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We introduce an orbital-optimized double-hybrid (DH) scheme using the optimized-effective-
potential (OEP) method. The orbitals are optimized using a local potential corresponding to the
complete exchange-correlation energy expression including the second-order Møller-Plesset (MP2)
correlation contribution. We have implemented a one-parameter version of this OEP-based self-
consistent DH scheme using the BLYP density-functional approximation and compared it to the cor-
responding non-self-consistent DH scheme for calculations on a few closed-shell atoms and molecules.
While the OEP-based self-consistency does not provide any improvement for the calculations of
ground-state total energies and ionization potentials, it does improve the accuracy of electron affini-
ties and restores the meaning of the LUMO orbital energy as being connected to a neutral excitation
energy. Moreover, the OEP-based self-consistent DH scheme provides reasonably accurate exchange-
correlation potentials and correlated densities.

I. INTRODUCTION

Density-functional theory (DFT) [1, 2] is a powerful
approach for electronic-structure calculations of atoms,
molecules, and solids. In the Kohn-Sham (KS) for-
mulation, series of approximations for the exchange-
correlation energy have been developed for an ever-
increasing accuracy: local-density approximation (LDA),
semilocal approximations (generalized-gradient approxi-
mations (GGA) and meta-GGA), hybrid approximations
introducing a fraction of Hartree-Fock (HF) exchange,
and nonlocal correlation approximations using virtual KS
orbitals (see, e.g., Ref. 3 for a recent review).

In the latter family of approximations, the double-
hybrid (DH) approximations are becoming increasingly
popular. Introduced in their current form by Grimme [4],
they consist in combining a semilocal exchange density
functional with HF exchange and a semilocal correla-
tion density functional with second-order Møller-Plesset
(MP2) perturbative correlation. Numerous such DH ap-
proximations have been developed in the last decade (see
Ref. 5 for a review). In general, DH approximations
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give thermochemistry properties with near-chemical ac-
curacy for molecular systems without important static
correlation effects. In virtually all applications of DH
approximations, the orbitals are calculated within the
generalized KS (GKS) framework [6] (i.e., with a non-
local HF exchange potential) and without the presence
of the MP2 correlation term. The MP2 contribution is
then evaluated using the previously self-consistently cal-
culated orbitals and added a posteriori to the total en-
ergy. Recently, Peverati and Head-Gordon [7] proposed
an orbital-optimized DH scheme where the orbitals are
self-consistently optimized in the presence of the MP2
correlation term. This is a direct extension of orbital-
optimized MP2 schemes in which the MP2 total energy is
minimized with respect to occupied-virtual orbital rota-
tion parameters [8, 9]. Like for regular orbital-optimized
MP2 method, also here the optimization of orbitals
leads to substantial improvements in spin-unrestricted
calculations for symmetry breaking and open-shell situ-
ations. Very recently, an approximate orbital-optimized
DH scheme was also proposed which confirmed the util-
ity of optimizing the orbitals in complicated electronic-
structure problems [10].

In this work, we propose an alternative orbital-
optimized DH scheme using the optimized-effective-
potential (OEP) method [11, 12] (see Refs. 13–15 for re-
views on OEP). The idea is to optimize the orbitals in the
DH total energy expression by using a fully local poten-
tial corresponding to the complete exchange-correlation
energy expression including the MP2 contribution. This
can be considered as an extension of OEP schemes using
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a second-order correlation energy expression [16–20].
In comparison to the previously-mentioned orbital-

optimized DH schemes, we expect that the proposed
OEP self-consistent DH scheme to provide additional ad-
vantages. First, there is the appeal of staying within the
philosophy of the KS scheme with a local potential. Sec-
ond, having a local potential and the associated orbital
energies can be useful for interpretative purposes. Third,
the OEP approach can be advantageous in calculations
of excitation energies and response properties, similarly
to the advantages of using OEP exact exchange (EXX)
versus regular HF. Indeed, contrary to the HF case,
with EXX the unoccupied orbitals feel a local potential
asymptotically decaying as −1/r, allowing it to support
many unoccupied bound states, which are good starting
points for calculating high-lying/Rydberg excitation en-
ergies and response properties (see, e.g., Refs. 13, 15, and
21).

The paper is organized as follows. In Section II, we
review the theory of the standard DH approximations
and formulate the proposed self-consistent OEP DH ap-
proach. We also explain how the ionization potential and
the electron affinity are obtained in both methods. After
providing computational details in Section III, we discuss
our results in Section IV on total energies, ionization po-
tentials, electron affinities, exchange-correlation and cor-
relation potentials, and correlated densities obtained for
a set of atoms (He, Be, Ne, Ar) and molecules (CO and
H2O). Finally, Section V contains our conclusions.

Throughout the paper, we use the convention that i
and j indices label occupied spin orbitals, a and b label
virtual ones, and p and q are used for both occupied
and virtual spin orbitals. In all equations Hartree atomic
units are assumed.

II. THEORY

A. Standard double-hybrid approximations

For simplicity, in this work, we consider the one-
parameter double-hybrid (1DH) approximation of Ref. 22
in which the density scaling in the correlation func-
tional is neglected. The extension to more general
density-scaled or two-parameter double-hybrid approx-
imations [4] is straightforward. The expression of the
total energy is thus written as

E =
∑
i

∫
ϕ∗i (x)

(
−1

2
∇2 + vne(r)

)
ϕi(x) dx

+EH + E1DH
xc , (1)

where ϕi(x) are the occupied spin orbitals with
x = (r, σ) indicating space-spin coordinates. In
Eq. (1), vne(r) is the nuclei-electron potential, EH =
(1/2)

∫∫
n(x1)n(x2)/|r2 − r1|dx1dx2 is the Hartree en-

ergy written with the spin densities n(x) =
∑
i |ϕi(x)|2,

and E1DH
xc is the exchange-correlation energy taken as

E1DH
xc = E1H

xc + λ2 EMP2
c . (2)

In this expression, E1H
xc is the one-parameter hybrid (1H)

part of the exchange-correlation energy

E1H
xc = λEHF

x + (1− λ)EDFA
x + (1− λ2)EDFA

c , (3)

and λ (0 6 λ 6 1) is an empirical scaling parameter. The
expression of the HF (or exact) exchange energy is

EHF
x = −1

2

∑
i,j

〈ij|ji〉, (4)

where 〈pq|rs〉 =
∫∫

dx1dx2ϕ
∗
p(x1)ϕ∗q(x2)ϕr(x1)ϕs(x2)/|r2−

r1| are the two-electron integrals. The expression for the
MP2 correlation energy is

EMP2
c = −1

4

∑
i,j

∑
a,b

|〈ij||ab〉|2

εa + εb − εi − εj
, (5)

where 〈ij||ab〉 = 〈ij|ab〉−〈ij|ba〉 are the antisymmetrized
two-electron integrals, and εp is the energy of the spin
orbital p. Finally, EDFA

x and EDFA
c are the semilo-

cal density-functional approximations (DFA) evaluated
at the spin densities n(x). For example, choosing the
Becke 88 (B) exchange functional [23] and the Lee-Yang-
Parr (LYP) correlation functional [24] leads to the 1DH-
BLYP double-hybrid approximation [22] which is a one-
parameter version of the B2-PLYP approximation [4].

We must stress here that the expression of the corre-
lation energy in Eq. (5) has a standard MP2 form. How-
ever, except for λ = 1, the orbitals are not the HF ones,
so the value of the correlation energy in Eq. (5) calculated
with these orbitals does not correspond to the standard
MP2 correlation energy. In the DFT context, the most
usual second-order correlation energy expression is given
by second-order Görling-Levy (GL2) perturbation the-
ory [16, 17], which in addition to the MP2-like double-
excitation term also includes a single-excitation term. In
this work, following the standard practice for the double-
hybrid approximations, we do not include the single-
excitation term, which is usually two orders of magnitude
smaller than the double-excitation term [25–27].

In the standard DH approximations, the spin orbitals
are calculated by disregarding the MP2 term in Eq. (2)
and considering the HF exchange energy as a func-
tional of the one-particle density matrix n1(x′,x) =∑
i ϕ
∗
i (x)ϕi(x

′), leading to a GKS equation(
−1

2
∇2 + vne(r) + vH(r)

)
ϕp(x)

+

∫
v1Hxc (x,x′)ϕp(x

′)dx′ = ε1Hp ϕp(x), (6)

where vH(r) =
∫
n(x′)/|r′−r|dx′ is the Hartree potential

and v1Hxc (x,x′) is the functional derivative of the three
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terms in Eq. (3) with respect to n1(x′,x)

v1Hxc (x,x′) =
δE1H

xc

δn1(x′,x)

= λvHF
x (x,x′) + (1− λ)vDFA

x (x)δ(x− x′)

+(1− λ2)vDFA
c (x)δ(x− x′). (7)

In this expression, vHF
x (x,x′) = −n1(x,x′)/|r− r′| is the

nonlocal HF potential, while vDFA
x (x) = δEDFA

x /δn(x)
and vDFA

c (x) = δEDFA
c /δn(x) are the local exchange and

correlation DFA potentials, respectively. These 1H or-
bitals and corresponding orbital energies ε1Hp are thus
used in the MP2 correlation expression of Eq. (5). We
recall that for λ = 0 the 1DH method reduces to the
standard KS scheme, while for λ = 1 it recovers the
standard MP2 method with HF orbitals. In practice,
optimal values of λ are around 0.6-0.8, depending on the
density-functional approximations used [22, 28, 29].

B. Self-consistent OEP double-hybrid
approximations

Here, we propose to fully self-consistently calculate the
spin orbitals in the DH approximations by taking into ac-
count the MP2 term, and considering the HF exchange
energy and MP2 correlation energy as implicit function-
als of the density. Thus, Eq. (6) is replaced by a KS
equation(

−1

2
∇2 + vne(r) + vH(r) + vOEP-1DH

xc (x)

)
ϕp(x)

= εpϕp(x), (8)

where vOEP-1DH
xc is a fully local potential obtained by tak-

ing the functional derivative with respect to the density
of all terms in Eq. (2)

vOEP-1DH
xc (x) =

δE1DH
xc

δn(x)

= λvEXX
x (x) + (1− λ)vDFA

x (x)

+(1− λ2)vDFA
c (x) + λ2vGL2

c (x), (9)

where vEXX
x (x) = δEHF

x /δn(x) is the EXX potential and
vGL2
c (x) = δEMP2

c /δn(x) is here referred to as the GL2

correlation potential (even though it does not contain
the single-excitation term). Since EHF

x and EMP2
c are

only implicit functionals of the density through the or-
bitals and orbital energies, the calculation of vEXX

x (x)
and vGL2

c (x) must be done with the OEP method, as
done in Refs. 18–20. We note that several alternative
methods to OEP have been proposed [30–36], but we
do not consider these alternative methods in this work.
We will refer to the present approach as the OEP-1DH
method. As in the case of the standard DH approach, for
λ = 0 the OEP-1DH method reduces to the standard KS
scheme. For λ = 1 it reduces to a correlated OEP scheme
with the full MP2-like correlation energy expression (but
without the single-excitation term), here referred to as
the OEP-GL2 scheme.

The OEP equations for the EXX exchange and GL2
correlation potentials∫

vEXX
x (x′) χs(x

′,x) dx′ = Λx(x), (10)

and ∫
vGL2
c (x′) χs(x

′,x) dx′ = ΛMP2
c (x), (11)

can be obtained after applying a functional-derivative
chain rule (see, e.g., Refs. 14, 18, 20, 27, and 37). In
these expressions, χs(x

′,x) = δn(x′)/δvs(x) is the KS
static linear-response function which can be expressed in
terms of spin orbitals and spin orbital energies,

χs(x
′,x) = −

∑
i

∑
a

ϕ∗i (x
′)ϕa(x′)ϕ∗a(x)ϕi(x)

εa − εi
+ c.c.,

(12)
where c.c. stands for the complex conjugate, and vs(x) =
vne(r) + vH(r) + vOEP-1DH

xc (x) is the total KS potential.
The expressions for Λx(x) and ΛMP2

c (x) are, respectively,

Λx(x) =
δEHF

x

δvs(x)
=
∑
i

∫
dx′

(
δEHF

x

δϕi(x′)

δϕi(x
′)

δvs(x)
+ c.c.

)
=
∑
i,j

∑
a

(
〈ij|ja〉ϕ

∗
a(x)ϕi(x)

εa − εi
+ c.c.

)
, (13)

and

ΛMP2
c (x) =

δEMP2
c

δvs(x)
=
∑
p

[∫
dx′

(
δEMP2

c

δϕp(x′)

δϕp(x
′)

δvs(x)
+ c.c.

)
+
∂EMP2

c

∂εp

δεp
δvs(x)

]

=
1

2

∑
i,j

∑
a,b

∑
q 6=i

(
〈ij||ab〉〈ab||qj〉
εa + εb − εi − εj

ϕ∗q(x)ϕi(x)

εq − εi
+ c.c.

)
+

1

2

∑
i,j

∑
a,b

∑
q 6=a

(
〈ij||qb〉〈ab||ij〉
εa + εb − εi − εj

ϕ∗q(x)ϕa(x)

εq − εa
+ c.c.

)

+
1

2

∑
i,j

∑
a,b

|〈ij||ab〉|2

(εa + εb − εi − εj)2
(
|ϕa(x)|2 − |ϕi(x)|2

)
. (14)

In practice, in order to solve the OEP equations [Eqs. (10) and (11)], the EXX and GL2 potentials are
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calculated using expansions in a finite Gaussian basis
set [38–42]. The EXX potential is thus expanded over or-
thonormalized auxiliary Gaussian basis functions {gn(r)}
as

vEXX
x (rσ) = vSlater(rσ) +

∑
n

cσx,n gn(r), (15)

where the Slater potential, vSlater(rσ) =
−(1/n(x))

∫
dx′|n1(x,x′)|2/|r − r′|, is added to en-

sure the correct −1/|r| asymptotic behavior of the
potential. Similarly, the GL2 potential is expanded as

vGL2
c (rσ) =

∑
n

cσc,n gn(r). (16)

Expanding as well the linear-response function in the
same basis

χs(rσ, r
′σ) =

∑
n,m

(Xσ)nmgn(r)gm(r′), (17)

and after using Eq. (10), the coefficients in Eq. (15) are
found as

cσx,n =
∑
m

(Λx,σ)m(X−1σ )mn − vσSlater,n, (18)

where (Λx,σ)m =
∫

dr gm(r)Λx(rσ), vσSlater,n =∫
dr gn(r)vSlater(rσ), and (X−1σ )mn are the elements of

the (pseudo-)inverse of the matrix Xσ. Similarly, after
using Eq. (11), the coefficients in Eq. (16) are found as

cσc,n =
∑
m

(ΛMP2
c,σ )m(X−1σ )mn, (19)

where (ΛMP2
c,σ )m =

∫
dr gm(r)ΛMP2

c (rσ). In this work,
the same basis set is used for expanding the orbitals
and the potentials. In practice, our OEP-1DH calcu-
lations employ a truncated singular-value decomposi-
tion (TSVD) method for the construction of the pseudo-
inverse of the linear-response function [used in Eqs. (18)
and (19)] to ensure that stable and physically sound so-
lutions are obtained in the OEP equations [Eqs. (10)
and (11)].

In principle, this procedure selects the EXX and GL2
potentials which vanish at |r| → ∞. We note that, when
continuum states are included, the GL2 potential actu-
ally diverges at infinity for finite systems [43–47]. Nev-
ertheless, this problem is avoided when using a discrete
basis set with functions vanishing at infinity (such as the
basis set used in this work) [46–48]. In practice, the cal-
culated potentials can still be shifted by a function which
vanishes at infinity but which is an arbitrary constant in
the physically relevant region of space. To remove this
arbitrary constant, as in Ref. 18, we impose the HOMO
condition on the EXX potential

vEXX
x,HH = vHF

x,HH , (20)

where vEXX
x,HH =

∫
ϕ∗H(x)vEXX

x (x)ϕH(x)dx and vHF
x,HH =∫∫

ϕ∗H(x)vHF
x (x,x′)ϕH(x′)dxdx′ = −

∑
j〈Hj|jH〉 are

the expectation values of the EXX and HF exchange po-
tentials over the HOMO spin orbital referred to as H.
Similarly, we impose the HOMO condition on the GL2
potential

vGL2
c,HH = ΣMP2

c,HH(εH), (21)

where vGL2
c,HH =

∫
ϕ∗H(x)vGL2

c (x)ϕH(x)dx and

ΣMP2
c,HH(εH) =

∫∫
ϕ∗H(x)ΣMP2

c (x,x′; εH)ϕH(x′)dxdx′

are the expectation values of the GL2 local poten-
tial and of the MP2 self-energy over the HOMO
spin orbital. The MP2 self-energy is defined as
the functional derivative of EMP2

c with respect to
the one-particle Green function G(x′,x;ω), i.e.
ΣMP2

c (x,x′;ω) = 2πi δEMP2
c /δG(x′,x;ω), and its

diagonal matrix elements ΣMP2
c,pp (ω) are [49]

ΣMP2
c,pp (ω) = −1

2

∑
j

∑
a,b

|〈pj||ab〉|2

εa + εb − ω − εj

+
1

2

∑
i,j

∑
b

|〈ij||pb〉|2

ω + εb − εi − εj
. (22)

Eq. (20) can be obtained either by considering the asymp-
totic limit of Eq. (10) and using the fact that the HOMO
spin orbital dominates in this limit over all occupied spin
orbitals [50], or by considering the derivative of the HF
exchange energy with respect to the electron number
(at fixed potential, i.e. at fixed orbitals) and using the
chain rule with either the one-particle density or the one-
particle density matrix [50, 51]. Similarly, Eq. (21) can
be obtained by considering the derivative of the MP2
correlation energy with respect to the electron number
(at fixed potential) and using the chain rule with either
the one-particle density or the one-particle Green func-
tion [52]. For systems with degenerate HOMO orbitals,
we introduce in Eqs. (20) and (21) sums over the degen-
erate HOMOs divided by the number of such HOMOs,
(1/nH)

∑
H , as done in Ref. 53.

C. Ionization potential and electronic affinity

The ionization potential (IP) and the electronic affin-
ity (EA) can be defined as derivatives of the total en-
ergy with respect to the electron number N . For the
self-consistent OEP DH approximations, these deriva-
tives can be expressed in terms of frontier spin orbital
energies, like in exact KS DFT, [51, 52, 54, 55]

− IPOEP-1DH =

(
∂EOEP-1DH

∂N

)
N−δ

= εH , (23)

and

− EAOEP-1DH =

(
∂EOEP-1DH

∂N

)
N+δ

= εL + ∆xc, (24)

where δ → 0+, L refers to the LUMO spin orbital,
and ∆xc is the derivative discontinuity of the exchange-
correlation energy. For the OEP-1DH approximation,
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the derivative discontinuity comes from the λ-scaled EXX
and GL2 contributions

∆xc = λ ∆EXX
x + λ2 ∆GL2

c . (25)

The terms ∆EXX
x and ∆GL2

c are given by [56]

∆EXX
x =

(
vHF
x,LL − vEXX

x,LL

)
−
(
vHF
x,HH − vEXX

x,HH

)
, (26)

where vHF
x,LL =

∫∫
ϕ∗L(x)vHF

x (x,x′)ϕL(x′)dxdx′ =

−
∑
j〈Lj|jL〉 and vEXX

x,LL =
∫
ϕ∗L(x)vEXX

x (x)ϕL(x)dx are
the expectation values of the HF and EXX exchange po-
tentials over the LUMO spin orbital, and similarly [31,
52]

∆GL2
c =

(
ΣMP2

c,LL(εL)− vGL2
c,LL

)
−
(
ΣMP2

c,HH(εH)− vGL2
c,HH

)
,

(27)

where ΣMP2
c,LL(εL) =

∫∫
ϕ∗L(x)ΣMP2

c (x,x′; εL)ϕL(x′)dxdx′

and vGL2
c,LL =

∫
ϕ∗L(x)vGL2

c (x)ϕL(x)dx are the expectation
values of the MP2 self-energy and of the GL2 local poten-
tial over the LUMO spin orbital. Clearly, if the HOMO
condition of Eqs. (20) and (21) is imposed, then the dif-
ferences of terms in the second parenthesis in Eqs. (26)
and (27) are in fact zero. Note that Eq. (27) can be
found from the linearized version of the Sham-Schlüter
equation [57]. Again, for degenerate HOMOs and/or LU-
MOs, we introduce in Eqs. (26) and (27), sums over the
degenerate HOMOs/LUMOs divided by the number of
such degenerate HOMOs/LUMOs, i.e. (1/nH)

∑
H and

(1/nL)
∑
L.

For standard DH approximations, following Refs. 58
and 59, we obtain IPs and EAs by calculating derivatives
of the total energy by finite differences

−IP1DH =

(
∂E1DH

∂N

)
N−δ

≈ E1DH(N)− E1DH(N −∆)

∆
,

(28)
and

−EA1DH =

(
∂E1DH

∂N

)
N+δ

≈ E1DH(N + ∆)− E1DH(N)

∆
,

(29)
with ∆ = 0.001. To calculate the energies for fractional
electron numbers, E1DH(N −∆) and E1DH(N + ∆), we
use the extension of the DH total energy expression, in-
cluding the MP2 correlation term, to fractional orbital
occupation numbers, as given in Refs. 58 and 59 (for the
details of our implementation, see Ref. 60). As pointed
out in Ref. 58, if the variation of the orbitals and orbital
energies in the MP2 correlation energy is neglected when
taking the derivative of the 1DH total energy with the
respect to N , then Eqs. (28) and (29) simplify to

− IP1DH =

(
∂E1DH

∂N

)
N−δ

≈ ε1HH + ΣMP2
c,HH(ε1HH ), (30)

and

− EA1DH =

(
∂E1DH

∂N

)
N+δ

≈ ε1HL + ΣMP2
c,LL(ε1HL ), (31)

which corresponds to standard second-order perturbative
propagator theory (see, e.g., Ref. 49). Even though in

practice we calculate IP1DH and EA1DH using Eqs. (28)
and (29), the approximate connection with the self-
energy in Eqs. (30) and (31) is useful for comparison and
interpretative purposes. For example, it can be shown
that ΣMP2

c,HH(ε1HH ) contains a term corresponding to or-

bital relaxation in the (N −1)-electron system, and pair-
correlation terms for the N - and (N − 1)-electron sys-
tems [49, 61].

III. COMPUTATIONAL DETAILS

The 1DH calculations have been performed with a de-
velopment version of MOLPRO 2015 [62], and the OEP-
1DH ones with a development version of ACES II [63].
In all calculations, we have used the B exchange [23]
and the LYP correlation [24] density functionals, for
EDFA

x and EDFA
c , respectively. This choice was moti-

vated by the fact that 1DH-BLYP was found to be among
the one-parameter double-hybrid approximations giving
the most accurate thermochemistry properties on aver-
age [22, 28, 64]. We expect however that the effect of
the OEP self consistency to be similar when using other
density functional approximations. The performance of
both DH methods has been tested against a few atomic
(He, Be, Ne, and Ar) and molecular (CO and H2O) sys-
tems. For the latter, we considered the following equi-
librium geometries: for CO d(C–O) = 1.128Å, and for
H2O d(H–O) = 0.959Å and a(H–O–H) = 103.9◦. In all
cases, core excitations were included in the second-order
correlation term.

In our OEP calculations, for convenience of implemen-
tation, the same basis set is used for expanding both the
orbitals and the exchange-correlation potential. To en-
sure that the basis sets chosen were flexible enough for
representation of orbitals and exchange-correlation po-
tentials, all basis sets were constructed by full uncontrac-
tion of basis sets originally developed for correlated calcu-
lations, as in Refs. 65 and 66. In particular, we employed
an even tempered 20s10p2d basis for He, and an uncon-
tracted ROOS–ATZP basis [67] for Be and Ne. For Ar,
we used a modified basis set [68] which combines s and p
basis functions from the uncontracted ROOS–ATZP [67]
with d and f functions coming from the uncontracted
aug–cc–pwCVQZ basis set [69]. In the case of both
molecular systems, the uncontracted cc–pVTZ basis set
of Dunning [70] was employed. For all OEP calculations
standard convergence criteria were enforced, correspond-
ing to maximum deviations in density-matrix elements of
10−8. In practice, the use of the same basis set for ex-
panding both the orbitals and the exchange-correlation
potential leads to the necessity of truncating the auxil-
iary function space by the TSVD method for constructing
the pseudo-inverse of the linear-response function. The
convergence of the potentials with respect to the TSVD
cutoff was studied. Figure 1 shows the example of the
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FIG. 1. Exchange-correlation and correlation potentials calculated with the OEP-1DH approximation using the BLYP func-
tional at the recommended value λ = 0.65 for the Be atom and the CO molecule using different TSVD cutoffs 10−4, 10−6, 10−8

for the pseudo-inversion of the linear-response function. For Be, the potentials for 10−4 and 10−6 are superimposed. For CO,
the potentials for 10−6 and 10−8 are superimposed.

convergence of the exchange-correlation and correlation
potentials of the Be atom and the CO molecule. For
Be, the potentials obtained with the 10−4 and 10−6 cut-
offs are essentially identical, while for the 10−8 cutoff the
exchange-correlation potential has non-physical oscilla-
tions and the correlation potential diverges. For CO, the
potentials obtained with the 10−4 cutoff are significantly
different from the potentials obtained with the 10−6 cut-
off, while no difference can be seen between the potentials
obtained with the 10−6 and 10−8 cutoffs. A cutoff of 10−6

was thus chosen for all systems to achieve a compromise
between convergence and numerical stability.

In order to assess the quality of the results obtained
with the standard and OEP-based DH methods, we con-
sidered several reference data. We used estimated exact
total energies extracted from numerical calculations [71]
for He, Be, Ne, Ar, and from quadratic configuration-
interaction calculations extrapolated to the complete ba-
sis set [72] for CO and H2O. We also used reference
data from coupled-cluster singles-doubles with pertur-
bative triples [CCSD(T)] [73–76] calculations performed
with the same basis sets. In particular, these CCSD(T)
calculations yielded densities which were used as input
for generating reference KS potentials by inversion of the
KS equations [77, 78], using the computational setup de-
scribed in Refs. 65 and 66. We also used estimated exact
total energies extracted from numerical calculations [71]
for He, Be, Ne, Ar, and from quadratic configuration-
interaction calculations extrapolated to the complete ba-
sis set [72] for CO and H2O.

IV. RESULTS AND DISCUSSION

A. Total energies

Figure 2 shows the total energy of each system as a
function of λ calculated with the 1DH and OEP-1DH
approximations. For comparison, CCSD(T) total ener-
gies calculated with the same basis sets and estimated
exact total energies taken from Refs. 71 and 72 are also
reported. Note that the CCSD(T) total energies are sig-
nificantly higher than the estimated exact energies, which
is mostly due to the incompleteness of the basis sets used.
Since the explicit density-functional contribution of the
DH calculations does not suffer from this large basis in-
completeness error, we prefer to use as reference the es-
timated exact energies.

At λ = 0, both DH methods reduce to standard KS
using the BLYP functional, which tends to overestimate
the total energy by about 3 to 30 mhartree, except for
Be atom where it is underestimated (which may be con-
nected to the presence of an important static correlation
contribution in this system). At λ = 1, the 1DH ap-
proximation reduces to standard MP2 (with HF orbitals),
while the OEP-1DH approximation reduces to OEP-GL2
(i.e., the same MP2 total energy expression but with fully
self-consistently optimized OEP orbitals) [18, 19]. Stan-
dard MP2 systematically underestimates the total en-
ergy on magnitude (up to more than 100 mhartree for
Ar) which is partly due to the missing correlation con-
tribution beyond second order and to the incompleteness
of the basis sets used. On the opposite, OEP-GL2 sys-
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FIG. 2. Total energies calculated with the 1DH and OEP-1DH approximations with the BLYP functional as a function of λ.
As reference values, CCSD(T) total energies calculated with the same basis sets are given, as well as estimated exact total
energies taken from Ref. 71 for He, Be, Ne, Ar, and from Ref. 72 for CO and H2O. The vertical lines correspond to λ = 0.65,
i.e. the value recommended for 1DH with the BLYP functional in Ref. 22. For Be, the OEP-1DH calculations are unstable for
λ > 0.86.

tematically gives too negative total energies, as already
known [19, 25]. For example, for CO the OEP-GL2 total
energy is more than 150 mhartree too low. Note that for
Be the OEP-GL2 calculation is unstable, as already re-
ported [19, 20, 79]. The fact that OEP-GL2 gives much
more negative total energies than standard MP2 should
be connected to the fact that the HOMO-LUMO orbital
energy gap is much smaller with OEP-GL2 orbitals than
with HF orbitals (see results in Sections IV B and IV C).

In between the extreme values λ = 0 and λ = 1, the
1DH and OEP-1DH approximation give smooth total en-
ergy curves, which start to visually differ for λ & 0.2.
Note that for Be the OEP-1DH calculations are stable for
λ ≤ 0.86. At λ = 0.65, which is the value recommended
in Ref. 22 for 1DH with the BLYP functional, both 1DH
and OEP-1DH give more accurate total energies than
their respective λ = 1 limits (i.e., MP2 and OEP-GL2),
but do not perform necessarily better than the λ = 0
limit (KS BLYP). Depending on the system considered,
at λ = 0.65, the 1DH total energy is either more accu-
rate or about equally accurate than the OEP-1DH total
energy. Thus, even though OEP-1DH provides an im-
portant improvement over OEP-GL2, we conclude that
the self-consistent optimization of the orbitals in the 1DH
approximation (i.e., going from 1DH to OEP-1DH) does
not lead to improved ground-state total energies for the
few systems considered here. We expect that a similar
conclusion generally holds for ground-state energy differ-
ences such as atomization energies, similarly to what has
been found for the case of the hybrid approximations [80].

B. HOMO orbital energies and ionization
potentials

Figure 3 reports, for each system, the HOMO orbital
energy in the 1H approximation [Eq. (6)] and minus the
IPs in the 1DH [Eq. (28)] and OEP-1DH [Eq. (23)] ap-
proximations as a function of λ. The reference IPs are
from CCSD(T) calculations with the same basis sets.
The HOMO orbital energy in the 1H approximation rep-
resents the simplest approximation to−IP available when
doing a 1DH calculation. At λ = 0, the 1H approxima-
tion reduces to standard KS with the BLYP functional,
and we recover the well-known fact the HOMO orbital en-
ergy is much too high (underestimating the IP by about 4
to 8 eV for the systems considered here) with a semilocal
DFA like BLYP, most likely due to the self-interaction er-
ror in the exchange density functional. At λ = 1, the 1H
approximation reduces to standard HF, and in this case
the HOMO orbital energy is a much better estimate of
−IP, overestimating the IP by about 1 eV except for Be
where it is underestimated by about the same amount.
In between λ = 0 and λ = 1, the 1H HOMO orbital en-
ergy varies nearly linearly with λ, which suggests that
the λ-dependence is largely dominated by the exchange
potential in Eq. (7). At λ = 0.65, the 1H HOMO orbital
energy is always higher than the reference −IP, by about
1 or 2 eV depending on the system considered.

The IPs obtained with the 1DH method, i.e. taking
into account the MP2 correlation term, are smaller than
the 1H IPs for all λ and all systems considered here,
with the exception of Be for which it is a bit larger. This
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FIG. 3. HOMO orbital energies in the 1H approximation [Eq. (6)] and minus IPs in the 1DH [Eq. (28)] and OEP-1DH [Eq. (23)]
approximations using the BLYP functional as a function of λ. The reference values were calculated as CCSD(T) total energy
differences with the same basis sets. The vertical lines correspond to λ = 0.65, i.e. the value recommended for 1DH with the
BLYP functional in Ref. 22. For Be, the OEP-1DH calculations are unstable for λ > 0.86.

is consistent with previous works which found that IPs
calculating by taking the derivative of the MP2 total en-
ergy with respect the electron number are generally too
small [58, 81]. At λ = 0.65, 1DH gives IPs that are
underestimated by about 2 or 3 eV, which is similar to
the average accuracy obtained with the two-parameter
B2-PLYP double-hybrid approximation [59]. The effect
of self-consistency, i.e. going from 1DH to OEP-1DH,
is to further reduce the IPs, except for Be for which it
increases it. For He the differences between 1DH and
OEP-1DH are very small, which may not be surprising
since for such a two-electron system the HF and EXX
potentials have the same action on occupied orbitals. At
λ = 1, OEP-GL2 gives IPs which are generally not very
accurate (see also Ref. 82). In particular, for Ne, CO,
and H2O, OEP-GL2 underestimates the IP by more than
3 eV. As a consequence, for these systems, for λ & 0.5
self-consistency only deteriorates the accuracy of the IPs.
We note that better IPs could be obtained using modified
second-order correlated OEP approximations [82].

C. LUMO orbital energies and electronic affinities

Figure 4 reports, for each system, the LUMO orbital
energy in the 1H [Eq. (6)] and OEP-1DH [Eq. (8)] ap-
proximations and minus the EAs in the 1DH [Eq. (29)]
and OEP-1DH [Eq. (24), i.e. including the derivative
discontinuity] approximations as a function of λ. The
reference EAs are from CCSD(T) calculations with the
same basis sets, whereas the reference KS LUMO orbital
energies have been obtained by inversion of the KS equa-

tions using CCSD(T) densities as input. The reference
−EAs are all positive for the systems considered, mean-
ing that the anions are unstable. These positive values
are an artifact of the incompleteness of the basis set. In
a complete basis set, the EAs should be either negative
(i.e., the anion is more stable than the neutral system)
or zero (i.e., the anion dissociates into the neutral system
and a free electron). Even though the reported EA val-
ues are thus not converged with respect to the basis set,
the EAs given by different methods can nevertheless be
compared for a fixed basis set. By contrast, the reference
KS LUMO orbital energies are all correctly negative with
the basis set employed. This is due to the fact that the
KS LUMO does not represent a state with an additional
electron but a bound excited state of the neutral system,
which requires much less diffuse basis functions to de-
scribe. We note however that, in the case of the CO and
H2O molecules, the reported KS LUMO orbital energies
are not well converged with respect to the basis set due
to the lack of diffuse basis functions. Again, we can nev-
ertheless meaningfully compare them with the reference
data obtained with the same basis sets.

The LUMO orbital energy in the 1H approximation
represents the simplest approximation to −EA (and not
to the KS LUMO orbital energy since it is obtained with
the nonlocal HF potential) available when doing a 1DH
calculation. At λ = 0, the 1H approximation reduces
to standard KS with the BLYP functional, and we re-
cover the fact that LUMO orbital energy with a semilo-
cal DFA like BLYP is roughly half way between the ex-
act KS LUMO orbital energy and the exact −EA (i.e.,
εDFA
L ≈ εexactL + ∆xc/2, see e.g. Ref. 83). At λ = 1, the
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FIG. 4. LUMO orbital energies in the 1H [Eq. (6)] and OEP-1DH [Eq. (8)] approximations and minus EAs in the 1DH [Eq. (29)]
and OEP-1DH [Eq. (24)] approximations using the BLYP functional as a function of λ. The reference EA values were calculated
as CCSD(T) total energy differences with the same basis sets, and the reference HOMO energy values were calculated by KS
inversion of the CCSD(T) densities. The vertical lines correspond to λ = 0.65, i.e. the value recommended for 1DH with the
BLYP functional in Ref. 22. For Be, the OEP-1DH calculations are unstable for λ > 0.86.

1H approximation reduces to standard HF, and in this
case the LUMO orbital energy is a quite good estimate
of −EA (within the finite basis set) for the systems con-
sidered here. At λ = 0.65, the 1H LUMO orbital energy
underestimates −EA by about 0.25 to 1 eV, depending
on the system.

The 1DH approximation gives−EAs rather close to the
1H ones, which indicates that the MP2 correlation term
has only a modest effect on this quantity for the systems
considered. Coming now to the OEP-1DH results, the
LUMO orbital energy obtained in these calculations has
a behavior as a function of λ which is clearly distinct from
the other curves. Starting from the BLYP LUMO orbital
energy value at λ = 0, it becomes more negative as λ is
increased, and becomes an increasingly accurate approx-
imation to the exact KS LUMO orbital energy (and not
to −EA). This is an essential difference between having a
local EXX (and GL2) potential instead of a nonlocal HF
potential. At λ = 0.65, the OEP-1DH LUMO orbital en-
ergies underestimate the reference KS LUMO energies by
about 1 to 2 eV. The estimate of −EA in the OEP-1DH
approximation is obtained by adding the derivative dis-
continuity ∆xc to the OEP-1DH LUMO orbital energy.
For the closed-shell systems considered here, the deriva-
tive discontinuity is largely dominated by the exchange
contribution. The derivative discontinuity is systemati-
cally overestimated in OEP-GL2, leading to −EAs that
are much too high. It turns out that, at the recommended
value λ = 0.65, OEP-1DH gives −EAs which agree with
the reference values within 0.4 eV for the systems con-
sidered. Thus, the OEP-based self-consistency improves

the accuracy of EAs.

D. Exchange-correlation and correlation potentials

Figure 5 shows the exchange-correlation potentials cal-
culated by OEP-1DH at the recommended value of λ =
0.65, as well as the potentials obtained at the extreme
values of λ, corresponding to KS BLYP (λ = 0) and
OEP-GL2 (λ = 1). The reference potentials have been
obtained by employing the KS inversion approach using
the CCSD(T) densities.

The BLYP exchange-correlation potentials are not neg-
ative enough, they do not describe well the shell structure
(core/valence transition), and decay too fast at large dis-
tances. The OEP-GL2 exchange-correlation potentials
have the correct −1/r asymptotic behavior and are quite
accurate for the rare-gas atoms (especially for He and
Ar), but have too much structure for CO and H2O. For
Be, the OEP-GL2 calculation is unstable. The OEP-1DH
exchange-correlation potentials do not have quite the cor-
rect asymptotic behavior since they decay as −λ/r, but
for λ = 0.65 they have reasonable shapes in the physi-
cally relevant region of space. Note in particular that the
OEP-1DH calculation yields a stable solution for Be. For
CO and H2O, the OEP-1DH exchange-correlation poten-
tials actually improve over both the BLYP and OEP-GL2
exchange-correlation potentials. Therefore, even though
the recommended value of λ = 0.65 was determined
based on energetical properties of the standard non-self-
consistent 1DH scheme, it appears that this value of λ
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FIG. 5. Exchange-correlation potentials calculated with the OEP-1DH approximation [Eq. (9)] using the BLYP functional at
the recommended value λ = 0.65, and at the extreme values λ = 0 (standard BLYP) and λ = 1 (OEP-GL2). The reference
potentials were calculated by KS inversion of the CCSD(T) densities. For Be, the OEP-GL2 calculations are unstable. For
CO, the potential is plotted along the direction of the bond with the C nucleus at −1.21790 bohr and the O nucleus at 0.91371
bohr. For H2O, the potential is plotted along the direction of a OH bond with the O nucleus at 0.0 and the H nucleus at
1.81225 bohr.

also gives reasonable exchange-correlation potentials as
well.

The correlation part of the potentials are plotted in
Figure 6. The correlation potentials in BLYP calcula-
tions (i.e., the LYP correlation potential evaluated at
the self-consistent BLYP density) are unable to repro-
duce the complex structure of the reference correlation
potentials. Note that this is in spite of the fact that LYP
correlation energies are usually reasonably accurate. On
the contrary, the OEP-GL2 correlation potentials tend to
be largely overestimated, as previously observed [27, 65].
Overall, the OEP-1DH correlation potentials at λ = 0.65
have fairly reasonable shapes, providing a good compro-
mise between the understructured BLYP and the overes-
timated OEP-GL2 correlation potentials.

E. Correlated densities

The analysis of the correlated densities provides a
useful tool for the detailed examination of the correla-
tion effects on the electronic density and for the test of
exchange-correlation approximations in DFT [65, 66, 84–
87]. Thus, in Figure 7 we report correlated densities
calculated by OEP-1DH at the recommended value of
λ = 0.65, as well as the correlated densities obtained
at the extreme values of λ, corresponding to KS BLYP
(λ = 0) and OEP-GL2 (λ = 1). The correlated density
is defined as ∆nc(r) = n(r) − nx-only(r) where n(r) is
the total density calculated with the full exchange and

correlation terms and nx-only(r) is the density calculated
with only the exchange terms (see Refs. 65, 66, 84, and 85
for discussions on different definitions of correlated den-
sities). The reference correlated densities have been cal-
culated with the CCSD(T) method as ∆nc,CCSD(T)(r) =
nCCSD(T)(r) − nHF(r), while nCCSD(T)(r) was obtained
from the CCSD(T) relaxed density matrix [88–90] con-
structed using the Lagrangian approach [91–93]. For
comparison, correlated densities calculated in standard
MP2 (1DH with λ = 1) with the same relaxed density-
matrix approach are also shown. Due to our current
implementation limitations (lack of the relaxed density-
matrix approach for the 1DH approximation), the corre-
lated densities for the non-self-consistent 1DH approxi-
mation have not been calculated.

At λ = 0, i.e. in KS BLYP calculations, the corre-
lated densities are mostly very much underestimated. At
λ = 1, the correlated densities are largely overestimated
with OEP-GL2. At λ = 0.65, the OEP-1DH correlated
densities tend to be quite accurate, achieving a good bal-
ance between the underestimated BLYP correlated densi-
ties at λ = 0 and the overestimated OEP-GL2 correlated
densities at λ = 1. The OEP-1DH correlated densities
are overall similar in accuracy to the MP2 and CCSD(T)
correlated densities.
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FIG. 6. Correlation potentials calculated with the OEP-1DH approximation [correlation terms in Eq. (9)] using the BLYP
functional at the recommended value λ = 0.65, and at the extreme values λ = 0 (standard BLYP) and λ = 1 (OEP-GL2). The
reference potentials were calculated by KS inversion of the CCSD(T) densities. For Be, the OEP-GL2 calculation is unstable.
For CO, the potential is plotted along the direction of the bond with the C nucleus at −1.21790 bohr and the O nucleus at
0.91371 bohr. For H2O, the potential is plotted along the direction of a OH bond with the O nucleus at 0.0 and the H nucleus
at 1.81225 bohr.
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FIG. 7. Correlated density calculated with the OEP-1DH approximation using the BLYP functional at the recommended value
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V. CONCLUSION

In this work, we have proposed an OEP-based self-
consistent DH scheme in which the orbitals are opti-
mized with a local potential including the MP2 corre-
lation contribution. While staying in the philosophy of
the KS scheme with a local potential, this scheme consti-
tutes an alternative to the orbital-optimized DH scheme
of Peverati and Head-Gordon [7].

We have implemented a one-parameter version of this
OEP-based self-consistent DH scheme using the BLYP
density-functional approximation and compared it to the
corresponding non-self-consistent DH scheme for calcula-
tions on a few closed-shell atoms and molecules. While
the OEP-based self-consistency does not provide any
improvement for the calculations of ground-state total
energies and ionization potentials, it does improve the
accuracy of electron affinities and restores the mean-
ing of the LUMO orbital energy as being connected to
a neutral excitation energy. Moreover, the OEP-based
self-consistent DH scheme provides reasonably accurate
exchange-correlation potentials and correlated densities.
In comparison to the standard OEP-GL2 method [16–
20], our OEP-based self-consistent DH scheme is more
stable and removes the large overestimation of correla-

tion effects.
Additional work can be foreseen to exploit the full

power of the OEP-based self-consistent DH scheme. For
example, our scheme should be tested against more sys-
tems, including open-shell ones for which we expect the
OEP self-consistency to provide advantages similar to the
orbital-optimized DH scheme of Ref. 7. It would also
be interesting to apply linear-response time-dependent
DFT on our OEP-based self-consistent DH scheme to
calculate excitation energies. Finally, the present pro-
cedure should be applied to the range-separated DH ap-
proach [94] which has the advantage of having a fast basis
convergence [95].
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