(LISP) [22] is to split the localization and identification
functions of legacy IP into two IP addresses: Endpoint IDen-
tifiers (EIDs) assigned to end-points, and Routing LOCators
(RLOCs) assigned to edge routers connected to the global
routing system. To separate the two namespaces, LISP uses
a map-and-encap scheme: at the data-plane level, edge routers
map the identifier to the locator and encapsulate the packet
in another IP packet before sending it to the Internet transit
network. At the control-plane level, a set of locators with
different priorities and weights are affected to an EID-prefix.

A LISP site is managed by at least one tunneling router
(xTR), which has typically a double functionality: ingress
tunnel router (ITR) and egress tunnel router (ETR), the ITR
encapsulating packets and the ETR decapsulating them. LISP
has a distributed mapping system that handles EID-to-RLOC
lookups, including a Mapping Server (MS) and a Mapping
Resolver (MR). The mapping resolution protocol currently
adopted in testbeds and commercial services is based on the
Delegated Database Tree (DDT) protocol [23], which works
similarly to the Domain Name System (DNS).

LISP is undergoing an increasing industrial deployment,
essentially guided by Cisco Systems integration of LISP in
high-end routers, and also in DC switches toward an improved
management of VM mobility [24]. An independent world-wide
testbed based on open source nodes also exists, coordinated by
UPMC [25]. LISP enhancements in support of fast IP mobility

ACCEPTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 3

have been proposed, to manage both VM mobility [27] and
user mobility [28]; LISP offers a more efficient and expressive
framework for the users with respect to alternative solutions
such as mobile IP or DNS-based solutions, thanks to lower
convergence time and direct mapping update [27]. A basic
proposal to use LISP for localizing VMs as a function of user
mobility is also proposed in [7], [29]. This paper goes beyond
those ideas and introduces a LISP QoS-aware architecture
adapted for distributed mobile clouds.

III. MOBILE CLOUD PROTOCOL ARCHITECTURE

A reference example scenario is the one represented in
Fig. 1: the user is connected to a VM located on DC 1,
managed by a Cloud provider that also operates other DCs
(in the figure, DCs 2, 3, 4) such that all the DCs of the Cloud
fabric use a dedicated private network for inter-DC traffic. The
user experience is affected by various QoS factors such as the
Round Trip Time (RTT) and the jitter. Depending on whether
SLA levels are respected or not, the traffic between the user
and DC 1 is susceptible to be switched to the entry of other
DCs. If the access DC is switched and if the VM is not located
at the new access DC, the traffic is rerouted from within the
cross-DC fabric to reach the VM. Eventually if the SLAs are
not met or can be further improved the VM can be adaptively
relocated to or close to the new access DC. Our proposal
consists in defining a Cloud access protocol architecture to
orchestrate and manage these Cloud access operations (i.e.,
adaptive DC entry switching and VM mobility). Our solu-
tion, that we named Protocol Architecture for Cloud Access
Optimization (PACAO), relies on an adaptation of the LISP
architecture as a Cloud access overlay protocol, and on an
optimization framework to adaptively determine the best entry
DC (VM RLOC) and the best VM location on a per-user basis.

A. Overlay Network Requirements and Features

We express, in the following, the requirements in the
definition of a Cloud access overlay architecture, and then we
justify our system design choices.
• VM mobility: in order to bring a VM closer to its user in

terms of SLA distance, the cloud operator must be able to
trigger a VM migration (VM state transfer) or relocation
(active VM copy switching) across multiple sites.

• IP Addressing continuity: it is important to maintain
user’s session when user changes its attachment point
(or Routing LOCator, RLOC). Keeping a session alive
when changing user’s IP address without changing the
application is not obvious. This dually applies to a VM
migrating/relocated across DCs. In fact, in absence of
layer 2 continuity across IP RLOCs (access or gateway
points for users, hosting virtualization server for VMs),
layer 3 continuity needs to be guaranteed by forms of
data-plane encapsulation able to pass through middle-
boxes.

• Access DC switching: the user access or gateway endpoint
should be able to be configured remotely by the cloud
operator so that it changes the access DC toward the

service VM (this logic could also be directly implemented
in the mobile device [30]).

• Cloud access link monitoring: in order to support the
decision-making related to adaptive access DC switching
and VM mobility, the link between the user and its VM
DC location and other possible DC locations needs to be
monitored in order to collect network state metrics.

• VM Orchestration: based on the collected cloud access
overlay link measurements, the DC access switching and
VM mobility decisions need to be taken at a logically
centralized controller.

Among the different overlay protocol alternatives, a few can
satisfy the above requirements. Among the most promising
implemented and widely adopted virtual network overlay
protocols quickly reviewed in [3], only two protocols, LISP
and Virtual eXtensible Local Area Network (VXLAN), offer
the necessary data-plane and control-plane features.

From a data-plane perspective, both LISP and VXLAN
encapsulate over UDP (in the payload, IP encapsulated packets
for LISP and Ethernet encapsulated packets for VXLAN),
which facilitates passing through Internet middle-boxes (which
typically filter or alter TCP packets, and block uncommon
encapsulation protocols not running on top of TCP or UDP);
both LISP and VXLAN use a 64-bit shim header after the
UDP header and before the encapsulated IP/Ethernet packet.
The fact that VXLAN encapsulates Ethernet frames rather than
IP packets makes it particularly appropriate to manage traffic
between virtualization servers, as traffic from virtual machine
to the underneath hypervisor virtual bridge is sent using virtual
Ethernet network interface cards.

From a control-plane perspective, both LISP and VXLAN
offer distributed signaling (working in a pull unicast mode
under the LISP mapping system, or in push multicast mode
in the basic VXLAN control-plane), such that (i) no central
controller is required and needs to be configured to accept
new nodes, (ii) addressing continuity can be guaranteed by
changing the IP routing locator (called VTEP, VXLAN Tunnel
End Point, with VXLAN and RLOC with LISP) of the
destination IP address, and (iii) the virtual link between user
and VM locators can be monitored using control-plane probing
on top of existing control-plane messages.

Therefore, the PACAO prototype makes use of both
VXLAN and LISP, proposing LISP as Cloud access overlay
protocol as user access points often work only at the IP layer,
and VXLAN as inter-DC overlay protocol as VMs of a same
‘cloud’ (or IaaS) natively send traffic to each other using
Ethernet. The major technical reason for not using VXLAN
as Cloud access protocol, is that its basic control-plane func-
tioning, using multicast dissemination of VM positioning to
VTEPs of a same VXLAN, would generate higher signaling
than LISP, which uses unicast control-plane communication
instead. Moreover, the major reason for not using LISP as
inter-DC overlay protocol is that it would require multicast
extensions to its control-plane functions to synchronize VM
location states to a subset of the LISP routers (in fact, a virtual
LAN) beyond which a VM could be migrated or relocated.

In our reference distributed DC fabric, each DC is at
least one LISP site and has at least one LISP tunnel router

ACCEPTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 4

Fig. 2: Distributed DC reference functional scenario.

(xTR). Each xTR can have one or multiple locators (RLOCs)
delivered from different Internet service providers (ISPs). The
VMs on each data-center typically have unique and static
identifiers (EIDs). Indeed, it is possible to maintain the same
EID while moving a VM from one DC to another one as it
has been shown in our previous work [27]. It is assumed that
a VM is also reachable through the RLOCs of the other data-
centers. For example, in Fig. 1 a VM on DC 1 is reachable
through RLOC A as well as RLOC B without the necessity of
moving it to DC 3. Thus, an EID-prefix bound to a VM can
have one or multiple RLOCs from different sites with different
priorities and weights.

Cloud users can also be LISP-capable mobile nodes that
have unique and static EIDs and change their own RLOC
when moving across networks. By decoupling the locator from
the identifier, mobile users are not tied to any geographical
location from an addressing and routing perspective. In fact, in
the example of Fig. 1, when a mobile user with RLOC C roams
onto a new location, he receives a new locator: RLOC D.

In the proposed architecture, a logically centralized con-
troller (possibly composed of distributed agents1) monitors and
measures periodically the states of the user-VM link (in terms
of round-trip-time, jitter, availability, etc) and decides:
• between the different RLOCs that are sent to users

through the EID-to-RLOC mapping, which should have
the highest priority (hence be used by users).

• If after switching to a new RLOC, it is worth moving the
VM to another DC of the Cloud fabric.

Before formulating the optimization algorithm to be solved
by the PACAO controller in order to take the above decisions,
we describe its main modules.

B. PACAO controller

Accordingly to the above mentioned requirements and fea-
tures, the PACAO controller is composed of three modules:
• Monitoring Module: it monitors the connection between

the user and the VM, distinguishing between the user-
xTR and xTR-VM sublinks. To monitor the first one,
active probes periodically collect QoS metrics between

1Mobile nodes can also feature a lightweight version of an agent that
gathers statistics based on user satisfaction. This could help the cloud operator
to tweak up its collected QoS data by building a database that maps user
satisfaction with the location of the network as it has been proposed in [32].

Fig. 3: PACAO policy execution chart.

VM and user’s RLOCs. In order to support all possible
RLOC switching and VM mobility decisions, all VM
RLOCs (and not only the one that belongs to the site
where the VM runs), are monitored. The probing oper-
ation is performed enhancing LISP probing; as of [22],
RLOC probes are used to determine whether a RLOC
is available or not; moreover, it is suggested that these
probes can also be used for monitoring QoS parameters:
accordingly, we implemented RLOC probing in the LIP6-
LISP OpenLISP node [33], [34] to allow transporting
RTT and jitter metric. To monitor the xTR-VM link,
common DC monitoring tools can be used instead.

• Optimization Module: it implements an algorithm that
solves the RLOC switching and VM mobility online
optimization problem (see section III-C). When used for
RLOC optimization, the agent basically takes the metrics
collected from the monitoring module as input to the
optimization algorithm that determines the RLOC that
minimizes a fitness cost. The optimization module also
maps each user’s RLOC to a locators set. The latter
contains all the locators of the DCs from where the VM
is reachable, sorted by a QoS score: the highest score is
attributed to the RLOC that respects and minimizes the
SLA and the cost. The best LISP priority is then attributed
to the RLOC with the highest QoS score, and so on.
When this module is used to decide the VM location,
the agent takes the residual capacity of the destination
hosts, as well as the network information collected by
the monitoring module, and then it lets the algorithm
computing the best location.

• Decision Module: based on the optimization module
solution, the decision module determines whether it is
worthwhile for one or a set of target users to keep routing
through the same RLOC to reach the VM. It can also
decide if it is worth migrating/relocating user’s VM to
another DC.

Each of these modules can logically be implemented on
separate nodes or on the same node; in the former case, the
PACAO controller can be used by one or multiple agents. For
instance, by implementing the monitoring module in xTRs
we can easily interact with the EID-to-RLOC map-cache
through an application programming interface (API) to probe
the cached entries (RLOCs of each user). It should also be
noted that separating the role of the agents into modules
could allow an easier interoperability with other routing and
software-defined network protocols.

ACCEPTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 5

C. Cloud Access Optimization

Fig. 2 depicts an example for the network model assumed
in this paper. We consider three DCs, DC1, DC2 and DC3,
hosting service VMs, interconnected to each other by a meshed
topology. Each DC has one xTR (xTR1, xTR2, xTR3) with at
least one RLOC. For the sake of simplicity, we consider that
a VM is used by one client at the same time (i.e., services
such as virtual workspace or virtual desktop solutions - the
extension with multiple users per VM is straightforward).

As a matter of fact, cloud providers wish to operate their
virtual services at a desired SLA. The user often pays the
service to the providers for an agreed-upon SLA that, if not
respected, can lead to monetary compensations. In this context,
in order to provide the agreed-upon SLA thus minimizing the
penalty, the cloud provider is reasonably interested in trying
to switch the traffic of the user to another DC (by changing
the priorities of the RLOCs in the EID-to-RLOC mapping),
and possibly also issuing a VM migration or relocation.
The Cloud access optimization problem therefore consists in
minimizing the penalties that may arise from not respecting
the agreed-upon SLA, taking decisions upon switching RLOC
and/or moving a VM, while respecting network constraints.
We achieve this goal by letting the objective of the decision
algorithm to be the sum of the penalties related to possible
SLA violations. This also ensures robustness against infeasible
configurations, i.e., there will always be a solution including
transient cases where the link and or DC performance or
capacity is not enough to nullify the penalty, e.g., during
failures. It is however worth noting that, in stable conditions,
the objective value of stable distributed DC configurations is to
be null, and that a non null objective should warn the network
management system of the transient violation of the SLA, such
that other traffic engineering or network planning actions can
be triggered to come back to a stage where all SLAs are met.

We give in the following a polynomial-time linear program-
ming formulation that is versatile enough to be applied for
(i) the RLOC switching problem and (ii) the VM mobility
problem, executed sequentially, by changing the meaning of
variables and parameters. The objective is formulated as:∑

k∈K

αkTk (1)

where K indicates the set of network or system SLA criteria:
k = 1 for round-trip-time (RTT), k = 2 for jitter, k = 3 for
RAM, k = 4 for CPU, etc. αk is a weight that measures
the importance for each criterion, such that 0 ≤ αk ≤ 1 and∑

k∈K αk = 1. Tk is an integer variable representing the penalty
that needs to be minimized for criterion K .

Two important constraints apply. The first is a mapping
integrity constraint: (i) the VM is only hosted at one DC at a
given time, or (ii) the user uses a single RLOC,∑

d∈D

rd = 1 (2)

where D is for (i) the set of the DCs that can host the VM,
and for (ii) the set of RLOCs a user can redirect its traffic
to. rd is a binary variable indicating for (i) if a data-center d
hosts the VM, and for (ii) if user’s traffic is switched to d.

Then we need a QoS level enforcement constraint, in order
not to exceed a fixed threshold or a residual capacity:

md,krd ≤ MkTk (3)

where md,k is the measured capacity of criterion k and Mk is
a residual capacity or a maximum threshold. If the problem
is used to represent the RLOC switching (i), then: k can be
either the RTT or jitter (or potentially any other QoS metric;
please note that availability goal is implicitly enforced by the
optimization operations); md,k represents the measured RTT
or jitter between RLOC d and the user; Mk is the maximum
tolerated threshold. Note that this last constraint cannot lead to
unfeasibility, as the maximum tolerated threshold is rescaled
by Tk . When the problem is meant to represent the decision
problem about migrating/relocating a VM to another DC (ii),
then: md,k represents the actual capacity of the VM such as
the RAM, CPU; Mk is the residual capacity on DC d (it is
straightforward to also include RTT and jitter check besides
the residual capacity, when needed).

Given the single-hop nature of the cloud access overlay
graph, the problem defined by (1)-(3) does not contain flow
conservation constraints, and with a single bin to pack it has
a polynomial complexity and can be easily solved online.

D. Online Scheduling Procedure

The above presented optimization can be triggered by the
monitoring module at each arbitrary duration S′ (Fig. 3) to
check the supervised links. At the end of a time-slot, the
PACAO controller calculates the mean (or any meaningful
statistical value) over the collected statistics for the different
reference QoS metrics and then run the following algorithm:
• Step 1: if the user-VM link measured metric means

respect the QoS levels, then go to 1.1, else go to 1.2.
– 1.1: save the measured data to a database and wait

until next scheduling slot t + 1.
– 1.2: run (1)-(3) as a RLOC switching problem and

apply the solution via LISP.
• Step 2: monitor the network status between the (possible

new) xTR and the VM for another arbitrary duration
S′′ < S′, with a probing interval S′′′ such that a sufficient
number of probes can be collected over S′′. If the agreed-
upon SLAs are respected then go to 1.1, else run Eq. (1)-
(3) as a VM mobility optimization problem.

There are therefore three time intervals that can potentially
have a high impact on the performance of the PACAO opera-
tions (see Fig. 3):
• S’: the interval at which the optimization and decision

modules are sollicited by the monitoring module;
• S”: the duration during which the xTR-VM link is

probed;
• S”’: the probing interval.

S′ , S′′, S′′′ can be determined experimentally. In the simu-
lation section, we will perform a sensibility analysis with key
values of these time components.

It should be clear that the PACAO architecture addresses
both the case when a mobile user roams onto a new location

ACCEPTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 6

Fig. 4: PACAO sequential functional steps.

with the consequent change of the user-VM link performance,
and the case of a sedentary user who could suffer from user-
DC network level degradation independent of user mobility
(certainly the latter situation occur less frequently than the
former one). We implement the monitoring and decision
modules described previously in the xTR.

Example: Fig. 4 illustrates the steps of interaction between
the different elements of the PACAO architecture2.

1) The user wants to establish a connection with a VM
on DC 1. As of LISP architecture, as soon as a data-
plane packet needs to be sent to the VM and if no
entry exists in the local mapping-cache, a LISP MAP-
REQUEST control-plane message to the mapping system
is triggered to get the EID-to-RLOC mapping of the VM
as described in section II-C.

2) xTR 1 replies back with an EID-to-RLOC mapping in
a MAP-REPLY message. It is worth stressing that the
EID-to-RLOC mapping sent to the user contains all the
RLOCs of all DCs with different priorities and weights
from where the service can be reached. The RLOC
priorities are set by the administrator.

3) In order for the VM to communicate with the user,
xTR 1 undergoes the dual signaling procedure as in
Step 1. It then stores the obtained user EID-to-RLOC
mapping in its map-cache, and then actively probes
the user, collecting QoS metrics by RLOC probing. As
discussed in the previous section, the other xTRs should
also gather some metrics. However, only xTR 1 knows
about the user’s location. To overcome this problem, all
xTRs should securely synchronize their mapping cache.
Alternatively, the xTR may be data-plane only elements
(e.g., OpenVSwitch nodes, which natively support the
LISP data-plane) controlled by an external SDN con-
troller (major ones already support LISP control-plane)
centralizing data collection and processing.

4) At the end of a time slot (S′), xTRs send the col-
lected QoS metrics to the optimization module where

2It is worth noting that while the user is meant to be behind xTR1, the VM
is meant to be directly behind at least one xTR among xTR 2 and xTR N .

Fig. 5: Testbed network.

the algorithm described above is implemented. Based
on the algorithm first output (RLOC switching results)
the agent changes the priority of the RLOCs set in
the mapping registrations, and then notifies the user’s
endpoint and updates the Map-Server.

5) When the agent gets the second output, if needed it
triggers a VM migration or relocation to the new DC.

IV. TESTBED EXPERIMENTATION RESULTS

We implemented the PACAO architecture, using as VM
mobility technology the live VM migration [27]3. Our im-
plementation relies on the following nodes.

xTR: we used the LIP6-LISP OpenLISP node [33], [34] as
xTR software router, to which we added the RLOC probing
feature using not only the basic RLOC availability mechanism
but also the RTT and jitter probing logic. The xTR sends
probes and collects QoS metrics between the xTR’s locator
and all the other locators in the mapping cache for each EID
entry. The statistics are then saved in a JSON type file that is
exploited by the controller. Note that the probing frequency
can be changed in the OpenLISP configuration files.

Controller: we implemented the PACAO controller, its
monitoring, optimization and decision modules, using Python.
For the monitoring module, the controller uses the JSON file
above to get the user-to-xTR and xTR-to-VM QoS metrics.
We used the GNU Linear Programming Kit [35] to solve the
optimization problem described in section III-C. To switch
RLOCs we used an API provided by OpenLISP in order to
get the EID-to-RLOC map cache, then send the CHANGE-
PRIORITY message we developed for [27], and update the
user’s mapping cache; to migrate a VM we use the VIRSH
command interface provided by the Libvirt API [36] in KVM.
It is worth noting that we chose to put the controller at the
hypervisor level to overcome some root restrictions; in general,
the controller could be placed in xTRs or even integrated with
OpenStack or alternative SDN controllers.

Our testbed is represented in Fig. 5. We used the LISP-
LAB [25] experimental network, with three sites in the Paris
metropolitan area network (Telcocenter DC in Courbevoie,
Marilyn DC in Champs-sur-Marne, and LIP6 DC) and one

3As an alternative VM mobility approach to VM state migration, one could
use active VM copy switching [41], i.e., multiple VM instances can be made
available at different sites and VM mobility corresponds to changing the active
VM by turning it on, turning the other VM off, and changing the routing maps.

ACCEPTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 7

in Lyon (Rezopole in Lyon-IX), in order to allow for wide
VM migrations and emulate a distributed DC fabric using
KVM virtualization servers at each site. Using VXLAN [31]
for intra-DC fabric reachability, we meshed the 3 KVM servers
acting as service VM containers: one at TelcoCenter DC, one
at Marilyn DC and the last one at the LIP6 DC, enabling
internal traffic redirection. The service VM is an Ubuntu 14.04
server uses a disk mounted on a network file systems. All
the inter-DC links use the plain Internet, except the Marilyn-
TelcoCenter one that is a dedicated 10 Gbps ethernet over
fiber link, yielding to a heterogeneous testbed setting. In order
to ensure the isolation with other existing services already
running on the DCs, we run our experiments in a IaaS using
OpenStack, connecting service VMs to the xTR via VXLAN.
VXLAN ensures that the IaaS is reachable by both data-
centers. We also created an FTP server on the IaaS in order
to measure the user throughput.

A. Routing Locator (RLOC) switching

We first run experiments to evaluate the RLOC switching
feature alone, using the TelcoCenter and Marilyn DCs only in
the distributed DC fabric. The user runs an xTR located in Non
Stop Systems premises behind an 8 Mbps ADSL connection
with an average RTT of 35 ms with the Marilyn DC and a
37 ms with TelcoCenter DC. We used the RTT as user-VM
QoS metric. We have turned our tests over a period of one
month between 8:00 PM and 8:00 AM.

We compare two different cases:
• Legacy: basic configuration with fixed RLOC.
• PACAO-1: our solution limited to RLOC switching opti-

mization feature (VM mobility disabled).

Time (s) Perturbation actions and PACAO actions

125 Stress link between user and TelcoCenter xTR.

135 PACAO switches traffic to Marilyn RLOC.

385 Stop stressing the link.

TABLE I: First experimentation scenario time line.

The scenario is summarized in Table I:
1) the user downloads a 300 MB file from the server. It

connects to TelcoCenter’s xTR (whose RLOC priority
is set to 1, while Marylin’s is set to 2);

2) we set S′ to 10 seconds;
3) after 125 seconds we artificially increase the RTT to

simulate access point or network impairment between
TelcoCenter xTR and the user - the injected RTT varies
between 100 ms and 1000 ms;

4) the agent switches the RLOC to Marilyn xTR;
5) we stop stressing the link after 385 seconds.
Each scenario is repeated about 50 times and the following

results are averages (95% confidence error bars not plotted
because they are not visible). In Fig. 6, we report the aver-
age measured bandwidth for four different emulated network
impairment cases: we inject delays on the user-RLOC link of
100 ms, 200 ms, 400 ms, 1 s. We notice that for the legacy

(a) 100 ms (b) 200 ms

(c) 400 ms (d) 1000 ms

Fig. 6: Average download speed for different RTT increase
impairments on the user-VM link (scenario of Table I).

Fig. 7: Total amount of data downloaded in 450 s

case the bandwidth decreases drastically at 125 s. However,
in PACAO-1, thanks to the adaptive RLOC switching the
bandwidth is quickly restored. It is worth stressing that it takes
S′ = 10s, plus one half of RTT in order to update the map
cache of the user with the CHANGE-PRIORITY message [27].
It is worth mentioning that, from the viewpoint of the user,
the routing locator switching performed by PACAO-1 could
happen almost unnoticed; it can be expected that Quality of
Experience (QoE) ratings (see [17]–[19]) would remain stable
for low user-VM link latency increases, at least for situations
like for case a) in Fig. 6.

In Fig. 7 we report the downloaded volume for the different
cases, during 450 s. We clearly see that with PACAO-1
we maintain roughly the same downloaded volume whatever
the importance of the network impairment is, improving the
download rate by 80%. Moreover, we can notice that the
variance is lower with PACAO-1, hence one could expect that
QoE levels would be maintained, as drops are prevented and
the variability is reduced.

B. RLOC switching and VM mobility
We then run the complete PACAO solution, this time using

all DCs with the user host running as a xTR VM on the KVM

ACCEPTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 8

server of the Rezopole DC site (this allowed us to run the
simulations more frequently during the day and night over a
more reliable connection).

With respect to the previous experiment, for which we only
monitored the user-xTR latency, we did also monitor this time
the RTT on the xTR-VM link too: the sum yields to the global
user-VM latency. Note that in order to trigger a VM migration
after switching the RLOC we have overloaded the inter-DC
links. As a result we generate high load of traffic that is able
to jam the bandwidth and the delay.

For a complete statistical measure we have used IPERF for
generating traffic, simulating both TCP and VoIP connections
and opposing three different cases:
• Legacy situation.
• PACAO-1: PACAO with only RLOC switching.
• PACAO-2: PACAO including VM mobility.

These scenarios are conducted at night between 8:00 P.M.
and 8:00 AM, and are repeated 100 times in order to get
statistically robust results.

Time (s) Perturbation actions and PACAO actions

50 Stress link between user and TelcoCenter xTR.

60 PACAO switches traffic to LIP6 RLOC.

67 PACAO migrates VM to LIP6 site (16 s).

187 Stress link between user and LIP6 xTR.

198 PACAO switches traffic to Marilyn RLOC.

204 PACAO migrates VM to Marilyn site (27 s).

TABLE II: Second experimentation scenario time line.

We then apply to each case the steps in Table II:
1) we start IPERF from both the user and the VM;
2) after 50 s we stress the link between the user and

TelcoCenter xTR; while for the legacy case nothing
changes, for the PACAO cases the controller monitors
the link for S′ = 10s and takes the decision to switch
the traffic to LIP6 RLOC at 60 s.

3) after S′′ = 5s, the controller runs only for PACAO-2
case the VM mobility optimization (based on statistics
collected between each xTR and the actual position
of the VM, TelcoCenter DC), and then issue a VM
migration to the LIP6 DC;

4) we repeat the same operation after 120 s, so that PACAO
first switches the traffic and then migrates the VM to the
Marilyn DC.

As depicted in Fig. 8 we run the experimentation for the
three cases. One should notice that, even after switching the
RLOC (PACAO-1), the user connection is heavily affected due
to inter-DC overloaded links. To overcome the problem, with
PACAO-2, the controller migrates the VM as well (besides
‘migrating’ the DC entry point) in order to prevent traffic
redirection. It can be noticed that Fig. 8 reports a time lapse of
a few seconds between the performance increase with PACAO-
1 and the one with PACAO-2 exists: this time is the time
needed to migrate the VM states from the source server to
the destination server, as described in our previous work [27].
The measured data in the boxplots (minimum, 1st quartile,

Fig. 8: Average bandwidth given the scenario of Table II.

Fig. 9: Total amount of data downloaded in 300 s.

median, 3rd quartile, maximum) of Fig. 9, shows we can gain
up to 40% by switching the RLOC then migrating the VM in
the above described use case.

One concern is whether the proposed PACAO adaptive VM
migration is suitable for real-time services, sensible to packet
loss and jitter. Fig. 10 shows the experienced packet-loss ratio
during real-time UDP-based streaming traffic. We get, with
the provided long-distance setting, a median of 4% packet
loss, which can be considered as marginal, also considered
that other advanced techniques are available in commercial
products to practically nullify the loss by means of triangu-
lation. The jitter results of these simulations are represented
in Fig. 11, which shows no noticeable difference between the
two PACAO cases that offer more stable performance (lower
dispersion around the median) than the legacy solution.

It is worth noticing that when the time to migrate the VM
states is not negligible, i.e., for memory-hungry VMs and
applications, that time could be taken into account in the
VM migration decision logic in order to avoid unnecessary
or counter-productive VM migrations. This can be particularly
relevant in use-cases when the VM state migration time could
be at the same order of magnitude than the time between
two VM migration decisions 4. For instance, this can be the
case for forthcoming metropolitan Mobile Edge Computing
(MEC) use-cases where small-scale/micro user mobility could
be used to trigger VM migrations, such that the time for a

4It is worth noting that in the case VM mobility is implemented using
VM replications [41], the migration time would be negligible as merely
corresponding to the live memory dirty page transfer time.

ACCEPTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 9

Fig. 10: Percentage of lost packets.

Fig. 11: CDF of the average jitter.

user to displace from a MEC delivery node to another one
is comparable to the time needed to migrate the VM states.
The VM state migration time can instead be considered as
negligible in large-scale/macro user mobility use-case such
as ones considering a geo-graphical distribution of computing
facility on distances that take a long time to travel. This latter
use-case is the one considered in the following analysis.

V. EVALUATION USING REAL MOBILITY TRACES

To better understand how our framework would perform in
real deployments, we extracted real cellular user’s large-scale
mobility traces and evaluate the PACAO impact with different
DC geographical distributions. Before detailing the emulation
environment, we first provide a description of the datasets.

A. User mobility traces and data-center distribution

Via a French collaborative research project (ABCD [26]),
we could access large-scale 4G user mobility traces from the
Orange mobile network, made anonymous in their identifiers
and in the precise locations. Positioning was indeed at the
LAC (Local Area Code) level, a LAC being a macro-region
ranging from few kilometers to dozens of kilometers of radius,
depending on population density. Moreover, only the LAC-
level trajectories shared by at least 2 users are extracted
(accordingly to [37]). The data comes from network manage-
ment tickets, collecting LAC-level positioning and application
volume information on a per-session basis, every 6 minutes.
We used mobility traces of one single day, giving a total

of 2.6 millions useful user entries. Applying 2-anonymity
aggregation, and then keeping only those trajectories crossing
more than 3 LACs, we get the 36,450 trajectories we used for
our simulations.

About the DC geographical distribution, we adopted a
gravitational distribution as a function of the user density - this
is practically implemented as a uniform distribution over the
LACs, LACs having a geographical coverage that is inversely
proportional to user density. Each LAC being the possible
location of a DC, with no more than one DC per LAC. In
the following simulations, we vary the DC distribution from 1
to 64 over the France and the Europe territories. The France-
wide DC distribution can be considered equivalent to a deploy-
ment of the PACAO architecture into national ISP networks
directly offering IaaS services to their users. The Europe-wide
DC distribution, instead, can be considered equivalent to the
situation of an over-the-top (OTT) IaaS provider, transparently
interconnected to ISPs and orchestrating resources based on
collected measurements. Accordingly, we refer to the two use-
cases as ‘France/ISP’ and ‘Europe/OTT’ use-cases.

Based on a given DC topology for each simulated instance,
we computed the round-trip time (RTT) between DCs, and
between users and DCs, as follows. The baseline propagation
delay is computed as the rough RTT one would get using
a fiber link interconnection (speed of light at 200 000 km/s
leading to roughly 1 ms each 100 km) over the Euclidean line
connecting the nodes; the RTT is then computed as 3 times the
propagation delay (higher than 2 times as the real physical path
has to be in fact longer than the direct Euclidean one). For the
connection between the user and the DC, we shift the values
by 40 ms to reproduce well-known bufferbloat anomalies in
todays 4G networks.

Fig. 12 represents the 64 DC locations as well as the
mobility traces. Fig. 13 reports the resulting distribution of
used RTTs, between user and DCs and between DCs, for the
France/ISP and Europe/OTT cases.

B. Simulation Results
Based on the collected dataset, we wrote a simulator to

mimic PACAO functionality and estimate the RTT between
users’ geographical position and the DCs. The simulator is in
python and uses CPLEX as solver.

We want to first determine the regime under which our
proposal offers the best results, i.e, which DC distribution
and which time-slot (S′, S′′) setting shall be used for real
deployments. As the PACAO policy impact strongly depends
on the QoS bounds (3), we evaluated different latency bounds:
the 1st decile (strict bound), the median decile bound, and
the 9th decile (loose bound) taken from the distributions in
Fig. 13. We run it for each of the following DC distributions:
2, 4, 8, 16, 32, 64 DCs. In Fig. 14, 15, we plot the offered
median RTT as a function of S′ and S′′ (see sect. III-D),
for the three latency bounds, for the France/ISP and the
Europe/OTT use-cases. The range for S′ goes from 10% to
90% of the residence time for each user in each LAC. As
already mentioned, S′′ < S′ to ensure fast VM migration
decisions with a minimum quality loss - for a given S′, S′′

ranges in [0.1S′,0.9S′].

ACCEPTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 10

(a) France/ISP use-case (b) Europe/OTT use-case

Fig. 12: Representation of the employed trajectories and data-center distribution.

(a) Inter data-center links (b) Users to data-center links

Fig. 13: Emulated round-trip-times between network nodes.

First, we notice that under the loose bound, the results
are uncorrelated from the values assigned to S′ and S′′.
Furthermore, we can notice that:
• Passing from the median to the strict latency bound,

a decrease from 5% to 10% in the median RTT can
be observed in the France/ISP case especially with a
high number of DC sites. The reason is that 90% of
the customers (Fig. 13b) have a user-DC latency that
is greater than the strict bound, i.e., most of the users
can first change their access gateway before migrating
their VM while they are moving. This is less evident
for the median and loose latency bounds because only
50% and 10% of users (loose latency bound) have a
user-DC latency higher than the bound, respectively. This
phenomenon is less important for the Europe/OTT case,
for which a smaller RTT reduction can be noticed only
for some DC distribution cases.

• While starting with 16 DCs the S′ and S′′ values have a
significant impact on the RTT for the France/ISP case, for
the Europe/OTT case we have better results for the 4-DC
and 8-DC distributions. Indeed, in the former case the
user mobility is confined within the French frontier and

there is no roaming across European cities. Intuitively,
when the latency bound plays a relevant weight, the less
time we take to act the better the performance is.

• For the France/ISP case, we observe a latency improve-
ment for low S′, S′′ combinations for a distribution of 16,
32 and 64 DCs. By dispersing the DCs more in France
(Fig. 12a), we assign to mobile users access gateways
closer to their locations, thus providing higher availability
as well as 30% gain in the cloud access latency.

• The lower impact of S′, S′′ setting for the Europe/OTT
case than for the France/ISP case is mostly due to
the higher distance of the DCs in Europe for French
mobile users. However, we notice that we have a 15%
of latency gain (strict and median latency bound) for a
DC distribution of 4 and 8 which corresponds to countries
abutting France.

• Overall, we get the best performance with 64 DCs for
the France/ISP case and 4 DCs for the Europe/OTT case.

Fig. 16 provides the maximum estimated TCP throughput
on a lossless path between legacy architecture and PACAO
framework, computed dividing the typical TCP window size
(163840 bytes) by the RTT [38]; therefore, it does not capture

ACCEPTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 11

(a) Strict latency bound (58 ms) (b) Median latency bound (66 ms) (c) Loose latency bound (70 ms)

Fig. 14: France/ISP: round-trip time results as a function of PACAO S′ and S′′ time-slots values.

(a) Strict latency bound (54 ms) (b) Median latency bound (62 ms) (c) Loose latency bound (72 ms)

Fig. 15: Europe/OTT: round-trip time results as a function of PACAO S′ and S′′ time-slots values.

(a) France/ISP (b) Europe/OTT

Fig. 16: Maximum estimated throughput (Mbps).

packet loss, but we believe it is sufficiently realistic for long-
lasting file transfers (or ‘elephant’ flows) such as storage appli-
cations (it is less realistic for ‘mice’ quick flows such as related
to web browsing). We consider the best S′, S′′ configuration
6’, 36” with 64 distributed DCs for the France/ISP case and
4 DCs for Europe/OTT case. We separate the PACAO1 step
from the PACAO2 step to better show the impact of VM
migration. Besides switching the RLOC (PACAO1, which
grants limited bandwidth gain to some users), linking VM
mobility to user mobility grant a median gain of roughly
40% for the France/ISP case and of roughly 30% for the
Europe/OTT case.

C. Dealing with Cloud Access Congestion

Our cloud access optimization formulation proposed in
section III-C can be extended to take into consideration the
work load on each DC. This can be needed when the gap
between global users’ traffic potentially entering in a DC is on
a comparable scale than the DC access link capacity. In such
cases, congestion delay, packet loss and DC unavailability can
manifest if too many users are concurrently being assigned to
a same DC. For such traffic congestion situation, link latency
can be expressed by a piece-wise function [39], as depicted
in Fig. 17. We provide in the following a reformulation of the
optimization problem to deal with cloud access congestion.

ACCEPTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 12

1) Reformulation: The previous formulation needs to be
adapted to take into consideration many users at once, instead
of a single one. The decision needs no longer to be where to
dispatch a user and where to migrate a user’s VM, but how to
take these decisions for a group of users, simultaneously. The
bin-packing problem hence becomes more challenging (NP-
hard); therefore, we foresee in the new formulation a math-
heuristic approach to iteratively take a subgroup of users, so
that by setting the size of each subgroup we can control the
time complexity. The new formulation is as follows. The new
notation is described in Table III.

min T =
∑
u∈U

Tu (4)

where U is a set of users, T is the global penalty. Four
constraints apply. The first is an integrity constraint - a user
can only have one connection to one DC:∑

d∈D

rdu = 1 ∀ u ∈ U (5)

The number of users on a DC does not exceed a maximum
number defined by the operator:∑

u∈U

rdu + ed ≤ Cd ∀ d ∈ D (6)

where ed is a parameter that represents the number of
existing connection (users) on a DC d. The global latency
on a DC is set following a piece-wise function of the load:

ld ≥ f di
(1
Cd

(∑
u∈U

rdu + ed
))
− Lmax (1−σi) ∀i ∈ I, ∀d ∈ D

(7)∑
i∈I

σi = 1 (8)

where ld is the additional latency on a DC d. Lmax is very
large integer number. I is the set of piece-wise steps. Using
piece-wise latency functions, computed via (7), is a common
practice in IP network management since seminal works such
as [40]. The last constraint is to push to meet the latency SLA:

ld + ldu ≤ LTu ∀ d ∈ D,u ∈ U (9)

Similarly, additional additive SLA constraints can be applied,
for instance on the packet loss, etc.

The time-complexity can be controlled by dividing the
users into sub-groups, executing the optimization iteratively
for different groups, by increasing ed whenever users are
added to a DC d. The number of users to treat in each single
batch has to be properly determined in order to have the find
an acceptable execution time bound for a given setting.

2) Simulation Results: In Fig. 18 we report the CDF of the
RTT under (4)-(9), for different DC distributions and for the
two use-cases. We set the maximum latency bound to the strict
latency bounds previously adopted, and used the piece-wise
function of Fig. 17. We set the congestion latency component
scale as of Fig. 17 so that it has a non negligible impact on
user’s latency. The maximum capacity of each DC is set to
twice the bandwidth required to collect the portion of traffic

Fig. 17: Piece-wise latency function of the link load.

Parameters

Cd maximum capacity for DC d ∈ D
Lmax maximum allowed round-trip time
f di (x) i-th latency parameter function on DC d ∈ D depending

on its access link load x

ed number of existing users on DC d ∈ D

ldu latency between user u ∈ U and DC d ∈ D

Binary variables

rdu 1 if user u ∈ U is connected to DC d ∈ D

σd
i 1 if the i-th latency function f di (x) is activated

Non-negative continuous variables

Tu ≥ 1, penalty of user u ∈ U

ld global latency on DC d ∈ D

TABLE III: New variables and parameters.

in case of equal traffic proportioning over all available DCs,
so that each DC cannot be overloaded attaining 700 ms.

The main result that derives from Fig. 18 is that, under
congestion-awareness, the number of deployed DCs do not
matter that much any longer, as far as their access capacity
is appropriately dimensioned to accommodate all traffic (as it
should be for real deployments). Indeed, the CDFs overlap for
almost all the cases except with 64 DCs, where 50% of the
users have a RTT that is greater than 75 ms.

We depict in Fig. 19 how users get dispatched on the
distributed fabric, for the 64 DC France/ISP and 4 DC Eu-
rope/OTT cases, as compared to the case without congestion
awareness. The load is better balanced over all the available
DCs under congestion awareness. In the Europe/OTT case,
this leads to higher load on the eastern DCs, as the western
DCs were capturing most of the traffic.

VI. SUMMARY AND FUTURE WORK

A major concern in mobile cloud networking is finding
automated and transparent ways for smart virtual machine
mobility taking into account major user displacements, in a
cloud network context where the data-center fabric is geo-
graphically distributed. Should the user get too far away from
its infrastructure as a service (IaaS) virtual machine resources,
open challenging research questions are to determine if and
how it would be beneficial (i) to move its virtual machines
to a closer data-center virtualization facility nearby, (ii) to
just switching its data-center routing locator (entry point of
the distributed cloud fabric), (iii) to perform both previous
operations, and finally (iv) how to technically perform these

ACCEPTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 13

(a) France/ISP use-case (b) Europe/OTT use-case

Fig. 18: RTT distribution under congestion-aware optimization for different DC distributions.

(a) France/ISP use-case (b) Europe/OTT use-case

Fig. 19: Distribution of users over DCs with and without congestion-aware scheduling.

operations transparently with respect to the underlying net-
work infrastructure.

In this paper, we designed a cloud access overlay pro-
tocol architecture able to support and perform these tasks.
It includes a controller able to compute and instantiate, in
an online fashion, new user-to-data-center flow assignment
as well virtual machine mobility across data-centers. The
cloud network overlay is based on marginal improvement of
the LISP protocol, which is able by means of IP-over-IP
encapsulation to support live virtual machines across distant
data-centers. The routing decisions taken by the controller are
triggered by changes in the network states, such as increased
latency between user and its VMs, and can be run on a per-
user fashion or grouping multiple users in the same time to
master crowd congestion effects.

We evaluated our proposal with two different methodolo-
gies, on a real geographically distributed testbed including four
distant data-centers in France, and by simulation using large-
scale mobility traces from a major mobile Internet service
provider.

The testbed results show that the gain in terms of throughput
can be very important, more than double with respect to
the legacy situation with a fixed data-center entry point and

no adaptive virtual machine mobility. A very high marginal
gap is brought by adaptive virtual machine mobility, while
data-center routing locator switching alone can grant a less
important, yet high, gain. The simulation run using 36,450
anonymized real user mobility traces across the whole France,
and simulating different distributed data-center topologies
ranging from 4 sites to 64 sites over both France and Europe
scales to simulate the use-case of a national ISP and of an
OTT cloud provider. The results show a first counter-intuitive
result that the largest gain can be granted with many (64) DCs
for the France/ISP use-case and with a few (4) DCs for the
Europe/OTT case. The gains in terms of median throughput
are as high as 40% for the France/ISP case and 30% for the
Europe/OTT case with respect to the legacy situation.

Our results are very promising and positively support the
technology shift in mobile cloud networking represented by
linking virtual machine mobility to user mobility. We proved
by both testbed experimentation and simulation results against
real traces that disposing of a distributed data-center fabric can
bring to major benefits for the users in terms of throughput
and cloud access/retrieval latency. Such networking situations
are particularly appealing as they also offer higher availability
and path diversity to users.

ACCEPTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 14

As a future work, we plan to investigate how the usage of
multipath transport protocols can grant additional performance
gains to the user, and the data-center access network provider.
Moreover, an interesting possible further work is to conduct
a QoE rating experimentation campaign to asses the perfor-
mance of the proposed solutions with a perspective closer to
Cloud users than to network managers.

REFERENCES

[1] P. Raad, S. Secci, C. D. Phung, and P. Gallard, “PACAO: Protocol
Architecture for Cloud Access Optimization,” in Proc. of 2015 IEEE
1st Int. Conference on Network Softwarization (IEEE NETSOFT 2015),
Apr. 2015.

[2] Gartner Cloud Computing Forcasts Update. [Online]. Available: http:
//www.gartner.com/newsroom/id/2613015/

[3] S. Secci and S. Murugesan, “Cloud Networks: Enhancing Performance
and Resiliency,” Computer, vol. 47, no. 10, pp. 82–85, 2014.

[4] M. Satyanarayanan et al., “The Case for VM-Based Cloudlets in Mobile
Computing,” Pervasive Computing, IEEE, vol. 8, no. 4, pp. 14–23, 2009.

[5] A. Ceselli, M. Premoli, and S. Secci, “Cloudlet Network Design Opti-
mization,” in Proc. of IFIP Networking, 2015.

[6] “Mobile-Edge Computing ? Introductory Technical White Paper,” ETSI
MEC Industry Specification Group 1, 2014.

[7] S. Secci, "Cloud and Mobility: a Castling Move?", Global Secu-
rity Magazine, Avril 2012 (online). http://www.globalsecuritymag.fr/
Stefano-Secci-LIP6-consortium,20120426,29908.html.

[8] T. Taleb and A. Ksentini, “Follow me cloud: interworking federated
clouds and distributed mobile networks,” IEEE Network, vol. 27, no. 5,
pp. 12–19, 2013.

[9] Google Voice. [Online]. Available: https://www.google.com/voice/
[10] Apple Siri. [Online]. Available: https://www.apple.com/ios/siri/
[11] J. Hamilton, “Architecture for modular data centers,” arXiv preprint

cs/0612110, 2006.
[12] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: a scalable

and fault-tolerant network structure for data centers,” ACM SIGCOMM
Computer Communication Review, vol. 38, no. 4, pp. 75–86, 2008.

[13] C. Guo et al., “BCube: a high performance, server-centric network
architecture for modular data centers,” ACM SIGCOMM Computer
Communication Review, vol. 39, no. 4, pp. 63–74, 2009.

[14] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” Computer, vol. 43, no. 4, pp. 51–
56, 2010.

[15] L. Jiao, R. Friedman, X. Fu, S. Secci, Z. Smoreda, and H. Tschofenig,
“Challenges and Opportunities for Cloud-based Computation Offloading
for Mobile Devices,” in Proc. of Future Network & Mobile Summit 2013.
IEEE, Jul. 2013.

[16] A. Ravi and S. K. Peddoju, “Handoff Strategy for Improving Energy
Efficiency and Cloud Service Availability for Mobile Devices,” Wireless
Personal Communications, pp. 1–32, 2014.

[17] T. M. O’Neil, “Quality of experience and quality of service for IP video
conferencing,” Tech. Rep., 2002.

[18] M. Fiedler, T. Hossfeld, and P. Tran-Gia, “A generic quantitative
relationship between quality of experience and quality of service,” IEEE
Network, vol. 24, no. 2, pp. 36–41, 2010.

[19] Qualinet White Paper on Definitions of Quality of Experience. Output
from the fifth Qualinet meeting, Novi Sad, March 12, 2013.

[20] W. Turner, J. H. Seader, and W. Renaud, “Data center site infrastructure
tier standard: Topology,” Uptime Institute, 2010.

[21] A. Bouch, A. Kuchinsky, and N. Bhatti, “Quality is in the eye of the
beholder: meeting users’ requirements for Internet quality of service,”
in Proc. of ACM CHI, 2000.

[22] D. Farinacci et al., “The locator/ID separation protocol (LISP),” RFC
6830, Jan. 2013.

[23] V. Fuller, D. Lewis, and D. Farinacci, “LISP Delegated Database Tree,”
draft-ietf-lisp-ddt-07, 2016.

[24] Cisco, “Locator ID Separation Protocol (LISP) VM Mobility Solution,”
Tech. Rep., 2011.

[25] ANR LISP-Lab Project. [Online]. Available: http://www.lisp-lab.org
[26] ANR ABCD Project. [Online]. Available: https://abcd.lip6.fr
[27] P. Raad et al., “Achieving Sub-Second Downtimes in Large-Scale Virtual

Machine Migrations with LISP,” Network and Service Management,
IEEE Transactions on, vol. 11, no. 2, pp. 133–143, 2014.

[28] A. Galvani et al., “LISP-ROAM: network-based host mobility with
LISP,” in Proc. of ACM MobiArch, 2014.

[29] A. Ksentini, T. Taleb, and F. Messaoudi, “A LISP-based Implementation
of Follow Me Cloud,” IEEE Access, vol. 2, pp. 1340–1347.

[30] LISPmob. [Online]. Available: http://www.lispmob.org
[31] M. Mahalingam et al., “Virtual extensible local area network (VXLAN):

A framework for overlaying virtualized layer 2 networks over layer 3
networks,” RFC 7348, 2014.

[32] T. Taleb and A. Ksentini, “QoS/QoE predictions-based admission control
for femto communications,” in Proc. of IEEE ICC, 2012.

[33] LIP6-LISP open source implementation (website): https://giithub.com/
lip6-lisp.

[34] D. C. Phung et al., “The OpenLISP control plane architecture,” IEEE
Network Magazine, vol. 38, no. 2, pp. 34–40, 2014.

[35] GNU Linear Programming Kit. [Online]. Available: https://www.gnu.
org/software/glpk

[36] LibVirt virtualization API. [Online]. Available: http://www.libvirt.org
[37] B. Gedik and L. Liu, “Protecting location privacy with personalized

k-anonymity: Architecture and algorithms,” Mobile Computing, IEEE
Transactions on, vol. 7, no. 1, pp. 1–18, 2008.

[38] B. Constantine, G. Forget, R. Geib, and R. Schrage, “Framework for tcp
throughput testing,” RFC 6349, IETF, 2011.

[39] L. Qiu, Y. R. Yang, Y. Zhang, and S. Shenker, “On selfish routing in
internet-like environments,” in Proc. of ACM SIGCOMM 2013.

[40] B. Fortz, M. Thorup, “Internet traffic engineering by optimizing OSPF
weights”. In Proc. of IEEE INFOCOM 2000.

[41] B. Cully, et al, “Remus: High availability via asynchronous virtual
machine replication’, In Proc. of USENIX NSDI 2008.

Stefano Secci is an Associate Professor at the
University Pierre and Marie Curie (UPMC - Paris
VI, Sorbonne Universites), France, since 2010. He
received a “Laurea” degree in Telecommunications
Engineering from Politecnico di Milano, in 2005,
and a dual Ph.D. degree in computer networks from
the same university and Telecom ParisTech, France,
in 2009. He is the current Chair of the Internet
Technical Committee (ITC), joint between the IEEE
Communication Society and the Internet Society
(ISOC), since 2013. His works mostly cover network

optimization, protocol design, Internet routing and traffic engineering. More
information can be found at http://lip6.fr/Stefano.Secci.

Patrick Raad obtained a computer science degree
from the Lebanese University in 2011, and the
M.Sc. and Ph.D. degree in networking from UPMC,
France, in 2012 and 2015, respectively. He is cur-
rently senior researcher at Non Stop Systems (NSS),
France. His current interests include Internet routing
and Cloud Networking.

Pascal Gallard obtained a computer science degree
from Rennes University in 2001, and a Ph.D. degree
in computer from INRIA and Rennes University in
2004. He was the cofounder of Kerlabs, a company
on system virtualization, where he worked from
2006 to 2010. Since 2011 he is a research and
development director at Non Stop Systems (NSS),
an SME on Cloud computing and virtualization.

