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Abstract In this paper, we present a formalism designed to model tidal interac-
tion with a viscoelastic body made of Maxwell material. Our approach remains
regular for any spin rate and orientation, and for any orbital configuration in-
cluding high eccentricities and close encounters. The method is to integrate simul-
taneously the rotation and the position of the planet as well as its deformation.
We provide the equations of motion both in the body frame and in the inertial
frame. With this study, we generalize preexisting models to the spatial case and to
arbitrary multipole orders using a formalism taken from quantum theory. We also
provide the vectorial expression of the secular tidal torque expanded in Fourier se-
ries. Applying this model to close-in exoplanets, we observe that if the relaxation
time is longer than the revolution period, the phase space of the system is charac-
terized by the presence of several spin-orbit resonances, even in the circular case.
As the system evolves, the planet spin can visit different spin-orbit configurations.
The obliquity is decreasing along most of these resonances, but we observe a case
where the planet tilt is instead growing. These conclusions derived from the secu-
lar torque are successfully tested with numerical integrations of the instantaneous
equations of motion on HD 80606 b. Our formalism is also well adapted to close-in
super-Earths in multiplanet systems which are known to have non-zero mutual
inclinations.
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1 Introduction

Short period exoplanets are tidally distorted by their stars. This phenomenon
alter both the planet rotation and its orbital evolution over long timescale. The
mechanism is the same as in the problem of a satellite orbiting a planet which has
been modeled by Darwin (1880) and generalized by Kaula (1964).

In these models, the gravitational potential of the deformed planet is expanded
in multipoles and then expressed in terms of elliptical elements as a Fourier se-
ries truncated in eccentricity. Each term involves a Love number associated to
the amplitude of the tide and a phase lag accounting for the non-instantaneous
deformation of the planet. These lags have been interpreted as constant geometric
lag angles (MacDonald, 1964). However, the tidal torque should vanish at equilib-
rium, i.e. when the perturbing body (star or satellite) has a circular orbit in the
planet equatorial plane with a mean motion equal to the planet rotation speed.
To remedy this problem, Singer (1968) proposed a frequency-dependent theory of
tides which is now known as the constant time lag model. According to this theory,
the deformation of the planet at time t is aligned with the position occupied by
the disturbing body at time t−∆t in the planet reference frame.

The constant time lag model has been widely used because of its intuitive
physical interpretation and also because the analytical expressions of the tidal
force and torque expanded in first order in ∆t are very compact and not truncated
in eccentricity (Mignard, 1979).

More generally, Love numbers and phase lags depend on the structure and
the rheology of the planet (e.g., Efroimsky, 2012a), but none of the two models
quoted above corresponds to a physical rheology (Efroimsky and Makarov, 2013).
The constant time lag model can nevertheless be seen as a first order expansion
of a viscoelastic rheology (Darwin, 1880, p. 740 § 7; see also Ferraz-Mello, 2013).

Different rheologies have been suggested for rocky and giant gaseous planets
(e.g., Ogilvie and Lin, 2004; Efroimsky and Lainey, 2007; Henning et al, 2009;
Remus et al, 2012; Efroimsky, 2012b). A few of them have been proposed because
of their (mathematical and physical) simplicity, others are motivated by laboratory
and/or numerical experiments or by geophysical measurements.

In the general case, mathematical models describing the rheology are intricate
and do not allow to follow the long term rotation and orbital motion without a
Fourier series as in Kaula’s theory. This is a disadvantage since such expansions
are only valid at low eccentricities unless a huge number of terms is kept (see the
discussion in the Appendix of Ferraz-Mello (2013)).

A few physical rheologies can nevertheless be treated without Fourier series,
such as the viscous creep model (Ferraz-Mello, 2013) and the Maxwell viscoelastic
model (Correia et al, 2014). It should be noted that dissipation is equivalent in
both models (Correia et al, 2014; Ferraz-Mello, 2015). These rheologies can be seen
as first order low-pass filters and can thus be modeled by first order differential
equations. In these models, coefficients of the potential are integrated at the same
time as the orbital and rotational elements. There is no requirement regarding the
perturbation : it does not have to be periodic nor low-eccentric.

Recently, Frouard et al (2016) proposed an alternative approach with the same
advantages where the extended body is made of a large number N of massive
gravitating particles linked by damped massless springs. The demo version of this
method, described in Ibid., employed springs obeying the Kelvin-Voigt law. Ac-
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cordingly, the resulting shear response of the mesh was close to Kelvin-Voigt. By
choosing different deformation laws for the springs, it is possible to endow the
mesh with different rheologies. This approach can easily be set up to model bodies
with complex internal structure and/or geometry. But it requires the integration
of about 6N differential equations.

Earths and super-Earths are assumed to behave like a Maxwell body at low
frequency, but in the opposite regime such model does not account for enough dis-
sipation and an Andrade rheology is required (Efroimsky, 2012b). This composite
model, which can only be expressed mathematically as a truncated Fourier series,
led to unexpected results. Indeed, according to Singer’s and Mignard’s constant
∆t model, the rotation of a planet without permanent quadrupole on eccentric
orbit is expected to be pseudo(or super)synchronous, while with this new rheology
the only stable configurations are at the vicinity of spin-orbit resonances (Makarov
and Efroimsky, 2013). Actually, entrapment into spin-orbit resonances is not an
exclusive property of the composite Maxwell + Andrade rheology but a robust en-
tailment of linear rheologies (Makarov and Efroimsky, 2013). In particular, these
resonances are also expected in the case of purely Maxwell bodies (Correia et al,
2014).

In summary, Maxwell rheology presents two advantages : a simple mathemat-
ical representation valid at all eccentricities and similar qualitative outcomes as
more complex models. In (Ferraz-Mello, 2013; Correia et al, 2014), the problem
has been studied in the planar case where the spin of the planet is orthogonal to
the orbital plane. In this work we present a formalism for inclined systems. For
that purpose, multipole expansion in complex spherical harmonics Yl,m, as initi-
ated by Mignard (1978), proves to be efficient especially as these functions have
simple expressions in terms of Cartesian coordinates, they are the eigenvectors of
ladder operators from which the tidal force and torque are derived, and each oper-
ation (rotation, differentiation, ...) on these functions can be found in any textbook
about quantum mechanics such as in (Varshalovich et al, 1988). The equations of
motion are given both in the frame of the planet, in which tides are naturally ex-
pressed, but also in a fixed reference frame more suitable for describing the orbital
evolution. In this work, we mainly concentrate on the instantaneous equations of
motion valid at all eccentricities, except in Section 5 where we provide the secular
tidal torque in the form of a standard Fourier expansion.

The paper is organized as follows : the model and the notations are presented
in Section 2; the next two sections (3 and 4) provide the instantaneous equations of
motion in the body frame and in the inertial frame; Section 5 focuses on the secular
evolution. It provides the secular torque and maps of the secular evolution of the
spin-axis; our model is then applied on HD 80606 b in Section 6; the conclusion is
drawn in Section 7.

2 Model and notation

We wish to determine the orbital and rotational evolution of an extended planet
of mass m1 orbiting a point-mass star m0. The planet is assumed to be made of
a viscoelastic fluid governed by Maxwell rheology. At rest, the planet would thus
be a perfect sphere of radius R. In this problem, the planet is deformed by its
rotation around its spin-axis and by the differential gravitational field of the star.
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We denote by V (~x, t) the gravitational potential of the deformed planet at
time t and at the position ~x with respect to its center of mass. In the following,
we provide the expression of this potential and the equations of motion both in
the body frame Fp rotating with the planet and in an inertial frame F0.

Thus, for any vector ~x in the physical space written with an arrow, we distin-
guish its coordinates in F0 represented by a bold lower case such as x from those
in Fp denoted by a bold face capital letter such as X. We also let x = X = ‖ ~x ‖
be its norm. Unit vectors are denoted with a hat, e.g., x̂ =~x /x.

Let f(~x, t) be an arbitrary function whose expressions in the frames F0 and Fp
are respectively denoted by f0(x, t) and fp(X, t). We define the gradient operators
∇x and ∇X by

∇xf(~x, t) ≡∇f0(x, t) and ∇Xf(~x, t) ≡∇fp(X, t) .

Equivalently, we consider the angular momentum operators Jx and JX in the
frames F0 and Fp, respectively, such that

Jxf(~x, t) = Jf0(x, t) ≡ −i x×∇f0(x, t)

and

JXf(~x, t) = Jfp(X, t) ≡ −i X×∇fp(X, t)

where i =
√
−1. The gradient and the angular momentum operators will be used

to express the tidal force and torque, respectively.

The formalism described in this paper is completely vectorial and can thus
be computed in any coordinate system (either spherical or Cartesian). We have
chosen the complex Cartesian coordinate system as defined in (Varshalovich et al,
1988) because it leads to very compact formulas. This system is defined as follows,
for any vector ~v, its coordinates in F0 are v = (v+, v0, v−) with

v+ = − 1√
2

(vx + ivy) , v0 = vz , v− =
1√
2

(vx − ivy) ,

where (vx, vy, vz) are the usual real Cartesian coordinates. The coordinates V =
(V+, V0, V−) in Fp are equivalently defined using the same rule. For any complex
quantity z ∈ C, the complex conjugate is written with a bar as z̄. We stress that
v− = −v̄+ and thus a vector ~v is fully characterized by only two components, e.g.,
v+ and v0.

3 Description in the planet frame

3.1 Tidal potential

The gravitational potential V (~x, t) of the planet is the sum of two components:
the potential at rest V 0(~x) = −Gm1/x and a small correction V ′(~x, t) due to the
mass redistribution within the planet. The latter is usually expressed in the body
frame Fp. Outside of the planet, i.e. for ‖x‖ > R, V ′ satisfies Laplace’s equation
∆V ′ = 0 and remains finite when ‖ ~x ‖ → ∞. Thus, it can be expanded in
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spherical harmonics Yl,m (here we use the Schmidt semi-normalization convention,
see Appendix A). Beyond the planet surface, we have then

V ′(~x, t) =
∞∑
l=2

V ′l (~x, t)

with

V ′l (~x, t) = −Gm1

R

(
R

X

)l+1 l∑
m=−l

Z̄l,m(t)Yl,m(X̂) (1)

where Zl,m(t) are coefficients whose relation to Stokes coefficients will be detailed
later on. This deformation is induced by a “disturbing potential” W (~x, t) associ-
ated to the rotation of the planet and to the differential potential of the star. Let
~ω be the instantaneous rotation vector of the planet, and Ω and ω its coordinates
in Fp and F0, respectively. If we neglect the radial term of the centrifugal force
which has no effect if the planet is made of incompressible fluid, both disturbing
potentials can also be expanded in spherical harmonics W (~x, t) =

∑∞
l=2Wl(~x, t),

with

W2(~x, t) =
1

3
Ω2(t)X2

2∑
m=−2

Ȳ2,m(Ω̂(t))Y2,m(X̂)

−Gm0
X2

X3
?(t)

2∑
m=−2

Ȳ2,m(X̂?(t))Y2,m(X̂) (2a)

and for l ≥ 3,

Wl(~x, t) = −Gm0
Xl

Xl+1
? (t)

l∑
m=−l

Ȳl,m(X̂?(t))Yl,m(X̂) (2b)

where X?(t) is the coordinates in the frame Fp of the position ~x? (t) of the star
relative to the planet barycenter at time t. To simplify the notation, the explicit
time dependency of Ω(t) and X?(t) will be dropped in the following equations.

According to the linear model of tides, at ‖ ~xR ‖ = R from the planet center,
V ′l (~xR, t) is a linear combination of all Wl(~xR, t

′) with t′ ≤ t. Thus, for all l ≥ 2,

V ′l (~xR, t) = kl(t) ∗Wl(~xR, t) =

∫ t

−∞
kl(t− t′)Wl(~xR, t

′) dt′ , (3)

where kl(t) is a Love distribution such that kl(t) = 0 for all t > 0 and where ∗
is the convolution product. The terminology is chosen by analogy with the Love
numbers kl. Note that in (Efroimsky, 2012a), these distributions are noted kl(t).
Love distributions are a property of the planet. They depend on its internal struc-
ture and composition, but not on the perturbing body. Substituting in (3) the
expressions (1) and (2) of V ′l and Wl respectively, we get

Zl,m(t) = kl(t) ∗ Z?l,m(t) , (4)

with

Z?2,m(t) = −1

3

Ω2R3

Gm1
Y2,m(Ω̂) +

m0

m1

(
R

X?

)3

Y2,m(X̂?) (5a)
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and for all l ≥ 3,

Z?l,m(t) =
m0

m1

(
R

X?

)l+1

Yl,m(X̂?) . (5b)

3.2 Differential equations satisfied by the Zl,m

The convolution equations (3) and (4) are very general. They only assume that
the tidal response is linear and isotropic in the frame of the planet. Now, we add a
new hypothesis in the model saying that the planet behaves like an homogeneous
viscoelastic body with Maxwell rheology. In that case, the Fourier transform k

¯l
of

the distribution kl is of the form1 (e.g., Henning et al, 2009)

k
¯l

(ν) = k0l
1 + iτeν

1 + iτlν
(6)

where k0l = 3/[2(l − 1)] is the fluid Love number of degree l, τl = (1 + Al)τe
is a global relaxation time, τe = η/µ is the elastic or Maxwell relaxation time,
Alτe = (2l2 + 4l + 3)η/(lgρR) is the fluid relaxation time, η is the viscosity, µ is
the rigidity (or shear modulus), and ρ is the mean density. It must be stressed that
the aforementioned expressions of k0l and τl only hold for perfectly homogeneous
incompressible viscous sphere. Real planets are stratified and thus each k0l , τl, and
even τe can be considered as free parameters that have to be fitted to reproduce
the response of a more complex internal structure (e.g., Peltier, 1974).

Given the expression of the Fourier transform of kl (Eq. 6), the convolution
equation (Eq. 4) becomes a first order differential equation (Correia et al, 2014)

Zl,m + τlŻl,m = Zel,m + τeŻ
e
l,m

where Zel,m = k0l Z
?
l,m. Following Ferraz-Mello (2015), we can also express the

previous equation in a simpler form that does not depend on the derivatives of
Zel,m as

Zl,m =

(
1− τe

τl

)
Zνl,m +

τe
τl
Zel,m with Zνl,m + τlŻ

ν
l,m = Zel,m . (7)

We recall that all Zel,m(t) = k0l Z
?
l,m(t), given by Eq. (5), are only functions of the

instantaneous rotation vector Ω(t) of the planet and of the position X?(t) of the
disturbing star at time t. There is no restriction regarding the orbital evolution.
Equation (7) can thus be integrated even if the trajectory is chaotic, aperiodic, or
highly eccentric.

1 Note that if the material composing the extended body was governed by the Newtonian
creep rheology or by the Kelvin-Voigt one, k

¯l
(ν) would have the same analytical expression

but with τe = 0.
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3.3 Stokes coefficients and matrix of inertia

Conventionally, the potential is developed in the body frame as (e.g., Lambeck,
1988)

V (~x, t) = −Gm1

R

∞∑
l=0

(
R

X

)l+1 l∑
m=0

(Cl,m cos(mφ) + Sl,m sin(mφ))Pl,m(cos θ) ,

where Cl,m = C0
l,m + C′l,m and Sl,m = S0

l,m + S′l,m are the Stokes coefficients
splitted into their permanent part (superscript 0) and their deformation part (with
a prime), and where (φ, θ) are the longitude and colatitude of ~x in Fp. In our
problem, C0

l,m = S0
l,m = 0 because the body is assumed to be spherical without

tidal or rotational deformation. We thus have Cl,m = C′l,m and Sl,m = S′l,m. A
comparison with the equation (1) using the definition of the spherical harmonics
given in Appendix A shows that

Zl,m = (−1)m
1 + δm,0

2

√
(l +m)!

(l −m)!

(
Cl,m + iSl,m

)
if m ≥ 0 . (8)

In this expression, δi,j is Kronecker’s delta equal to 1 if i = j and 0 otherwise.
The other coefficients are given by Zl,m = (−1)mZ̄l,−m .

The relation (8) between the coefficients Zl,m and Stokes coefficients allows
to compute the matrix of inertia In(Zl,m). To express the result, let us first
denote by ξ the normalized moment of inertia such that, without deformation,
In = ξm1R

2I3×3 where I3×3 is the identity. For homogeneous body, we have
ξ = 2/5, but more generally, ξ is related to the fluid Love number k02 through
the Darwin-Radau equation (e.g., Jeffreys, 1976)

ξ =
2

3

(
1− 2

5

√
4− k02
1 + k02

)
.

Once the planet is deformed by its rotation and by tides, we have to add in the
matrix of inertia a contribution due to the mass redistribution within the planet,
and we get

In(Zl,m) =
(
ξm1R

2
)
I3×3 +m1R

2



1

3
Z2,0 − 1√

3
Z2,1

√
2

3
Z2,2

1√
3
Z2,−1 −2

3
Z2,0

1√
3
Z2,1√

2

3
Z2,−2 −

1√
3
Z2,−1

1

3
Z2,0


.

This matrix of inertia is complex because it is defined such that the angular mo-
mentum L reads L+

L0

L−

 = In(Zl,m)

Ω+

Ω0

Ω−

 .

The modification of the matrix of inertia due the mass redistribution is a small
correction. In the subsequent simulations, the rotation vector ~ω is deduced from
the angular momentum ~` through the relation ~`= C ~ω with C = ξm1R

2 as in
(Correia et al, 2014).



8 G. Boué et al.

3.4 Complete set of differential equations

Given the gravitational potential V (~x, t) raised by the planet, the force acting on
the star is F = −m0∇XV (~x, t). If the reference frame were not rotating, we would
have formally obtained the orbital evolution of the system with Ẍ = F/β, where
β = m0m1/(m0 +m1) is the reduced mass. Here, we have to add the usual inertial
forces. We get

Ẍ = −m0

β
∇XV (~x, t)− Ω̇×X− 2Ω× Ẋ−Ω× (Ω×X) .

In order to have first order differential equations, we introduce the velocity U =
Ẋ + Ω ×X of the star relative to the planet center of mass in the frame F0. We
have then

Ẋ = U−Ω×X and U̇ = −m0

β
∇XV (~x, t)−Ω×U .

The torque on the planet is T = −X × F. Thus, the evolution of the angular
momentum L of the planet in Fp is given by

L̇ = m0X×∇XV (~x, t)−Ω× L .

Now, we substitute the expression of V (~x, t) and we add the equation of motion
satisfied by Zνl,m. The result is

Ẋ = U−Ω×X , (9a)

U̇ = −G(m0 +m1)

(
X̂

X2
−
lmax∑
l=2

Rl
l∑

m=−l

Z̄l,m∇
(
Yl,m(X̂)

Xl+1

))
−Ω×U , (9b)

L̇ = −i
Gm0m1

X

lmax∑
l=2

(
R

X

)l l∑
m=−l

Z̄l,mJ
(
Yl,m(X̂)

)
−Ω× L , (9c)

Żνl,m =
1

τl
(Zel,m − Zνl,m) , l ∈ {2, lmax} , m ∈ {0, l} , (9d)

where lmax is the maximal order at which the multipole expansion is performed.
For this problem, the state vector is Y = (X0, X+, U0, U+, L0, L+, Z

ν
l,m) with

2 ≤ l ≤ lmax and 0 ≤ m ≤ l. Auxiliary quantities are computed as follows:

– X− = −X̄+, U− = −Ū+, L− = −L̄+,
– X = ‖ ~x ‖ = X2

0 − 2X−X+,
– Ω = C−1L,
– Yl,m(X̂) with l ∈ {2, lmax + 1} and m ∈ {−l, l} from Appendix A,

– ∇(Yl,m(X̂)/Xl+1) and J(Yl,m(X̂)) with l ∈ {2, lmax} and m ∈ {−l, l} from
Appendix B,

– (Zl,m)m≥0 from Eq. (7) and Zl,−m = (−1)mZ̄l,m,
– Zel,m = k0l Z

?
l,m with Z?l,m given by Eq. (5).

We stress that the state vector contains the minimal set of variables allowing to in-
tegrate the problem. Indeed, (X0, U0, L0, Z

ν
l,0) are real and the others are complex.

We thus have six (real) coordinates for the orbit: position and velocity, three for
the angular momentum but none for the orientation (because the body is spherical
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at rest), and 2l + 1 coefficients per multipole of degree l. However, this formal-
ism is not the most convenient to study n-body problems because trajectories are
followed in the frame of the tidally deformed planet rather than in the inertial
frame. Moreover, if more than one body is allowed to be distorted, one also has to
integrate orientations to compute change of bases. This increases the dimension of
the state vector. In the next section, we provide an alternative approach directly
written in the inertial frame F0.

4 Description in the inertial frame

4.1 Tidal potential

In the previous section, we wrote the harmonics of the additional potential V ′l (~x, t)
in the body frame as

V ′l (~x, t) = −Gm1

R

(
R

X

)l+1 l∑
m=−l

Z̄l,m(t)Yl,m(X̂) ,

but we could also have decomposed V ′l (~x, t) in the inertial frame as

V ′l (~x, t) = −Gm1

R

(
R

x

)l+1 l∑
m=−l

z̄l,m(t)Yl,m(x̂)

with new time-dependent coefficients zl,m(t) expressing the gravity field of the
planet in the inertial frame. Coefficients Zl,m and zl,m are related between them-
selves through Wigner’s D matrix of size (2l+ 1)× (2l+ 1) denoted Dlm,m′(t) and
associated to the orientation of the frame Fp with respect to F0 at time t. By
definition, we have

Yl,m(X̂) =
l∑

m′=−l

Dlm′,m(t)Yl,m′(x̂) thus zl,m(t) =
l∑

m′=−l

D̄lm,m′(t)Zl,m′(t) .

(10)
For the present study, we do not need to explicit this matrix. We refer the interested
reader to the chapter 4 of (Varshalovich et al, 1988). We can nevertheless deduce
the equation of evolution of zl,m(t) from that of Zl,m(t) (see Appendix D). We get

zl,m + τl

(
żl,m − i

∑
m′

J̄lm,m′(ω)zl,m′

)
= zel,m + τe

(
żel,m − i

∑
m′

J̄lm,m′(ω)zel,m′

)
,

where J̄lm,m′(ω) is the complex conjugate of the matrix Jlm,m′(ω) expressing the
inertia felt by the zl,m which are given in the fixed frame F0 rather than in the
frame of the planet Fp. The equilibrium zel,m in the right-hand side are, as in the
previous section,

ze2,m(t) = k02

(
−1

3

ω2R3

Gm1
Y2,m(ω̂) +

m0

m1

(
R

x?

)3

Y2,m(x̂?)

)
, (11a)
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and for l ≥ 3,

zel,m(t) = k0l
m0

m1

(
R

x?

)l+1

Yl,m(x̂?) . (11b)

Applying the change of variable proposed in (Ferraz-Mello, 2015),

zl,m =

(
1− τe

τl

)
zνl,m +

τe
τl
zel,m , (12)

we obtain the simplified equations of motion

zνl,m + τl

(
żνl,m − i

∑
m′

J̄lm,m′(ω)zνl,m′

)
= zel,m . (13)

Hence, in F0, the time derivative of the harmonic zl,m is not only a function of
itself and zel,m, it also depends on the other coefficients of degree l but of different
orders m′. The system of differential equations is not diagonal anymore. This is
the price to pay when we express tides in the inertial frame.

4.2 Matrix of inertia

In the inertial frame, the matrix of inertia In(zl,m) such that ` = In(zl,m)ω has
exactly the same form as in the planet frame except that capital Zl,m’s have to
be replace by their lower case counterparts zl,m. The result is

In(zl,m) =
(
ξm1R

2
)
I3×3 +m1R

2



1

3
z2,0 − 1√

3
z2,1

√
2

3
z2,2

1√
3
z2,−1 −2

3
z2,0

1√
3
z2,1√

2

3
z2,−2 −

1√
3
z2,−1

1

3
z2,0


.

4.3 Equations of motion

In the inertial frame, orbital and rotational equations of motion are simply written
without terms of inertia. The evolution of the gravity field coefficients are taken
from Sect. 4.1. We get

ẋ = u , (14a)

u̇ = −G(m0 +m1)

(
x̂

x2
−
lmax∑
l=2

Rl
l∑

m=−l

z̄l,m∇
(
Yl,m(x̂)

xl+1

))
, (14b)

˙̀ = −i
Gm0m1

x

lmax∑
l=2

(
R

x

)l l∑
m=−l

z̄l,mJ (Yl,m(x̂)) , (14c)

żνl,m =
1

τl

(
zel,m − zνl,m

)
+ i

l∑
m′=−l

(
J̄lm,m′(ω)zνl,m′

)
, l ∈ {2, lmax} , m ∈ {0, l} .

(14d)
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The state vector y = (x0, x+, u0, u+, `0, `+, z
ν
l,m) with l ∈ {2, lmax} and m ∈ {0, l}

has the same dimension as in the body frame (Sect. 3.4). Auxiliary quantities are
computed in the same way:

– x− = −x̄+, u− = −ū+, `− = −¯̀
+,

– x = ‖x‖ = x20 − 2x−x+,
– ω = C−1`,
– Yl,m(x̂) with l ∈ {2, lmax + 1} and m ∈ {−l, l} from Appendix A,
– ∇(Yl,m(x̂)/xl+1) and J(Yl,m(x̂)) with l ∈ {2, lmax} and m ∈ {−l, l} from

Appendix B,
– (zl,m)m≥0 from Eq. (12) and zl,−m = (−1)mz̄l,m,
– zel,m from Eq. (11),

– Jlm,m′(ω) from Appendix D.

This formalism has the advantage that it can easily be extended to n-body prob-
lems with additional distorted planets. There is no need to add the orientation of
the extended bodies in the state vector nor to perform change of bases. Evidently,
this is not true if planets have permanent multipoles.

5 Secular rotation

In the previous section, we have presented a set of differential equations describing
the evolution of the planet rotation, orbital motion, and instantaneous deformation
under tidal dissipation. Nevertheless, the influence of tides on the orbit and on the
planet spin are only significant over long timescales. In this section we propose to
express the secular torque averaged over one orbital period. Our goal is to look
for the existence of any rotation equilibria at non-zero obliquity. This torque is
computed in the inertial frame F0.

To do so, it should first be noted that the equations of motion of the gravity field
coefficients 14d) are those of driven harmonic oscillators. The general solution is a
sum of a transient solution, which is damped within a timescale τl, and a steady-
state proportional to the driving force. We retain the forced solution, substitute
it in the expression of the instantaneous torque 14c), and average the result to
get the secular torque (see Sects. 3,4 of Correia et al, 2014). The result is given in
the form of a Fourier series. As notified earlier, such expansions are not suited to
numerical simulations of highly eccentric systems. The secular torque is provided
here as a guideline to probe the phase-space of the rotation motion of a single
planet system on a Keplerian orbit.

In this section, we make the approximation ~`= C ~ω in such a way that the
rotation vector is easily derived from the torque. In the averaging process over
the mean anomaly M of the planet, the orbit is Keplerian by definition and the
angular momentum, as well as the rotation vector, are fixed as they do not depend
on M . At this stage, we shall introduce basis vectors which are used to compute
the secular torque. They are represented in Figure 1. On the one hand, the orbital
motion is written in an orbital coordinate system Bo = (~ıo, ~o,

~ko) such that ~o
coincides with the ascending node of the equatorial plane and ~ko is normal to
the orbit. On the other hand, the torque is decomposed in an equatorial basis
Be = (~ıe, ~e,

~ke) constructed such that ~e = ~o also points towards the node of

the equator and ~ke is along the spin axis ~ω. The rotation angle between these two
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~ıe

~ke,~kp

~ıo

~o,~e

~ko

~ıp

~p

θ

orbital plane

equator
ial pl

ane

Fig. 1 Definition of the basis vectors associated to the orbit, to the equatorial plane, and to

the planet frame: the orbital basis Bo = (~ıo, ~o,
~ko) has ~ko normal to the orbit and ~o along

the node of the equatorial plane; the equatorial basis Be = (~ıe, ~e,
~ke) has ~e = ~o and ~ke

along the planet spin; The planet basis Bp = (~ıp, ~p,
~kp) has fixed vectors in the planet frame

with ~kp=~ke.

coordinate systems is the obliquity denoted by θ. For completeness, Figure 1 also
displays the basis Bp = (~ıp, ~p,

~kp) associated to the planet frame Fp which differs

from Be by a rotation around ~ke=
~kp. It should be stressed that even though the

basis vectors of Bo and Be are assumed constant during a revolution period, they
are not vectors of the inertial frame F0 because both the planet and the orbit
are precessing on long timescales. But nothing prohibits to decompose an inertial
vector in a non-inertial coordinate system.

Let us introduce a few additional notations. We denote by xo and by xe the
coordinates of any vector ~x (computed with respect to the inertial frame) in the
bases Bo and Be, respectively. We also define irregular solid harmonics Sl,m as

Sl,m(x) =
1

xl+1
Yl,m(x̂) .

Solid harmonics transform in the same way as spherical harmonics under rotation,
thus

Sl,m(xe) =
l∑

m′=−l

dlm′,m(θ)Sl,m′(xo) , (15)

where dlm′,m(θ) is Wigner’s d matrix (Appendix C). The Keplerian elements used
in the following are the semi-major axis a, the mean motion rate n, the eccentricity
e, the true anomaly v, the mean anomaly M , and the longitude of periastron $
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whose origin is the vector ~ı0. We denote by Xn,m
k the Hansen coefficients defined

such that ( r
a

)n
eimv =

∞∑
k=−∞

Xn,m
k eikM .

Hansen coefficients are functions of eccentricity but this dependency is dropped to
simplify the notation. At least, we decompose the Fourier transform of the Love
distributions into their real and imaginary parts as

k
¯l

(ν) = k0l al(ν) + ik0l bl(ν) .

With Maxwell rheology, we have

al(ν) =
1 + τeτlν

2

1 + τ2l ν
2
, bl(ν) = −

(
1− τe

τl

)
τlν

1 + τ2l ν
2
.

5.1 Gravitational field coefficients

In the body frame and in the frequency domain, gravitational field coefficients are
related to the external potential through (e.g., Lambeck, 1988)

Z
¯ l,m

(ν) = k
¯l

(ν)Z
¯
?
l,m(ν) .

This relation expressed in the inertial equatorial frame becomes (see Appendix E)

z
¯l,m

(ν) = k
¯l

(ν −mω) z
¯
?
l,m(ν) .

Or, using the decomposition of the Fourier transform of the Love distribution kl,

z
¯l,m

(ν) =
(
al(ν −mω) + ibl(ν −mω)

)
z
¯
e
l,m(ν) . (16)

We now express the Fourier transform of zel,m(t). From its definition (Eq. 11), we
have

zel,m(t) = −δl,2δm,0k02
ω2R3

3Gm1
+ k0l

m0

m1
Rl+1Sl,m(xe) . (17)

As said before, it is more simple to express solid harmonics in the orbital frame.
Indeed, in the latter frame, the colatitude of the radius vector is π/2 and its
longitude is $+ v. Thus, using the expression of the spherical harmonics recalled
in the Appendix A, we get

Sl,m(xo) = (−1)m

√
(l −m)!

(l +m)!
Pl,m(0)

1

xl+1
eim($+v)

= Yl,m(̂ı)
eim$

al+1

∞∑
k=−∞

X
−(l+1),m
k eikM , (18)

where ı̂ is the unit vector of coordinates (̂ı+, ı̂0) = (−1/
√

2, 0). The Fourier trans-
form of the steady-state gravity coefficients zl,m in the inertial equatorial frame is
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then deduced from Eqs. (15), (16), (17), and (18). The result only contains terms
at frequencies νp = pn, p ∈ Z, which are given by

z
¯l,m

(pn) =− δl,2δm,0δp,0a2(0)k02
ω2R3

3Gm1

+ k
¯l

(pn−mω)
m0

m1

(
R

a

)l+1 l∑
m′=−l

dlm′,m(θ)Yl,m′ (̂ı)X−(l+1),m′

p eim
′$ .

5.2 Secular torque

The torque t = ˙̀ (Eq. 14c) involves the angular operator J = (J+, J0, J−). Let us
denote by Jµl,m, (µ = +1, 0,−1) the coefficient such that

Jµ(Sl,m(x)) = Jµl,mSl,m+µ(x) .

From the Appendix B, we have

J+
l,m = −

√
l(l + 1)−m(m+ 1)

2
and J0

l,m = m .

With this notation,

˙̀
µ = −i

Gm0m1

R

lmax∑
l=2

Rl+1
l∑

m=−l

z̄l,mJ
µ
l,mSl,m+µ(xe) .

We expand Sl,m(xe) =
∑
m′ d

l
m,m′(θ)Sl,m′(xo) as above. Then, we substitute the

steady-state solution of zl,m previously found to get the steady-state torque

˙̀
µ =− i

Gm0m1

R

lmax∑
l=2

Rl+1
l∑

m=−l

l∑
m′=−l

l∑
m”=−l

∞∑
p=−∞

∞∑
p′=−∞

k̄
¯l

(pn−mω)

×
(
− δl,2δm,0δp,0

ω2R3

3Gm1
+
m0

m1
Rl+1dlm′,m(θ)S̄

¯ l,m
′(pn)

)
Jµl,m

× dlm”,m+µ(θ)S
¯ l,m”(p′n)ei(p

′−p)M .

In this expression, S
¯ l,m

(ν) is the Fourier transform of Sl,m(xo(t)) evaluated at the
frequency ν. The secular torque is obtained for p = p′. The result is a function of
(θ, a, e,$) and of the physical parameters of the problem, but it can be simplified
considering the fact that the pericenter is circulating rapidly. We recall that S

¯ l,m
is proportional to exp(im$). Thus, 〈S̄

¯ l,m
′S
¯ l,m”〉$ is not zero only if m′ = m” and

〈J2S
¯ l,m”〉$ 6= 0 when m” = 0. The torque is further simplified by the symmetry

of the Love distributions, viz. k
¯l

(−ν) = k̄
¯l

(ν), or equivalently, al(−ν) = al(ν) and
bl(−ν) = −bl(ν). The average torque becomes

〈 ˙̀µ〉M,$ =
i

3
k02m0ω

2R5a2(0)Jµ2,0d
2
0,µ(θ)S

¯2,0(0)

− i
Gm2

0

R

lmax∑
l=2

R2l+2
l∑

m=−l

l∑
m′=−l

∞∑
p=−∞

k
¯l

(mω − pn)

× dlm′,m(θ)dlm′,m+µ(θ)Jµl,m|S¯ l,m′(pn)|2

(19)
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We now focus on the component µ = 0 of the secular torque which is directly
related to the evolution of the spin rate ω̇. Given that J0

l,m = m, terms in factor of

k02 disappear. Furthermore, the term Tm,m′,p = mk
¯l

(mω−pn)|dlm′,m(θ)S
¯ l,m

′(pn)|2

in the triple sum has the following symmetry T−m,−m′,−p = −T̄m,m′,p. As a result,

〈 ˙̀0〉M,$ = 2
Gm2

0

R

lmax∑
l=2

R2l+2k0l

l∑
m=1

l∑
m′=−l

∞∑
p=−∞

mbl(mω−pn)|dlm′,m(θ)S
¯ l,m

′(pn)|2 .

Finally, we substitute the expression of S
¯ l,m

′(pn) and we get

〈 ˙̀0〉M,$ =2
Gm2

0

R

lmax∑
l=2

(
R

a

)2l+2

k0l

l∑
m=1

l∑
m′=−l

∞∑
p=−∞

mbl(mω − pn)

×
∣∣∣dlm′,m(θ)Yl,m(̂ı)X−(l+1),m′

p

∣∣∣2 .

(20)

Note that in this sum, m′ is incremented by step of 2 because m′ should have the
same parity as l for Pl,m′(0) 6= 0 in the expression of Yl,m′ (̂ı). At the quadrupole
order lmax = 2, the explicit expression is

〈 ˙̀0〉M,$ =k02
Gm2

0R
5

a6

∞∑
k=−∞

(

b2(2ω − kn)(X−3,2
k )2

3

32
(1 + cos θ)4

+ b2(2ω − kn)(X−3,0
k )2

3

8
sin4 θ

+ b2(2ω − kn)(X−3,−2
k )2

3

32
(1− cos θ)4

+ b2(ω − kn)(X−3,2
k )2

3

16
sin2 θ(1 + cos θ)2

+ b2(ω − kn)(X−3,0
k )2

3

4
sin2 θ cos2 θ

+ b2(ω − kn)(X−3,−2
k )2

3

16
sin2 θ(1− cos θ)2

)
.

(21)

The orthogonal component of the torque ˙̀
+ does not present as much symme-

tries as ˙̀
0. From the general expression of 〈 ˙̀µ〉M,$ (Eq. 19), we get

〈 ˙̀+〉M,$ =
i

2
√

2

k02m0ω
2R5

a3(1− e2)3/2
sin θ cos θ

+ i
Gm2

0

R

lmax∑
l=2

(
R

a

)2l+2 l∑
m=−l

l∑
m′=−l

∞∑
p=−∞

√
l(l + 1)−m(m+ 1)

2

× k
¯l

(mω − pn)dlm′,m(θ)dlm′,m+1(θ)
∣∣∣Yl,m′ (̂ı)X−(l+1),m′

p

∣∣∣2 .

(22)
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At the quadrupole order and using the symmetries, this gives

〈 ˙̀+〉M,$ =
i

2
√

2

k02m0ω
2R5

a3(1− e2)3/2
sin θ cos θ

+
3i

32
√

2

Gm2
0R

5

a6
sin θ

∞∑
p=−∞

(

+
(
k
¯2(ω − pn)− k̄

¯2(2ω − pn)
)
×
((

X−3,−2
p

)2
(1− cos θ)3

+ 4
(
X−3,0
p

)2
cos θ sin2 θ −

(
X−3,2
p

)2
(1 + cos θ)3

)
+
(
k
¯2(−pn)− k̄

¯2(ω − pn)
)
×
(

3
(
X−3,−2
p

)2
sin2 θ(1− cos θ)

+ 4
(
X−3,0
p

)2
(3 cos2 θ − 1) cos θ − 3

(
X−3,2
p

)2
sin2 θ(1 + cos θ)

))
.

(23)

Equations (21) and (23) are written in a specific coordinate system, viz. the equa-
torial basis Be. For more generality, we now express the result in a vectorial form.
Let ŝ and k̂ be the coordinates of the unit spin vector and of the unit orbit normal
in F0, respectively, i.e., ŝ = k̂e = k̂p and k̂ = k̂o. The torque can formally be
decomposed as follows

〈 ˙̀〉M,$ = t1ŝ + t2k̂ + t3k̂× ŝ .

with

〈 ˙̀0〉M,$ = t1 + t2 cos θ and 〈 ˙̀+〉M,$ =
sin θ√

2
(t2 − it3) .

The explicit expressions of t1, t2, and t3 are displayed in Table 1.
In summary, Eqs. (20,22) provide the general expression of the secular torque

in the equatorial coordinate system of the inertial frame. This torque is written
explicitly at the quadrupole order in Eqs. (21,23) and in a vectorial form in Tab. 1.
It must be stressed that these formulas are not limited to Maxwell bodies and can
be applied to any rheologies. They are exact in eccentricity but they involve an
infinite sum which has to be truncated. This sum is associated to the Fourier
expansion of the orbital motion.

5.3 Quasi-circular orbit

At zero eccentricity, Hansen coefficients are given by Xn,m
k = δk,m. With this

hypothesis, we retrieve the expressions (22) and (23) obtained by Correia et al
(2003) which correspond to 〈 ˙̀0〉M,$ = t1 + t2 cos θ and 〈k · ˙̀〉M,$ = t1 cos θ + t2,
respectively2.

2 Our notation is very similar to that of Correia et al (2003) and Cunha et al (2015) but, in
these papers, bg(ν) is defined as the opposite of the imaginary part of the Love number k

¯2(ν).
Thus, bg(ν) is related to our b2(ν) through the relation bg(ν) = −b2(ν).
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Table 1 Components of the secular torque 〈 ˙̀〉M,$ = t1ŝ + t2k̂ + t3k̂× ŝ.

t1 =
3

32
k02
Gm2

0R
5

a6

∞∑
k=−∞

(
b2(2ω − kn)

(
(X−3,2

k )2(1 + cos θ)4

+4(X−3,0
k )2 sin4 θ + (X−3,−2

k )2(1− cos θ)4
)

+ 2b2(ω − kn)

×
(

(X−3,2
k )2 sin2 θ(1 + cos θ)2 + 4(X−3,0

k )2 sin2 θ cos2 θ

+(X−3,−2
k )2 sin2 θ(1− cos θ)2

))
− t2 cos θ

t2 = −
3

32
k02
Gm2

0R
5

a6

∞∑
k=−∞

(
+
(
b2(ω − kn) + b2(2ω − kn)

)
×
((

X−3,−2
k

)2
(1− cos θ)3

+4
(
X−3,0
k

)2
cos θ sin2 θ −

(
X−3,2
k

)2
(1 + cos θ)3

)
+
(
b2(−kn) + b2(ω − kn)

)
×
(

3
(
X−3,−2
k

)2
sin2 θ(1− cos θ)

+4
(
X−3,0
k

)2
(3 cos2 θ − 1) cos θ − 3

(
X−3,2
k

)2
sin2 θ(1 + cos θ)

))

t3 = −
k02m0ω2R5

2a3(1− e2)3/2
cos θ −

3

32
k02
Gm2

0R
5

a6

∞∑
k=−∞

(
+
(
a2(ω − kn)− a2(2ω − kn)

)
×
((

X−3,−2
k

)2
(1− cos θ)3

+4
(
X−3,0
k

)2
cos θ sin2 θ −

(
X−3,2
k

)2
(1 + cos θ)3

)
+
(
a2(−kn)− a2(ω − kn)

)
×
(

3
(
X−3,−2
k

)2
sin2 θ(1− cos θ)

+4
(
X−3,0
k

)2
(3 cos2 θ − 1) cos θ − 3

(
X−3,2
k

)2
sin2 θ(1 + cos θ)

))

In the case of low eccentric orbits, Hansen coefficients can be expanded at
second order according to

X−3,0
0 = 1 +

3

2
e2 , X−3,0

1 =
3

2
e , X−3,0

2 =
9

4
e2 ,

and

X−3,2
1 = −1

2
e , X−3,2

2 = 1− 5

2
e2 , X−3,2

3 =
7

2
e , X−3,2

4 =
17

2
e2 .

With these values, we retrieve the expressions (10) and (11) of Cunha et al (2015)
which also correspond to t1 + t2 cos θ and t1 cos θ + t2, respectively.

5.4 Linear regime

For completeness, we provide the vectorial decomposition of the torque in the
linear regime τ2ν � 1, where

k
¯2(ν) = k02

(
1− i

(
1− τe

τ2

)
iτ2ν

)
.
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From the definition of the Hansen coefficients, we get (see Appendix B of Correia
et al (2014)),

∞∑
k=−∞

(Xn,m
k )2 = X2n,0

0 and
∞∑

k=−∞

k (Xn,m
k )2 = m

√
1− e2X2n−2,0

0 .

Substituting these equalities in the expressions of the Table 1, we recover the
secular torque, Eqs. (10,29) of Correia et al (2011), viz.

〈 ˙̀〉M,$ = −Kτ2n

(
f1(e)

ŝ + cos θk̂

2

ω

n
− f2(e)k̂

)
− α cos θ k̂× ŝ ,

with

K =
3Gm2

0R
5

a6
k02

(
1− τe

τ2

)
,

α =
1

2

k02m0ω
2R5

a3(1− e2)3/2
,

f1(e) = X−6,0
0 =

1 + 3e2 + 3
8e

4

(1− e2)9/2
,

f2(e) =
√

1− e2X−8,0
0 =

1 + 15
2 e

2 + 45
8 e

4 + 5
16e

6

(1− e2)6
.

5.5 Spin-rate and obliquity

Let us assume that the orbit has most of the angular momentum of the system. In
that case, the equations of motion of the spin-rate and of the obliquity are simply
deduced from the secular torque (Tab. 1). One gets

1

n

dω

dt
=
t1 + t2 cos θ

Cn
and

dθ

dt
= − t2 sin θ

Cω
. (25)

It should be noted that the trajectory of the spin in the plane (ω/n, θ) only depends
on the ratio ω/n, the obliquity θ, the eccentricity e, and the product nτ2. A few of
them are plotted in Figure 2 for e ∈ {0, 0.3, 0.6} and nτ2 ∈ {0.01, 1, 100}. Plots are
limited to positive ω/n but they can be extended to negative rotations with the
symmetry (ω, θ) ↔ (−ω, π − θ) . Indeed, these two pairs are equivalent although
they do not correspond to the same physical state (Correia and Laskar, 2001).

For nτ2 = 0.01 (Fig. 2 left column), i.e. when the viscous timescale is much
shorter than the orbital period, the system is in the linear regime. All trajectories
converge smoothly towards a prograde pseudo-synchronous rotation on the x-axis.
Evolutions are free from temporary captures in spin-orbit resonance.

At nτ2 = 100 (Fig. 2 right column), the viscous timescale is much greater than
the orbital period. Resonant features appear in the phase space even at zero ec-
centricity. Indeed, when e = 0, if the planet is tilted, its rotation can be trapped in
three different spin-orbit resonances, namely the 0:1, the 1:1, and the 2:1. However,
the obliquity is decreasing along these resonances and, in the planar configuration,
only the synchronous holds. The final state is thus the synchronous rotation. At
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Fig. 2 Secular trajectories of the spin-axis in the plane obliquity θ versus rotation ω/n. From
left to right, the product nτ2 increases from 0.01 to 100. From bottom to top, the eccentricity
increases from 0.0 to 0.6. Trajectories of the spin-axis are represented by green solid curves, the
background color represents the derivative of ω: in blue ω decreases, in red ω increases. The
locus of rotation equilibria such that dω/dt = 0 (irregardless of dθ/dt) are highlighted by black
curves. Dashed ones and dotted ones represent stable and unstable equilibria, respectively.
Black dots on the x-axis are the fixed points. This figure has been made by integration of
Eqs. (25) with t1, t2, and t3 taken from Tab. 1. Sums have been truncated at |k| ≤ 100.

higher eccentricities, we observe many more spin-orbit equilibria for which ω/n is
a half integer. As in the circular case, a few of these resonances disappear at zero
obliquity but several do persist. The case e = 0.3 shows an interesting feature:
let us consider a trajectory (not represented) starting at ω/n = 4.5 and θ = 90◦.
Because this point is in a blue region, ω decreases until the rotation reaches the 4:1
resonance. Then, the system follows the resonance downward until the obliquity
reaches about 5◦ where the resonance disappears. The subsequent evolution is hor-
izontal toward the 7:2 resonance. But this resonance is special because dθ/dt > 0.
Thus, the system climbs this resonance up to its end at θ ≈ 16◦. The field line con-
tinues on the left towards the 3:1 spin-orbit resonance. At last, this resonance has
a “normal” behavior, the obliquity decreases and the system ends up in a planar
state with ω/n = 3. This prediction has been tested numerically by integration of
the instantaneous equations of motion (Eqs. 14) (see Section 6.3). At higher ec-
centricity (e = 0.6), all spin-orbit resonances displayed in Fig. 2, i.e. with ω/n ≤ 5,
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are such that dθ/dt is negative. Thus, along these resonances the obliquity varies
in a monotonous way toward the planar configuration. Note that if a system starts
with a fast rotation ω � n, it will almost certainly never reach an intermediate
spin-orbit resonance such as the 2:1 or the 3:1 because the obliquity would have
to be very fine tuned close around 164◦ at ω/n = 5.

For nτ2 = 1 (Fig. 2 middle column), the evolution does not show any spin-orbit
resonances. The phase space is qualitatively similar to that of the linear regime.
Field lines are only slightly deformed.

6 Application to HD 80606 b

In this section, we apply the model at the quadrupole order lmax = 2 to HD 80606 b.
The formalism is the same as in (Correia et al, 2014), except that only the planar
case was studied in this previous work. Here, we extend the analysis to the spa-
tial case by allowing non-zero initial obliquities. First, we briefly recall the results
obtained for HD 80606 b in the planar case, with τe = 0 and τ2 ranging between
10−5 and 100 yr. Then, we present our results in the spatial problem.

6.1 Description of the planar evolution

As shown by the differential equation (7), tides can be seen as a low-pass filter
between the excitation Zel,m and the response Zνl,m = Zl,m. If the cutoff frequency

1/τ2 is much greater than the orbital frequency n, i.e., τ2 � 10−2 yr, all the
“signal” is transmitted by the filter but with a small phase shift. This is equivalent
to the constant time-lag model ∆t = τ2. The surface of the planet undergoes strong
deformations at the orbital frequency but the amount of dissipation is low because
of the weak viscosity. Once the spin of the planet is damped, it follows a pseudo-
synchronous equilibrium Ωe which is a function of the eccentricity e. Here, we
recall its expression in the spatial case, i.e. with obliquity θ, in anticipation to the
forthcoming section. We have (e.g., Correia et al, 2011)

Ωe
n

=
1 + 15

2 e
2 + 45

8 e
4 + 5

16e
6

(1− e2)3/2
(
1 + 3e2 + 3

8e
4
) 2 cos θ

1 + cos2 θ
. (26)

For τ2 � 10−2 yr, the cutoff frequency is less than the mean motion rate. The
deformation of the planet, represented by

J2 = −Z2,0 and ε =
√
C2

22 + S2
22 =

√
6|Z22| ,

only sees a mean excitation averaged over the mean anomaly and takes the ex-
pression (Correia et al, 2014)

〈J2〉M = k02

(
Ω2R3

3Gm1
+

1

2

m0

m1

(
R

a

)3

(1− e2)3/2
)
, (27a)

〈εp〉M =
k02
4

m0

m1

(
R

a

)3

X−3,2
2p (e) , (27b)
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with p = [2Ω/n]/2, where [x] means the nearest integer of x ([x] ∈ Z and [x]−1/2 ≤
x < [x] + 1/2). Thus, despite a high viscosity, dissipation is low because the
deformation is weak and slow. In that case, the constant time-lag model does not
hold anymore. The planet rotation gets trapped in spin-orbit resonances Ω/n = p,
the pseudo-synchronous state is not an equilibrium anymore.

At τ2 ≈ 10−2 yr, the orbital frequency is of the same order of magnitude as
the cutoff frequency. A few harmonics of the orbital period pass the filter and are
retrieved in the deformation of the planet. Moreover, the viscosity is higher than
in the constant-time lag regime. Both effects generate strong dissipation and a fast
decay of the semi-major axis and eccentricity.

6.2 Fast damping of the obliquity and subsequent planar evolution

Numerical simulations were performed using the formalism in the inertial refer-
ence frame (Sect. 4, Eqs. 14). We have tested different values of τ2, but the main
conclusion of this section remains unchanged. Thus, we only present results corre-
sponding to the intermediate case τ2 = 10−2 yr.

Figure 3a depicts the evolution of the planet obliquity for 400 different initial
conditions: 20 obliquities regularly spread between 0 and 180 degrees times 20 pre-
cession angles equispaced over 360 degrees. The initial precession angle does not
play a significant role in the evolution of the system. At a given initial obliquity,
all integration’s closely follow the same track. This result strengthens the approx-
imation made in the previous section where we averaged the secular equations of
motion over the longitude of the pericenter $. In comparison, obliquities starting
at different values can have distinct initial slopes. But in all cases, the obliquity
is fully damped before 30 kyr, a timescale much shorter than that of the orbital
decay.

The subsequent evolution (t > 30 kyr) is done at zero obliquity. The problem is
thus fully described by the planar model. Indeed, we recover the results displayed
in (Correia et al, 2014, Fig. 6). The semi-major axis and the eccentricity are
damped within a timescale of 2 Myr (Fig. 3b), the spin rate of the planet follows a
series of resonances with the orbital mean motion (Fig. 3c), and the deformation
of the planet oscillates with intermediate amplitudes around its equilibrium given
by Eqs. 27.

Numerical experiments performed with different values of τ2 are similar. Obliq-
uities are fully damped in a timescale much shorter than those associated to the
semi-major axis and the eccentricity. Once the system becomes planar, we retrieve
the evolution observed in (Correia et al, 2014). This result reveals that the motion
of the spin-axis can be followed independently from that of the orbit. Thus, we can
directly compare the numerical solutions of the instantaneous equations of motion
(Eqs. 14) to those dictated by the secular torque (Section 5).

6.3 Instantaneous versus secular evolution

In this section, we keep the system HD 80606 b as a proxy to analyze the spatial
evolution of spin-axes given by the instantaneous equations of motion (Eqs. 14).
To start a simulation at a given eccentricity e, we choose the semi-major axis a
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Fig. 3 Time evolution of HD 80606 b for τ2 = 10−2 yr (0.21 ≤ nτ2 ≤ 0.95). Panel (a) shows
400 evolutions with a grid of initial spin-axes (20 obliquities ranging between 0 and 180 degrees
times 20 precession angles ranging between 0 and 360 degrees). The other three figures are
initialized with an obliquity of 60 degrees and a precession angle of 0 degree. We plot the
obliquity (a), the semi-major axis (in au) and the eccentricity (b), the ratio between the planet
spin rate and the orbital mean motion (c), and the planet J2 and ε (d). The green line gives
the equilibrium rotation (Eq. 26) (c), and the equilibrium values for J2 and ε, respectively
(Eqs. 27a and 27b) (d).

as if the system had evolved from its current orbit (e0 = 0.933 and a0 = 0.455
au) with a constant angular momentum, i.e., such that a(1 − e2) = a0(1 − e20).
In all simulations, we set the initial precession angle and the initial longitude of
periapsis to zero.

Figure 4 displays the results in the plane (ω/n, θ) as in Figure 2 together with
the secular field lines obtained in Section 5. The match between the two approaches
is excellent. Solutions of the instantaneous equations of motion (Eqs. 14) closely
follow the paths dictated by the secular torque (Eqs. 25), except however for
e = 0.6 and nτ2 = 1 where the instantaneous evolutions exhibit more wiggles than
the secular ones. In particular, we retrieve the special trajectory at e = 0.3 and
nτ2 = 100 discussed in Section 5.5 which starts at ω/n = 4.5 and θ = 90◦ (plotted
in red in Figure 4). The time evolution of this trajectory is shown in Figure 5. We
see that the system spends most of the time in spin-orbit resonant configurations.
The temporal evolution also emphasizes the peculiar behavior of the 7:2 resonance
in which the planet obliquity increases.
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Fig. 4 Instantaneous versus secular evolution. Solid thick curves are the trajectories obtained
by integration of the instantaneous equations of motion (Eqs. 14). Thin dashed curves are the
field lines of the Figure 2 obtained by integration of the secular equations of motion (Eqs. 25).
The red curve is the trajectory discussed in Section 5.5.

7 Conclusion

In this paper, we present a tidal theory based on the Maxwell rheology valid in
the spatial case. This extends the models presented by Ferraz-Mello (2013) and
Correia et al (2014) which were restricted to planar configurations.

The evolution of the deformation of the planet, given by a first order differential
equation (Eqs. 9d and 14d), is integrated numerically together with the orbital
motion. As already noted by Correia et al (2014), this way allows to compute the
instantaneous variation of the shape of the planet for all perturbations, even for
non-periodic ones. There is no need to decompose the excitation in an infinite
Fourier series as in, e.g., Kaula (1964). By consequence, the formalism is regular
at all eccentricities, spin rates, and obliquities.

For this problem, we have chosen a formalism taken from quantum theory,
conceived for angular momentum representations, and based on complex spheri-
cal harmonics Yl,m. Our choice has been motivated by the following reasons: the
gravitational potential of the planet is easily expanded in Yl,m; Yl,m’s can be
conveniently expressed in terms of Cartesian coordinates; tidal force and torque
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Fig. 5 Time evolution of HD 80606 b with the same initial conditions as the red trajectory in
Figure 4 (e = 0.3 and nτ2 = 100). Vertical dashed lines delimit regions of spin-orbit resonance.
Note that after 50 Myr, the eccentricity and the semi-major axis have only decreased by about
3× 10−4 and 10−3 in relative value, respectively. They can thus be considered constant as in
Figure 4.

have compact expressions because Yl,m’s are the eigenvectors of the ladder oper-
ators ∇ and J = −ix ×∇; our model is given at any multipole order thanks to
the recurrence relations present in many quantum mechanics textbooks such as
(Varshalovich et al, 1988).

Tidal equations are naturally written in the frame of the body, but this choice
is not convenient for the analysis of the orbital evolution. Here, we provide the
equations of motion both in the body frame Fp (Eqs. 9) and in the inertial frame
F0 (Eqs. 14). If the planet does not have any permanent zonal coefficients, the
description of the problem in F0 presents a numerical advantage. Indeed, whatever
is the rotation speed of the planet, the tidal bulge follows the perturbing body.
Thus, the integration time step can be adjusted to the orbital motion even if the
planet rotates much faster.

The equations of motion written in the inertial frame allowed us to compute
the secular tidal torque as a Fourier series averaged over the orbital revolution
and over the precession period. We provide an explicit vectorial expression of this
torque at the quadrupolar order as well as the general expression at any multipole
order. Maps of the secular evolution of the spin-axis show many resonant features
when the viscous timescale is longer than the orbital period. This characteristic
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was already present in planar studies but here we observe that non-synchronous
spin-orbit resonances appear in the spatial case even at zero eccentricity. In most
of these resonant states, the obliquity decreases to zero, but we found a peculiar
situation were the obliquity is instead growing.

We applied our model to HD 80606 with different values of relaxation time
and different initial obliquities. We observed that in all cases, the obliquity is
damped faster than the semi-major axis and the eccentricity. Once the system
becomes planar, the evolution follows the path described in (Correia et al, 2014).
In particular, when the relaxation time is greater than the orbital period, the
planet gets trapped in successive spin-orbit resonances even though it does not
have any permanent multipole (Correia et al, 2014). We have also analyzed in
more detail the evolution of the spin-axis during the phase where the obliquity is
not fully damped. Results are in good agreement with the predictions made with
the averaged equations. We nevertheless observe wiggles at high eccentricity which
were not present in the secular phase-space.

Our model can also be applied to close-in super-Earths for which the relaxation
time of the mantle is almost certainly longer than the orbital period. As these
planets are often found with planetary companions, their eccentricities are never
exactly zero (e.g., Laskar et al, 2012). This implies that short-period terrestrial
exoplanets are likely in spin-orbit resonances (Correia et al, 2014). In addition,
as in the solar system, they also present small mutual inclinations of about 1◦ on
average (Tremaine and Dong, 2012; Figueira et al, 2012; Fabrycky et al, 2014).
This value is large enough to perturb the long-term evolution of their obliquity
and, even if the orbit is circular, a forced obliquity can trap the rotation in a
non-synchronous spin-orbit resonance state. Our formalism is thus well adapted
to model the evolution of these planets spin-axis and to infer constraints on their
habitability. We also envision to extend the formalism to thermal atmospheric
tides which have the same frequency dependence as Maxwell rheology (Auclair-
Desrotour et al, 2016).

Acknowledgements GB is grateful to Dan Fabrycky for the fruitful discussions which lead
to this work. We acknowledge support from CIDMA strategic project UID/MAT/04106/2013.

A Spherical harmonic

By convention, Legendre associated polynomials are defined as

Pl,m(x) =
1

2ll!
(1− x2)m/2

dl+m

dxl+m
(x2 − 1)l , (28)

with the symmetry

Pl,−m(x) = (−1)m
(l −m)!

(l +m)!
Pl,m(x) . (29)

The Schmidt semi-normalized spherical harmonics are defined as

Yl,m(θ, φ) = (−1)m

√
(l −m)!

(l +m)!
Pl,m(cos θ)eimφ (30)

with the symmetry
Yl,−m(θ, φ) = (−1)mȲl,m(θ, φ) . (31)
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Using the complex Cartesian coordinate system as defined in (Varshalovich et al, 1988), for
any unit vector x̂, we have

Y0,0(x̂) = 1 , (32a)

Y1,0(x̂) = x̂0 , (32b)

Y1,1(x̂) = x̂+ , (32c)

l Yl,0(x̂) = (2l − 1)x̂0Yl−1,0(x̂)− (l − 1)Yl−2,0(x̂) , (32d)
√
l +mYl,m(x̂) =

√
l −mx̂0Yl−1,m(x̂) +

√
2(l +m− 1)x̂+Yl−1,m−1 . (32e)

The last two equations (32d and 32e) allow to recursively compute all spherical harmonics of
order m ≥ 0. Those with m < 0 are deduced from the symmetry relation (31). Up to the
degree 3 included, we have



Y2,0 =
1

2
(3x̂20 − 1)

Y2,1 =
√

3x̂0x̂+

Y2,2 =

√
6

2
x̂2+

,



Y3,0 =
5

2
x̂30 −

3

2
x̂0

Y3,1 =

√
6

4

(
5x̂20x̂+ − x̂+

)
Y3,2 =

√
30

2
x̂0x̂

2
+

Y3,3 =

√
10

2
x̂3+

. (33)

B Ladder operators

Regular solid harmonics xlYl,m(x̂) and irregular ones Yl,m(x̂)/xl+1 are eigenvectors of each
component of the gradient operator∇ = (∇+,∇0,∇−) and of the angular momentum operator
J = (J+, J0, J−). The respective eigenvalues can be found in (e.g., Varshalovich et al, 1988).
We have

∇+

(
xlYl,m(x̂)

)
= −

√
(l −m− 1)(l −m)

2
xl−1Yl−1,m+1(x̂)

∇0

(
xlYl,m(x̂)

)
= +

√
(l +m)(l −m)xl−1Yl−1,m(x̂) (34)

∇−
(
xlYl,m(x̂)

)
= −

√
(l +m− 1)(l +m)

2
xl−1Yl−1,m−1(x̂) ,

∇+

(
1

xl+1
Yl,m(x̂)

)
= −

√
(l +m+ 1)(l +m+ 2)

2

1

xl+2
Yl+1,m+1(x̂)

∇0

(
1

xl+1
Yl,m(x̂)

)
= −

√
(l +m+ 1)(l −m+ 1)

1

xl+2
Yl+1,m(x̂) (35)

∇−
(

1

xl+1
Yl,m(x̂)

)
= −

√
(l −m+ 1)(l −m+ 2)

2

1

xl+2
Yl+1,m−1(x̂) ,

and

J+

(
f(x)Yl,m(x̂)

)
= −

√
l(l + 1)−m(m+ 1)

2
f(x)Yl,m+1(x̂)

J0

(
f(x)Yl,m(x̂)

)
= mf(x)Yl,m(x̂) (36)

J−

(
f(x)Yl,m(x̂)

)
= +

√
l(l + 1)−m(m− 1)

2
f(x)Yl,m−1(x̂) ,

where f(x) is any function of the modulus x = ‖ ~x ‖.
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C Rotation and Wigner matrices

Let a vector ~x and two coordinate systems B and B′ such that x and x′ are the coordinates of
~x in B and B′, respectively. Let us further assume that x and x′ are related to each other by
a rotation of the form

x = R3(α)R2(β)R3(γ)x′ ,

where R3 and R2 are the matrices of rotation around the third and the second axes, respectively.
Wigner D matrix Dl

m,m′ (α, β, γ) is defined such that (e.g., Varshalovich et al, 1988)

Yl,m(x̂′) =

l∑
m′=−l

Dlm′,m(α, β, γ)Yl,m′ (x̂) . (37)

Each element Dl
m,m′ (α, β, γ) can be written as (e.g., Varshalovich et al, 1988)

Dlm,m′ (α, β, γ) = e−imαdlm,m′ (β)e−im′γ , (38)

where dl
m,m′ (β) is the Wigner d matrix. The inverse Dl

m,m′ (−γ,−β,−α) is given by the adjoint

D̄l
m′,m(α, β, γ) of Dl

m,m′ (α, β, γ):

Dlm,m′ (−γ,−β,−α) = eim
′αdlm′,m(β)eimγ .

The convention 3-2-3 of the rotation (Eq. 37) is such that dl
m,m′ (β) is a real function. Wigner

d matrix possesses many symmetries, among which (e.g., Varshalovich et al, 1988)

dlm,m′ (β) = (−1)m−m
′
dl−m,−m′ (β) = (−1)m−m

′
dlm′,m(β) = dl−m′,−m(β) .

Wigner d matrix can be constructed recursively using the hereinabove symmetries, the follow-
ing initialization (e.g., Varshalovich et al, 1988)

d00,0(β) = 1 , d10,0(β) = cosβ , d11,−1(β) =
1− cosβ

2
, d11,0(β) = −

sinβ
√

2
, d11,1(β) =

1 + cosβ

2
(39)

and the recurrence relation (Gimbutas and Greengard, 2009)

dlm,m′ (β) = +

√
(l +m′)(l +m′ − 1)

(l +m)(l +m− 1)
d11,1(β)dl−1

m−1,m′−1
(β)

−

√
(l +m′)(l −m′)

(l +m)(l +m− 1)
sin(β)dl−1

m−1,m′ (β)

+

√
(l −m′)(l −m′ − 1)

(l +m)(l +m− 1)
d11,−1(β)dl−1

m−1,m′+1
(β)

(40)

which also implies

dll,l(β) = d11,1(β)dl−1
l−1,l−1(β) and dll,−l(β) = d11,−1(β)dl−1

l−1,1−l(β) . (41)

The algorithm is the following:
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Algorithm 1 Calculate Wigner d matrix

initialize d10,0, d11,1, d11,0, and d11,−1 from (Eq. 39)

calculate the other terms of order 1 using the symmetries (Eq. 38)
for l = 2 to lmax do

// apply the recurrence relations as follows
for m = 0 to l do

for m′ = MAX(−m, 1− l) to MIN(m, l − 1) do
calculate dl

m,m′ using (Eq. 40)

end for
end for
compute dll,l and dll,−l from (Eq. 41)

calculate the other terms of order l using the symmetries (Eq. 38)
end for

For completeness, we also provide the explicit terms at order l = 2 in Table 2.

Table 2 Explicit Wigner d matrix d2
m,m′ (β)

m′

m 2 1 0 -1 -2

2
(1 + cos β)2

4
−

sin β(1 + cos β)

2

1

2

√
3

2
sin

2
β −

sin β(1− cos β)

2

(1− cos β)2

4

1
sin β(1 + cos β)

2

2 cos2 β + cos β − 1

2
−

√
3

2
sin β cos β −

2 cos2 β − cos β − 1

2
−

sin β(1− cos β)

2

0
1

2

√
3

2
sin

2
β

√
3

2
sin β cos β

3 cos2 β − 1

2
−

√
3

2
sin β cos β

1

2

√
3

2
sin

2
β

-1
sin β(1− cos β)

2
−

2 cos2 β − cos β − 1

2

√
3

2
sin β cos β

2 cos2 β + cos β − 1

2
−

sin β(1 + cos β)

2

-2
(1− cos β)2

4

sin β(1− cos β)

2

1

2

√
3

2
sin

2
β

sin β(1 + cos β)

2

(1 + cos β)2

4

D Time derivatives

Let a function f(~x, t) developed in spherical harmonics as

f(~x, t) =
∑
l,m

z̄l,m(t)Yl,m(x̂) (42)

in the inertial frame F0, and as

f(~x, t) =
∑
l,m

Z̄l,m(t)Yl,m(X̂) (43)

in the body frame Fp. For any constant vector ~x in Fp, we have

ẋ = ω × x and Ẋ = 0 , (44)

with respect to the frame Fp. By consequence, in Fp, on the one hand,

ḟ(~x, t) =
∑
l,m

(
˙̄zl,m(t)Yl,m(x̂) + z̄l,m(t)ẋ ·∇Yl,m(x̂)

)
, (45)
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and on the other hand,

ḟ(~x, t) =
∑
l,m

˙̄Zl,m(t)Yl,m(X̂) . (46)

But given that the time derivative of x is ẋ = ω × x, we get

ẋ ·∇ = (ω × x) ·∇ = i(ω · J) (47)

where J = −ix × ∇ is the angular momentum operator and where, by construction of the
scalar product (Varshalovich et al, 1988),

ω · J = −ω+J− + ω0J0 − ω−J+ . (48)

We then define a matrix J(ω) of size (2l + 1)× (2l + 1) such that

(ω · J)Yl,m(x̂) =

l∑
m′=−l

[J(ω)]lm′,mYl,m′ (x̂) , (49)

where all non-zero coefficients are

[J(ω)]lm−1,m = −
√
l(l+1)−m(m−1)

2
ω+ ,

[J(ω)]lm,m = mω0 ,

[J(ω)]lm+1,m = +
√
l(l+1)−m(m+1)

2
ω− .

(50)

Combining Eqs. (10), (45-47), and (49), we obtain∑
m′

Dlm,m′
˙̄Zl,m′ = ˙̄zl,m + i

∑
m′

[J(ω)]lm,m′ z̄l,m′ . (51)

E Fourier transform

Let two functions f(~x, t) and g(~x, t) expanded in spherical harmonics as f =
∑
l fl and g =∑

l gl with

fl(~x, t) =

l∑
m=−l

Z̄l,m(t)Yl,m(X̂) and gl(~x, t) =

l∑
m=−l

Z̄′l,m(t)Yl,m(X̂)

in the frame Fp and

fl(~x, t) =

l∑
m=−l

z̄l,m(t)Yl,m(x̂) and gl(~x, t) =

l∑
m=−l

z̄′l,m(t)Yl,m(x̂)

in F0. Let α, β, and γ = ωt be the three angles such that

x = R3(α)R2(β)R3(γ)X .

We have then

zl,m(t) =
l∑

m′=−l
D̄lm,m′ (t)Zl,m′ (t) and z′l,m(t) =

l∑
m′=−l

D̄lm,m′ (t)Z
′
l,m′ (t) (52)

with
Dlm,m′ (t) = Dlm,m′ (0)e−im′ωt .

Let us further assume that the two functions are related to each other in Fp by

fl(~x, t) = hl(t) ∗ gl(~x, t) for all l ,
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where hl(t) ∈ R is a real distribution. The symbol ∗ denotes the convolution product. As the
convolution is done with respect to time, the orthogonality of the spherical harmonics implies
that for all l and m,

Zl,m(t) = hl(t) ∗ Z′l,m(t) . (53)

Combining Eqs. (52) and (53), we get

zl,m(t) =

l∑
m′=−l

l∑
m”=−l

∫ ∞
−∞

D̄lm,m′ (t)hl(t− t′)Dlm”,m′ (t
′)z′l,m”(t′) dt′

=

l∑
m”=−l

hlm,m”(t) ∗ z′l,m”(t) , (54)

where

hlm,m”(t) =

l∑
m′=−l

D̄lm,m′ (0)hl(t)e
im′ωtDlm”,m′ (0) .

In particular, if the rotation axis ~ω is aligned with the third axis of F0 and Fp, i.e., if α = β = 0,
hlm,m”(t) is diagonal and we obtain

zl,m(t) =
(
hl(t)e

imωt
)
∗ z′l,m(t) if α = β = 0 . (55)

Taking the Fourier transform of Eqs. (54) and (55), we get

z
¯l,m

(ν) =

l∑
m”=−l

h
¯
l
m,m”(ν)z

¯
′
l,m”(ν) with h

¯
l
m,m”(ν) =

l∑
m′=−l

D̄lm,m′ (0)h
¯l

(ν−m′ω)Dlm”,m′ (0) ,

on the one hand, and

z
¯l,m

(ν) = h
¯l

(ν −mω)z
¯
′
l,m(ν) if α = β = 0 ,

on the other.

References

Auclair-Desrotour P, Laskar J, Mathis S (2016) Atmospheric tides in Earth-Like planets. As-
tron. Astrophys. submitted

Correia ACM, Laskar J (2001) The four final rotation states of Venus. Nature 411:767–770,
DOI 10.1038/35081000

Correia ACM, Laskar J, de Surgy ON (2003) Long-term evolution of the spin of Venus. I.
theory. Icarus 163:1–23, DOI 10.1016/S0019-1035(03)00042-3
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