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Abstract This paper is concerned with the problem of learn-
ing a distance metric by considering meaningful and dis-
criminative distance constraints in some contexts where rich
information between data is provided. Classic metric learn-
ing approaches focus on constraints that involve pairs or
triplets of images. We propose a general Mahalanobis-like
distance metric learning framework that exploits distance
constraints over up to four different images. We show how
the integration of such constraints can lead to unsupervised
or semi-supervised learning tasks in some applications. We
also show the benefit on recognition performance of this
type of constraints, in rich contexts such as relative attributes,
class taxonomies and temporal webpage analysis.

Keywords Metric Learning · Relative Attributes · Web
Mining · Change Detection

1 Introduction

Image representation for classification has been deeply in-
vestigated in recent years [13,47]. For instance, the tra-
ditional Bag-of-Visual-Words representation [54] has been
extended for the coding step [21,64] as well as for the pool-
ing [4], with bio-inspired models [50,58]. Nonetheless, the
choice of a good similarity function is also crucial to com-
pare, classify and retrieve images. Extensive work has been
done (see the survey [34]) to learn a (dis)similarity function
that is relevant to some specific tasks. One of the most stan-
dard forms of (dis)similarity functions used for learning is
distance (pseudo-)metric.

Distance metric learning has been proven to be useful in
many Computer Vision applications, such as image classifi-
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cation [12,20,45], image retrieval [12], face verification or
person re-identification [22,46].

Each metric learning problem depends on both the appli-
cation task and the way the input data is provided. In other
words, it depends on the input data representation (e.g., uni-
modal or multimodal), the type of labels and/or relations be-
tween samples, the formulation of the metric, the resulting
optimization problem and its computational complexity.

Binary (boolean) similarity labels on image pairs [63]
are usually provided for the learning. In the context of face
verification [22], binary similarity labels establish whether
two images should be considered as equivalent (i.e., the two
face images represent the same person) or not. Metrics are
learned in order to minimize dissimilarities between similar
pairs while separating dissimilar ones.

Recently, some attempts have been made to go beyond
learning metrics using only pairwise similarity information.
For instance, constraints that involve triplets of images have
been considered to learn metrics [12,35,62]. These attempts
follow the work of [32] that made the argument that humans
are better at providing relative (hence triplet-wise) compar-
isons than absolute (i.e., pairwise) comparisons. Notably,
the most natural way to generate triplet constraints is to ex-
ploit, if available, class membership information. The goal
is then to have distances between images in the same class
smaller than distances between images from different classes.
More sophisticated triplet constraints can also be inferred
from richer relationships. For example, Verma et al. [60]
learn a similarity that depends on a class hierarchy: an im-
age should be closer to another image from a sibling class
than to any image from a more distant class in the hierar-
chy. In other contexts, such as learning attributes, one can
exploit specific rankings between classes in order to learn a
semantical metric and representation space [40,48].

In this paper, we focus on these rich contexts for learning
similarity metrics. Instead of pairwise or triplet-wise tech-
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Fig. 1 Illustration of the quadruplet-wise (Qwise) strategy in a relative attribute context. The goal is to learn a projection of scene images by
exploiting rich relationships (here relative attributes) over quadruplets of images such that samples satisfy the relationship constraints in the
projected space.

niques, we propose to investigate meaningful relations be-
tween quadruplets of images. We first motivate why this type
of constraints may be useful in different contexts. For this
purpose, we illustrate in Fig. 1 our approach in the context
of relative attributes [48] for which the goal is to learn a pro-
jection of visual image features into a high-level semantic
space. Each dimension of this semantic space corresponds
to the degree of presence of a given attribute (e.g., the pres-
ence of nature or large objects in the images). Four scene
classes are considered in the figure: tall building (T ), inside
city (I), street (S) and open country (O). Class member-
ship information and relative orderings on classes for the
attributes “Natural” and ”Large objects” are also provided.
In [48], they want the projected representations of images
in the semantic space to satisfy the relative attribute con-
straints defined over their respective classes. They consider
only inequality constraints (i.e., (e) ≺ (f): the presence of
an attribute is stronger in class (f) than in class (e)) and
pairwise equivalence constraints (i.e., (f) ∼ (g): the pres-
ence of an attribute is equivalent in class (f) and class (g)).
In Fig. 1, the degrees of presence of nature and large objects
in the street image and the inside-city image are clearly not
equivalent. Learning a projection that enforces an equiva-
lence (i.e., the same position) of these two images in the
high-level semantic space, as proposed in [48], then seems
limited. We argue in this paper that this type of absolute sim-
ilarity information between the two images is restrictive, and
thus noisy. Alternatively, a natural way to relax and exploit
this equivalence information is to majorize the difference of
attribute presence by considering pairs of classes for which
the difference of attribute presence is greater. Such pairs of

classes are easy to find when the following ordering is given:
(e) ≺ (f) ∼ (g) ≺ (h). The difference between (f) and (g)

is smaller than the difference between (h) and (e). Since the
proposed relaxed constraints better describe relative order-
ings between the different images, they are more robust to
noisy information.

This paper is an extension of our own previous work [40]
where we proposed to exploit constraints that involve quadru-
plets of images to learn simple forms of distance metrics.
We propose here to enrich the model in [40] by combining
quadruplet-wise with pairwise constraints to learn a metric.
In contexts where quadruplet-wise constraints can be auto-
matically generated, this allows to learn a metric in an semi-
supervised way. We also extend our model to learn a more
general form of Mahalanobis distance metric. We present
optimization techniques to deal with a large number of con-
straints and make the learning scheme more powerful. We
extend the experiments in order to study the impact of the
proposed constraints on recognition performance in differ-
ent contexts.

The remainder of the paper is structured as follows. Sec-
tion 2 presents related work on distance metric learning. We
describe our learning problem in Section 3 and its optimiza-
tion in Section 4. In Sections 5 to 7, we present experiments
on temporal webpage analysis, class taxonomy and relative
attribute applications. Finally, we offer our conclusions and
plans for future research.
Notations: let Sd and Sd+ denote the sets of d×d real-valued
symmetric and symmetric positive semidefinite (PSD) ma-
trices, respectively. The set of considered images is P =

{Ii}Mi=1, each image Ii is represented by a feature vector
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xi ∈ Rd. For matrices A ∈ Sd and B ∈ Sd, denote the
Frobenius inner product by 〈A,B〉 = tr(A>B) where tr de-
notes the trace of a matrix.ΠC(x) is the Euclidean projection
of the vector or matrix x on the convex set C (see Chapter
8.1 in [8]). For a given vector a = (a1, . . . , ad)

> ∈ Rd,
Diag(a) = A ∈ Sd corresponds to a square diagonal matrix
such that ∀i, Aii = ai where A = [Aij ]. For a given square
matrix A ∈ Rd×d, Diag(A) = a ∈ Rd corresponds to the
diagonal elements of A set in a vector: i.e., ai = Aii. Fi-
nally, for x ∈ R, let [x]+ = max(0, x).

2 Related Work

The goal of distance metric learning is to produce a linear
transformation of data which is optimized to fit semantical
relationships between training samples. In this paper, the
distance metric considered for learning is the widely used
Mahalanobis-like distance metric DM parameterized by a
PSD matrix M ∈ Sd+:

D2
M(Ii, Ij) = Φ(Ii, Ij)>M Φ(Ii, Ij)

= 〈M, Φ(Ii, Ij)Φ(Ii, Ij)>〉
= 〈M,Cij〉

(1)

where Φ(Ii, Ij) ∈ Rd is the aggregation in a single vec-
tor of d elementary dissimilarity functions φk where ∀k ∈
{1, . . . , d}, φk : P × P → R. The commonly used func-
tion Φ is Φ(Ii, Ij) = xi − xj . For convenience, we note the
outer product Cij = Φ(Ii, Ij)Φ(Ii, Ij)>. Although most
approaches learn the same form of distance metric, different
types of information or optimization methods are used in the
learning process.

2.1 Metric Learning via linear transformations and
unsupervised approaches

Different optimization methods to learn a metric have been
proposed in the literature. For instance, every symmetric
PSD matrix M ∈ Sd+ can be decomposed as the product
M = L>L where L ∈ Re×d and e ≥ rank(M) = rank(L).
As a consequence, learning a PSD matrix M and learning
a linear transformation parameterized a matrix L ∈ Re×d
are two equivalent ways to learn a metric [62]. Indeed, ev-
ery Mahalanobis-like distance metric can be rewritten1 as
a function of L (i.e., D2

M(Ii, Ij) = ‖L(xi − xj)‖2), and
from any linear transformation parameterized by L, any dis-
tance DL>L = DM can be induced. This is why eigenvector
methods, such as principal component analysis (PCA) and
linear discriminant analysis (LDA), that learn a linear trans-
formation in order to satisfy some criterion (e.g., projecting

1 Note that the decomposition from M is not unique.

the training inputs into a variance-maximizing subspace in
the case of PCA) can be considered as metric learning ap-
proaches [62].

In addition to PCA and manifold learning approaches,
for which the key idea is to learn an underlying low-dimensional
manifold that preserves distances in the input space between
observed data [6,57], several approaches learn a metric in
an unsupervised manner (i.e., from an unlabeled dataset)
by assuming the availability of several (partially) labeled
datasets that share the same metric [17]. It is the case in the
context of partitioning problems where a supervised learn-
ing framework aims at learning how to perform an unsu-
pervised task [18,37]. This framework is also referred to as
supervised clustering [17,18] and has been applied in differ-
ent domains (e.g., video segmentation, image segmentation,
change-point detection in bioinformatics [23]...).

We focus in this work on supervised learning methods
where constraints over distances between training samples
are given as input of the algorithm, and a metric is learned to
satisfy most of them. The learning strategy is usually driven
by the form of provided information and the application.
When supervision is considered, the way the dataset is la-
beled, e.g., binary labels on pairwise or triplet-wise rank-
ings, greatly affects the optimization problem formulation.
In practice, the more informative constraints one gives, the
better the performance of the learned metric is.

2.2 Pairwise optimization framework

In pairwise approaches [46,63], the problem is formulated
as learning the PSD matrix M ∈ Sd+ such that the distance
metricD2

M is optimized on a training set composed of a sub-
set S of pairs of similar images and a subset D of pairs
of dissimilar images. For instance, in the context of Ma-
halanobis Metric Learning for Clustering, Xing et al. [63]
define the resulting convex objective function2:

min
M∈Sd+

∑
(Ii,Ij)∈S

D2
M(Ii, Ij) s.t.

∑
(Ii,Ij)∈D

√
D2

M(Ii, Ij) ≥ 1

(2)

The distances of similar pairs are minimized whereas dis-
similar pairs are separated. A regularization term may be
added: e.g., the term

∑
(Ii,Ij)∈S D

2
M(Ii, Ij) = tr(MA) with

the PSD matrix A =
∑

(Ii,Ij)∈S(xi− xj)(xi− xj)> can be
seen as a regularizer [34] in Eq. (2). In [63] and in most
metric learning algorithms, a (projected) gradient method is
used to efficiently solve the optimization problem. A hinge
loss or a generalized logistic loss function may be used to

2 The authors use the constraint
∑

(Ii,Ij)∈D
√
D2

M(Ii, Ij) in-
stead of the usual squared Mahalanobis distance to avoid learning a
matrix M that is rank 1.
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express all the constraints (over S and D) in a single objec-
tive function [46]. In the context of face verification, Mignon
and Jurie [46] try to learn a metric such that the distances
of similar images are smaller than a given threshold b = 1

whereas the distances of dissimilar images are greater than
that threshold. They formulate their optimization problem as
the sum of the loss related to each of these constraints:

min
M∈Sd+

∑
(Ii,Ij)∈(S∪D)

`β
(
yij(D

2
M(Ii, Ij)− 1)

)
(3)

where yij ∈ {−1, 1} indicates whether the images (Ii, Ij)
are dissimilar or not, and `β(x) = 1

β log(1+eβx) is the gen-
eralized logistic loss function and a smooth approximation
of the hinge loss function h(x) = max(0, x). This learning
process may be extended to kernel functions [26,46].

Many supervised approaches have been proposed recently
to generate training sets S and D. Most of those approaches
use binary similarity labels: two images represent the same
object or not [22,63], two images belong to the same class
or not [46], an image is relevant to a query or not [12,20] .

2.3 Triplet-based methods

Another way to exploit labeled datasets is to consider a set
T of triplets of images T = {(Ii, I+i , I

−
i )}Ni=1 where the

distance DM(Ii, I+i ) between (Ii, I+i ) is smaller than the
distance DM(Ii, I−i ) between (Ii, I−i ). This type of con-
straints is easy to generate in classification contexts: the pair
of images (Ii, I+i ) ∈ S is sampled using images from the
same class and (Ii, I−i ) ∈ D from different classes [20,
35,59,62]. For instance, Large Margin Nearest Neighbor al-
gorithm (LMNN) [62] learns a Mahalanobis distance for k-
Nearest Neighbors (k-NN) approach using these triplet-wise
training sets. More precisely, LMNN uses a scheme similar
to Eq. (2) in order to enforce DM(Ii, I−i ) to be larger than
DM(Ii, I+i ) where I+i is one of the k target nearest neigh-
bors of I. Their optimization problem can be formulated as:

min
M∈Sd+,ξ

∑
(Ii,I+i )∈S

D2
M(Ii, I+i ) +

∑
(Ii,I+i ,I

−
i )∈T

ξi

s.t.D2
M(Ii, I−i ) ≥ 1 +D2

M(Ii, I+i )− ξi
∀(Ii, I+i , I

−
i ) ∈ T , ξi ≥ 0

(4)

where the same regularizer as in Eq. (2) is used.
In classification task, Frome et al. [19,20] also gener-

ate triplets of images using the same strategy as LMNN.
However, their metric learning framework that is inspired by
RankSVM [27] and based on a linear combination of patch-
to-image distances, is different.

In image retrieval, the Online Algorithm for Scalable
Image Similarity (OASIS) [12] learns a non-PSD square ma-
trix M in the similarity function SM(Ii, Ij) = x>i Mxj . For

any triplet of images (Ii, I+i , I
−
i ), a safety margin constraint

is defined: SM(Ii, I+i ) ≥ SM(Ii, I−i ) + 1, which is equiv-
alent to x>i M(x+

i − x−i ) ≥ 1 . As explained by the au-
thors [12], OASIS requires images represented as sparse vec-
tors to be computationally efficient.

In the next subsection, we present different contexts where
information richer than the sole membership of (Ii, Ij) in
S or D can be exploited to learn a distance metric. Such
contexts involve, for instance, taxonomies which have a hi-
erarchical structure and describe relationships between the
different classes.

2.4 Exploiting rich relationships between samples

Some approaches investigate other types of information than
class membership or richer semantic relationships in order
to learn a metric that reflects more accurately global rela-
tions. For instance, in [61], a class taxonomy is used in order
to get elements of related classes, close to each other. Verma
et al. [60] extend this work by learning a local Mahalanobis
distance metric for each category in a hierarchy. Shaw et
al. [51] learn a distance metric from a network such that the
learned distances are tied to the inherent connectivity struc-
ture of the network. Hwang et al. [24] learn discrimina-
tive visual representations while exploiting external seman-
tic knowledge about object category relationships. Parikh
and Grauman [48] use semantic comparisons between classes
over different criteria. They consider totally ordered sets of
classes that describe relations among classes. Based on these
rich relations, they learn image representations by exploit-
ing only pairwise class relations. We propose to explore this
type of data knowledge in metric learning for image com-
parison.

2.5 Quadruplet-based methods

Noting that pairwise or triplet-wise approaches may, some-
times, be limited (see Section 1), our metric learning frame-
work is based on constraints over quadruplets.

Relative distances that involve four samples have already
been considered in the context of embedding problems. A
classic approach of embedding problems is Multidimensional
Scaling (MDS) that consists in assigning Euclidean coordi-
nates to a set of objects such that a given set of dissimilarity,
similarity or ordinal relations between the points are satis-
fied. Unlike metric learning approaches, classic embedding
methods do not extend to new samples, a new embedding
has to be learned each time a (new) test sample is added.

In the context of non-metric MDS, Shepard [52,53] con-
sidered in 1962 the following problem that involves quadru-
plets of samples:
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Problem: Given a symmetric zero diagonal matrix of dis-
tances ∆ = [dij ] ∈ Sn between samples i and j, find the
Euclidean coordinates X = [xi] ∈ Rd×n such that:

∀i, j, k, l ‖xi − xj‖22 < ‖xk − xl‖22 ⇐⇒ dij < dkl (5)

In 1964, Kruskal posed the problem as an optimization prob-
lem and introduced an algorithm to solve it [33]. He formu-
lated the input distance matrix ∆ as an exhaustive table of
distances where all the values of dij are given as input. By
noting the output distance matrix ∆̂ ∈ Sn which contains
the distances d̂ij = ‖xi − xj‖2 of each pair of samples. The
goal is to find an Euclidean embedding such that each dis-
tance d̂ij is close enough to dij . This leads to the problem
of minimizing the following criterion function called stress:

σ1(X) = min
θ

∑
ij

(
‖xi − xj‖2 − θ(dij)

)2∑
ij ‖xi − xj‖2

(6)

where θ is an arbitrary monotonic function. The problem
in Eq. (6) consists in minimizing the distance between the
scalar input value θ(dij) and the distance between the sam-
ples i and j in the underlying low-dimensional space. The
underlying idea is that if σ1(X) is minimized, then (most of)
the constraints in Eq. (5) are satisfied. The smaller the value
of the stress value in Eq. (6), the greater the correspondance
between the matrices ∆ and ∆̂. Noticing that the formula-
tion of the problem formulated by Kruskal requires the mag-
nitudes of all the distances dij as input, and not the relative
orderings of distances as in Eq. (5), Agarwal et al. [3] pro-
pose to consider only ordinal information as input to learn a
generalized non-metric multidimensional scaling. This work
is extended to kernels in [43].

In the context of embedding problem, Hwang et al. [25]
exploit analogy preserving constraints that involve four con-
cepts (e.g., “a canine is to a dog as a feline is to cat” or “a
fish is to water as a bird is to sky”). However, they are only
interested in equivalence constraints.

In our previous work [40], we proposed to include con-
straints that involve up to four different images to learn a
distance metric. Contrary to Eq. (5), we did not learn an
embedding but a metric with different types of supervision.
Constraints on quadruplets allow to better exploit rich re-
lationships between samples in different contexts. In [40],
we applied our framework to the contexts of relative at-
tributes [48], hierarchical taxonomy classification [60] and
temporal webpage analysis. For simplicity, we constrained
our metric to be paramaterized by vectors instead of a full
matrix. In this paper, we consider a metric that is param-
eterized by a full matrix as well. This metric formulation
allows to better exploit correlations between feature images.
We explain why our proposed constraints are a generaliza-
tion of pairwise and tripletwise constraints. We also extend

[40] with significant differences and contributions that we
point out in the following. Especially, we:
• extend our proposed model so that absolute/non-relative
distance constraints are considered in the learning frame-
work. In particular, this allows to learn a distance threshold
that separates similar pairs from dissimilar pairs when both
quadruplet-wise and pairwise constraints are combined. This
is particularly useful in the webpage analysis context frame-
work proposed in [40] where unsupervised quadruplet-wise
constraints, that are automatically generated using tempo-
ral information, are now combined with supervised pairwise
constraints. By combining large unlabeled datasets with small
labeled datasets, supervision cost (i.e., human annotation) is
minimized while learning a meaningful metric.
• discuss optimization issues caused by a possibly very large
number of constraints. We present optimization techniques,
such as active set methods and the 1-slack cutting plane
method, that can be useful to deal with a large number of
constraints and make the learning scheme tractable.
• extend the experiments introduced in [40]:

1. temporal webpage analysis: we thoroughly study the ben-
efits for recognition of (1) learning a metric parameter-
ized by a full matrix and (2) combining unsupervised
quadruplet-wise constraints with a relatively small num-
ber of supervised pairwise constraints.

2. hierarchical taxonomy classification: we demonstrate how
(1) our method can deal with a large number of con-
straints and (2) full matrix distance metrics improve recog-
nition over diagonal matrix distance metrics in the k-NN
classification framework.

3. relative attributes: we analyse the robustness introduced
by our proposed quadruplet-wise constraints. We present
and compare different strategies for sampling constraints
to compensate for labeling imprecisions. We investigate
the impact of these strategies as a function of the number
of exploited constraints.

3 Quadruplet-wise Similarity Learning Framework

3.1 Quadruplet Constraints

As explained in Section 2.5, our goal is to learn a metric that
satisfies constraints that involve quadruplets of images.

In some cases (e.g., Fig. 1), pair or triplet constraints
may be noisy or irrelevant, leading to less than optimal learn-
ing schemes when provided at a class level. On the other
hand, working on appropriate dissimilarities between quadru-
plets of images limits the risk of incorporating misleading
annotations. We are given a set P of images Ii, and the tar-
get dissimilarity function D : P × P → R between pairs
of images (Ii, Ij), we note D(Ii, Ij) = Dij . In this paper,
interested in comparing pairs of dissimilarities (Dij , Dkl).
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Same breed

Same subspecies

Same subspecies

Same species

Same breed

Learn dissimilarity D such that:

D( , ) < D( , )
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Fig. 2 Illustration of the quadruplet-wise (Qwise) strategy in a class taxonomy context. The goal is to learn a projection of animals of the same
species such that members of the same breed are closer to each other than members from different breeds, and members from the same subspecies
are closer to each other than member from different subspecies.

Each of them involves up to four different images (Ii, Ij , Ik, Il).
Two types of relations R are considered between Dij and
Dkl: (1) strict inequality between dissimilarities:Dij < Dkl,
(2) non-strict inequality: Dij ≤ Dkl. Note that Dij = Dkl

can be rewritten as two relationsDij ≤ Dkl andDij ≥ Dkl.
In order to deal with these constraints, we approximate

them by creating the set of constraints N in this way:

∀q = (Ii, Ij , Ik, Il) ∈ N , Dkl ≥ Dij + δq (7)

where δq ∈ R is a safety margin specific to the quadruplet q.
The non-strict inequality constraint corresponds to δq = 0.
And the strict inequality constraint corresponds to δq > 0,
δq is usually set to 1 (i.e., δq = 1).

Actually, Eq. (7) is a generalization of triplet-wise and
pairwise constraints. Indeed:
• every triplet-wise constraintDik ≥ Dij+δq can be formu-
lated by creating the quadruplet q = (Ii, Ij , Ii, Ik) ∈ N .
• every pairwise constraint that involves a dissimilar pair
of images (Ii, Ij) ∈ D, Dij ≥ l, where l is a given lower
bound that represents the minimum value such that (Ii, Ij)
are considered as dissimilar, can be formulated by creating
the quadruplet q = (Ii, Ii, Ii, Ij) ∈ N with δq = l.
• every pairwise constraint that involves a similar pair of im-
ages (Ii, Ij) ∈ S, u ≥ Dij , where u is a given upper bound
that represents the maximum value such that images (Ii, Ij)

are considered as similar, can be formulated by creating the
quadruplet q = (Ii, Ij , Ii, Ii) ∈ N with δq = −u.

Although quadruplet-wise constraints can be inferred from
pairwise approaches [14,46], the converse is not true. In-
deed, if the two pairs (Ii, Ij) and (Ik, Il) are in S and
D, respectively, the following constraints Dij < Dkl can
be inferred. However, the constraint Dij < Dkl does not
imply that pairs (Ii, Ij) and (Ik, Il) are in S and D, re-
spectively. In other words, from a quadruplet-wise constraint
Dij < Dkl, there is no need to determine arbitrary values of
u and l such that Dij < u and l < Dkl since u and l can
take all the possible values (as long as u ≤ l) and satisfy
the quadruplet-wise constraint. Only the order of similarity
between (Ii, Ij) and (Ik, Il) is required. Since the provided
annotations are less restrictive and thus less prone to noise,
relative distances are particularly useful when human users
that are not experts of the domain have to annotate simi-
larity/relation information. A similar problem is pointed out
in the context of relative attributes [48] in which boolean
presence of an attribute is difficult to provide, whereas rel-
ative comparisons are easier and more natural for humans
to annotate. Fig. 2 illustrates some examples of constraints
for which a pairwise formulation is difficult, or at least for
which constraints of relative distance comparisons seem more
natural and intuitive. It shows different members of the Ca-
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nis lupus species that are gathered together depending on
their respective subspecies and breeds. By considering only
pairwise similarity constraints, it is difficult to formulate the
distance metric learning problem such that (1) members of
the same breed are closer to each other than other members
of the same subspecies are, and (2) members of the same
subspecies are closer to each other than members from dif-
ferent subspecies. Depending on whether we consider mem-
bers of the same subspecies as similar or dissimilar, the dis-
tance metric learned with pairwise constraints does not fully
exploit the rich information given by the provided taxon-
omy. This limitation can be easily overcome by using rela-
tive distance comparison constraints as illustrated in Fig. 2.

We also note that quadruplet-wise constraints act as a
complement to triplet-wise constraints to better describe rich
relationships. For instance, the first quadruplet-wise constraint
illustrated in Fig. 2 enforces the similarity between differ-
ent Dalmatians. Indeed, we want animals of the same breed
to be more similar to each other than animals of different
breeds. Although this kind of information can be described
with triplet-wise constraints by enforcing the distance be-
tween two Dalmatians to be smaller than the distance be-
tween one of these Dalmatians and an animal of another
breed, quadruplet-wise constraints extend this kind of con-
straint by describing the fact that any pair of Dalmatians
have to be closer to each other than any pair of animals
of different breeds in general. Triplet-wise constraints then
represent only a subset of the possible constraints that can
describe such relationships.

We present in the following two different frameworks to
learn a Mahalanobis distance metric that exploit this type of
constraints. The first one considers the learning of a Maha-
lanobis distance metric parameterized by a full matrix M ∈
Sd+. The second one considers the learning of a distance met-
ric parameterized by one or many vectors that are learned
independently.

3.2 Learning a Mahalanobis-like distance metric
parameterized by a matrix

We present in this subsection the general Mahalanobis-like
distance metric learning framework where a distance metric
is parameterized by a full PSD matrix M.

3.2.1 Optimization problem

The goal of our distance metric learning framework is to
maximize the number of satisfied constraints in Eq. (7). How-
ever, the problem of maximizing the number of satisfied
constraints in Eq. (7) is NP-hard [27], we then approximate
it by using slack variables. By noting each quadruplet q =

(Ii, Ij , Ik, Il) ∈ N , we optimize the following problem:

min
M∈Sd+,ξ

Ω(M) + Cq
∑
q∈N

ξq

s.t.∀q ∈ N , D2
M(Ik, Il) ≥ D2

M(Ii, Ij) + δq − ξq
∀q ∈ N , ξq ≥ 0

(8)

where Ω(M) is a regularization term and Cq a regulariza-
tion parameter that controls the trade-off between fitting and
regularization. Note that the problem in Eq. (8) is very sim-
ilar to LMNN [62] (see Eq. (4)) with the exception that we
exploit quadruplets of constraints instead of triplets.

Regularization: The choice of regularization has a sig-
nificant impact on the learned distance model, both theori-
cally and algorithmically. Different types of regularization
have been proposed in the literature. Typically, the nuclear-
norm regularizer Ω(M) = ‖M‖∗ is known to prefer low-
rank solutions. When M ∈ Sd+ is PSD, the nuclear norm
can be rewritten equivalently ‖M‖∗ = tr(M). The Frobe-
nius norm regularizer Ω(M) = 1

2‖M‖
2
F = 1

2 〈M,M〉 may
be viewed as the matrix analog of the popular and standard
squared-`2 regularization, particularly when M is a diago-
nal matrix since 1

2‖M‖
2
F = 1

2‖Diag(M)‖22 in this case. In
MMC [63] and LMNN [62], the term∑

(Ii,Ij)∈S D
2
M(Ii, Ij) = 〈M,

∑
(Ii,Ij)∈S Cij〉 can also be

seen as a regularizer (see Section 2.4.2.2 in [34]).
In the experiments, we use the same regularization as

LMNN when we use LMNN as a baseline and we want to
study the benefit of our proposed constraints in order to have
a fair comparison. When we constrain the matrix M ∈ Sd+
to be diagonal, we use the squared Frobenius norm in order
to apply an efficient RankSVM [11] optimization scheme.

We will explain in Section 4.1 how to efficiently solve
the problem in Eq. (8). We first propose to enrich the model
with other types of constraints.

3.2.2 Combining pair and quadruplet constraints

As mentioned in Section 3.1, pairwise constraints can be
rewritten as quadruplet-wise constraints. Nonetheless, in or-
der to enhance the readability of the paper, we consider to
explicitly distinguish the sets of similar image pairs S and
of dissimilar image pairs D from the set of relative distance
comparisons N .

Especially, if we are provided with a set of similar pairs
(S) and a set of dissimilar pairs (D), we expect the distances
of similar pairs to be smaller than a given threshold u and
the distances of dissimilar pairs to be greater than another
threshold l (with u ≤ l). To know whether a test pair is
similar or dissimilar, one only needs to compute its distance
and compare it to b = u+l

2 . The resulting constraints can be
written in this way:

∀(Ii, Ij) ∈ S : D2
M(Ii, Ij) ≤ u (9)
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∀(Ii, Ij) ∈ D : D2
M(Ii, Ij) ≥ l (10)

The integration of pairwise information in Eq. (8) then
results in the following problem:

min
M∈Sd+

Ω(M) + Cq
∑
q∈N

[δq + 〈M,Cij − Ckl〉]+

+ Cp
∑

(Ii,Ij)∈S

[〈M,Cij〉 − u]+

+ Cp
∑

(Ii,Ij)∈D

[l − 〈M,Cij〉]+

(11)

This problem is equivalent to Eq. (8) when Cp = 0 or S =

D = ∅. It is convex w.r.t. M. However, naive optimization
methods can be comptutationally expensive to solve it. We
discuss optimization schemes to efficiently solve this prob-
lem in Section 4.

We present an alternative distance metric formulation in
order to obtain a convex optimization problem that can be
solved efficiently.

3.3 Simplification of the model by optimizing over vectors

In order to obtain an efficient learning framework, we con-
sider in this subsection cases where a distance metric is for-
mulated as a function of one or many vectors. The distance
metric is then learned by optimizing over those vectors.

We particularly focus on two contexts where the opti-
mization process may be done efficiently [10,11] by using
this vector optimization approach and by learning a model
with a relatively small number of parameters. The first one
constrains the learned PSD matrix M ∈ Sd+ to be diagonal
(see Section 3.3.1). The second one considers that the train-
ing information is provided as multiple relative orderings;
we then learn a linear transformation matrix whose rows
each try to find a projection that satisfies a given relative
ordering (see Section 3.3.2).

3.3.1 Learning a diagonal PSD matrix

In the first context, the PSD matrix M ∈ Sd+ is constrained to
be a diagonal matrix in Eq. (11). By noting w = Diag(M),
it is easy to verify that, if M is a diagonal matrix, we have:

D2
M(Ii, Ij) = 〈M,Cij〉 = 〈Diag(w),Diag(Diag(Cij))〉

= w>[Φ(Ii, Ij) ◦ Φ(Ii, Ij)]

with Diag(Cij) = Φ(Ii, Ij)◦Φ(Ii, Ij) where ◦ is the Hadamard
product (element-by-element product). For convenience, we
also note Φ◦2(Ii, Ij) = Φ(Ii, Ij) ◦ Φ(Ii, Ij). The problem
can then be rewritten as a function of w.

In this context, the constraint M ∈ Sd+ is equivalent to
the constraint w ∈ Rd+ (the elements of w are non-negative).
Indeed, all the diagonal elements of a square diagonal ma-
trix are its eigenvalues and a symmetric matrix is PSD iff
all its eigenvalues are non-negative. We then consider the
constraint w ∈ Rd+ in this case.

3.3.2 Learning the rows of a linear transformation

If the provided annotations areM different dissimilarity func-
tions (e.g., relative attributes), where each of them repre-
sents a relative ordering focused on a given criterion (e.g., Ii
is more smiling than Ij , Ii is younger than Ij ...), each row
of the matrix L ∈ RM×d can be learned independently.
The mth row of L (denoted w>m) satisfies the ordering of
the mth dissimilarity function Dwm(Ii, Ij) = w>mΦ(Ii, Ij).
The matrix L can then be written in this form:

L =

w1,1 . . . w1,d

...
...

...
wM,1 . . . wM,d

 =

w>1
...

w>M

 , w>m : mth row (12)

In the end, a linear transformation parameterized by the ma-
trix L is learned, and, as explained in Section 2.1, learning
a linear transformation is equivalent to learning a distance
metric [62] parameterized by the matrix M = L>L.

3.3.3 Unified problem formulation

In both cases mentioned above, the learning problem may be
expressed as a linear combination of the parameter w ∈ C d

where C d is a d-dimensional convex set in Rd. In this paper,
the convex set C d is either Rd or Rd+. Without loss of gen-
erality, we consider optimizing the following dissimilarity
function:

Dw(Ii, Ij) = w>Ψ(Ii, Ij) s.t. w ∈ C d (13)

where
• Ψ = Φ◦2 and C d = Rd+ in the case M ∈ Sd+ is a diagonal
matrix (Section 3.3.1).
• Ψ = Φ and C d = Rd in the other case (Section 3.3.2).

We formulate our vector optimization problem as:

min
(w,b,ξ)

1

2
(‖w‖22 + b2) + Cq

∑
q∈N

ξq + Cp
∑

(Ii,Ij)∈(S∪D)

ξij

s.t.∀(Ii, Ij) ∈ S,Dw(Ii, Ij) ≤ b− 1 + ξij

∀(Ii, Ij) ∈ D,Dw(Ii, Ij) ≥ b+ 1− ξij
∀q ∈ N ,Dw(Ik, Il) ≥ Dw(Ii, Ij) + δq − ξq
ξq ≥ 0, ξij ≥ 0,w ∈ C d, b ∈ C

(14)

It is very similar to Eq. (11) when the matrix Diag(w) = M
is constrained to be diagonal, Ω(M) = 1

2‖M‖
2
F = 1

2‖w‖
2
2,
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u = b−1 and l = b+1. The only difference is the inclusion
of the b2/2 term in the regularizer. Note that both w and b
are learned in Eq (14).

The problem is convex w.r.t. w and b, and the inclusion
of the b2/2 term in the regularizer does not affect general-
ization [31]. The optimization process is briefly discussed
in Section 4.2 and a detailed discussion is provided in Sec-
tion A.

4 Quadruplet-wise (Qwise) optimization scheme

We first focus on the case where M ∈ Sd+ is a full (non-
diagonal) matrix, then we discuss the case where the learned
metric is parameterized by one vector of a set of vectors.
Finally, we describe optimization issues that are common to
both distance metric formulations.

4.1 Full matrix metric optimization

To solve the optimization problem of Eq. (11), we use the
projected gradient method. A subgradient of Eq. (11) w.r.t. M
is computed as follows:

O =Cp

 ∑
(Ii,Ij)∈S+

Cij −
∑

(Ii,Ij)∈D+

Cij


+ Cq

∑
q∈N+

(Cij − Ckl) +
∂Ω(M)

∂M

(15)

where N+, S+ and D+ are the subsets of violated con-
straints in N , S, D for a given value of M, respectively,
i.e., :
• q ∈ N+ ⇐⇒ q = (Ii, Ij , Ik, Il) ∈ N and δq+〈M,Cij−
Ckl〉 > 0

• (Ii, Ij) ∈ S+ ⇐⇒ (Ii, Ij) ∈ S and D2
M(Ii, Ij) > u

• (Ii, Ij) ∈ D+ ⇐⇒ (Ii, Ij) ∈ D and D2
M(Ii, Ij) < l

The value of ∂Ω(M)
∂M depends on the choice of regular-

izer Ω(M). For instance, ∂Ω(M)
∂M = Id if Ω(M) = tr(M),

∂Ω(M)
∂M = M ifΩ(M) = 1

2‖M‖
2
F , and ∂Ω(M)

∂M =
∑

(Ii,Ij)∈S Cij
if Ω(M) = 〈M,

∑
(Ii,Ij)∈S Cij〉 in the case of MMC [63]

and LMNN [62].
The whole algorithm of this subgradient method is pre-

sented in Algorithm 1 where ηt is the step size (see [7]
for optimal stepsize strategies in subgradient methods). The
complexity of Algorithm 1 is linear in the number of con-
straints and its complexity is dominated by the projection
ΠSd+ onto the PSD cone performed at each iteration (step
6). In the full matrix case, it requires an eigendecomposition
of the matrix (Mt − ηtOt), whose complexity is cubic in
the dimensionality d. This can be prohibitive if d is large.
However, the dimensionality d of our input data is always
smaller or equal to 1000 in our experiments. On a single

3,40 GHz computer, the eigendecomposition of a 103× 103

matrix takes less than 0.1 second, which is tractable for our
applications.
As one can see in Eq. (15), the subgradient related to the loss
of each quadruplet of images q = (Ii, Ij , Ik, Il) ∈ N is:

∂ [δq + 〈M,Cij − Ckl〉]+
∂M

=

{
0 if q /∈ N+

(Cij − Ckl) if q ∈ N+

The value of the subgradient does not depend on the degree
to which the constraint associated to the quadruplet q ∈ N
is violated, but depends only on whether q is in N+ or not.
Then let h(N+) be a subgradient associated to the set N+,
i.e., : h(N+) =

∑
q∈N+ (Cij − Ckl). Let N+

t be the set
of violated constraints in N at iteration t of the subgradient
method. We note that:

h(N+
t+1) = h(N+

t )− h(N+
t \ N+

t+1) + h(N+
t+1 \ N

+
t )

Since the sets (N+
t \N+

t+1) and (N+
t+1 \N

+
t ) are very small

in practice, it is more efficient to store the matrix h(N+
t )

and compute h(N+
t \ N+

t+1) and h(N+
t+1 \ N

+
t ) to obtain

h(N+
t+1) than naively computing

∑
q∈N+ (Cij − Ckl) for

which the complexity is O(|N+
t+1|d2). Note that the same

technique can be used for the sets S and D when they are
not empty.

4.2 Simplified metric optimization

To solve the vector optimization problem in Eq. (14), we
adapt the RankSVM model [27]. The complexity is linear
in the number of constraints and large-scale efficient solvers
have been proposed (e.g., Newton’s method [11]). In order
to exploit Newton’s method, we use a Huber loss function
instead of a hinge loss function like in Eq. (11). The opti-
mization process is detailed in Section A and is a Newton
adaptation of Algorithm 1 for vector optimization.

A small adaptation needs to be done to exploit the op-
timization techniques presented in Section 4.1 since we use
Huber loss functions instead of a hinge loss. As the Huber
loss function is composed of two linear parts (sets β0

i,y and
βLi,y in Section A.2) and a quadratic part, the technique pre-
sented in Section 4.1 for the hinge loss can be applied to
the linear parts of the Huber loss function, which represent
nearly all the domain of Lhi .

4.3 Active sets

As the number of possible quadruplets can be very large, it
is computationally prohibitive and sub-optimal to use all the
quadruplets.

To overcome this limitation, we propose to add to our
optimization schemes an active set strategy that exploits the
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Algorithm 1 Projected Subgradient Method
Require: SetsN , D, S (some of them can be empty)
1: Iteration t = 0
2: Initialize Mt ∈ Sd+ (e.g., Mt = 0)
3: Initialize the step size ηt > 0 (e.g., ηt = 1)
4: repeat
5: Compute Ot (subgradient w.r.t. Mt, Eq. (15))
6: Mt+1 ← ΠSd

+
(Mt − ηtOt)

7: t← t+ 1
8: until ||Mt −Mt−1||2F ≤ ε
9: Return Mt

fact that the great majority of training quadruplets do not in-
cur margin violations. Only a small fraction of the quadru-
plets inN are inN+. In a similar manner as in LMNN [62],
we check all the quadruplets and maintain an active list of
those with margin violations: a full re-check is performed
every 10-20 iterations, depending on fluctuations of the set
N+
t . For intermediate iterations, we only check for mar-

gin violations from among those active quadruplets accumu-
lated over previous iterations. When the optimization con-
verges for a given active setN+

t , the most active constraints
that are not in N+

t are added in N+
t+1, note that N+

t ⊂
N+
t+1. If all the possible active constraints are already in
N+
t , then we have reached an optimal solution for the global

optimization problem. Otherwise, some remaining active con-
straints are added to the current set Nt until convergence.

4.4 Structural Metric Learning

We present in this subsection an extension of our model
based on structured output prediction for large margin meth-
ods [28,30]. The proposed extension is inspired by [44] and
learns a metric to predict a ranking over a set of samples.
Its formulation allows to exploit efficient optimization tech-
niques such as the 1-slack cutting-plane method [30].

The goal of Metric Learning to Rank (MLR) [44] is to
learn a matrix M ∈ Sd+ that minimizes a ranking loss func-
tion ∆ : Y × Y → R+ over permutations Y induced by
distance. By considering a set X of queries x and a corpus
C of points ci that represent images or pairs of images, the
structured output optimization problem can be expressed as:

min
M∈Sd+,ξ≥0

Ω(M) + Cξ

s.t. ∀x ∈ X , y ∈ Y
〈M, ψ(x, yx))− ψ(x, y)〉 ≥ ∆(yx, y)− ξ

(16)

where Ω(M) > 0 is a regularization term and C > 0 is
a regularization parameter. The loss ∆(yx, y) quantifies the
penalty for making prediction y if the correct ranking output
is yx. Rankings are represented as a matrix of pairwise or-
derings Y ⊂ {−1, 0,+1}|C|×|C| between points ci in C. For

any y ∈ Y , yij = +1 if ci is ranked ahead of cj , yij = −1 if
cj is ranked ahead of ci, and yij = 0 if ci and cj have equal
rank.

The 1-slack approach in Eq. (16) shares a single slack
variable ξ across all constraint batches, which are in turn
aggregated by averaging over each point in the training set.

Let C+x and C−x denote the set of relevant and non-relevant
images or pairs of images of C for the query x, respectively.
In this paper, we consider the commonly used partial order
feature map ψ:

ψ(x, y) =
∑
ci∈C+x

∑
cj∈C−x

yij

(
φ(x, ci)− φ(x, cj)
|C+x |.|C−x |

)
(17)

where φ(x, ci) is a feature map which characterizes the rela-
tion between x and ci. In the model proposed by [44], they
consider that x and ci are images represented by vectors xx
and xi in the same space Rd, and thus express φ as:

φRd(x, ci) = −(xx − xi)(xx − xi)>

In this case, they have 〈M, φRd(x, ci)〉 = −D2
M(x, ci).

In our case of quadruplets, we consider that ci is a pair
of images and is represented by a pair of vectors (xi1 , xi2) ∈
Rd×Rd. For convenience, we write Rd2 = Rd×Rd. We then
express φ as:

φRd2 (x, ci) = φRd2 (x, i1, i2) = −(xi1 − xi2)(xi1 − xi2)
>

In the pairwise approach, if the sets S and D of similar
and dissimilar pairs are the only provided training labels,
we consider that there exists only one query x. The sets are
C+x = S, C−x = D and φ = φRd2 .

In the tripletwise approach, if training samples are pro-
vided as triplets of images (x, ck, cl), as in LMNN [62],
where (x, ck) ∈ S are similar and (x, cl) ∈ D are dissimi-
lar, we consider that each such image x is a query. The sets
are then C+x = {ck | (x, ck) ∈ S}, C−x = {cl | (x, cl) ∈ D}
and φ = φRd . This is the case considered in [44]. It gener-
alizes LMNN when C+x is the set of k nearest neighbors of
x in the original input space, and C−x is the set of images in
categories different from x. Since LMNN extends linear or-
dinal regression SVM [29] by learning a PSD matrix instead
of a vector (and using a different regularization term), MLR
extends LMNN in the same way as structural SVM extends
ordinal regression [29].

Quadruplet formulation: In our case where training labels
are relative distances over quadruplets (ci, cj , ck, cl) ∈ N ,
we consider that each query is a pair x = (ci, cj), their cor-
responding positive and negative sets are C+x = {x}, C−x =

{(ck, cl)|(ci, cj , ck, cl)} ∈ N , x = (ci, cj)}, φ = φRd2 .
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Fig. 3 (left) A pair of successive versions of the New York Times homepage wherein only the advertisement (yellow region) is different. The
change of advertisement does not affect the information shared by the page, the two versions are thus considered as similar. (right) A pair of
successive versions of the CNN homepage. The change of news title (blue region), which is the main information shared by the page, makes the
two versions dissimilar and is thus considered as an important change.

Optimization: In order to optimize Eq. (16), we use the same
1-slack cutting plane solver [30] as [44]. The difference with
[44] is the formulation of the feature map induced by φ and
the fact that we try to satisfy relative orderings of distances
between image pairs. The structural formulation of our prob-
lem can greatly reduce the number of possible constraints
compared to the non-structural formulation (in the same way
as [29]). The 1-slack cutting plane method efficiently selects
the most penalized constraints among a huge set of possi-
ble constraints, and optimizes the problem over a small set
of active constraints. We can then solve problems that deal
with huge numbers of quadruplets as training information.

5 Temporal Metric Learning for Webpages

We present in this section the first application of our met-
ric learning method. We introduced in [40] a distance met-
ric learning framework for webpage comparison and detec-
tion of important semantic regions. The goal is to determine
whether semantical changes occurred between two succes-
sive versions of the same webpage or not. Fig. 3 illustrates
two pairs of successive versions of webpages. On the left
one, the change of advertisement (yellow region) is the only
observable change. Since it does not change the content shared
by the webpage, the two versions are considered as simi-
lar. A human (or indexing robot) then does not need to visit
these two versions. On the contrary, on the right pair of
Fig. 3, although an advertisement (yellow region) has also
changed, the main news shared by the webpage (blue region)
is different. The versions then both need to be visited and
indexed. They are thus are considered as dissimilar. Several
approaches that extract meaningful information in webpages
admit the importance of visual information [42,55,56] since
the layout is taken into account when pages are created. In
order to exploit visual information, classic webpage analysis
methods, such as the VIsion-based Page Segmentation algo-
rithm (VIPS) [9], integrate visual descriptors based on the
structure (e.g., position, width, border of regions or font col-
ors) from the page source code rather than using computer
vision-based features. We extend the webpage analysis ex-

periments performed in [40] in several ways: 1) we propose
a semi-supervised metric learning framework by combin-
ing unsupervised quadruplet constraints with pairwise con-
straints that are manually labeled; 2) we propose a novel
heuristic to perform unsupervised change detection; 3) we
combine both visual and structural [9] information.

5.1 Webpage change detection framework

5.1.1 Unsupervised constraints

Our approach relies on the assumption of monotony of changes,
which is illustrated in Fig. 4 where four successive versions
of the same webpage vt−1, vt, vt+1, vt+2 are crawled with
a sufficiently high frequency (each hour). Although the four
versions are all different, one can see that vt seems more
similar to vt+1 than to vt+2. Similarly, vt and vt+1 are more
similar than vt−1 and vt+2 are. By exploiting time informa-
tion, one can automatically generate a set B of quadruplets
of versions (vt, vt+1, vr, vs) where r ≤ t < s. The goal is
to learn a dissimilarity function D that satisfies most of the
following constraints:

∀(vt, vt+1, vr, vs) ∈ B : D(vt, vt+1) ≤ D(vr, vs) (18)

In order to satisfy these constraints, the metric D has to ig-
nore random and periodic changes, which are often caused
by advertisements. Fig. 4 illustrates a case where a car ad-
vertisement (at the right of the page) is identical in vt−1, vt
and vt+2 and different in vt+1. By ignoring this advertise-
ment region, it is easier for D to satisfy the constraints in
Eq. (18).

A trivial solution to satisfy all the constraints in Eq. (18)
is a pseudometric such that: ∀(vi, vj), D(vi, vj) = 0. To
avoid this degenerate solution, one can assume that there ex-
ists a change period γ > 1 such that for all r ≤ t < r + γ

we have the strict inequality D(vt, vt+1) < D(vr, vr+γ).
In other words, we assume that there exists a change period
γ specific to the page such that the changes that occurred
between the two versions vr and vr+γ are more important



12 Marc T. Law et al.

time
vt−1 vt vt+1 vt+2

Fig. 4 Four successive versions of the NPR homepage. Although it is hard and expensive to ask users to label version pairs as similar or not, it is
cheaper to infer that the dissimilarity between vt and vt+1, or even vt−1 and vt+1 is smaller than the dissimilarity between vt−1 and vt+2.

than between directly successive versions vt and v+1 where
r ≤ t < r + γ. Although vt and vt+1 may be dissimilar,
their dissimilarity is assumed smaller than the dissimilarity
between vr and vr+γ3. In the same way as B, we create a set
A (with A ∩ B = ∅) such that:

∀(vt, vt+1, vr, vs) ∈ A : D(vt, vt+1) + 1 ≤ D(vr, vs) (19)

where 1 is a safety margin, r ≤ t and s ≥ r + γ ≥ t +

1. The constraints defined in Eq. (19) penalize content that
does not change much in some regions, although a change
in the whole page is expected. This type of static content
usually corresponds to menus: the algorithm learns to ignore
these areas. Note that γ determines whether a quadruplet
belongs to B or A, and thus its related constraint (Eq. (18)
or (19)). Nonetheless, since constraints satisfied in Eq. (19)
are also satisfied in Eq. (18), choosing a value of γ greater
than the actual change period of the page is not problematic.
There is a straight connection between these equations and
Eq. (7). Any quadruplet q in B can be formulated as q ∈ N
with δq = 0 and any quadruplet q in A can be formulated as
q ∈ N with δq = 1.

5.1.2 Pairwise supervised constraints

Additionally to the automatically generated constraints based
on monotony of changes, richer information of whether a
pair of versions is similar or dissimilar can be integrated.
This information can be provided by human users (or heuris-
tically determined). Let S be the set of pairs of versions an-
notated as (or assumed) similar and D the set of dissimi-
lar version pairs, an interesting property of the function D

3 Different ways to set the parameter γ exist. It can for example
be determined with prior knowledge about the page or it can be cho-
sen heuristically following the observation in Adar et al. [1]: human
users tend to visit more frequently webpages that often change. In other
words, human users can be considered as intelligent web crawlers with
a good crawling strategy. For instance, a page that is visited everyday
by a lot of unique visitors can be assumed to be different everyday (in
this case γ = 24 hours). This popularity information can be obtained
from services that provide detailed statistics about the visits to a web-
site (e.g., Google Analytics).

would be to satisfy:

∀(vr, vs) ∈ S : D(vr, vs) + 1 ≤ b (20)

∀(vr, vs) ∈ D : b+ 1 ≤ D(vr, vs) (21)

where 1 is a safety margin and b ∈ R a learned threshold.
These two types of constraints (Eq. (20) and Eq. (21)) fol-
low the classic approach in metric learning [26,63] that min-
imizes the distance of similar pairs while separating dissim-
ilar pairs (in our case, keeping their distances beyond the
threshold b). To know whether a test pair (vr, vs) is simi-
lar or not, one only has to study the sign of D(vr, vs) − b
(positive for dissimilar pairs, and negative for similar pairs).

5.1.3 Distance Metric formulation

We integrate the constraints mentioned from Eq. (18) to (21)
in the learning framework described in Section 3 (see Eq.(11)
and Eq. (14)) by considering N = A ∪ B. We consider the
diagonal and full matrix Mahalanobis-like distance metric
formulations where the:
• metric Dw is parameterized by the d-dimensional vector
w ∈ Rd+. This metric tries to satisfy the ideal properties
of the target function D (Eq. (18) to (21)). Dw is a linear
combination of d distances between versions vi and vj over
d different spatial regions (one distance per region). These
d distances are concatenated in the vector dregions(vi, vj) ∈
Rd. The computation of dregions is detailed is Section 5.2.
Dw is written:

Dw(vi, vj) = w>dregions(vi, vj) (22)

where w ∈ Rd+ is the weight vector: the value of the k-th
element of w corresponds to the importance of change as-
signed to the k-th region of the page. An element of w close
to 0 means that the corresponding region is ignored, whereas
an element with a relatively high absolute value has more
impact on the global dissimilarity function Dw. By avoid-
ing w to have negative elements, the learned metric tends
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to ignore unimportant changes rather than penalizing them
(which would mean negative scores in order to minimize the
learned function).
•metric DM is paramaterized by the symmetric PSD matrix
M ∈ Sd+. DM is written:

D2
M(vi, vj) = c>ijMcij (23)

where cij = (dregions(vi, vj))
◦ 1

2 and ◦ 12 is the Hadamard
square root (element-wise square root).

5.2 Visual and Structural Comparisons of Webpages

Visual distance representation: We present here how to
compute a visual distance representation dregions (mentioned
in Section 5.1.3) that relies on computer vision-based fea-
tures. The method considers screen captures of page ver-
sions as images. Only the visible part of pages without scrolling
is considered since it generally contains the main informa-
tion shared by the page [41,55]. Our proposed method com-
putes the GIST [47] descriptors of screen captures. GIST de-
scriptor segments images by anm bym grid4. We formulate
the vector dregions(vi, vj) ∈ Rm2

as an m2-dimensional
vector for which each element corresponds to the squared
`2-distance between bins that fall into the same cell of the
grids of the screenshots of vi and vj . GIST descriptor was
proven to provide very high accuracy for near-duplicate de-
tection [16], which is close to our context of successive ver-
sions of the same document. The high efficiency, small mem-
ory usage and estimation of coarsely localized information
of the global GIST descriptor, allowing to scale up to very
large datasets [16], motivated this choice. Examples of our
regular m×m segmentation are illustrated in Fig. 5.
Learning a multimodal visual/structural metric: We also
propose to learn a multimodal distance metric DM by late
fusion. It is expressed as a linear combination of visual and
structural distance metrics:

DM(vi, vj) = α1Dw(vi, vj)+α2DH(vi, vj)+α3DU (vi, vj)

where the coefficients αi ≥ 0 are learned with a binary
SVM classifier that separates the pairs in S from pairs in D.
Dw(vi, vj) is the learned visual distance metric mentioned in
Eq. (22). DH (or DU ) is the Jaccard distance between hyper-
links (or image URLs) of vi and vj . DH and DU were shown
to be discriminative for semantic change detection [41]5

4 We use the publicly available code of Oliva and Torralba [47] in
MATLAB to compute GIST descriptors. In particular, we choose the
following setting: 8 oriented edge responses at 4 different scales. The
computation time of the GIST descriptor of a page version (screen cap-
ture of about 1000× 1000 pixels) using a 10× 10 grid is 3.2 seconds.

5 We also tried to include the Jaccard distance of words (similar
to Dice’s coefficient of words used in [2], with the exception that it
satisfies the properties of a distance metric) but it does not improve
performances.

Computation time: the whole process of computation of
distances between GIST descriptors, creation of constraints
and learning of the diagonal matrix distance Dw takes 0.7
seconds on a 3.4 GHz machine in MATLAB. It takes 4.5
seconds in the full matrix distance case. It can be done of-
fline: only the learned parameter of the distance (w or M),
the threshold b, the coefficients αi in the late fusion setup,
and the descriptors of test pairs are necessary for test.

5.3 Datasets and evaluation protocol

We hourly crawled different types of popular webpages (home-
pages or non-homepages of news or educational websites)
as done in [1,5] for approximatly 50 days: the version vt+1

is visited 1 hour after vt. The crawled webpages6 are the
homepages of some news websites (e.g., CNN, BBC, Na-
tional Public Radio (NPR), New York Times (NYT)), the
finance section of Yahoo! News, the music section of NPR
(that is not often updated) and educational webpages: the
homepage of Boston’s University and the open courseware
page of the Massachusetts Institute of Technology (MIT).

To evaluate our approach with quantitative results, we
labeled pairs of versions of some of these websites (∼ 1, 200

per site). To simplify the labeling process, we select only
news websites that are easier to annotate, and we choose as
similarity criterion the presence of change of the main news
in the page. Only the successive version pairs (vt, vt+1) of
the CNN, BBC, NPR and New York Times homepages were
labeled. We distinguish 4 labels for version pairs:
- identical: two given versions are identical.
- similar: a change not important enough to download both
version occurs (e.g., a change of advertisement, see Fig. 3
(left)).
- dissimilar: the main news of the page changes. Particularly,
we consider (vt, vt+1) as dissimilar only if textual news in-
formation is added in the page between vt and vt+1. We give
more details about the annotation criterion in Section 5.4.
- ambiguous: two given versions are difficult to label as sim-
ilar or dissimilar.

For each website, we create 10 train/test splits: for each
split, we use 5 successive days for training, the 45 remain-
ing days for test7. Ambiguous version pairs are ignored in
the test evaluation process. However, they are used in auto-
matically generated quadruplet-wise constraints to train im-
portant change maps. The identical versions are also ignored

6 www.cnn.com, www.bbc.co.uk, www.npr.org,
www.nytimes.com, finance.yahoo.com, www.npr.
org/music, www.bu.edu, ocw.mit.edu

7 We minimize the number of common versions used for training
among the different splits: i.e., the first training split contains the first 5
days, the second one the 6th to 10th days, the third one the 11th to 15th

days...

www.cnn.com
www.bbc.co.uk
www.npr.org
www.nytimes.com
finance.yahoo.com
www.npr.org/music
www.npr.org/music
www.bu.edu
ocw.mit.edu
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Fig. 5 Important change maps for the homepages of BBC, CNN, NYTimes, NPR, Boston’s University, the open courseware page of the MIT,
the finance section of Yahoo! News and the music section of NPR. (left) Webpage screenshot, with relevant area (news) in blue, unimportant
parts (menu and advertisement) in green and purple, respectively. (right) Spatial weights of important change learned by our method with versions
crawled during 5 days and without human annotations (higher values are darker).

for test because their distance would be 0 (the lowest possi-
ble value) with any distance metric; since they are easy ex-
amples (e.g., they would be the first retrieved similar pairs in
the average precision evaluation), the performance measures
would return very high scores by using them for test.

We compute the average precision for the similar class
APS by ranking distance values of test pairs of successive
versions (vt, vt+1) in ascending order and the average preci-
sion for the dissimilar class APD by ranking distance values
of test pairs in descending order. The Mean Average Pre-

cision (MAP) is the mean of APS and APD. Classification
accuracy is also used: it is the mean of the accuracies of
the class of similar pairs (S) and of the class of dissimilar
pairs (D). Average precision is particularly useful to mea-
sure how much the relative orderings of distances are sat-
isfied by the metric. Classification accuracy is useful to de-
termine the most effective crawling strategies since it can
measure how frequently a webpage changes in a given pe-
riod.
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Fig. 6 Important change maps for the homepages of BBC, CNN, New York Times and NPR. (left) Webpage screenshot with webpage regular
segmentation blocks (red lines). (right) Absolute values of the eigenvector of the dominant eigenvalue of the distance non-diagonal matrix learned
by our method with versions crawled during 5 days and without human supervision (higher values are darker).

5.4 Qualitative results

We present in this subsection qualitative results when no hu-
man supervision is integrated in the learning process (i.e., we
only consider the automatically generated constraintsA and
B, the sets D and S are both empty).

A first qualitative evaluation is illustrated in Fig. 5. The
figure shows the weights of regions learned for the 8 web-
pages mentioned in Section 5.3 without human supervision.
In order to learn these weights/maps of importance, we sam-
ple version quadruplets (vt, vt+1, vr, vs) using Eq. (18) and
Eq. (19) so that r ≥ t − 6, s ≤ t + 7, γ = 4. Images
are segmented as a 10 × 10 or 8 × 8 grid. Training sets to
learn these maps contain screenshots of pages visited every
hour during 5 days. In terms of training constraints, we deal
with less than 10, 000 constraints in our experiments, which
makes the learning of the diagonal matrix metric Dw very
fast. The maps of importance in Fig. 5 plot the relative val-
ues of the parameter w ∈ Rd+ of the learned metric. The
highest positive values, represented by dark regions, corre-
spond to important change regions of the page (e.g., news
title). Menus and advertisements are ignored by the learned
metric as expected.

We also tested our method on governmental websites but
their change frequency is so low (the page often remains un-
changed in 5 days) that a meaningful distance metric is not
learnable in only 5 days. This is consistent with the observa-
tions of Adar et al. [2]: government domain addresses do not
change as frequently or as much as pages in other domains

do, and this may reflect the fact this type of site provides
richer and less transient content that only requires small, in-
frequent updates.

Fig. 6 illustrates the eigenvector v1 of the largest eigen-
value λ1 of M when we learn a full matrix metric DM. The
matrix M′ = λ1v1v>1 is the projection of M onto the set of
rank-1 symmetric PSD matrices, and thus the nearest rank-
1 matrix of M in the spectral norm. The vector v1 weighs
the importance of spatial regions of the webpage since we
have D2

M′(vi, vj) = λ1(v>1 cij)2. Fig. 6 shows that v1 cor-
rectly detects important change regions and ignores menus
and advertisements.

5.5 Quantitative Results:

We present in this subsection quantitative results obtained
by our method. We first present average precision scores ob-
tained in the unsupervised set (i.e., D ∪ S = ∅). Eventu-
ally, we present classification accuracy scores in the unsu-
pervised and semi-supervised setups.
Average Precision: Table 1 compares the average precision
scores obtained using different distance metrics:
- the Euclidean distance metric often used for the GIST de-
scriptor [47].
- a triplet-based method for which the set A is used to gen-
erate triplet-wise constraints.
- our learned visual metric Dw parameterized by a vector w.
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- our proposed visual metric DM parameterized by the non-
diagonal matrix M and learned using classic projected sub-
gradient method (described in Algorithm 1).
- our proposed visual metric Dstruct

M parameterized by the
non-diagonal matrix M and learned using 1-slack cutting
plane method (described in Section 4.4).

More precisely, Table 1 presents the recognition scores
when screenshot images of webpages are segmented8 as m2

regions (i.e., dregions(vi, vj) ∈ Rm2

) where m = 10. The
Euclidean distance metric is outperformed by all the learned
metrics although its performance is good, which means that
the Euclidean distance is fitted for change detection. The
triplet-based method which exploits a small number of con-
straints is outperformed by quadruplet-wise methods that
exploit a larger number of meaningful constraints. The full
matrix distance metric DM outperforms all the other meth-
ods. Particularly, it outperforms the diagonal matrix distance
metric Dw proposed in [40] due to the exploitation of corre-
lations between the different spatial regions. The distance
metric Dstruct

M learned with structural metric learning returns
slightly worse results thanDM. This is due to the fact that the
cutting plane method solves an approximation of the origi-
nal problem (by exploiting a subset of active constraints). In
general, Dstruct

M also outperforms the other metrics.
The relatively low APD for the BBC homepage is due to

false detections of semantical changes because of the simi-
larity criterion used to label version pairs. As mentioned in
Section 5.3, two versions are considered as dissimilar only if
their textual news content is different. However, a specificity
of the BBC website is that each breaking news story goes
along with a breaking news logo that appears only within the
hour after its publication. After this given period, the BBC
breaking news logo is replaced by a related news picture.
Fig. 7 illustrates one such example where the text content is
identical (and the pair of versions is thus annotated as simi-
lar) but the breaking news logo is replaced by a news picture.
Our method, which detects for Fig. 7 a visual change in an
important region, returns a high dissimilarity value although
the version pair is annotated as similar. The APD obtained
by our method is then affected by this kind of noisy behav-
ior of the BBC website. The other news websites studied in
this paper do not have such a behavior and return better val-
ues of APD. In a context where any new image about an
important event has to be archived, the example illustrated
in Fig. 7 would be considered as dissimilar, and the APD of
BBC would be higher.
Classification Accuracy: We now present classification ac-
curacy results in the unsupervised and semi-supervised se-

8 We experimented with different values of m (i.e., m = 4, 8 and
10), and this setting returned the best recognition performance for all
the distance metrics. All the distance metrics benefit from greater val-
ues ofm, which means that they need to focus on highly detailed small
regions of pages.

National Public Radio (NPR)
Method APS APD MAP

Eucl. Distance 96.3± 0.2% 89.5± 0.5% 92.9± 0.3%
Triplet-based 98.0± 0.6% 92.5± 1.1% 95.2± 0.9%
Proposed Dw 98.6± 0.2% 94.3± 0.6% 96.5± 0.4%
Proposed DM 98.7± 0.2% 94.5± 0.7% 96.6± 0.4%

Proposed Dstruct
M 98.3± 0.3% 94.0± 0.6% 96.1± 0.5%

New York Times
Method APS APD MAP

Eucl. Distance 69.8± 0.9% 79.5± 0.4% 74.6± 0.5%
Triplet-based 83.2± 1.4% 89.1± 2.7% 86.1± 2.0%
Proposed Dw 85.5± 5.4% 92.3± 4.1% 88.9± 4.6%
Proposed DM 91.6± 4.4% 94.7± 2.4% 93.1± 3.4%

Proposed Dstruct
M 90.5± 4.7% 94.0± 2.5% 92.2± 3.6%

CNN
Method APS APD MAP

Eucl. Distance 68.1± 0.6% 85.9± 0.6% 77.0± 0.5%
Triplet-based 78.8± 1.9% 91.7± 1.7% 85.2± 1.8%
Proposed Dw 82.7± 4.1% 94.6± 1.8% 88.6± 2.9%
Proposed DM 87.9± 3.1% 96.6± 0.6% 92.2± 1.9%

Proposed Dstruct
M 87.4± 3.2% 96.3± 0.6% 91.9± 1.9%

BBC
Method APS APD MAP

Eucl. Distance 91.1± 0.3% 76.7± 0.6% 83.9± 0.4%
Triplet-based 92.5± 0.4% 80.1± 1.0% 86.3± 0.6%
Proposed Dw 92.8± 0.4% 79.3± 1.3% 86.1± 0.8%
Proposed DM 93.0± 0.6% 82.5± 1.3% 87.7± 1.0%

Proposed Dstruct
M 92.8± 0.6% 81.8± 1.4% 87.3± 1.0%

Table 1 Test average precisions obtained by the classic Euclidean dis-
tance and by learned metrics in the fully unsupervised setup.

Fig. 7 The important region of two successive versions of the BBC
homepage. A specificity of the BBC website is that it always uses its
”breaking news” logo to introduce recent breaking news and removes
it after a short period. In this case, since the textual content of the main
news is unchanged, we consider the two versions are similar. How-
ever, in a Web archiving context, these two versions are considered as
dissimilar since a relevant visual information is updated. Our algorithm
tends to detect a visual change in the important change region although
the news is the same.

tups. For the sake of clarity of the paper and scalability of
the method, we present in the following only the results ob-
tained with the diagonal Qwise visual distance metric Dw
and with GIST descriptor. The relative quantitative perfor-
mances of other models follow the same tendencies as in
Table 1.

When human annotations to distinguish similar pairs from
dissimilar pairs are not provided (i.e., S ∪ D = ∅), a dis-
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tance Dw can be learned from the training set N = A ∪ B
composed of quadruplets of successive versions of the same
webpage (crawled for 5 days in our experiments). However,
no threshold (b in Eq. (20) and Eq. (21)) is learned to distin-
guish similar pairs from dissimilar pairs. In other words, pair
distances can be compared to one another but our learned
metric cannot determine whether or not important changes
occurred in a given pair of versions. We present here how to
learn a change detection algorithm (that can distinguish sim-
ilar pairs of versions from dissimilar pairs) without exploit-
ing information provided by human users. In particular, we
propose to learn a change detection algorithm that exploits
the metric Dw learned from the set N to automatically gen-
erate the training sets S (class −1) and D (class +1). Once
these sets are created, we learn a binary classifier that dis-
criminates pairs in S from pairs in D. Assuming that the
metric Dw learned in Eq. (14) provides lowest distance val-
ues for similar pairs and highest values for dissimilar pairs,
the training pairs in S and D can be automatically inferred
from the training set of page versions in N . Let k be the
cardinality of the created sets S and D (k = |S| = |D|).
The k version pairs (vt, vt+1) (among the 24 × 5 = 120

possible pairs) with highest values of Dw(vt, vt+1) form D,
whereas the k version pairs with values Dw(vt, vt+1) clos-
est to 0 (and that are not completely identical) form S. Any
binary classifier that exploits the generated training samples
in S and D can be learned. We learn a linear SVM classifier
that discriminates pairs in D from pairs in S .

Fig. 8 and Table 2 report classification accuracies in the
unsupervised setup described above. We learn a linear SVM
with the automatically created sets S and D using the |S| =
|D| = k = 25 version pairs with lowest and highest dis-
tances, respectively.

Fig. 8 illustrates the change detection accuracy as a func-
tion of the grid resolution used to segment webpage screen-
shots (i.e., the number of regions in webpages). Change de-
tection improves as the grid resolution increases. At a grid
resolution of 4 × 4, the change detection is already better
for all websites than a naive classifier that randomly deter-
mines whether a test pair is similar and would reach 50%

accuracy. We reach accuracies up to 87% on NPR with a
10 × 10 grid resolution. Table 2 compares accuracies (us-
ing a 10 × 10 grid resolution) depending on whether visual
features are used independently (as in Fig. 8) or combined
with structural distances. The combination of structural and
visual distances improves the accuracy up to 2% on CNN.

All these results illustrate the ability of our model to
learn a change detection algorithm without human supervi-
sion.

We now show how the results may be improved by ex-
ploiting little human supervision. Fig 9 reports classifica-
tion accuracies on the different websites as a function of the
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Fig. 8 Test accuracies in the similarity detection task without human
supervision as the grid resolution of the GIST descriptor increases
(k = 25).

Web Site Visual Method Multimodal Vis./Struct. Method
NPR 87.0 86.7

NYTimes 76.4 77.0
CNN 72.9 75.0
BBC 68.6 68.6

Table 2 Test accuracies (in %) in the fully unsupervised setup using
only visual descriptors or combining them with structural metrics. A
10× 10 grid resolution is considered (k = 25).

number of annotated pairs per class (k = |S| = |D|) 9. Us-
ing k = 5 annotated pairs per class improves accuracy by
5% when compared to the unsupervised method (k = 0),
and using 20 annotated pairs further improves recognition
by 5.5%. However, we reach a ceiling for k > 20, around
which the accuracy does not improve significantly. Using a
small number of annotated pairs is then sufficient. Moreover,
note that the selected pairs in S and D are randomly chosen
among the 24×5 = 120 possible pairs. Active strategies can
be performed to minimize integrated human supervision.

Table 3 compares the accuracies obtained with the change
detection method proposed in [41] and with our method that
combines a learned visual metric with structural distances.
To the best of our knowledge, the approach in [41] is the
only machine learning method proposed for change detec-
tion in the context of Web archiving. This approach com-
bines unlearned visual and structural distances to learn a
linear SVM. The approach in [41] exploits SIFT and color-
based bags-of-words representations which are slow to com-
pute (see [39, Section 5] for details on computation time).
For the sake of scalability, we consider instead GIST de-
scriptor which is more appropriate to our large scale prob-
lem [16] and can be related to SIFT-based BoWs [54] since it
provides gradient information for the different spatial grids
in the image. As shown in [39], the recognition performance
of similarity between pairs of webpage versions is domi-
nated by gradient-based descriptors. Color descriptors can
also be included at the expense of additional computation
time.

9 The accuracies reported with zero annotated pair sample per class
correspond to those of Section 5.5, Fig. 8 and Table 2.
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Fig. 9 Test accuracies in the semi-supervised setup for similarity de-
tection as the number of annotated samples increases. A 10× 10 grid
GIST descriptor is used.

Number of annotated samples per class
Law et al. [41] Proposed method

Web Site 5 20 5 20
NPR 81.4 86.1 90.6 90.6

New York Times 65.3 68.3 83.4 90.2
CNN 70.2 71.6 77.4 85.1
BBC 69.8 72.3 80.0 83.9

Table 3 Test accuracies (in %) in the (semi-)supervised setup of the
baseline method described in [41] and our method using the same vi-
sual and structural descriptors.

Our proposed approach outperforms the approach in [41]
by a margin of 12%. Moreover, combining structural and vi-
sual distances (see Table 3) improves recognition over vi-
sual distances alone (see Fig 9) with a global margin of 1%
for all websites. This result is consistent with the observa-
tions in [41] that structural and visual distances are comple-
mentary. In conclusion, our semi-supervised method outper-
forms the unsupervised approach and the approach in [41]
that does not focus on important regions.

In conclusion of these Webpage experiments, we have
shown that:
• the metric learned with our proposed strategy allows to de-
tect important regions in webpages. The learned metric also
implicitly returns small distances for semantically similar
pairs of versions and larger values for semantically distant
versions.
• the metrics learned in an unsupervised way perform very
well and their recognition performance is improved with
very little human supervision.
• our sampling strategy allows to create a lot of signifi-
cant constraints. This is particularly useful when triplet-wise
sampling strategies generate a relatively small number of
constraints.
• the learned distance metric can be extended by combining
both visual and structural information metrics.

6 Hierarchical Metric Learning

6.1 Creation of constraints

In this section, the goal is to learn a distance metric that is
relevant to a given hierarchical object class taxonomy. More

precisely, our objective is to learn a metric such that images
from close (e.g., sibling) classes with respect to the class
semantic hierarchy are more similar than images from more
distant classes. Our strategy is illustrated in Fig. 2 where dif-
ferent subclasses of the general class Canis lupus are gath-
ered together depending on their subspecies and their breed,
which corresponds to subclasses and subsubclasses in the
taxonomy, respectively.

Given a semantic taxonomy expressed by a tree of classes,
let us consider two sibling classes ca and cb and a class cd
that is not their sibling (we call it a cousin class). We gener-
ate two types of quadruplet-wise constraints in order to:

(1) Enforce the dissimilarity between two images from
the same class to be smaller than between two others from
sibling classes. If (Ii, Ij) are both sampled from ca, and
(Ik, Il) are sampled from ca × cb, we want Dij < Dkl.
These constraints are similar to the ones exploited by LMNN
with the exception that we use quadruplets of images and
that LMNN does not exploit taxonomy information: i.e., we
sample Il from a sibling class of ca whereas LMNN samples
Il from any class different from ca.

(2) Enforce the dissimilarity between two images from
sibling classes to be smaller than between two images from
cousin classes. If (Ii, Ij) are sampled from ca × cb and
(Ik, Il) from ca×cd, we wantDij < Dkl. These constraints
are strongly related to the taxonomy information and allow
to discriminate images from sibling classes better than from
any other class. They follow the idea that semantically close
objects should be closer with the learned distance metric.

In order to limit the number of training constraints, we
sample the image Ij such that Ij is one of the k nearest
neighbors of Ii: Ij is sampled in the same class in the case
(1) and in a sibling class in the case (2).

We consider both the diagonal PSD matrix and the full
matrix distance metric formulations described in Section 3.
The experiments are performed on datasets where billions of
constraints can be generated. To have a tractable framework,
we use the optimization strategies mentioned in Section 4.

6.2 Classification results

To evaluate our metric learning for class hierarchy, we fol-
low the subtree classification task described in [60]. There
are 9 datasets which are all subsets of ImageNet [15]): Am-
phibian, Fish, Fruit, Furniture, Geological Formation, Mu-
sical Instrument, Reptile, Tool, Vehicle. Each of these 9 datasets
contains 8 to 40 different classes and from 8000 to 54000
images each. We use the train, validation and test sets de-
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Subtree Dataset Non-linear SVM TaxEmb Verma et al. [60] Qwise (Diagonal Matrix) Qwise (Full Matrix)
Amphibian 38% 38% 41% 43.5% 43.5%

Fish 34% 37% 39% 41% 41.6%
Fruit 22.5% 20% 23.5% 21.1% 21.1%

Furniture 44% 41% 46% 48.8% 48.9%
Geological Formation 50.5% 50.5% 52.5% 56.1% 56.1%
Musical Instrument 30.5% 23% 32.5% 32.9% 32.9%

Reptile 21.5% 18.5% 22% 23.0% 23.1%
Tool 27.5% 24.5% 29.5% 26.4% 26.7%

Vehicle 30.5% 22.5% 27% 34.7% 34.7%
Average Accuracy 33.2% 30.6% 34.8% 36.4% 36.5%

Table 4 Standard classification accuracy for the various datasets using the SVM classification framework for the 9 datasets from ImageNet.

fined in [60], and also the same publicly available features10:
1000 dimensional SIFT-based Bag-of-Words (BoW) [54].

We learn a PSD matrix M ∈ Sd+ that exploits the con-
straints described in introduction and that we decompose11

as M = L>L. The matrix L is used to project input data
in another representation space which is the input space of
another classifier. We choose a standard classifier (linear
SVM) to perform classification.

When we constrain M ∈ Sd+ to be diagonal, we formu-
late our metric D2

M(Ii, Ij) = Dw(Ii, Ij) = w>Ψ(Ii, Ij)
where Ψ(Ii, Ij) = (xi− xj) ◦ (xi− xj) and w = Diag(M).
Once the diagonal PSD matrix M ≥ 0 is learned, we project
the input space using the linear transformation parameter-
ized by the diagonal matrix M1/2 = L ∈ Rd×d such that
∀i ∈ {1, . . . , d},Lii =

√
Mii (note that L>L = M).

Table 4 presents the results reported in [60] (a nonlinear
SVM, TaxEmb [61] and the method proposed in [60]) and
our Qwise methods (diagonal matrix [40], and full matrix).

The model of Verma et al. [60] and TaxEmb [61] also
exploit class taxonomy information to learn hierarchical sim-
ilarity metrics or embedding. It is worth mentioning that
Verma et al. [60] have a complex learning framework: they
learn a local metric parameterized by a full PSD matrix for
each class (leaf of the subtree), which can lead to overfit-
ting. Our Qwise-learning model is simpler since we learn
only one global metric for each subtree. Moreover, when we
use a diagonal matrix model, the number of parameters only
grows linearly with the input space dimension. Both pro-
posed methods obtain surprisingly very similar results with
a global accuracy of 36.4 ∼ 36.5%, which is 1.6% better
than the method of Verma et al. [60]. Both proposed meth-
ods outperform all the reported methods, globally and on
each dataset except Fruit and Tool. All these results validate
the fact that the proposed constraints are useful when richer
information compared to class membership information is
provided.

10 http://www.image-net.org/challenges/LSVRC/
2010/

11 We use the eigendecomposition M = UDU> where D is a diago-
nal matrix, and we formulate L = D1/2U>.

6.3 Further analysis with k-NN classification

We now further analyze our metrics. We use the same k-NN
classification12 for all the compared approaches to focus on
the discussion of the metrics.

Table 5 reports the results obtained with the Euclidean
distance (M = Id), LMNN [62], and our Qwise (diago-
nal and full matrix models). All the learned models out-
perform the Euclidean distance in this setup for the men-
tioned datasets. Full matrix models that exploit correlations
between features outperform metric learning models that learn
a diagonal distance matrix. We note that our proposed meth-
ods, that exploit hierarchical taxonomy information, slightly
outperform LMNN that uses only class membership infor-
mation. It is worth mentioning that this gain is not straight-
forward as our proposed constraints focus on preserving se-
mantic distances w.r.t. the provided taxonomy rather than
performing k-NN classification task. Moreover, although the
method in Verma et al. [60] exploits a k-NN classification
framework, it cannot be directly compared to the results in
Table 5 since it exploits an ad hoc k-NN classifier which is
optimized for the learned metric and is not the same as the
one used by the methods reported in Table 5. All the meth-
ods in Table 5 exploit the same k-NN classifier as LMNN
and can thus be compared to one another.

To better observe the preservation of relationship (in the
hierarchy) between the predicted class and the ground truth
class instead of only focusing on the correct assignment of
an image to its class, we use the modified accuracy Accc =
1 − 1

m

∑m
t=1∆(c, ŷct ) where c and ŷct denote the ground

truth and predicted class labels of the tth test example, re-
spectively, and m is the total number of test examples in the
class c. We consider:

∆(c, ŷct ) =


0 if ŷct = c

0.5 if ŷct is a sibling class of c
1 otherwise

(24)

The proposed evaluation metric ∆ takes class hierarchy in-
formation into account. In particular, Eq. (24) can be seen

12 We report the results for 10 nearest neighbor classification (which
performs better than 1-NN, 5-NN and 50-NN).

http://www.image-net.org/challenges/LSVRC/2010/
http://www.image-net.org/challenges/LSVRC/2010/
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Model Amphibian Fish Fruit Furn. Geological F. Musical I. Reptile Tool Vehicle AVG
Euclidean distance 10-NN 35.5 33.9 16.9 36.6 43.3 27.0 17.2 24.5 20.2 28.3
LMNN Diagonal Matrix 10-NN 39.0 37.4 19.5 39.4 47.2 27.5 19.8 23.8 22.9 30.8
LMNN Full Matrix 10-NN 41.8 38.3 21.1 41.1 49.5 28.5 21.2 24.0 28.0 32.6
Qwise Diagonal Matrix 10-NN 39.3 37.6 20.6 40.0 47.6 28.0 20.7 23.8 24.8 31.4
Qwise Full Matrix 10-NN 41.8 38.5 21.7 41.6 51 29.3 21.8 24.2 29.3 33.2

Table 5 Standard classification accuracy for the various datasets using the k-NN classification framework.

Model Amphibian Fish Fruit Furn. Geological F. Musical I. Reptile Tool Vehicle AVG
Euclidean distance 10-NN 50.1 35.3 32.1 42.2 45.1 28.5 21.3 26.2 29.1 34.4
LMNN Diagonal Matrix 10-NN 53.0 42.0 34.2 42.7 48.5 30.2 22.4 25.5 32.2 36.7
LMNN Full Matrix 10-NN 56.0 42.3 34.5 44.1 51.1 31.7 22.4 25.7 32.8 37.8
Qwise Diagonal Matrix 10-NN 54.8 42.5 39.1 44.8 50.0 33.1 24.4 25.6 33.2 38.6
Qwise Full Matrix 10-NN 56.7 43.6 39.7 46.9 53.2 34.1 25.5 26.1 34.7 40.1

Table 6 Classification accuracy that takes class hierarchy information into account for the various datasets using the k-NN classification frame-
work (see text).

as a special case of the Context Sensitive Loss (CSL) func-
tion13 used in [60]. In [60], they consider that ∆(c, ŷct ) is
the height of the lowest common ancestor of the pair (c, ŷct )
normalized by the maximum tree height of the taxonomy
tree when c 6= ŷct . Eq. (24) corresponds to the same CSL
loss as in [60] when the maximum tree height of the cate-
gory taxonomy is 2. Since the constraints that we consider
in Section 6.1 focus on pairs of images in the same category
or in sibling categories, the loss defined in Eq. (24) is more
appropriate to evaluate that our learned metric better takes
into account images in the two lowest levels of the taxon-
omy.

Table 6 reports the corresponding scores. Qwise outper-
forms other methods, and the gap with LMNN is more sig-
nificant. This demonstrates that the proposed constraints al-
low to better fit semantic relationships between classes. This
result corroborates the claim of [60] that exploiting class
taxonomy to learn a metric is beneficial for recognition.

7 Metric learning and Relative Attributes

In this section, we present and compare different strategies
for sampling quadruplet-wise constraints in the context of
relative attributes. We show that relaxing strong equivalence
constraints by quadruplet-wise constraints introduces robust-
ness and compensates for labeling imprecisions.

Relative attributes have been introduced in [48]. Attributes
are human-nameable concepts used to describe images. For
instance, in Fig. 10, the attribute am = “presence of smile”
allows to rank 4 celebrity classes from the least to the most
smiling. Instead of considering attributes as boolean values
as done in [38] (i.e., the concept is present in the image or
not), Parikh and Grauman [48] learn for each attribute am a
vector wm ∈ Rd such that the score w>mxi ∈ R represents
the degree of presence of am in the image Ii.

13 As mentioned in [60, footnote 1], there exist several ways to define
a CSL and one of these ways is chosen in [60].

Presence of smile− +

Least smiling ≺ ? ∼ ? ≺ Most smiling

Class (e) Class (f ) Class (g) Class (h)︸ ︷︷ ︸
⇓

Learn dissimilarity D such that:

D( , ) < D( , )

D( , ) < D( , )

Fig. 10 Quadruplet-wise (Qwise) strategy on 4 face classes ranked
according to the degree of presence of smile. Qwise strategy defines
quadruplet-wise constraints to express that dissimilarities between ex-
amples from (f ) and (g) should be smaller than dissimilarities between
examples from (e) and (h).

To learn wm, they use original training sets about rela-
tive ordering between classes such as the one presented in
Fig. 10: (e) ≺ (f) ∼ (g) ≺ (h). In [48], only pairwise rela-
tions are considered for learning:
• (e) ≺ (f) meaning that images in class (f) have stronger
presence of the attribute am than images in class (e).
• (f) ∼ (g) meaning that images in (f) and (g) have equiv-
alent strength of presence of the attribute am.

Let M be the total number of attributes that are con-
sidered for a given dataset. Once the optimal weight vectors
wm are learned for all the attributes am withm ∈ {1, . . . ,M},
each image Ii is described by a high level feature represen-
tation:

hi = [w>1 xi, . . . ,w>mxi, . . . ,w>Mxi]> ∈ RM

This corresponds to learning a linear transformation param-
eterized by L ∈ RM×d such that hi = Lxi where the mth
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row of L is w>m (see Eq. (12)). As explained in Section 2.1,
their problem can then be cast as a metric learning problem.

7.1 Integrating quadruplet-wise constraints

Following our vector formalism defined in Section 3.3.2, we
consider to learn for each attribute am the signed dissimilar-
ity function Dwm such that Dwm(Ii, Ij) = w>mΨ(Ii, Ij),
with Ψ(Ii, Ij) = xi − xj . The sign of Dwm(Ii, Ij) deter-
mines the relative ordering of presence of the attribute am
between the images Ii and Ij . For instance, Dwm(Ii, Ij) >
0 means that the presence of am is stronger in Ii than in Ij .

The provided information concerning the degree of pres-
ence of an attribute in an image is given at a class level:
pairwise constraints may be noisy or irrelevant, leading to
less than optimal learning scheme. Considering triplet-wise
constraints (e.g., class (x) is more similar to (y) than to (z))
could be helpful but still generates inconsistent constraints
in some cases: in Fig. 10 (second row), Owen (f ) seems to
be smiling more like Johansson (h) than like Rodriguez (g).
To further exploit the available ordered set of classes and
overcome these limitations, we consider relations between
quadruplets. Two types of Qwise constraints may be derived
from the training set.

7.1.1 Replacing ordered pairs by quadruplets

The first type of relation that we consider in this section is:
(e) ≺ (f) ≺ (g) ≺ (h). We do the following assumption:
any image pair from the extreme border classes (e) and (h)

is more dissimilar than any image pair from the intermediate
classes (f) and (g). This information can be written:

∀(Ii, Ij , Ik, Il) ∈ (g)× (f)× (h)× (e) Dkl > Dij (25)

By sampling such quadruplets from the whole set of rel-
ative orderings over classes (e.g., Table 7, see experiments
for details), we build our Qwise setN such that for all quadru-
plet q in N , we have δq = 1 in Eq. (14).

7.1.2 Flexible constraints instead of equivalence
constraints

The second type of relations is: (e) ≺ (f) ∼ (g) ≺ (h),
which means that the presence of the attribute am is equiv-
alent for any pair of images (Ii, Ij) ∈ (f) × (g). To take
into account the fact that the dissimilarity Dij between Ii
and Ij is signed whereas the provided information is not,
we consider the following constraint14: Dkl > |Dij | where

14 It is not necessary to discuss the sign of Dkl since Ik was anno-
tated to have stronger presence of am than Il. We infer Dkl > 0.

OSR Attributes Relative Ordering of Classes
Natural T ≺ I ∼ S ≺ H ≺ C ∼ O ∼M ∼ F
Open T ≺ F ≺ I ∼ S ≺M ≺ H ∼ C ∼ O

Perspective O ≺ C ≺M ∼ F ≺ H ≺ I ≺ S ≺ T
Large-Objects F ≺ O ≺M ≺ I ∼ S ≺ H ∼ C ≺ T

Diagonal-Plane F ≺ O ≺M ≺ C ≺ I ∼ S ≺ H ≺ T
Close-Depth C ≺M ≺ O ≺ T ∼ I ∼ S ∼ H ∼ F

PubFig Attributes Relative Ordering of Classes
Masculine-Looking S ≺M ≺ Z ≺ V ≺ J ≺ A ≺ H ≺ C

White A ≺ C ≺ H ≺ Z ≺ J ≺ S ≺M ≺ V
Young V ≺ H ≺ C ≺ J ≺ A ≺ S ≺ Z ≺M

Smiling J ≺ V ≺ H ≺ A ∼ C ≺ S ∼ Z ≺M
Chubby V ≺ J ≺ H ≺ C ≺ Z ≺M ≺ S ≺ A

Visible-Forehead J ≺ Z ≺M ≺ S ≺ A ∼ C ∼ H ∼ V
Bushy-Eyebrows M ≺ S ≺ Z ≺ V ≺ H ≺ A ≺ C ≺ J

Narrow-Eyes M ≺ J ≺ S ≺ A ≺ H ≺ C ≺ V ≺ Z
Pointy-Nose A ≺ C ≺ J ∼M ∼ V ≺ S ≺ Z ≺ H

Big-Lips H ≺ J ≺ V ≺ Z ≺ C ≺M ≺ A ≺ S
Round-Face H ≺ V ≺ J ≺ C ≺ Z ≺ A ≺ S ≺M

Table 7 Relative orderings used in [48] for the OSR dataset (cate-
gories: coast (C), forest (F), highway (H), inside-city (I), mountain
(M), open-country (O), street (S) and tall-building (T)) and the Pub-
Fig dataset (categories: Alex Rodriguez (A), Clive Owen (C), Hugh
Laurie (H), Jared Leto (J), Miley Cyrus (M), Scarlett Johansson (S),
Viggo Mortensen (V) and Zac Efron (Z)).

(Ik, Il) ∈ (h)× (e). In order to have a convex problem, we
rewrite it as two constraints:{
Dkl ≥ Dij + 1

Dkl ≥ Dji + 1
(26)

We thus generate two quadruplets in N from Eq. (26).

7.2 Classification Experiments

To evaluate and compare our Qwise scheme, we follow a
classification framework inspired from [48] for scene and
face recognition on the OSR [47] and Pubfig [36] datasets.
Datasets: We experiment with the two datasets used in [48]:
Outdoor Scene Recognition (OSR) [47] containing 2688 im-
ages from 8 scene categories and a subset of Public Fig-
ure Face (PubFig) [36] containing 771 images from 8 face
categories. We use the image features made publicly avail-
able by [48]: a 512-dimensional GIST [47] descriptor for
OSR and a concatenation of the GIST descriptor and a 45-
dimensional Lab color histogram for PubFig. Relative or-
derings of classes according to some semantic attributes are
also available (see Table 7).

7.2.1 Recognition with Gaussian Models

We study here the impact of our proposed constraints on the
original relative attribute problem [48].
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Fig. 11 Recognition performance of the baseline [48] and the proposed methods on OSR dataset (a) and PubFig dataset (b) as a function ofB (the
number of pairs of classes used to generate relative constraints per attribute). Accuracies smaller than 69% are not reported for B = 1 on OSR.
Accuracies smaller than 66% are not reported for B = 1 or B = 2 on PubFig.

Baseline: As a baseline, we use the relative attribute learn-
ing problem of Parikh and Grauman [48] that exploits rela-
tive attribute orderings between classes (see Table 7) to gen-
erate pairwise constraints. A Gaussian model is learned to
perform recognition, as explained below.
Qwise Method: We use for OSR and Pubfig the quadruplet-
wise constraints defined in Section 7.1. The Qwise scheme
uses only relative attribute information to learn a linear trans-
formation. Particularly, we distinguish two QWise adapta-
tions of the problem of [48] named QWSL and OQWSL:
- QWSL: this method replaces pairwise equivalence con-
straints as explained in Section 7.1.2 (Eq. (26)) and exploits
the same pairwise ordered constraints as [48]. By relaxing
only restrictive pairwise equivalence constraints, this method
is more robust to the annotation problems described in Fig 10.
- OQWSL: this method exploits only quadruplet-wise con-
straints for training. The pairwise equivalence constraints
are relaxed as explained in Section 7.1.2, and pairwise or-
dered constraints are replaced by quadruplet-wise constraints
as explained in Section 7.1.1. On some datasets, the pairwise
ordered annotations performed by humans may be noisy in
the same way as equivalence constraints. The purpose of
this method is to relax the pairwise constraints generated by
these possibly noisy annotations.
Learning setup: We use the same experimental setup as [48]
to learn our Qwise metric. N = 30 training images are used
per class, the rest is for testing. LetB be the number of pairs
of classes that we select to learn the projection direction wm
of attribute am, From each of theB selected pairs of classes,
we extractN×N image pairs or quadruplets to create train-
ing constraints. To carry out fair comparisons, we generate
one Qwise constraint for each pairwise constraint generated
by [48] using the strategies described in Section 7.1.1. In
this way, we have the same number of constraints. Once all
the M projection directions wm are learned, a multivariate
Gaussian distribution is learned for each class cs of images:
the mean µs ∈ RM and covariance matrix Σs ∈ RM×M
are estimated using the hi of all the training images Ii in

cs. A test image It is assigned to the class corresponding
to the highest likelihood. The performance is measured as
the average classification accuracy across all classes over 10
random train/test splits.

Values of B: when at least one of the two images Ii
and Ij belongs to extreme border classes (e.g., the most or
least smiling classes), a pair of images (Ik, Il) such that
Dkl > Dij cannot be sampled. We ignore the constraint in
this case: since we cannot generate Qwise constraints from a
pairwise constraint that involves extreme border classes, the
maximum possible value for B is

(
C−2
2

)
= 15 for OQWSL

where C = 8 is the number of classes. Otherwise, the max-
imum possible value for B is

(
C
2

)
= 28.

Results: The comparison of our proposed methods and the
baseline [48] is illustrated in Fig. 11 for the OSR dataset and
PubFig dataset.
- Pairwise baseline study: we first study for the baseline [48]
the impact of the pairwise equivalence constraints (i.e., (f) ∼
(g)) on recognition performance to better analyze the benefit
of our Qwise constraints. On both OSR and PubFig, recogni-
tion performance is comparable when pairwise equivalence
constraints are exploited and when they are not. This proves
that equivalence constraints are not informative and do not
appropriately exploit the provided equivalence information.
In the following, we study the impact on performance recog-
nition induced by the integration of our proposed Qwise
constraints:
- OSR: On OSR, our methods reach an accuracy of 74.3%
and 74.1%, which is 3% better than the optimal baseline
accuracies. QWSL is more robust as B increases, it seems
to benefit both from the precision of strict order pairwise
constraints and from the flexibility applied on problematic
equivalent pairs of classes. OQWSL performs surprisingly
well with a set of 4 classes (B = 1) per attribute, attesting
that our Qwise scheme performs well with a small number
of constraints.
- PubFig: On PubFig, since there are not many equivalence
constraints (see Table 7), QWSL mostly uses the same pair-
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Fig. 12 Recognition performance of our proposed methods for different neighbor sampling
strategies (see text) on OSR dataset ((a) & (b)) and PubFig dataset ((c) & (d)) as a function of
B (the number of pairs of classes used to generate relative constraints per attribute). Accuracies
smaller than 69% are not reported for B = 1 on OSR. Accuracies smaller than 66% are not
reported for B = 1 or B = 2 on PubFig.

wise constraints as the baselines and then performs simi-
larly. OQWSL reaches 72% accuracy, which is 2% better
than baselines with comparable B (number of constraints).
Moreover, when combining OQWSL and pairwise ordered
constraints for extreme border classes, our method reaches
74.5% accuracy.

The recognition performance of all the baselines and
proposed methods decreases with large values of B on OSR
but increases on PubFig, which suggests that the provided
annotations of OSR are noisy, or at least not reliable. QWSL
is more robust and performs at least as well as baselines on
both datasets. However, OQWSL is clearly better that all the
other methods on PubFig with comparable B.

In conclusion, our approach outperforms the baselines
on both OSR and PubFig with a margin of 3% accuracy,
reaching state-of-the-art results in this original setup15 [48].

This proves that relaxing noisy pairwise constraints by
intuitive quadruplet-wise constraints introduces robustness
and compensates for labeling imprecisions described in Sec-
tion 7.1.

Impact of the distance of surrounding classes to create
quadruplets: We have a totally ordered set of classes per at-
tribute to describe relations. We only studied the case where
we upper bound the dissimilarity between two classes with
their nearest neighbor classes in the ordered set. What hap-
pens if we choose more distant classes in the set to create
quadruplets? Fig. 12 shows that our methods are very ro-
bust to the distance of surrounding classes. In the figures,
the methods (O)QWSL-1, (O)QWSL-2, (O)QWSL-3 cor-
respond to different sampling strategies to generate a given
quadruplet q = (Ii, Ij , Ik, Il) from a given pair (Ii, Ij).
For a given p ∈ {1, 2, 3}, (O)QWSL-p corresponds to sam-

15 A different setup is used in [49] where additional feedback im-
proves recognition.

pling the images Ik and Il from the pth closest classes of the
classes of Ii and Ij .16

Except in Fig 12 (b) where OQWSL-3 performs little
worse than OQWSL-1, choosing further neighbors gives bet-
ter results than choosing nearest neighbors. Our best accu-
racies are obtained by doing so: QWSL-2 in Fig. 12 (a),
OQWSL-2 in Fig. 12 (b) and OQWSL-3 in Fig. 12 (d). Our
performances are about 4% and 1.5% better than the opti-
mal baselines accuracies on OSR and PubFig respectively
(3.5% better on PubFig with comparable B). The reason of
this phenomenon seems to be the high intra-class variance.
In general, using two close classes seems to be the right
choice to learn a good margin between classes. However,
if the generated training constraints are noisy, the quality of
the learned projection direction w is affected.

In conclusion, Qwise constraints allow to refine relations
between samples and can improve recognition.

7.2.2 Comparison of different classification models

Learning for each class a multivariate Gaussian distribution
N (µs,Σs) can be seen as learning a Mahalanobis distance
metric DΣ−1

s
(x,µs). We propose to compare the perfor-

mances of models learned with our constraints when com-
bined with metric LMNN [62]. LMNN exploits only class
membership information in order to learn a Mahalanobis-
like distance metric. For each image, LMNN tries to sat-
isfy the condition that members of a predefined set of target
neighbors (of the same class) are closer than samples from
other classes. In [62], those neighbors are chosen using the
`2-distance in the input space.
Setup: The high level features hi ∈ RM learned with our
method are used as input of LMNN. We call this strategy
Qwise + Pairwise + LMNN (Q+Pwise + LMNN) since we
combine both Qwise and pairwise constraints. Depending

16 For instance, if we have (k) ≺ (i) ≺ (e) ≺ (f) ∼ (g) ≺ (h) ≺
(j) ≺ (l), the classes (i) and (j) and the second closest classes of (f)
and (g). The classes (k) and (l) are their third closest classes.
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OSR Pubfig
LMNN [62] 71.2± 2.0% 71.5± 1.6%
LMNN-G 70.7± 1.9% 69.9± 2.0%

RA (Parikh’s code [48]) 71.3± 1.9% 71.3± 2.0%
RA + LMNN 71.8± 1.7% 74.2± 1.9%

OQSWL + LMNN-G 73.5± 1.7% 74.1± 1.8%
OQWSL + LMNN 73.9± 1.9% 75.7± 1.8%
QWSL + LMNN-G 74.6± 1.7% 74.8± 1.7%

QWSL + LMNN 74.3± 1.9% 77.0± 1.9%

Qwise + Pairwise (Q+Pwise) 74.1± 2.1% 74.5± 1.3%
Q+Pwise + LMNN-G 74.6± 1.7% 76.5± 1.2%

Q+Pwise + LMNN 74.3± 1.9% 77.6± 2.0%

Table 8 Test classification accuracies on the OSR and Pubfig datasets
for different methods.

on the dataset, we use a different definition of Q+Pwise
based on the results obtained in Section 7.2.1.
• For OSR, Q+Pwise is QWSL which obtained the best

results with a Gaussian model and proved to be robust.
• For Pubfig, Q+Pwise is OQWSL to which we add pair-

wise inequality constraints that are applied to extreme bor-
der categories for each attribute.

In both cases, our method combines quadruplet-wise and
pairwise constraints. We denote:
- LMNN: the methods for which a k-NN classifier is used
(since LMNN is designed for k-NN classification).
- LMNN-G: the methods for which a linear transformation is
learned but used with a multivariate Gaussian model instead
of a k-NN classifier. We propose these methods in order to
have the same classifier as [48] and be fair in comparison.
- RA + LMNN is a combination of the baselines [48] and [62]
that first exploits pairwise constraints based on relative at-
tribute annotations to learn a representation of images in at-
tribute space, and second, learns a metric in attribute space
with LMNN.

We use the publicly available codes of [48] and [62]. For
comparison, we also report as baselines the combination of
OQWSL (which exploits only quadruplet-wise constraints)
and QWSL with LMNN.
Results: Table 8 reports the classification scores for the dif-
ferent baselines, Q+Pwise, and Q+Pwise+LMNN.

On OSR and Pubfig, Q+PWise reaches an accuracy of
74.1% and 74.5%, respectively. It outperforms the baselines
[48] and [62] on both datasets by a margin of 3% accuracy.
Moreover, performance is further improved when relative at-
tributes and LMNN are combined. Particularly, an improve-
ment of about 3% is obtained on Pubfig, reaching 77.6%.
Relative attribute annotations (used for Qwise learning) and
class membership information (used for LMNN) then seem
complementary. It can also be noted that the combination of
pairwise and Qwise constraints obtain the best results (com-
pared to OQWSL).

In conclusion, we have proposed and compared different
strategies for sampling constraints to compensate for label-
ing imprecisions. Relaxing strong equivalence constraints
by quadruplet-wise constraints improves recognition.

8 Conclusion and Perspectives

In this paper, we have proposed a general and efficient Ma-
halanobis distance metric learning framework that exploits
constraints over quadruplets of images. Our approach can
easily combine relative and absolute distance constraints.
We experimentally show in different scenarios (i.e., relative
attributes, metric learning on class hierarchy and temporal
webpage analysis) that it is specifically adapted to incorpo-
rate knowledge from rich or complex semantic label rela-
tions.

In the context of relative attributes, we have shown that
some pairwise comparisons of images are limited and can
be improved by relaxing the quadruplet-wise relaxed con-
straints. In the context of hierarchical classification, class
taxonomies can be used to better describe semantical rela-
tionships between images.

We have proposed a novel webpage change detection
method that exploits temporal relationships between versions
and detects important change regions. This method can be
easily learned in a unsupervised or semi-supervised way and
exploit structural information of webpages. Particularly, the
change detection algorithm learned without human super-
vision obtains good recognition results on different web-
sites. In order to improve recognition, it can also exploit
a small number of human annotations that are performed
globally on page version pairs instead of requiring annota-
tion of each semantical block of each page as usually done.
Since our method mostly relies on visual comparisons on
rendered pages, it is generic and robust to the way the an-
alyzed pages are coded. Structural distances, that use the
source code of webpages, are also easy to integrate in our
framework. The possible applications of our approach are
diverse: Web crawling and search engine improvements, nav-
igation in Web archives, improvement of mobile phone ap-
plications that load the important content of webpages...

Future work includes the learning of non-linear distance
metrics and more general types of constraints that exploit
sets of images. Also, the implementation of a webpage seg-
mentation method dedicated to change detection by using
our algorithm as a preprocessing step will be investigated.
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A Solver for the vector optimization problem

We describe here the optimization process when the goal is to learn a
dissimilarity function Dw parameterized by a vector w.

A.1 Primal form of the optimization problem

We first rewrite Eq. (14) in the primal form in order to use the efficient
and scalable primal Newton method [11].

The first two constraints of Eq. (14) over S and D try to satisfy
Eq. (9) and Eq. (10). They are equivalent to yij(Dw(Ii, Ij) − b) ≥
1 − ξij where yij = 1 ⇐⇒ (Ii, Ij) ∈ D and yij = −1 ⇐⇒
(Ii, Ij) ∈ S. Eq. (14) can then be rewritten equivalently :

min
(w,b)

1

2
(‖w‖22 + b2) + Cp

∑
(Ii,Ij)∈S∪D

L1(yij ,Dw(Ii, Ij)− b)

+ Cq
∑
q∈N

Lδq (1,Dw(Ik, Il)− Dw(Ii, Ij))

s.t.w ∈ C d, b ∈ C

(27)

whereL1 andLδq are loss functions and yij ∈ {−1; 1}. In particular,
for Eq. (14) and Eq. (27) to be strictly equivalent, they have to corre-
spond to the classic hinge loss function Lδ(y, t) = max(0, δ − yt).
We actually use a differentiable approximation of this function to have
good convergence properties [10,11].

For convenience, we rewrite some variables:
• ω = [w>, b]> is the concatenation of w and b in a single (d + 1)-
dimensional vector. We note e = d+ 1 and then have ω ∈ Re.
• cij = [(Ψ(Ii, Ij))>,−1]> is the concatenation vector ofΨ(Ii, Ij)
and −1. We also have cij ∈ Re.
• p = (Ii, Ij)⇐⇒ cp = cij and yp = yij .
• q = (Ii, Ij , Ik, Il)⇐⇒ zq = xkl − xij .

Eq. (27) can be rewritten equivalently with these variables:

min
ω∈Ce

1

2
‖ω‖22 + Cp

∑
p∈S∪D

L1(yp,ω
>cp)

+ Cq
∑
q∈N

Lδq (1,ω
>zq)

(28)

By choosing such a regularization, our scheme may be compared
to a RankSVM [11], with the exception that the loss function Lδq
works on quadruplets. The complexity of this convex problem w.r.t. ω
is linear in the number of constraints (i.e., the cardinality ofN ∪D ∪
S). It can be solved with a classic or stochastic (sub)gradient descent
w.r.t.ω depending on the number of constraints. The number of param-
eters to learn is small and grows linearly with the input space dimen-
sion, limiting overfitting [46]. It can also be extended to kernels [11].

We describe in the following how to apply Newton method [31,
10,11] to solve Eq. (28) with good convergence properties. The pri-
mal Newton method [11] is known to be fast for SVM classifier and
RankSVM training. As our vector model is an extension of the RankSVM
model, the learning is then also fast.

A.2 Loss functions

Let us first describe loss functions that are appropriate for Newton
method. Since the hinge loss function is not differentiable, we use dif-
ferentiable approximations of L1 and Lδq inspired by the Huber loss
function.

Algorithm 2 Projected Newton Step
Require: Sets S, D,A, B (some of them can be empty)
1: Iteration t = 0
2: Initialize ωt ∈ C e (e.g., ωt = 1)
3: Initialize the step size ηt > 0 (e.g., ηt = 1)
4: repeat
5: Compute Ot and Ht (gradient and hessian w.r.t. ωt)
6: ωt+1 ← ΠCe(ωt − ηtH−1

t Ot)
7: t← t+ 1
8: until ||ωt − ωt−1||22 ≤ ε
9: Return ωt

For simplicity, we also constrain the domain of δq to be 0 or 1
(i.e., δq ∈ {0, 1}). The set N can then be partitioned as two sets A
and B such that for all:
• q ∈ N , δq = 1⇐⇒ q ∈ A
• q ∈ N , δq = 0⇐⇒ q ∈ B

In Eq. (28), we consider tp = ω>cp or tq = ω>zq . Without
loss of generality, let us consider tr with r ∈ β (with β = S,D,A or
B) and y ∈ {−1,+1}. Our loss functions are written:

Lh1 (y, tr) =


0 if ytr > 1 + h set: β0

1,y
(1+h−ytr)2

4h
if |1− ytr| ≤ h set: βQ1,y

1− ytr if ytr < 1− h set: βL1,y

(29)

Lh0 (y, tr) =


0 if ytr > 0 set :β0

0,y
t2
r

4h
if | − h− ytr| ≤ h set :βQ0,y

−h− ytr if ytr < −2h set :βL0,y

(30)

where h ∈ [0.01, 0.5]. In all our experiments, we set h = 0.05.
As described in [10], Lh1 is inspired from the Huber loss func-

tion, it is a differentiable approximation of the hinge loss (L1(y, t) =
max(0, 1 − yt)) when h → 0. Similarly, Lh0 is a differentiable ap-
proximation when h→ 0 ofL0(y, t) = max(0,−yt), the adaptation
of the hinge loss that considers the absence of security margin. Given
set β and y ∈ {−1,+1}, we can infer three disjoint sets:
• β0

i,y is the subset of elements in β that have zero loss in Lhi (y, ·).
• βQi,y is the subset of elements in β that are in the quadratic part of
Lhi (y, ·).
• βLi,y is the subset of elements in β in the non-zero loss linear part of
Lhi (y, ·).

A.3 Gradient and Hessian Matrices

By considering L1 = Lh1 and L0 = Lh0 in Eq. (28), the gradient
O ∈ Re of Eq. (28) w.r.t. ω is:

O = ω +
Cp

2h

∑
p∈(S∪D)Q1,yp

(ω>cp − (1 + h)yp)cp

− Cp
∑

p∈(S∪D)L
1,yp

ypcp +
Cq

2h

∑
q∈AQ1,1

(ω>zq − (1 + h))zq

+
Cq

2h

∑
q∈BQ0,1

(ω>zq)zq − Cq
∑

q∈(AL
1,1
∪BL

0,1
)

zq

(31)
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and the Hessian matrix H ∈ Re×e of Eq. 28 w.r.t. ω is:

H = Ie +
Cp

2h

∑
p∈(S∪D)Q1,yp

cpc>p +
Cq

2h

∑
q∈(AQ1,1∪B

Q
0,1)

zqz>q (32)

where Ie ∈ Re×e is the identity matrix. H is the sum of a positive
definite matrix (Ie) and of positive semi-definite matrices. H is then
positive definite, and thus invertible (because every positive definite
matrix is invertible).

Proof: H can be written H = Ie + B with B ∈ Re×e a posi-
tive semi-definite matrix. For all vector z ∈ Re, we have z>Hz =
z>Iez + z>Bz. By definition of positive (semi-)definiteness, we have
the following property: for all nonzero z ∈ Re, z>Iez > 0 and
z>Bz ≥ 0. Then for all nonzero z ∈ Re, z>Hz > 0. H is then a
positive definite matrix. ut

The global learning scheme is described in Algorithm 2. The step
size ηt > 0 can be set to 1 and unchanged as in [10], or optimized
at each iteration through line search (see Section 9.5.2 in [8]). The
parameter ε ≥ 0 determines the stopping criterion by controlling the
`2-norm of the difference of ω between iteration t and t− 1.

Complexity: Computing the Hessian takes O(σe2) time (where
σ = |(S ∪ D)Q1,yp | + |(A

Q
1,1 ∪ B

Q
0,1)|) and solving the linear sys-

tem is O(e3) because of the inversion of Ht ∈ Re×e. This can be
prohibitive if e is large but we restrict e ≤ 1001 in our experiments;
the inversion of Ht is then very fast. Other optimization methods are
proposed in [11] (e.g., a truncated Newton method) if e is large.

It can be noticed that Newton method is appropriate for uncon-
strained problems, where the inclusion of H−1 at each iteration allows
to converge faster to the global minimum. When C e is Re+, Eq. (28) is
a constrained problem and the minimum of the unconstrained problem
is not necessarily the minimum of the constrained problem. In Eq. (28),
since our loss functions are linear almost everywhere on their domain,
the Hessian of the problem is close to the identity matrix and it is af-
fected almost exclusively by the regularization term. This is why ap-
plying a projected Newton method is not a major issue in our case. If
computing the inverse of the Hessian is too much expensive, the Hes-
sian can be omitted and a classic projected gradient method can be
used.
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