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ABSTRACT

Maternal early transfers of immune components influence eggs’
hatching probability and nestlings’ survival. They depend on
females’ own immunity and, because they are costly, on their
physiological state. Therefore, trace metals, whether toxic and
immunosuppressive (e.g.,lead, cadmium, etc.) or necessary and
immunostimulant (e.g., zinc, copper, iron, etc.), are likely to
affect the amount of immune components transferred into the
eggs. It may also vary with plumage eumelanin level, which is
known to be linked to immunity, to transfer of antibodies,
and to metal detoxification. In feral pigeons (Columba livia)
injected with an antigen and experimentally exposed to lead
and/or zinc (two highly abundant trace metals in urban areas),
we measured specific antibody transfer and concentrations of
two antimicrobial proteins (lysozyme and ovotransferrin) in
eggs. As expected, lead had negative effects on specific antibody
transfer, while zinc positively affected lysozyme egg concen-
trations. Moreover, eggs from lead-exposed females exhibited
higher ovotransferrin concentrations; because it binds metal
ions, ovotransferrin may enable egg detoxification and embryo
protection. Finally, eggs’ lysozyme concentrations increased
with plumage darkness of females not exposed to zinc, while
the relation was opposite among zinc-exposed females, sug-
gesting that benefits and costs of plumage melanism depend on
trace metal environmental levels. Overall, our study underlines
the potential ecotoxicological effects of trace metals on ma-
ternal transfers of immune components and the role of plum-
age melanism in modulating these effects.
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Introduction

At birth, offspring are immunologically naive, as they do not
produce their own antibodies (Dibner et al. 1998; Mauck et al.
2005) and they are consequently highly vulnerable to parasites.
Specific antibodies transferred into egg yolk may increase
offspring’s ability to cope with parasites and may have con-
sequences for offspring survival (e.g., Borrelia burgdorferi s.l;
Gasparini et al. 2006; Boulinier and Staszewski 2008; Hassel-
quist and Nilsson 2009). Furthermore, antimicrobial proteins,
such as lysozyme and ovotransferrin, are also transferred into
egg albumen and are consequently part of the egg’s innate
immune system. Lysozyme catalyzes the lysis of gram-positive
bacteria by hydrolyzing the peptidoglycan in their cell walls
(Pellegrini et al. 1992; Masschalck and Michiels 2003), while
ovotransferrin inhibits microbes’ growth by chelating metallic
ions necessary for their development (Fe’*, Cu®", Zn*>*; Valenti
et al. 1983, 1985). It has been shown that the transfer of such
proteins may enhance offspring survival by decreasing egg-
hatching failure (Saino et al. 2002a).

The amount of immune components in eggs depends both
on the female’s production (Saino et al. 20024; Jacquin et al.
2013) and on the proportion allocated to eggs. Females might
thus face trade-offs relative to their potential investment in the
transfer of maternal antibodies (Gasparini et al. 2007; Bou-
linier and Staszewski 2008; Ismail et al. 2015). Therefore, any
external environmental factor that may influence the physi-
ological state of the female (e.g., immunity, nutritional status,
etc.) should impact the transfer of immune substances into
the eggs.

Trace metals (lead, zinc, cadmium, etc.) are particularly
abundant in urban areas (Azimi et al. 2003; Roux and Marra
2007) and may have detrimental effects on bird physiology and
reproductive parameters (e.g., heme synthesis, humoral im-
munity, oxidative stress, clutch size; Redig et al. 1991; Snoeijs
et al. 2004; Dauwe et al. 2005; Valko et al. 2005; Berglund et al.
2007; Eeva et al. 2009). Therefore, trace metal exposure may
entail significant costs for females and consequently reduce the
investment of immune components into eggs (Saino et al.
2002b; Hargitai et al. 2006). Alternatively, mothers may adjust
their investment into the egg, in response to the detrimental
effects induced by metal exposure, to prepare offspring for their
future environment (Gasparini et al. 2007).
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Interestingly, transfer of antibodies from female feral pi-
geons to their young increases with female plumage darkness
(Jacquin et al. 2013), potentially due to genetic links between
melanogenesis and immunity (Ducrest et al. 2008). Thus,
plumage melanism may affect the transfer of immune com-
ponents. Moreover, because of melanin’s property to bind metal
ions (Hong and Simon 2007), darker birds are able to store
higher amounts of trace metals in their feathers (Chatelain et al.
2014), which may enable darker birds to maintain lower blood
metal concentrations. Therefore, plumage melanism could
modulate the impacts of trace metals on maternal transfers of
immune components.

To examine whether and how trace metal exposure may
shape early maternal transfer of immune components, we
chronically exposed feral pigeons (Columba livia) to concen-
trations of zinc and/or lead representative of the natural en-
vironmental range measured in urban areas. Lead and zinc
are among the most abundant metals in the atmosphere and
in soil of urban areas (Azimi et al. 2005; Maas et al. 2010). Lead
is a well-known toxic metal (Jarup 2003; Patrick 2006) and an
immunosuppressor (i.e., lead decreases humoral immune re-
sponse and increases hemosporidian parasite intensity; Trust
etal. 1990; Snoeijs et al. 2004, 2005; Gasparini et al. 2014), while
zinc has beneficial effects on immunity (i.e., zinc is essential for
the development and function of cell-mediating innate im-
munity—neutrophils, natural killer cells, macrophages, T- and
B-cells—and decreases Chlamydiaceae prevalence and hemo-
sporidian parasite intensity; Prasad 1998, 2009; Smith 2003;
Gasparini et al. 2014). Therefore, both lead and zinc may
modulate immune components’ transfer by affecting both fe-
males’ immunity and females’ reproductive investment. We
estimated early maternal transfer of immune components:
specific antibodies (anti-keyhole limpet hemocyanin [KLH]
antibodies), lysozymes, and ovotransferrins. We expected lead
and zinc exposure to respectively reduce and increase immune
component transfer, associated with costs and benefits on females.
Opposite results may suggest a strategic maternal response.

Methods
Subjects and Housing

Free-living feral pigeons (Columba livia) were caught in February
and March 2014 from several pigeon flocks within the Parisian
agglomeration. A sample of 144 pigeons was chosen in such a way
as to best equilibrate sex ratio (72 males and 72 females, sexed
using discriminant function analysis; Dechaume-Moncharmont
etal. 2011) and eumelanin-based plumage coloration degree. The
plumage eumelanic coloration was estimated according to the
method described by Chatelain et al. (2014). Pigeons were kept
in 12 outdoor aviaries (3.10 m x 2 m X 2.40 m) at the Centre
d’Ecologie Expérimentale et Prédictive-Ecotron Ile-de-France
field station (Unité Mixte de Service 3194, Ecole Normale Su-
périeure, Saint-Pierre-lés-Nemours, France). They were evenly
distributed among aviaries according to their gender, flock, and
eumelanic plumage coloration intensity in such a way that there
were no confounding effects between aviaries and these variables

(gender: 6 males and 6 females per aviary; flock: x> = 202.19,df =
176, P = 0.085; plumage coloration intensity: F = 0.13, df =
1,144, P = 0.721). They were fed ad lib. with a mix of maize,
wheat, and peas. The aviaries were provided with a bowl of water
used for bathing and with branches as perches. Birds were
individually identified with a numbered plastic ring. At the end
of the experiment (i.e., after 9 mo of captivity), birds were
released back to the wild at their site of capture.

Treatments

The aviaries were randomly assigned to one of the four following
metal exposure treatments: exposed to lead only (lead group;
10 ppm lead acetate, Sigma-Aldrich, St. Louis, MO), exposed to
zinc only (zinc group; 100 ppm zinc sulphate, Prolabo, Paris),
exposed to both lead and zinc (lead+zinc group; 10 ppm lead
acetate and 100 ppm zinc sulphate), or control (control group;
tap water with no added metal). Consequently, there were 3 avi-
aries with 12 pigeons each (36 pigeons in total) per treatment.
Metals were diluted in tap water. We chose these concentrations
based on lead blood concentrations measured in urban birds
(ranging from 0.053 to 0.264 ppm; Roux and Marra 2007), the
gastrointestinal absorption rate of lead in zebra finches (<10%)
calculated from Dauwe et al. (2002), and previous supplemen-
tation experiments in feral pigeons (Chatelain et al. 2015). Drink-
ing troughs and baths were filled with the corresponding treated
water every other day.

A similar supplementation protocol was used in a previous
experiment, and its efficiency was validated by measuring lead
and zinc concentrations in birds’ blood and feathers (Chatelain
et al. 2015). Metal concentrations to which the birds were ex-
posed were 10 times lower than the ones used in this study.
Hence, we are confident that metals added to water were indeed
ingested by the birds.

Reproduction

Two weeks after the start of the metal treatments, six nest
boxes per aviary were opened to allow birds to mate and breed.
Females produced two-egg clutches one to three times during
the experiment. For each clutch laid between April 11 and
August 30, we randomly collected one of the two eggs and kept
them frozen at —20°C until analysis (i.e., specific antibodies,
lysozymes, and ovotransferrin level measurements).

Measurement of Specific Antibody Transfer

To estimate maternal transfer of specific antibodies into the
egg, 20 d after the start of the metal treatments, we subcu-
taneously injected females (n = 72) with 50 pg of a KLH
solution (hemocyanin from Megathura crenulata; Sigma-
Aldrich). Then we took a blood sample the day the mother laid
the first egg of the two-egg clutch, centrifuged it, and kept the
plasma frozen until analyses. Collected eggs were dissected,
and eggshell, yolk, and albumen were separated one from an-
other. Once unfrozen, the yolk was blended, diluted 1:1 in
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phosphate-buffered saline, and homogenized for 1 min with a
vortex. Chloroform was then added 1:1 and homogenized for
1 min with a vortex. After centrifugation (6 min at 10,000 g),
the supernatant was used for antibody assays (Jacquin et al.
2013). Anti-KLH antibody concentrations in mother plasma
and egg yolk extractions were measured using a sandwich
enzyme-linked immunosorbent assay, following the method
described by Jacquin et al. (2013).

Measurement of Lysozyme Transfer

Albumens were unfrozen and homogenized with a vortex.
Each well of a 96-well microplate was filled with 9.5 uL of
albumen or lysozyme standard (lysozyme from chicken egg
white; L6876, Sigma-Aldrich). The standards were prepared in
phosphate-buffered saline (9 g L', pH 6.3) for a standard
curve ranging from 12.5 to 200 pg mL™" (4°C); 250 pL of
micrococcus solution (Micrococcus lysodeikticus ATCC 4698,
M3770, Sigma-Aldrich; DOyso nm = 1) was added in all the
wells, and the microplate was left to incubate for 10 min at
26°C. Absorbance at 450 nm was recorded (¢t = 10).

Measurement of Ovotransferrin Transfer

Ovotransferrin transfer was measured following an adapted
protocol from Shawkey et al. (2008) and Horrocks et al.
(2011). Albumens were thawed and homogenized with a
vortex. Each well of a 96-well microplate was filled with 24 uL
of albumen or ovotransferrin standard (conalbumin from
chicken egg white; C0755, Sigma-Aldrich). The standards
were prepared in reagent 1 (300 mM Tris, 150 mM sodium
hydrogen carbonate, 4.2 g L™ Triton X-100, pH = 8.4) for a

Table 1: Final linear mixed-effects model ANOVAs

standard curve ranging from 1 to 80 mg mL™". Then 150 uL of
reagent 1 containing a 1:32 dilution of iron-standard solution
(2,000 mg L") was added in all the wells. The plate was shaken
for 10 s and incubated for 5 min at 37°C. Following incu-
bation, initial absorbance was recorded at 570 and 660 nm.
Then 25 pL of reagent 2 (50 mM Tris, 32.6 mM L-ascorbic
acid, 10 mM Ferrozine, pH = 4) was added to each well. The
plate was shaken again for 10 s and incubated for 5 min at
37°C. Finally, 25 pL of reagent 3 (600 mM citric acid, 25.6 mM
Thioura) was added to each well. The plate was shaken for 3 s,
and absorbance was recorded a first time (f,) and a second
time after 6 min (f).

First, we corrected for initial differences in absorbance values
by subtracting well-specific initial absorbance at 570 and 660 nm
from t, and t, read at the corresponding wavelength. Then we
determined the difference in absorbance: AA = Asy 60 (£5) —
Aszo — o0 (£0)-

Statistical Analyses

Egg-laying date was not correlated with metal exposures and
mother eumelanin level. A linear mixed-effects model was
performed with log-transformed anti-KLH antibody level in
egg as the dependent variable and exposure to zinc, exposure
to lead, mother eumelanin level, log-transformed mother anti-
KLH antibody level, and their interactions as the explanatory
variables. Aviary number and maternal identity were added as
random factors.

We performed a linear mixed-effects model with lysozyme or
ovotransferrin concentration in egg as the dependent variable
and exposure to zinc, exposure to lead, mother eumelanin level,
and their interactions as the explanatory variables. Aviary num-
ber and maternal identity were added as random factors.

Anti-KLH antibodies Lysozymes Ovotransferrins
F df P F df P F df P

Zinc exposure 7.44 1,40 006" 1.25 1,49 .263
Lead exposure 3.93 1, 38 .046* .06 1,40 814 241 1,49 121
Mother eumelanin level 11.45 1,40 <.001***
Mother antibody level 2.67/14.21 1,38/1,38 .102/<.001*** ... e e .. . .
Zinc exposure x lead exposure 42 1,40 517 432 1,49 .037*
Zinc exposure x mother

eumelanin level 14.67 1,40 <.001***
Lead exposure x mother

antibody level 1.90 1,38 169

Note. Log-transformed egg anti-keyhole limpet hemocyanin (KLH) level, lysozyme concentration, or ovotransferrin concentration was the dependent

variable; zinc exposure, lead exposure, mother eumelanin level, mother anti-KLH antibody level when relevant, and their interactions were the explanatory
variables; and aviary and mother identity were random factors. For anti-KLH antibody transfer, two models were equally parsimonious and are shown in italics

(1) and bold (2).
*P < 0.05.
P <0.01.
PP < 0.001.
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Figure 1. Log-transformed egg anti-keyhole limpet hemocyanin
(KLH) antibody level according to log-transformed anti-KLH anti-
body level of females exposed (filled circles) and not exposed (open
circles) to lead. The line represents the regression between log-
transformed egg anti-KLH antibody level and log-transformed female
anti-KLH antibodies, whatever lead exposure (R*> = 0.29, P < 0.001).

Statistical analyses were performed using R (ver. 3.0.2). We
retained final models using the Akaike information criterion
(AIC).

Results

Two models were equally parsimonious (their AICs were not
significantly different; 105.8 and 104.4, respectively). In the first
one, anti-KLH antibody level was lower in eggs laid by lead-
exposed mothers (lead and lead+zinc groups) than in the others
(control and zinc groups; table 1; 7.38 + 1.61 and 11.78 =+ 2.62,
respectively). In the second one, egg anti-KLH antibody level
increased with the mother anti-KLH antibody level (table 1; fig. 1).

Lysozyme concentration depended on the interaction be-
tween zinc exposure and maternal eumelanin level (table 1;
fig. 2): lysozyme concentration was negatively linked with
maternal eumelanin level in egg from zinc-exposed mothers
(zinc and lead +zinc groups; F = 5.70,df = 1,18, P = 0.017),
while it was positively linked with maternal eumelanin level
in eggs from mothers not exposed to zinc (control and lead
groups; F = 442, df = 1,22, P = 0.035). Ovotransferrin
concentration depended on the interaction between zinc ex-
posure and lead exposure (table 1; fig. 3): eggs laid by mothers
exposed to lead only (lead group) had higher ovotransferrin
concentrations than eggs laid by mothers exposed to both lead
and zinc (lead+zinc group; F = 7.37, df = 1,25, P = 0.007).

Discussion

Our aim was first to investigate the effects of chronic exposure to
trace metals in concentrations encountered in urban areas on
early maternal transfer (from mother to eggs) of components

influencing egg immune components (specific antibodies,
lysozymes, ovotransferrin, and metals) and, second, to test
whether mother melanin-based plumage coloration modulates
such effects. In accordance with our hypothesis, the transfer of
specific antibodies (anti-KLH antibodies) was smaller in eggs
from lead-exposed mothers (lead and lead+zinc groups) than
in the other eggs. This result underlines the negative effects of
lead on egg immunity and may explain the higher hatching fail-
ure observed in blue and great tit nests exposed to high con-
centrations of trace metals (Sens et al. 2003; Eeva et al. 2009).
Moreover, nestlings are immunologically naive and fight off
parasites with their innate immune system inherited from their
mother (reviewed in Hasselquist and Nilsson 2009). Therefore,
coping with parasites may be more costly for nestlings with low
maternal antibodies and may explain the lower nestling growth
rate and the higher nestling mortality also observed in blue tits,
great tits, and feral pigeons exposed to trace metals (Eeva and
Lehikoinen 1996; Eeva et al. 2009; Chatelain et al. 2015). More-
over, this result is in accordance with a previous study dem-
onstrating a negative effect of lead exposure on the second hu-
moral immune response (anti-KLH antibody level) in adult feral
pigeons (Chatelain et al. 2016).

In addition, ovotransferrin concentration was higher in eggs
laid by mothers exposed to lead only (lead group) than in eggs
laid by mothers exposed to both lead and zinc (lead+zinc
group). First, this result suggests that lead exposure increases
ovotransferrin transfer and, second, that zinc exposure
moderates the effect of lead exposure on ovotransferrin transfer
due to its effects on lead absorption and lead binding (Cerk-
lewski and Forbes 1976; El-Gazzar et al. 1978; Godwin 2001).
Interestingly, ovotransferrin binds divalent ions including lead
(Pb*"; Pohanka et al. 2012). Higher ovotransferrin levels may
therefore help detoxify lead potentially transferred into the egg
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Figure 2. Egg lysozyme concentration (pg mL™') according to the
plumage eumelanin level (%) of females exposed (filled circles, solid
line; R = 0.65, P = 0.006) and not exposed (open circles, dashed
line; R* = 0.82, P = 0.002) to zinc.
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Figure 3. Egg ovotransferrin concentration (mg mL™") according to
the exposure to lead and/or zinc. Bars with the same letter are not
significantly different at « = 0.05.

(Agusa et al. 2005) and may consequently reduce the noxious
effects of lead on embryonic development. This result may
suggest an adaptive strategy of maternal transfer of ovotrans-
ferrin. More studies are needed to understand whether ovo-
transferrin concentrations in eggs reflect egg bactericide ca-
pacity (Valenti et al. 1983, 1985), maternal inflammation and
infection state (Horrocks et al. 2011), or egg potential for metal
ion detoxification (Pohanka et al. 2012).

Contrary to previous observations in feral pigeons (Jacquin
et al. 2013), females with darker plumage did not transfer
higher amounts of specific antibodies than females with paler
plumage. Maternal melanin-based plumage coloration had few
effects on early maternal transfer of immune components; none-
theless, it significantly shaped the effects of trace metal exposure
on lysozyme concentration. Among birds not exposed to zinc,
lysozyme concentration increased with mother eumelanin level,
suggesting that females with darker plumage transfer more ly-
sozymes into their eggs than do females with paler plumage.
However, we found the opposite correlation among zinc-exposed
birds (i.e., lysozyme concentration decreased with increasing
mother eumelanin level). This result suggests a beneficial effect of
zinc on females with paler plumage. It is possible that zinc is more
available for birds with paler plumage because birds with darker
plumage transfer it into their feathers (Chatelain et al. 2014). As a
consequence, females with darker plumage may transfer higher
amounts of zinc into their feathers and therefore benefit less from
zinc supplementation.

Our results demonstrate negative and positive effects of lead
and zinc, respectively, on early maternal transfer of immune
components that might explain the effects of trace metals on
birds’ reproduction observed in natura (Eeva and Lehikoinen
1996; Sens et al. 2003; Eeva et al. 2009). Because early mater-
nal effects may greatly affect birds’ reproductive success and,
consequently, population functioning and dynamics, our study
stresses the need to better understand the effects of trace met-

als on maternal investments. Future studies should investigate
the biological significance of decreased or increased transfers
of immune components, for instance, in juveniles’ growth, sur-
vival, and immunity. Moreover, our results suggest that ma-
ternal eumelanin level increased lysozyme transfer but dimin-
ished the beneficial effects of zinc exposure, potentially because
of zinc transfer into the feathers. Our study points out the need
to investigate the costs and benefits of highly melanic plumage
according to environmental concentrations of trace metals.
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