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Abstract22

Modeling complex dynamical systems from heterogeneous pieces of knowl-
edge varying in precision and reliability is a challenging task. We propose
the combination of dynamical Bayesian networks and of imprecise probabil-
ities to solve it. In order to limit the computational burden and to make
interpretation easier, we also propose to encode pieces of (numerical) knowl-
edge as probability intervals, which are then used in an imprecise Dirichlet
model to update our knowledge. The idea is to obtain a model flexible
enough so that it can easily cope with different uncertainties (i.e., stochastic
and epistemic), integrate new pieces of knowledge as they arrive and be of
limited computational complexity.

Keywords: Dynamic credal networks, imprecise probability, Dirichlet23

model, knowledge integration, uncertainty, modelling.24

1. Introduction25

Firms and industrials of all sectors have to face up new challenging situ-26

ations. On the one hand, citizens as well as public authorities have stronger27

demands in terms of quality, safety, . . . and on the other hand, they must28

adapt to the increase of population, global warming and the depletion of29

fossil resources. This means, among other things, that industrial projects30

have to integrate sustainability from local to world scale in their conception.31

Possessing adequate tools to model their systems is likely to make the task32

easier.33

In order to provide relevant conclusions and recommendations, such tools34

should be able to integrate as much available knowledge as possible, how-35

ever heterogeneous it is, both in terms of nature (e.g., qualitative expert36

knowledge vs statistical data) and quality (different precision or degrees of37

reliability). Such systems are also complex, meaning that the modeling tool38
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must be able to cope with different scales (e.g., molecular to macroscopic)39

and with dynamic, time-varying processes. Current researches rely on the40

development of mathematical tools [53, 6] capable of helping decision-makers41

to deal with uncertainties, linked for instance to meteorological variations,42

to expert reliability, etc. To summarize, ideal modeling tools should be able43

to deal with:44

• heterogeneous sources of knowledge (Web, data warehouse, experts,45

. . . )46

• mathematical formalisms used by different disciplines (differential equa-47

tions, graphs, cognitive maps, . . . )48

• various manipulated scales (molecular, cellular, population, . . . )49

• different forms of uncertainty [32, 36, 40] (natural randomness, impre-50

cision in expert opinions, data scarcity, vagueness, . . . )51

In this paper, we propose dynamic credal networks as a possible answer52

to these challenging tasks to describe complex dynamical systems tainted53

with stochastic and epistemic uncertainty. As an extension of dynamic54

Bayesian networks (DBNs) [51], their network structure provides an intu-55

itively appealing interface for human experts to model highly-interacting sets56

of variables, resulting in a qualitative representation of knowledge. Stochas-57

tic and epistemic uncertainties pertaining to the system are then taken into58

account by quantifying dependence between variables by means of convex59

sets of conditional probability distributions. The concept of DCNs makes it60

possible to combine different sources of information, from qualitative expert61

knowledge to experimental data.62

In this paper, we are specifically interested in the problem of param-63

eter learning for a given network structure (assumed to be known), when64

faced with heterogeneous knowledge. Indeed, while DCN are very attractive65

modeling tools, they also come with a number of challenges, such as how to66

control their computational tractability, or how to combine efficiently and67

easily various pieces of information. For example, how to combine simu-68

lations coming from stochastic differential equations with an experimental69

database, both offering information for the same parameters? We propose70

to use an imprecise Dirichlet model [7] as a model of the conditional prob-71

abilities, and probability intervals as a common uncertainty model to treat72

different pieces of knowledge. Once transformed, these information pieces73

gradually increment the set of prior distributions according to the received74

knowledge, using the Generalized Bayes rule each time additional informa-75

tion arrives. Lower and upper expected a posteriori (EAP) are then used as76

probability bounds to draw inferences from the network. The combination77

of information is done through a weighted average, allowing us to weigh the78

importance of the different sources of knowledge.79
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Section 2 details the material regarding imprecise probabilities as well80

as the proposed updating scheme of a given parameter set. We then de-81

scribe in Section 3 how various common sources of information can be82

transformed into probability intervals. Section 4 presents how we extend83

Dynamic Bayesian Networks to sets of conditional probabilities, while Sec-84

tion 5 illustrates the whole approach on a real-case scenario involving cheese85

ripening.86

2. Imprecise probabilities and Dirichlet model87

Let X be a variable 1 taking its values on the finite set X = {x1, . . . , xn},88

and p : X 7→ [0, 1],
∑

x∈X p(x) = 1 be a probability mass function over X .89

p(X) will denote the vector mass function, while p(x) will denote the value90

taken by p for X = x. Such a mass function defines a measure PX(A) =91 ∑
x∈A p(x) for all A ⊆ X .92

2.1. Imprecise probability and credal sets93

In general, identifying a single probability modelling our uncertainty94

about some variable X requires a lot of data and/or knowledge. When such95

knowledge is not available, a safer option is to model our uncertainty by96

convex sets of probabilities, often called credal sets [47, 61, 2]. A credal97

set associated with X, denoted K(X), is a convex set of probability masses98

over X . K(X) represents the uncertainty about the unknown value of the99

variable X. From K(X) are defined upper and lower probability measures100

of an event A ⊆ X as101

PX(A) = sup
p∈K(X)

∑

x∈A
p(x), PX(A) = inf

p∈K(X)

∑

x∈A
p(x). (1)

and, in particular, for any element x ∈ X we will have that the upper and102

lower probabilities are given by103

p(x) = sup
p∈K(X)

p(x), (2)

p(x) = inf
p∈K(X)

p(x) (3)

In a subjectivist tradition, the lower probability PX(A) can be interpreted104

as the maximal price one would be willing to pay for the gamble which pays105

1 unit if event A occurs (and nothing otherwise) [61]. PX(A) is therefore a106

measure of evidence in favour of event A, or in other words how much K(X)107

supports event A, while PX(A) measures the lack of evidence against A.108

K(X) can also be given a robust interpretation, in which it models imperfect109

1We adopt notations similar to those of [2, Ch.9] and [24].
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knowledge of a precise, possibly frequentist, probability p. A credal set110

K(X) contains a set Ext(K(X)) of extreme probability masses, always finite111

in this paper, corresponding to the vertices of K(X). Geometrically, K(X)112

may be equivalently specified by the convex hull (denoted CH) of the set113

Ext(K(X)), i.e.114

K(X) = CH{Ext(K(X))}. (4)

The vacuous credal set115

Kv(X) = {p(X) : p(x) ≥ 0, ∀x ∈ X ,
∑

x∈X
p(x) = 1} (5)

that includes all probability masses over X plays an important role, as it116

models total ignorance, and should be the starting point of any model. We117

refer to Walley [61, Sec. 5.5.] for a discussion about uniform probability118

distribution not being a good model of ignorance.119

In this paper, we will also be especially interested in particular credal120

sets K(X) specified by means of interval probability121

K(X) = {p(X) : p(x) ∈ [lx, ux], 0 ≤ lx ≤ ux ≤ 1,
∑

x∈X
p(x) = 1}. (6)

Indeed, such credal sets that focus over bounds of singletons have the advan-122

tage to be easier to manipulate, simulate and represent than general ones,123

while remaining expressive enough (they include both the vacuous and the124

precise models). We refer to De Campos et al. [11] for a detailed exposition,125

and will only limits ourselves to necessary elements in this paper.126

Example 1. Consider an example with three possibilities X = {x1, x2, x3}
(e.g., the working states of a system such as ”failing”, ”degraded function-
ing”, ”fully functioning”), and assume that previous experiments result in
the following intervals

p(x1) = [0; 0.2], p(x2) = [0.3; 0.4], p(x3) = [0.4; 0.6].

The credal setK(X) is the set of all precise probabilities P (X) = (p(x1), p(x2), (p(x3))
within these interval bounds. Here K(X) is a polytope defined by the convex
hull of its four vertices in a three dimensional space:

K(X) = CH{(0, 0.4, 0.6); (0.2, 0.3, 0.5); (0.2, 0.4; 0.4); (0.1, 0.3, 0.6)}.

Finding these vertices can be done by using classical tools of convex ge-127

ometry [39], or by using algorithms proper to a given representation (an128

Algorithm is provided by De Campos et al. [11]). The set K(X) is repre-129

sented in Figure 1 in barycentric coordinates.130
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p(x1)

p(x2) p(x3)

p(x2) = 0.4

p(x2) = 0.3

p(x1) = 0.2

p(x3) = 0.4

p(x3) = 0.6

Figure 1: Example 1 credal set in Barycentric coordinates.

2.2. Robust Dirichlet model to learn K(X)131

An important question is how the credal set K(X) can be instantiated132

from actual evidence, or in other words how can we go from an initially133

vacuous knowledge towards a more precise state of knowledge. An in-134

strumental tool to do that is to use a robustified version of the Dirichlet135

model, also commonly referred to as the Imprecise Dirichlet Model (IDM)136

[62, 7, 8, 60]. The basic model is based on two hyper-parameters: a positive137

real value s0 associated to the strength of prior knowledge, and a vector138

ε0 = (ε0(x1), . . . , ε0(xn)) associated to our initial beliefs about the probabil-139

ities of occurrence of elements xi.140

Let θ = (θ1, . . . , θn) be a vector of chances such that θi corresponds to141

the chance that X = xi. The prior distribution of vectors θ given by a142

Dirichlet model is then143

Dir(s0; ξ0)(θ) =
Γ(s0)∏n

i=1 Γ(s0ξ0(xi))

n∏

i=1

θ
s0ξ0(xi)−1
i (7)

where Γ is the gamma function. A very easy way to make this model impre-144

cise is to let the vector ε0 become imprecise, and more precisely to consider145

the set of Dirichlet models146

M(s0;ξ0) = {Dir(s0; ξ0)(θ) : ξ0 ∈ T } (8)

with147

T = {ξ0 : 0 < ξ0(xi) < 1 ,

n∑

i=1

ξ0(xi) = 1} (9)

the open (n − 1)-dimensional unit simplex. When ξ0 is precise, the first148

moments of Dir(s0; ξ0) are given by E(θi|(s0; ξ0))= ξ0(xi), and they can be149

used as estimates of p(xi), i.e.150

E(θi|(s0; ξ0)) = ξ0(xi) = p(xi). (10)
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When starting from a vacuous prior knowledge ξ0 ∈ T , the bounds over the151

first moments become152

E(θi|(s0; ξ0)) = min
ξ0∈T

ξ0(xi) = 0 (11)

and153

E(θi|(s0; ξ0)) = max
ξ0∈T

ξ0(xi) = 1. (12)

The credal set corresponding to these bounds is then the vacuous one (5).154

We may then receive additional information from various m sources. A155

convenient way to encode this information is as a couple sk,Pk, k = 1, . . . ,m,156

with Pk ⊆ T a convex polytope providing information about the possible157

chances θi, and sk ∈ R+ modelling the strength of the information. We can158

then update the Dirichlet modelling our uncertainty about θ|(sk; ξk)mk=0 into159

M(sk;ξk)
m
k=0

= {Dir ((sk; ξk)
m
k=0) (θ) : ξk ∈ Pk ∀k} . (13)

We can then use the posterior first moments to make inferences on chances160

θi161

E(θi|(sk; ξk)mk=0) = p(xi) =

∑m
k=0 skξk(xi)∑m

k=0 sk
(14)

As information Pk are imprecise, we again obtain bounds in the form162

E(θi|(sk; ξk)mk=0) = p(xi) =

∑m
k=0 skξk(xi)∑m

k=0 sk
, (15)

E(θi|(sk; ξk)mk=0) = p(xi) =

∑m
k=0 skξk(xi)∑m

k=0 sk
. (16)

where163

ξ
k
(xi) = inf

ξk∈Pk

ξk(xi) (17)

ξk(xi) = sup
ξk∈Pk

ξk(xi). (18)

These bounds then induce an updated credal set164

K(sk;ξk)
m
k=0

(X) =

{
p : p(xi) ∈

[∑m
k=0 skξk(xi)∑m

k=0 sk
,

∑m
k=0 skξk(xi)∑m

k=0 sk

]}
(19)

that we can use as new knowledge. In practice, s0 can be interpreted as165

the number of ”unseen” data, and sk = s0 means that the kth information166

source has as much importance as our initial uncertainty.167
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Remark 1. The exact updated credal set168

K̃(sk;ξk)
m
k=0

(X) =

{∑m
k=0 skξk∑m
k=0 sk

: ξk ∈ Pk, ∀k = 1, . . . ,m

}
(20)

is a subset of K(sk;ξk)
m
k=0

(X), i.e., K̃(sk;ξk)
m
k=0

(X) ⊆ K(sk;ξk)
m
k=0

(X). The set169

(19) is thus an outer-approximation. Yet, the main advantages of using170

probability bounds as a basic representation are that171

• their number of extreme points is bounded and relatively low, even172

when combining them through a weighted average. This is in general173

not the case if we consider averaging of heterogeneous simple repre-174

sentations: if we denote |Ext(Pk)| the number of extreme points of175

the kth item of information, then their (Minkowsky) sum
∑m

k=0 skPk176

may have as much as
∏m
k=0 |Ext(Pk)| extreme points, an exponentially177

growing number;178

• they are easy to explain and to represent graphically (e.g., as imprecise179

histograms), therefore offering a convenient way to communicate with180

domain experts or users not specialized in mathematics or computer181

science. This is not the case of more complex representations such as182

belief functions (Section 3.4);183

• except for requiring a finite space, they do not require specific assump-184

tions, such as the existence of an ordering between elements;185

• they are expressive enough so that they can go from a fully precise186

probability to the complete ignorance model.187

None of the other common practical models of information reviewed in Sec-188

tion 3 have all these advantages at once, making probability bounds a quite189

convenient model. Given this, using probability bounds seem a good general190

starting point in applications, not preventing one from investigating refined191

solutions if the results are unsatisfactory.192

Of course, in some casesK(sk;ξk)
m
k=0

(X) may be a poor outer-approximation,193

however we shall see in Section 5 that it does not necessarily lead to com-194

pletely void conclusions. Previous studies [1] also suggest that this kind of195

approximation may be in average reasonable.196

Example 2. Let X = {x1, x2, x3} and P = {ξ : ξ(x2) ≥ ξ(x1), 1/2 ≥197

ξ(x3),
∑3

i=1 ξ(xi) = 1} be an item of information. The credal set K̃ξ(X)198

over {x1, x2, x3} obtained by (20) has four extreme points {(0, 1, 0), (0, 0.5, 0.5),199

(0.5, 0.5, 0), (0.25, 0.25, 0.5)} that are also extreme points of Kξ(X) = {p :200

p(xi) ≤ maxε∈P ε(xi)}. However, the probability (0.5, 0.25, 0.25) is an ex-201

treme point of Kξ(X) but not of K̃ξ(X).202
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3. Review of practical sources of information203

Building K(sk;ξk)
m
k=0

(X) requires to obtain elements of information Pk.204

In this section, we review different practical models and the bounds they205

induce over ξk(xi). We will also provide small examples illustrating what206

kind of information they can model. For the sake of brevity, we will denote207

ξ(xi) by ξi in this section. Note that our information is initially queried on208

observed values xi, to be then transferred as knowledge on the parameters ξi.209

Hence we will consistently refer to knowledge about ξi, and to observation210

or information about xi.211

3.1. Precise evaluations212

The most simple models is when the knowledge P is given by a precise213

vector, in which case ξi = fi is a precise number, and we have214

ξ
i

= ξi = fi (21)

A classical way to obtain such precise evaluations is when observingm =215

(m1, . . . ,mn) experiments, where mi is the number of times xi was observed.216

In such a case, a classical choice is to take as strength s = m =
∑n

i=1mi217

and P is the vector f = (f1, . . . , fn) where fi = mi/m.218

Example 3. Assume we can observe three possibilities x1, x2, x3 (e.g., sever-219

ity of a disease, importance of a bacterial population), and we observed 3220

times x1, 6 times x2 and one time x3. We then have221

f1 = 0.3, f2 = 0.6, f3 = 0.1 and s = m = 10 (22)

Note that the more observations we accumulate, the stronger becomes222

this piece of knowledge. s can also be modulated to reflect the reliability223

of data. Note that this model is a degenerated case of probability intervals,224

and can therefore be exactly represented in our framework.225

3.2. Numerical possibility distributions and fuzzy subsets226

A possibility distribution π is simply a mapping from {ξ1, . . . , ξn} to227

[0, 1], with at least one element ξi such that π(ξi) = 1 [33]. In practice,228

we can see distribution π as an ordering 1 = π(ξ(1)) ≥ . . . ≥ π(ξ(n)) of the229

elements x1, . . . , xn, from the most plausible to the least plausible one.230

Another instrumental way is to encode the possibility distribution through231

the necessity measure N . This necessity measure N is such that232

N(A(i) = {ξ(1), . . . , ξ(i)}) = 1− π(ξ(i+1)) (23)

with π(ξ(n+1)) = 0. N(A(i)) can be associated to a lower probability bound233

of event A(i). In particular, the sets A(i) can be interpreted as nested sets234

with an associated lower confidence, these nested sets being built by starting235

9
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from the most plausible element ξ(1) and incrementally including the less236

plausible ones. Note that we may have π(ξ(i)) = π(ξ(i+1)), in which case237

elements x(i−1) and x(i) would be in the same confidence set.238

In practice, an expert can provide a possibilistic information by giving239

confidence bounds over a collection of nested sets. Let A1 ⊆ . . . ⊆ Am be240

such sets with associated confidence levels α1 ≤ . . . ≤ αm, then it encodes241

the knowledge Pπ = {ξ :
∑i

k=1 ξ
(k) ≥ αi,∀i}. From the knowledge on sets242

A1, . . . , Am, one can always come back to an associated distribution π using243

π(ξk) = min
i:ξk∈Ai

1− αi−1 (24)

with α0 = 0.244

Another possibility is to use the formal equivalence between a possibility245

distribution π and a fuzzy set having π for membership function. This means246

that an expert conveying information in the form of linguistic assessment [64]247

can also be modelled by possibility distributions. Deriving bounds on ξi from248

Pπ using the possibility distribution π is very easy, as249

ξi = 1−max
ξ 6=ξi

π(ξ) (25)

250

ξ
i

= π(ξi) (26)

Example 4. Assume that an expert is interrogated about the temperature251

in a room that can be in three states x1, x2, x3. Expert judges that x2 is252

the most plausible state, then x3 and x1, meaning that ξ(1) = ξ2, ξ(2) =253

ξ3, ξ(3) = ξ1. The expert provides the following confidence values:

N({ξ2}) = 0.5

N({ξ2, ξ3}) = 0.8

N({ξ2, ξ3, ξ1}) = 1

which means that the expert has a confidence 0.5 that x2 will be the observed254

state, a confidence 0.8 that the observed state will be either x2 or x3, and255

finally is certain that the only observable states are x1, x2, x3. From these256

values can be deduced the values of the corresponding possibility distribution257

π(ξ1) = 0.2, π(ξ2) = 1, π(ξ3) = 0.5.258

Alone, possibility distributions will often be simpler than probability259

intervals: they require less information (one value per element) and will260

have a maximal number of 2|X |−1 extreme points [56]. Yet the average of261

multiple sets Pπ1 , . . . ,Pπm would no longer be a possibility distribution, and262

the corresponding number of extreme points could explode. Also, possibility263

distributions cannot model precise probabilities, unless they are degenerate264

ones.265

10
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3.3. Probability boxes and clouds266

A probability box [35] F , F is an imprecise cumulative distribution. It267

can be modelled by two discrete non-decreasing functions F and F from268

(ξ1, . . . , ξn) to [0, 1] such that F (ξi) ≤ F (ξi) for all i in {1, . . . , n} and269

F (ξn) = F (ξn) = 1. The values F (ξi), F (ξi) are interpreted as the following270

bounds271

F (ξi) ≤
n∑

i=1

ξi ≤ F (ξi)

and we can denote by PF≤F the knowledge modelled by a p-box. A p-box272

information provides us with estimates about the cumulated probabilities of273

events of the kind {x1, . . . , xi}, hence assuming that the ordering induced274

by the indices do make sense.275

In the case of p-boxes, the bounds over ξi are very easy to determine276

[59], and are equal to277

ξi = max(0, F (ξi)− F (ξi−1)) (27)

278

ξ
i

= F (ξi)− F (ξi−1) (28)

with the convention F (ξ0) = F (ξ0) = 0.279

Example 5. Assume we have to assess the how likely it is that a bacterial280

population is below some threshold, or how likely it is that a component may281

function for a given period of time. The population sizes or time intervals282

may be discretized into x1, x2, x3. Assume the following p-box has been283

given as information284

F (ξ1) = 0.2, F (ξ2) = 0.7 and F (ξ1) = 0.5, F (ξ2) = 0.9.

From it we can deduce the bounds285

ξ1 = 0.2, ξ2 = 0.2, ξ3 = 0.1 and ξ
1

= 0.5, ξ
2

= 0.7, ξ
3

= 0.3.

P-boxes usually rely on the fact that the set (ξ1, . . . , ξn) is naturally286

ordered, and provide confidence bounds over sets of the kind {ξ1, . . . , ξi}.287

However, one possibility is to extend this notion by considering that values288

ξi follows an arbitrary ordering ξ(1) ≤ . . . ≤ ξ(n) (for example, from the least289

to the most plausible element) and to ask to the expert to provide upper and290

lower confidence bounds about the fact that the truth lies in {x(1), . . . , x(i)},291

thus obtaining F (ξ(i)) and F (ξ(i)). As in principle any ordering can be used,292

this is indeed a generalization of p-boxes, known as comonotonic clouds [31].293

In particular, in the case where F (ξ(i)) = 0 for any i, we retrieve the notion294

of possibility distribution as a special case.295

Up to now, what is the maximal number of extreme points of a p-box296

structure and how to efficiently enumerate them remains an open prob-297

lem. However, as p-boxes are a special case of belief functions, one can298

11
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use (potentially sub-optimal) algorithms and methods applicable to belief299

functions [17]. It is also clear that the maximal number of such points is300

bounded above by the maximal number of extreme point of a belief func-301

tion (n!). Classical p-boxes suffer from the fact that a natural order must302

exist on X , and when no such order exists, then the average of generalized303

p-boxes relying on different orders will not be a p-box.304

3.4. Belief functions and random sets305

Formally, a random set or belief function, initially introduced by Demp-306

ster [30] and Shafer [57], is defined as a positive mapping ν : 2{ξ
1,...,ξn} →307

[0, 1] from the power set of {ξ1, . . . , ξn} to the unit interval, such that308

ν(∅) = 0 and
∑

E ν(E) = 1. From this mapping can then be defined proba-309

bility bounds Bel(A), P l(A) for any event that are equal to310

Bel(A) =
∑

E,E⊆A
ν(E) and Pl(A) =

∑

E,E∩A 6=∅
ν(E) = 1−Bel(Ac) (29)

that induce an information Pν such that311

Pν =



ξ :

∑

E⊆A
ν(E) ≤

∑

ξi∈A
ξi ≤

∑

E∩A 6=∅
ν(E), ∀A



 (30)

In particular, this means that given a function ν, the bounds over elementary312

events are given by313

ξi = Bel({ξi}) = ν({ξi}) (31)
314

ξ
i

= Pl({ξi}) =
∑

ξi∈E
ν(E) (32)

Belief functions are instrumental to model frequencies of imprecise observa-315

tions, for example when multiple exclusive options can be chosen in surveys,316

or when some sensors sometimes send back imprecise observations. They317

also include p-boxes, comonotonic clouds and possibilities as special cases.318

Example 6. Assume again that we can meet four different situations x1, x2, x3319

, x4. Out of 20 observations, x1, x2, x3, x4 were each perfectly observed re-320

spectively 3, 2, 5, 6 times, we observed 3 times the set {x2, x3, x4} (excluding321

x1) and 2 times the set {x1, x2, x3}. Such observations can be modelled on322

ξ1, ξ2, ξ3, ξ4 by the mass323

ν({ξ1}) = 3/20, ν({ξ2}) = 2/20, ν({ξ3}) = 5/20, ν({ξ4}) = 6/20,

324

ν({ξ1, ξ2, ξ3}) = 2/20, ν({ξ2, ξ3, ξ4}) = 3/20.

From this, we can for example deduce ξ3 = 0.25 and ξ
3

= 0.5.325
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Belief functions are general enough to deal with a lot of practical as-326

sessments, and share the properties of probability intervals that an average327

of belief functions is still a belief function. However, providing an intuitive328

graphical representation of a belief function is challenging, and their use may329

quickly lead to computational issues (e.g., their number of extreme points330

can be as high as X ! [50])331

3.5. Fuzzy random variables332

Fuzzy random variables have been given different interpretations in the333

literature, depending on the nature of the fuzzy elements. For example, a334

fuzzy random variable can be seen as a random phenomenon with precise335

observations that are fuzzy in nature, or as a random phenomenon with336

imprecise observations. We refer to [19, 21, 22] for a detailed discussion. In337

this paper, Fuzzy random variables are interpreted as conditional possibility338

measures [4, 21], which consist in putting positive masses, not on subsets,339

but on possibility distributions. They can be modelled by a set π1, . . . , πk340

where each distribution receives probability mass p(πi). As each πi can in341

turn be turned into a mass function νπi defined this time over subsets, it342

is always possible to come back from a fuzzy random variable to a classical343

mass function, simply by computing for any subset E the value344

ν(E) =

k∑

i=1

p(πi)νπi(E).

We obtain a weighted random sampling of subset E defining a belief function345

ν. Fuzzy random variables in this context may be cast into the framework346

of belief functions leading to the same formal advantages and disadvantages347

of them (see Section 3.4). Fuzzy random variables can result, for instance,348

from Monte-Carlo simulations of physical models mixing possibilistic and349

probabilistic uncertainty [4], or from the random observation of fuzzy sets350

(modelling an ill-calibrated scale, for instance [18]).351

3.6. Summary of types of knowledge352

A final type of knowledge simply consists in directly providing bounds353

over the values of possible observations xi. This means specifying, for each354

ξi, the bounds f
i

= ξi and f i = ξ
i
. Such bounds are formally equivalent to355

probability intervals [11].356

There are multiple ways to derive such bounds: for instance by instan-357

tiating multinomial confidence intervals over observations, by requiring lin-358

guistic opinions of the type ”probable”, ”very probable” from the experts359

and then translating them into numerical evaluations [54], by simply re-360

quiring numerical evaluations from the experts, when having imprecise his-361

tograms, . . .362
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Table 1 summarises the most common type of practical information one363

can meet, to what type of information they correspond and how can be364

computed the lower/upper values ξi and ξ
i
. These are the values (used as365

a common mathematical tool) that are then combined and integrated into366

the learning process developed in Section 2.2.367
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Model Usual type of information ξi ξ
i

Precise values Sample/simulation fi fi

Possibility Lower confidence on nested sets 1−maxξ 6=ξi π(ξi) ξ
i

= π(ξi)

Linguistic assessments

P-boxes and clouds Lower/upper confidence on nested sets max(0, F (ξ(i))−F (ξ(i−1))) F (ξ(i))− F (ξ(i−1))

Belief functions Imprecise sample ν(ξi)
∑
ξi∈E ν(E)

Fuzzy random variable Fuzzy sample
∑k
i=1 p(πi)νπi(ξ

i)
∑
ξi∈E

∑k
i=1 p(πi)νπi(E)

Probability bounds Linguistic assessments f
i

f i
Multinomial confidence regions

Table 1: Summary of the different types of collectible information

1
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4. Robust dynamic probabilistic graphical models368

When modeling complex systems, we are not interested in a single vari-369

able, but in multiple variables interacting with each others and evolving370

over time. In theory, our knowledge about these variables, their interaction371

and evolution can be represented by a credal set defined over the Cartesian372

product of the corresponding spaces.373

In practice, we need tool to represent these interactions, and to sim-374

plify the daunting task of specifying a full joint model. Credal networks375

are graphical (directed) models that aims at encoding our knowledge about376

variable interactions and at splitting the full joint into multiple, simple con-377

ditional models. This section introduces them, as well as their dynamical378

extension.379

4.1. Credal networks380

Let X = (X1, . . . , Xn) be a discrete random vector associated with the381

joint probability mass function p(X) defined over
∏n
i=1Xi. Let K(X) be the382

closed convex set of multivariate probability mass functions describing our383

knowledge of X.384

A credal network (CN) [24, 23] is an extension of Bayesian networks385

(BNs) where imprecision is introduced in probabilities by means of credal386

sets [47]. When working with probability sets rather than precise proba-387

bilities, the notion of stochastic independence can be extended in several388

ways [20]. Within graphical models, the most commonly used extension is389

strong independence (also called a type 1 product of the marginals in [61]),390

that induces the strong extension. It can be interpreted as a robust model391

of a precise yet ill-known BN. Under the strong extension [23] hypothesis,392

the joint credal set K(X) over ΩX may be formulated as:393

K(X) = CH

{
p(X) : p(X) =

n∏

i=1

pi, pi ∈ Ki

}
(33)

where pi = p (Xi | Ui), Ui denotes the set of parent nodes of the node Xi and394

Ki = K (Xi | Ui) is the closed convex set of probability mass function for395

the random variable Xi given Ui. As mentioned in Section 2, it is sufficient396

to focus on Ext(K (Xi | Ui)) in Eq. (33).397

In this work, we focus on the notion of strong independence and its ex-398

tension to dynamical models, as this is the most widely used independence399

notion within graphical models and the one that fits the best with a robust400

interpretation of probability sets. Other independence notions that may401

even have asymmetrical versions such as epistemic irrelevance remain com-402

putationally intractable [25, 49], except for specific network structures [9]403

that are usually less complex than the one generally considered here.404
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4.2. Dynamic credal networks405

Let X(t) = (X1(1), . . . , Xn(1), . . . , X1(τ), . . . , Xn(τ)) be a discrete ran-406

dom vector process associated with the joint probability function p(X(t))407

defined over
∏τ
t=1

∏n
i=1Xi(t). Let K(X(t)) be the closed convex set of mul-408

tivariate probability mass functions for X(t).409

A dynamic credal network (CDN) [41] is a dynamic Bayesian network410

(DBNs) [51] where conditional probabilities p (Xi (t) | Ui (t)) (noted pti) are411

replaced by credal sets K (Xi(t) | Ui(t)) (noted Kt
i ). It is therefore a time-412

sliced model that can be used to describe a dynamic process or system2.413

We assume the same first-order Markov property as for DBN, meaning414

that parents only originate from the same or previous time slice, and also415

that conditional models remain the same at each times slice, that is416

K (Xi(t) | Ui(t)) = K (Xi(2) | Ui(2)), ∀t ∈ J2, τK. (34)

Therefore, specifying the graphical structure of a DCN requires the same417

effort as the one of a DBN (that is, specifying only two consecutive time418

slices) but allows the user to provide conditional credal sets rather than419

probabilities if these latter cannot be reliably estimated (from data and/or420

experts).421

4.2.1. Independence in DCN422

Extending DBN to DCN requires to specify which kind of independence423

we consider within and also between each time-slice. We remind that we424

will only consider extensions relying on the strong independence (33). The425

most straightforward extension is to simply apply strong independence to426

the whole network, i.e.,427

K(X(t))st = CH

{
p(X(t)) : p(X(t)) =

n∏

i=1

τ∏

t=1

pti, p
t
i ∈ Kt

i

}
(35)

We call this extension the dynamic strong extension and it is worth notic-
ing that we can have pti 6= pt

′
i for t, t′ ∈ J2, τK. That is, we do not assume

probabilities within each time-slice to be identical. However, when stepping
to dynamic models, Condition (34) allows us to use the notion of repeti-
tive independence (also called a type 2 product of the marginals in [61]).
This condition states that if two variables X,Y have the same set of pos-
sible outcomes, that is X = Y, and can be assumed to be governed by the
same probability distribution belonging to K (X), then the joint credal set
K (X,Y ) is :

K (X,Y ) = CH{p(X)p(X) : p(X) ∈ K (X)}. (36)

2It should be noted that the network itself is static, but is used to represent a dynamic
process.
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X(t) X(t+ 1)

Slice t Slice t+ 1

Figure 2: A simple dynamical graphical model

Adapting this notion of independence to DCN, so that probabilities of each428

time slice are assumed to be identical, leads to a second extension, i.e.,429

K(X(t))rp = CH

{
p(X(t)) : p(X(t)) =

∏n
i=1

∏τ
t=1 p

t
i,

p2i ∈ K2
i and pti = p2i ∀t ∈ J2, τK

}
(37)

that we call the dynamic repetitive extension. We haveK(X(t))rp ⊆ K(X(t))st,430

as K(X(t))rp is more constrained. In practice, the strong extension assumes431

that the dynamic network is ill-defined and that its behaviour can change432

between time slices, while the repetitive extension assumes that we seek a433

precise classical DBN who is partially known.434

Example 7. Consider the very simple example where X = {0, 1} and the
2-slice network given in Figure 2, which is nothing else than a two-state
imprecise Markov chain, and an observed value X(1) = 1. Assume further-
more that we have three time slices (τ = 3), that X(1) = 1 is observed, and
that

p(X(t) = 1|X(t− 1) = 0) = 0.8,

p(X(t) = 1|X(t− 1) = 1) ∈ [0.2, 0.5].

That is, the transition rates from state 0 are precisely known, but not the435

one from state 1 (although staying in state 1 is clearly less likely). The436

different extreme points over (X(1), X(2), X(3)) resulting from the strong437

and repetitive extension are summarized in Table 2, in which we adopt the438

notation x(t) for X(t) = 1 for simplification purposes. Each cell of the table439

corresponds to a precise network obtained by a specific selection of extreme440

points. The non-specified transition probabilities can be retrieved by the441

formula p(X(t) = 1|X(t− 1) = 1) = 1− p(X(t) = 0|X(t− 1) = 1).442

4.2.2. Inference algorithms in DCN443

(D)CNs can be queried as in (D)BNs to get information about the state of444

a variable given evidence about other variables, with respect to the chosen445

network extension. However, the use of credal sets makes the updating446

problem much harder, as it becomes an optimization problem. As such,447

the computation of the lower bound on p(XQ | XE) requires to minimize a448

fraction containing polynomials :449
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Strong extension Repetitive extension

100 101 110 111 100 101 110 111

P (x(t)|x(t− 1)) = 0.5 P (x(2)|x(1)) = 0.5, P (x(3)|x(2)) = 0.2

0.1 0.4 0.25 0.25 0.1 0.4 0.4 0.1

P (x(t)|x(t− 1)) = 0.2 P (x(2)|x(1)) = 0.2, P (x(3)|x(2)) = 0.5

0.16 0.64 0.16 0.04 0.4 0.4 0.1 0.1

Table 2: Simple DCN extreme probabilities

p(XQ(t) | XE(t)) = min
p(X(t))∈K(X(t))ω

∑
Xi(t)∈X(t)\XQ(t)∪XE(t)

n∏
i=1

τ∏
t=1

pti

∑
Xi(t)∈X(t)\XE(t)

n∏
i=1

τ∏
t=1

pti

(38)

with p(X(t)) ∈ K(X)ω belonging to the dynamic strong extension (ω = st)450

or dynamic repetitive extension (ω = rp) of the network. An upper bound451

can be obtained by maximizing (38). It is known that such a minimum (or452

maximum) is obtained at a vertex of the dynamic strong/repetitive extension.453

Depending on (1) the structure of network, (2) the number of modality454

of variables and (3) the chosen extension (strong/repetitive), the updating455

problem will be more or less complex to solve. Because inferences are already456

hard in static credal networks, little work has been done on DCNs [41].457

By unrolling a two-time slice network over T time steps, the number of458

possible vertex combinations goes from
∏
i,t=0 #Ext(Kt

i )
∏
i,t=1 #Ext(Kt

i ) in459

the case of repetitive independence, to
∏
i,t=0 #Ext(Kt

i )
∏
i,t=1 #Ext(Kt

i )
τ−1

460

in the case of strong independence. Given the potential number of vertices,461

approximate algorithms seem more appropriate regarding DCNs.462

Many algorithms, exact and approximate, have been proposed to deal463

with CN. Some are generalizations of well known (D)BNs algorithms. Among464

the approximate algorithms, there are those that compute inner bounds, i.e.465

bounds that are enclosed by the exact ones, outer bounds, which enclose466

the exact ones, and those that perform randomly. The 2U algorithm [34]467

performs an exact rapid inference in the case of binary tree-shaped (D)CNs468

with the assumption of strong independence. The CCM transformation [15]469

turns a (D)CN into a (D)BN by adding transparent nodes before performing470

an Maximum A Posteriori (MAP) estimation over the latter to find the best471

combination of vertices. It has the same complexity as credal network in-472
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ference, that is NPPPComplete, and performs poorly with separately spec-473

ified credal networks such as the one we used during our trials (because474

of the sheer number of vertices). Optimization techniques such as branch475

and bound over local vertices of credal sets [27, 13] are also well suited to476

medium-sized networks and can be stopped at any time to give an approxi-477

mate answer. Other algorithms are based on a variable elimination scheme478

from (D)BNs, such as Separable Variable Evaluation [26, 55] which keeps479

the separately specified credal sets as separated as possible during propaga-480

tion, and can be mapped to an integer or a multi-linear program [29, 28].481

Regarding binary and DAG-shaped (DAG : Directed Acyclic Graph) credal482

networks, algorithm L2U (Loopy 2U) [44] (similar to LBP (Loopy Belief483

Propagation) [63]) produces either inner or outer approximations. Its effi-484

ciency is due both to the bounded cardinality of variables and to ignoring485

loops. Another way to handle credal sets complexity is to represent them486

by simpler means. Variational methods [43, 42] choose a family of functions487

to approximate the exact combination of credal sets to decrease compu-488

tational costs. Those functions are optimized according to some criteria489

until convergence and the inference is then realized in the network with the490

original credal sets replaced by the new found functions. The A\R(+) al-491

gorithm [27] uses interval probability arithmetic to approximate credal sets492

in a propagation scheme in tree-shaped networks (with the use of some ad-493

ditional constraints limiting the information loss in its enhanced version).494

The intervals produced are outer bounds of the real ones. Although those495

algorithms are fast in medium-sized network, they either produce too many496

approximations or are too complex to work with DCNs. Another popular497

family of approximate algorithms producing inner bounds is based on Monte-498

Carlo sampling [38]. Several methods have been proposed to better guide499

the search (simulated annealing [12], genetic algorithms [14]) among the ver-500

tices of the (conditional) local credal sets, but they require some tuning for501

more accurate results, otherwise they can lead to poor approximations.502

Although there exist several inference algorithms, none allows to do in-503

ference, in a realistic and practical way, on networks capable of representing504

global complex system of Life Sciences. In further inferences, we used a505

simple Monte-Carlo sampling algorithm [38] which has the advantage to be506

a good starting point, as it applies with the same easiness to dynamic repet-507

itive and strong extensions (with a faster convergence for dynamic repetitive508

extension).509

4.2.3. Robust parameter learning510

Let ptijk be the probability that Xi(t) = xk, given that its parents have511

instantiation3 xj (corresponding itself to a vector where j represents the512

3Possible values of variables according to its discretization.
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vector of parents of i), i.e.513

i = 1, . . . , n
ptijk = p(Xi(t) = xk|Ui(t) = xj) j = 1, . . . , ci

k = 1, . . . , ri

(39)

where ri is the number of values that node i can take and ci is the number514

of distinct configurations of Ui(t). Parameter learning consists in estimat-515

ing ptij faced with available information [45, 10]. For the sake of clarity,516

parameters ptij will be denoted pij since parameters ptij are time-invariant in517

the case of repetitive extension assumption and it is sufficient to only con-518

sider information limited to each time slice in the case of strong extension519

assumption. According to section 2.2, for all i ∈ {1, . . . , n}; j ∈ {1, . . . , ci}520

the credal set K̃(sl;ξl)
m
l=0

(Xi| Ui = xj) may be approximated by using the521

outer credal set K(sl;ξl)
m
l=0

(Xi| Ui = xj) defined by522

K(sl;ξl)
m
l=0

(Xi|Ui = xj) =

{
pij : pijk ∈ [p

ijk
, pijk],

∑

k

pijk = 1

}
(40)

where [p
ijk
, pijk] is estimated and updated from Eq. (19) according to the523

available sources of knowledge (S0, . . . , Sm).524

4.3. Practical robust parameter learning example525

Wood is essentially composed of cellulose (denoted C) that is a polymer526

whose quantity characterizes the nature of wood (denoted T ) namely hard-527

wood or softwood. Imagine that we want to determine the kind of wood528

according to its chemical composition tainted with uncertainties, that is we529

are interested in P (T |C). For the sake of clarity, we choose C = {x1 =530

20%, x2 = 40%, x3 = 60%} meaning that there is 20%, 40% or 60% of cel-531

lulose inside wood, T = {x1 = Soft, x2 = Hard} and all sources si have the532

same confidence level, i.e. si = 1 for all i. We thus need to estimate the533

following parameters:534

pjk = p(T = xk|C = xj) (41)

according to the available knowledge described in the following. The credal535

sets K(T |C = xj) are initialized by536

Ks0(T |C = xj) = {pj. : pjk ≥ 0,
∑

k

pjk = 1}, ∀j = 1, . . . , 3 (42)

1. Precise measures are provided {(20,Soft), (20,Hard), (40,Hard), (60, Soft)}537

leading to update by Eq. (19)538

• K(s0,s1)(T |C = 20) = {p1. : 1
4 ≤ p11 ≤ 3

4 , p12 = 1− p11},539
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• K(s0,s1)(T |C = 40) = {p2. : 0 ≤ p21 ≤ 1
2 , p22 = 1− p21},540

• K(s0,s1)(T |C = 60) = {p3. : 1
2 ≤ p31 ≤ 1, p32 = 1− p31}.541

2. A first expert says that the more cellulose there is, the harder the542

wood. This information may be formalized by means of the following543

fuzzy numbers or possibility distribution (see Section 3.2):544

• π(T = Hard|C = 20) = 0.5, π(T = Soft|C = 20) = 1545

• π(T = Hard|C = 40) = π(T = Soft|C = 40) = 1546

• π(T = Hard|C = 20) = 1, π(T = Soft|C = 20) = 0.5547

meaning for instance that P (T = Hard|C = 20) ≤ 0.5 leading to548

update549

• K(s0,s1,s2)(T |C = 20) = {p1. : 1
3 ≤ p11 ≤ 5

6 , p12 = 1− p11},550

• K(s0,s1,,s2)(T |C = 40) = {p2. : 0 ≤ p21 ≤ 2
3 , p22 = 1− p21},551

• K(s0,s1,,s2)(T |C = 60) = {p3. : 1
3 ≤ p31 ≤ 5

6 , p32 = 1− p31}.552

3. A second expert provides more accurate estimation in terms of confi-553

dence554

• P (T = Soft|C = 20) ≥ 95%,555

• P (T = Hard|C = 40) ≥ 60%,556

• P (T = Hard|C = 60) ≥ 95%.557

which can be modeled again by a possibility distribution. This leads558

to update559

• K(s0,...,s3)(T |C = 20) = {p1. : 0.49 ≤ p11 ≤ 0.875, p12 = 1− p11},560

• K(s0,...,s3)(T |C = 40) = {p2. : 0 ≤ p21 ≤ 0.6, p22 = 1− p21},561

• K(s0,...,s3)(T |C = 60) = {p3. : 0.25 ≤ p31 ≤ 0.64, p32 = 1− p31}.562

4. Defective sensors and measurements provide joint imprecise observa-563

tions, summarized in Table 3 and producing a joint belief function564

(Section 3.4).565

From this information lower and upper probability bounds over pa-
rameters are given by

Bel(T = t|C = c) =
Bel(T = t, C = c)

Bel(T = t, C = c) +
∑

t′ 6=t Pl(T = t′, C = c)

Pl(T = t|C = c) =
Pl(T = t, C = c)

Pl(T = t, C = c) +
∑

t′ 6=tBel(T = t′, C = c)
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Type
Focal sets Soft Hard {Soft,Hard}

C
el

lu
lo

se

20 1 2 0
40 4 6 1
60 0 10 1

{20, 40} 10 5 1
{20, 60} 0 0 5
{40, 60} 1 3 10
{20, 40, 60} 0 0 8

Table 3: Focal sets occurrences

For example

Bel(T = Soft|C = 20) =
1/68

1/68 + 21/68
= 0.045

Pl(T = Soft|C = 20) =
24/48

24/48 + 2/48
= 0.926

Credal set K(s0,...,s4) is then updated by566

• K(s0,...,s4)(T |C = 20) = {p1. : 0.4 ≤ p11 ≤ 0.89, p12 = 1− p11},567

• K(s0,...,s4)(T |C = 40) = {p2. : 0.021 ≤ p21 ≤ 0.65, p22 = 1− p21},568

• K(s0,...,s4)(T |C = 60) = {p3. : 0.2 ≤ p31 ≤ 0.67, p32 = 1− p31}.569

5. Real-life case study570

To illustrate the feasibility and practical use of our approach in a real571

case, we have focused on the ripening process of the Camembert type soft572

mould cheese that represents an ecosystem and a bioreactor difficult to ap-573

prehend from a global point of view [37, 52]. Based on recent works carried574

out by Baudrit et al. [5]; Sicard et al. [48], a simplified sub-structure575

of dynamic Bayesian networks has been extracted (see Figure 3) provid-576

ing a qualitative representation of the coupled dynamics of yeast behaviour577

Kluyveromyces marxianus (Km, colony forming unit/g of Fresh Cheese in578

decimal logarithmic scale) with its lactose substrate (lo, g/Kg of Fresh579

Cheese) influenced by temperature (T , oC) inside the ripening chamber and580

involving odour changes (Od = {Fresh,Mushroom,Camembert}).581
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T (t){8, 12, 16}

Km(t){5.5, 6, 6.5, 7, 7.5}

`o(t){0,2,4,. . . , 12,14 }

Od(t){F,M,C}

Km(t+ 1)

`o(t+ 1)

Od(t+ 1)

Slice t Slice t+ 1

Figure 3: Structure of the dynamic credal network and the values of each vari-
ables representing the coupled dynamics Km growth versus lo consumptions influ-
enced by temperature involving odour changes during the cheese ripening process
(F=Fresh,M=Mushroom,C=Camembert).

5.1. Parameter learning582

Assuming repetitive extension for computational reason mentioned in
Section 4.2.2, we present, in the following, how parameters

p1 = p(Km(1)),
p2 = p(lo(1)),
p3 = p(T (1)),
p4 = p(Km(2)|(Km(1), lo(1), T (1))),
p5 = p(lo(2)|(Km(1), lo(1), T (1))),
p6 = p(Od(1)|(Km(1), lo(1)))

may be estimated by using the robust hybrid parameter learning when we583

have several sources of knowledge (denoted Si) tainted with stochastic and584

epistemic uncertainty.585

1. Initialization (S1).586

All DCN parameters are initialized by:587

• An experimental database Sexperiments of six cheese ripening trials588

carried out for temperatures varying from T = 8 to 16 oC is589

available.590

• the vacuous credal sets leading to bracket parameters by [0,1]591

when no information is available.592

With s1 corresponding to the confidence level about experimental trials593

Sexperiments, according to (19) we have:594

pijk ∈
[
s1fijk
s0 + s1

,
s0 + s1fijk
s0 + s1

]
(43)
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where fijk represents the observed frequency corresponding to sample595

information in Table 1 and linked to Section 3.1.596

2. Integration of partial mechanistic model tainted with uncertainties (S2).597

The yeast Km is one of the dominant species in the yeast flora of598

Camembert cheeses and its principal activity is the consumption of599

lactose (lo) [46]. Models to determine the growth of microorganisms600

have been studied in the fermentation industry [58], and the descrip-601

tion of the growth of Km is obtained by performing material balances602

on biomass Km and lactose lo [3]:603

(S)





dKm

dt
= µ

lo

Klo + lo
Km− b ·Km

dlo

dt
= −µ

β

lo

Klo + lo
Km

(44)

where µ (the maximum specific growth rate of Km), Klo(T ) (the604

half saturation constant for growth), b (the decay coefficient) and605

β (the yield coefficient for Km on lactose), depending on tempera-606

ture, are tainted with stochastic and epistemic uncertainties, due to607

the natural variability of yeast population and the imperfection of608

the model. The background knowledge about parameters p1, p2, p4609

and p5 are then updated regardless of the rest of network by using610

a simulated database Ssimulated resulting from Monte Carlo simula-611

tion coupled to interval analysis [4] leading to manage a joint ran-612

dom set ([Km(t),Km(t)], [lo(t), lo(t)], T (t))l associated with mass νl =613

1/#Ssimulated such that for instance614

p4jk ∈
[
s1f4jk + s2ξ4jk
s0 + s1 + s2

,
s0 + s1f4jk + s2ξ4jk

s0 + s1 + s2

]
(45)

where615

ξ
4jk

=
bel(j, k)

bel(j, k) +
∑

l 6=k pl(l, j)
and ξ4jk =

pl(j, k)

pl(j, k) +
∑

l 6=k bel(l, j)
(46)

and616

pl(j, k) =
∑

l, [km(t+ 1), km(t+ 1)]l ∩ {kmk} 6= ∅[
km(t), km(t)

]
l
∩ {kmj} 6= ∅[

lo(t), lo(t)
]
l
∩ {loj} 6= ∅

Tl(t) = Tj

νl (47)
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and617

bel(j, k) =
∑

l, {kmk} ⊆ [km(t+ 1), km(t+ 1)]l
{kmj} ⊆

[
km(t), km(t)

]
l

{loj} ⊆
[
lo(t), lo(t)

]
l

Tl(t) = Tj

νl (48)

This kind information is linked to Sections 3.4, 4.3 and corresponds to618

Belief functions in Table 1.619

3. Integration of expert knowledge, (S3).620

621

In cheese ripening, as in every complex food process, most of the con-622

trol measures are performed on the basis of the expert’s sensory per-623

ceptions. Indeed, experts have in mind the ripening process that they624

oversee and they are able to explain part of the complex reactions625

through their perception of quality changes [16]. Expert elicitation626

[48] informs us that during the exponential growing of the yeast Km,627

a characteristic fresh or lactic odour is released. Mushroom odour628

appears when the concentration of the yeast Km begins to stabilize629

and typical Camembert odour appears when the population of Km630

begins to decay. From this qualitative information, general rules may631

be deduced such as ”it is impossible to have a Camembert odour with632

a weak (resp. high) concentrations of Km (resp. lo)”. That means for633

several combinations of Km and lo concentrations, likely values about634

variable Odour may be formalized by means of possibility distributions635

πOdour(.|Km, lo). That is:636

• When there is a high (resp. weak) concentration of lactose (resp.
the yeast Km), having a fresh odour is the most plausible state,
followed by Mushroom and Camembert odours, which can be
formalized as the following possibility distribution:

πOdour(Fresh|j) = 1

πOdour(Mushroom|j) = 0.8

πOdour(Camembert|j) = 0.2

where j = (Km ≤ 6.5, lo ≥ 8).637

• When there is a medium concentration of lactose and Km, the
Mushroom odour is the most plausible state but we cannot ex-
clude having Fresh or Camembert odours, formalized by:

πOdour(Fresh|j) = 0.2

πOdour(Mushroom|j) = 1

πOdour(Camembert|j) = 0.2
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where j = (Km = 7, 2 < lo < 8).638

• When having very weak (resp. high) concentration of lactose
(resp. the yeast Km), the Camembert odour is the most plausible
state, followed by Mushroom and Fresh odours, formalized by:

πOdour(Fresh|j) = 0.2

πOdour(Mushroom|j) = 0.8

πOdour(Camembert|j) = 1

where j = (Km > 7, lo < 2).639

Parameter p6 is then updated by using640

p6jk ∈
[
s1f6jk + s3ξ6jk
s0 + s1 + s3

,
s0 + s1f6jk + s3ξ6jk

s0 + s1 + s3

]
(49)

where641

ξ6jk = πOdour(k|j) and ξ
6jk

= 1−max
l 6=k

πOdour(l|j) (50)

This kind of information is linked to the Section 3.2 and corresponds642

to possibilistic model in Table 1.643

5.2. Inference results and discussion644

We attempt to estimate the lower and upper mean time evolution of Km,645

lo and Odour for a temperature control according to the previous parameter646

learning. That is647

E(X(t)|U(t)) =
∑

k

xkp(X(t) = xk|U(t)) (51)

for the lower bounds where X may be Km, lo, Odour; U(t) = (lo(0),Km(0)648

, T (0), . . . , T (t)) and649

p(X(t) = xk|U(t)) = inf
p∈K(X(t)|U(t))

p(X(t) = xk|U(t)) (52)

by assuming s0 = s1 = s2 = s3 = 1 and the repetitive independence, since650

we assume that transition probabilities remain the same along the process651

(there is no reason to assume a change in the bacteria population behaviour),652

but are ill-known due to insufficient experiments and information. Figure653

4 displays the lower and upper simulated mean evolution of Km, lo, Odour654

versus experimental data over the cheese ripening carried out at 12oC each655

time a source of information is added. Supported by Table 4, we may observe656

that the imprecision of simulated results well decreases (characterized by the657

surface in gray).658
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Figure 4: Incremental DCN average simulation versus raw data (dotted) of Km, lactose
(lo) and Odour for a ripening carried out at and T=12o C each time a new source of
information is integrated.

Km lactose Odour

Source 1 18.62 105.38 20.91

Source 1 & 2 11.37 71.06 13.77

Source 1& 2& 3 11.03 71.32 10.99

Table 4: Area between the lower and upper bounds of the simulated mean time evolution
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6. Conclusion659

There are complex dynamical processes for which no deterministic model660

describing the complete process exists. In such cases, dynamic credal net-661

works are convenient models that allow to include expert knowledge, data662

and variable interaction in a single framework. They allow a faithful repre-663

sentation of incomplete knowledge or scarce data, that are inherent to the664

complexity of bio-physicochemical phenomena occurring in Life Sciences. In665

this paper, we attempted to implement a practical methodology coupling666

interval analysis and Dirichlet model in the framework of dynamical credal667

networks for building mathematical model capable of representing complex668

systems. Moreover, the concepts of dynamic repetitive and strong exten-669

sions have been proposed. While the latter can be seen as a straightforward670

extension of classical credal networks, the former considers repetitive inde-671

pendence to allow the model to preserve a temporal regularity. Methodology672

has been applied to a simplified real-case study concerning microbial popu-673

lation growth involving sensory evolution during cheese ripening. These ex-674

periments have shown that including information reduces imprecision about675

result simulations. Next tools should consider to manipulate, to combine676

convex sets in order to not lose information during incremental parameter677

learning. In further works, DCNs should enable us to determine the contri-678

bution of imprecision and/or incompleteness on the outcomes of a model in679

order to know if an ambiguous answer is due to a lack of information or due680

to a random phenomenon. That is, we plan to develop refined sensitivity681

analysis techniques based on their use. They should thus determine key682

variables and/or key phenomena for which it will be necessary to acquire683

more information. Finally, we also plan to investigate their usefulness in684

determining optimal commands.685
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