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Abstract We present a novel mechanism of supersymme-
try breaking embeddable in string theory and simultaneously
sharing the main advantages of (sequestered) gravity and
gauge mediation. It is driven by a Scherk–Schwarz deforma-
tion along a compact extra dimension, transverse to a brane
stack supporting the supersymmetric extension of the Stan-
dard Model. This fixes the magnitude of the gravitino mass,
together with that of the gauginos of a bulk gauge group,
at a scale as high as 1010 GeV. Supersymmetry breaking is
mediated to the observable sector dominantly by gauge inter-
actions using massive messengers transforming non-trivially
under the bulk and Standard Model gauge groups and leading
to a neutralino LSP as dark matter candidate. The Higgsino
mass μ and soft Higgs-bilinear Bμ term could be generated
at the same order of magnitude as the other soft terms by
effective supergravity couplings as in the Giudice–Masiero
mechanism.

1 Introduction

The gravity-mediated supersymmetry breaking scenario with
an O(TeV) gravitino [1], which can be realized for instance
in the minimal supersymmetric extension of the Standard
Model (MSSM) has, apart from solving the hierarchy prob-
lem, the phenomenological advantages of providing gauge
coupling unification at scales MGUT ∼ 1016 GeV and a
standard dark matter candidate in the presence of unbro-
ken R-parity if the lightest supersymmetric particle (LSP)
is a neutralino. Gravity mediation has nevertheless two main
drawbacks: (i) Gravitational interactions are not automati-
cally flavor blind and thus they do not guarantee a solution

a e-mail: kbenakli@lpthe.jussieu.fr

to the supersymmetric flavor problem; (ii) an O(TeV) grav-
itino decays in a lifetime of about 106 s, leading to a huge
entropy production after the big bang nucleosynthesis (BBN)
and spoiling its predictions unless the reheating temperature
after inflation is �1010 GeV, which puts an uncomfortable
bound on inflationary scenarios. The latter is known as the
cosmological gravitino problem [2].

The main motivation for gauge-mediated supersymme-
try breaking (see for example [3] and references therein) is
that it provides flavor independent soft breaking terms thus
avoiding strong experimental constraints on flavor changing
neutral currents (FCNC). On the other hand, it also has some
problematic drawbacks: (i) One loses the standard dark mat-
ter candidate as a WIMP (weakly interacting massive par-
ticle) since the LSP is now the gravitino; (ii) The gravitino
can be (warm) dark matter only if its mass is m3/2 � 1 keV,
which requires an upper bound on the messenger mass, M ,
over its number, N , as M/N � 107 GeV, while for larger
gravitino masses the reheating temperature after inflation is
strongly constrained; (iii) There is no compelling way to gen-
erate a supersymmetric μ-parameter (Higgsino mass) and a
Bμ soft term (Higgs bilinear) of the same order as the other
soft terms. Although none of these problems can disqualify
gauge mediation as a very appealing mechanism of super-
symmetry breaking transmission to the observable sector it
would be certainly interesting to find a theory where these
problems do not appear.

In this work, we propose a mechanism to solve these
problems by appropriately sequestering the supersymmetry
breaking in the hidden sector in a string theory context. Due
to the sequestering of gravity, even if our gravitino is super-
massive gauge-mediated interactions will be dominant over
gravity-mediated ones, thus solving the supersymmetric fla-
vor problem. Moreover, since the gravitino mass ism3/2 � 1
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TeV our model does not exhibit any gravitino problem and
the best candidate for dark matter is the lightest neutralino.

Let us finally mention that the idea of solving some of the
specific problems to gauge and/or gravity mediation using a
hybrid gauge-gravity mediation mechanism is of course not
new. Related studies can be found e.g. in Refs. [4–7]. In all
these papers gauge and gravity mediation compete on the
same footing, the gravitino is in the 100 GeV–1 TeV range,
and dark matter can be either the gravitino or the lightest
supersymmetric particle. What is new in our approach is that
gravitational interactions are sequestered while the gravitino
is much heavier, thus decoupling from the spectrum and not
generating any kind of cosmological problem.

Of course the idea of sequestering gravitational interac-
tions in gauge-mediated models has already been used in
the literature, where two main approaches have been used:
(i) There are 4D models with conformal sequestering in
the supersymmetry breaking sector [8,9]. They use the fact
that if the supersymmetry breaking sector is strongly cou-
pled, conformal sequestering may lead to flavor violating
gravity-mediated operators suppressed by large anomalous
dimensions; (ii) in five-dimensional supersymmetric mod-
els gravity mediation can be sequestered from gauge medi-
ation provided that the supersymmetry breaking sector and
the observable sectors are localized at different branes [10–
12]. Gravity mediation effects from the hidden to the observ-
able sector are then exponentially suppressed by the branes
separation. In all these models gravity is sequestered from
the gauge interactions of gauge mediation, a heavy enough
gravitino with a mass range 100 GeV–100 TeV is obtained
and the LSP, and Dark Matter candidate, is the lightest neu-
tralino. However, our approach is different and simpler in
many aspects: supersymmetry breaking is a global effect
in the bulk, via Scherk–Schwarz twisted boundary condi-
tions, leading to finite radiative corrections, and the gravitino,
which automatically decouple from the low energy spectrum,
is superheavy ∼1010 GeV and safe from all kind of cosmo-
logical problems. Moreover, LSP is the lightest neutralino,
by which it is also a good candidate to Dark Matter, and
our results on the string scale are consistent with the MSSM
gauge coupling unification conditions.

Our basic setup is the following. Motivated by type I string
theory constructions, we consider the MSSM localized in
three (spatial) dimensions, on a collection of D-brane stacks,
which we call in short a 3-brane, transverse to a “large”
extra dimension on a semi-circle (orbifold) of radius R, along
which there is a bulk “hidden” gauge group GH associated
to another (higher-dimensional) brane. We assume that GH

has a non-chiral spectrum. There are in general matter fields,
described by excitations of open strings stretched between
the Standard Model (SM) brane and the brane extended in
the bulk, and thus localized in their three-dimensional (spa-
tial) intersection. They transform in the corresponding bi-

fundamental representations and, since they are non-chiral,
they can acquire a mass M by appropriate brane displace-
ments (or equivalently Wilson lines) that we consider as a
parameter of the model. They will play the role of messen-
gers to transmit supersymmetry breaking to the observable
sector.

Supersymmetry breaking is induced by a Scherk–Schwarz
(SS) deformation along the extra dimension generating a
Majorana mass for fermions in the bulk, namely the gravitino
and the gauginos of GH, proportional to the compactification
scale 1/R, but leaving the SM brane supersymmetric [13].
The breaking is mediated to the observable SM sector by
both gravitational [13,14] and gauge interactions [15] (via the
bi-fundamental messenger fields), whose relative strength is
controlled by the compactification scale and messenger mass.
Fixing for definiteness the MSSM soft terms at the TeV scale
and requiring gravitational contributions to the squared scalar
masses to be suppressed, with respect to the gauge-mediated
ones, between two and four orders of magnitude,1 one finds
that the compactification scale 1/R should be less than about
1/R ∼ 1010 GeV, corresponding to a string scale in the uni-
fication region MGUT ∼ 1016 GeV, inferred by extrapolating
the low energy SM gauge couplings with supersymmetry.

The resulting MSSM soft terms (sfermion and gaugino
masses) have then the usual pattern of gauge mediation,
with in particular scalar masses that are essentially flavor
blind, guaranteeing the absence of dangerous flavor chang-
ing neutral current interactions. Note thought that in con-
trast to the standard gauge mediation scenario, the gravitino
mass is heavy, of order the compactification scale, evading
the gravitino overproduction problem and having as LSP the
lightest neutralino, like in models of gravity mediation, in the
right ballpark needed for describing the missing dark matter
of the Universe required by astrophysical and cosmological
observations. On the other hand, a globally supersymmet-
ric Higssino mass μ term and its associated Higgs-bilinear
soft term Bμ can be generated in a similar way as in the
Giudice–Masiero mechanism [16], by effective supergravity
D-term interactions involving a non-holomorphic function
depending on the radius modulus field T whose F-auxiliary
component acquires a non-vanishing expectation value, as
dictated by the SS deformation. Under a reasonable assump-
tion on the asymptotic dependence, the induced μ and Bμ

parameters are of the same order with the rest of the MSSM
soft supersymmetry breaking terms.

1 Here we are making the most conservative assumption of anarchic
Kahler metric for the observable sector. This can be somewhat relaxed,
and the strength of its corresponding gravitational suppression softened,
in particular models, in the presence of a flavor symmetry. However, as
the latter hypothesis is very model dependent, we will consider here the
most conservative possibility of anarchic breaking of flavor symmetry
by gravitational interactions.
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The outline of the paper is the following. In Sect. 2 we
compute the contribution of gravity mediation to scalar and
gaugino masses and we define the upper bound of the com-
pactification scale in order to suppress the former contribu-
tion from the total. In Sect. 3 we compute the corresponding
contribution of gauge mediation and determine the region
of messenger mass that leads to a viable phenomenologi-
cal spectrum. In Sect. 4 we discuss the generation of μ and
Bμ terms, while Sect. 5 contains our conclusions. Finally, in
Appendix A, we present the details of the computation of the
induced F-auxiliary expectation value in the messenger sec-
tor off-shell, needed for the evaluation of the gauge-mediated
contributions in the main text.

2 Gravity mediation for SS supersymmetry breaking

Our starting setup is a higher-dimensional space where the
MSSM is localized on a D3-brane that is perpendicular to
a large compact coordinate (of radius R). Supersymmetry
is assumed to be broken by a Scherk and Schwarz [17,18]
mechanism giving to the gaugino λH and gravitino Kaluza–
Klein (KK) modes a common mass:

Mn(ω) = m3/2 + n

R
, m3/2 = ω

R
(2.1)

where m3/2 is the mass of the gravitino zero mode and ω a
real parameter 0 < ω < 1

2 .
We are interested here in evaluating the size of the MSSM

supersymmetry breaking soft terms mediated by gravita-
tional (grav) effects (mgrav

0 , Mgrav
1/2 ), which we shall compare

in the next section to those from gauge interactions. Super-
symmetry breaking is transmitted from the bulk to the brane
by one-loop gravitational interactions giving a (squared)
mass to scalars proportional to [14,19]

(
m

grav
0

)2 = 1

M2
P

∑
n

∫
d4k

(2π)4 k
2
[

1

k2+M2
n (0)

− 1

k2+M2
n (ω)

]
,

(2.2)

where MP = 2.4 × 1018 GeV is the reduced Planck mass,
and a Majorana mass to gauginos proportional to

Mgrav
1/2 = 1

M2
P

∑
n

∫
d4k

(2π)4

[
Mn(ω)

k2+M2
n (ω)

− Mn(0)

k2+M2
n (0)

]
.

(2.3)

In particular the gravitational correction to the squared
mass of localized matter scalars ϕ is given by

m2
ϕϕ̄ = G−1

ϕϕ̄

(
Gi j̄ Ri j̄ϕϕ̄ − Gϕϕ̄

) (
mgrav

0

)2
(2.4)

where Gi j̄ and Gϕϕ̄ are the moduli and matter metrics,
respectively, while Ri j̄ϕϕ̄ is the moduli–matter Riemann ten-

sor. The factor G−1
ϕϕ̄ comes from the wave function renor-

malization and the two terms in the bracket in Eq. (2.4) come
from the moduli and graviton supermultiplets, respectively.
Then the total contribution to m2

ϕϕ̄ has completely different
pattern in flavor space depending on the behavior of differ-
ent moduli. We will then consider two different general cases
depending on moduli massesm2

i ī
provided by the moduli sta-

bilization mechanism.

(i) Heavy moduli: if m2
i ī

> 1/R2, moduli decouple from
the low energy effective theory and the first term in
Eq. (2.4) does not contribute. In this case, even for
anarchic matter metric, after diagonalization of the mat-
ter kinetic terms the gravitational corrections are flavor
diagonal.

(ii) Light moduli: if m2
i ī

< 1/R2, moduli do not decouple
from the low energy effective theory and the contribu-
tion of the Riemann tensor in the first term of Eq. (2.4)
can create different moduli dependent contribution to
different scalar fields triggering dangerous flavor chang-
ing neutral currents.

The gravitational squared mass of scalars can then be
expressed as

(
mgrav

0

)2 = 1

R2

1

(MPR)2

1

(4π)2 f0(ω) (2.5)

where

f0(ω) = 3

2π4

[
2ζ(5) − Li5(e

2iπω) − Li5(e
−2iπω)

]
(2.6)

and the gravitational Majorana gaugino mass as

Mgrav
1/2 = 1

R

1

(MPR)2

1

(4π)2 f1/2(ω) (2.7)

where

f1/2(ω) = 3i

8π3

[
Li4(e

−2iπω) − Li4(e
2iπω)

]
. (2.8)

Note that f1/2(ω) vanishes for ω = 1
2 because of a pre-

served R-symmetry [14,19]. As we focus on models with
Majorana masses for gauginos, we need therefore to take
ω ∈ (0, 1/2). For ω ∼ 1/2 there are two quasi-degenerate
Majorana gravitinos, one of which couples to the MSSM
(the even parity one) at the 3-brane location. The functions
f0(ω) and f1/2(ω) are plotted in Fig. 1, left and right panels,
respectively, where we can see that their values are typically
O(10−2).
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Fig. 1 Left panel Plot of f0(ω).
Right panel Plot of f1/2(ω)
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The gravitational contributions to the scalar squared
masses are (in the absence of other moduli mediating super-
symmetry breaking) negative and flavor diagonal as they
are mediated by diagrams with gravitinos and gravitons
exchanged in the loops [14]. One can always fix the radius
to a reference value R0 by imposing the condition that
|mgrav

0 | � 1 TeV. The result 1/R0(ω) is plotted in Fig. 2
where we can see that (1/R0) ∼ 1012 GeV (almost) inde-
pendently of the value of ω. For the corresponding values of
the gravitino mass [m3/2 ≡ ω/R0(ω)] the Majorana gaugino
masses are small enough to be neglected. Even in the presence
of flavor non-diagonal matter Kahler metrics, for larger radii
the gravitational contributions to scalar masses can become
negligible, so if there exists another (gauge) mediation mech-
anism of supersymmetry breaking to the observable sector
which generates flavor conserving leading contributions to
squared scalar masses (mgauge

0 )2, as will be described in
Sect. 3, we will require that flavor non-conserving gravity-
mediated contributions (�mgrav

0 )2 do not account for more
than one per mille of soft squared masses at the mediation
scale.

In fact bounds on flavor changing processes should pro-
vide bounds on the parameter

δ ≡ (�mgrav
0 )2

(mgauge
0 )2

. (2.9)

Under the assumption of an anarchic gravitationally induced
Kahler metric, the parameter δ is constrained by the strongest
flavor constraints, which correspond to the CP-violating
observable εK generated by the imaginary part of the �F =
2 effective dimension-six operator (1/
2

F )(s̄RdL)(s̄LdR) for
which 
F � 4 × 105 TeV [20–22]. This provides, depend-
ing on the masses of the supersymmetric spectrum and the
scale of supersymmetry breaking, different bounds on the
parameter δ.

(i) Heavy moduli: For the previously introduced case where
moduli are decoupled from the low energy effective the-
ory, gravitational contributions to scalar masses are only
from the graviton multiplet and thus flavor diagonal at
one-loop even in the presence of anarchic matter met-
ric. In this case, and considering potential higher-loop

0.0 0.1 0.2 0.3 0.4 0.5

11.6
11.7
11.8
11.9
12.0
12.1

lo
g 1

0
[1
/R

0(
)]

Fig. 2 Plot of log10[1/R0(ω)/GeV] by fixing |mgrav
0 | = 1 TeV

suppressed contributions which could be flavor non-
diagonal, a conservative bound on δ, as δ � 10−2, will
be imposed.

(ii) Light moduli: For the case where the presence of mod-
uli could induce FCNC a stronger constraint should be
imposed. For that purpose we will use the conservative
bound δ � 10−4, which we will consider later on in this
paper.2

There is also a contribution that originates from anomaly
mediation (AM) and that provides scalar and gaugino masses
as [23,24]

mAM
0 ∼ MAM

1/2 ∼ λ2

16π2 Fφ (2.10)

where λ indicates the different four-dimensional gauge and
Yukawa couplings and Fφ is the F-component of the chi-
ral compensator φ = 1 + θ2Fφ . In the case of a Scherk–
Schwarz breaking it turns out that, as in no-scale models,
Fφ � m3/2. In fact one can prove that at the tree level
Fφ = 0 [25] while at one-loop a gravitational Casimir energy
V ∼ (1/16π2)1/R4 is generated which yields a non-zero
value of Fφ as Fφ ∼ (1/16π2)m3

3/2/M
2
P [26,27]. Therefore

its contribution to scalar masses from (2.10) is negligible, as
compared to the gravitational contribution, Eq. (2.2), while
its contribution to gaugino masses is of the same order of
magnitude as the gravitational ones, Eq. (2.3).

2 We thank the referee for very useful comments leading us to consider
new stronger constraints.
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3 Gauge mediation for SS supersymmetry breaking

We now turn to compute the supersymmetry breaking effects
induced by the bulk-brane gauge interactions. We will denote
as GH the gauge symmetry group living in the bulk and by
αH the associated four-dimensional coupling.3 We consider
a number of messengers (φI , φ̄I ) living in the intersection
between the MSSM 3-brane and the brane in the bulk which

contains the SS direction. The messengers transform under

the representation (RGH
φI

, RGH
φI

) of the hidden gauge group

GH and under the representation (RGSM
φI

, RGSM
φI

) of the Stan-
dard Model group GSM.

3.1 The messenger sector

By the SS supersymmetry breaking the gauginos of the hid-
den gauge group λH acquire, as the gravitinos, soft Majorana
masses:

Mn(ω) = M1/2 + n

R
, M1/2 = m3/2 = ω

R
. (3.1)

We assume, as in ordinary gauge mediation, that the mes-
sengers have a supersymmetric mass as

W = φI MI J φ̄J (3.2)

where, without loss of generality, the mass matrix is diagonal
MI J = MI δI J , and we are assuming that MI � M (∀I ). This
diagonal mass matrix will induce a diagonal supersymmetry
breaking parameter, denoted by FI = λI F , through the one-
loop radiative corrections induced by the bulk gaugino λH

and Dirac fermion (φ̃I ,
˜̄φI), that is, proportional to [28].4 We

have

3 αH is the dimensionless four-dimensional coupling of gauge fields on
a 4-brane wrapped along a cycle of length πR in the extra dimension.
4 In fact the value of the parameter F actually depends on the value
of the external momentum q, which we are taking here at q = 0. The
complete, more technical, analysis where the momentum-dependent
supersymmetry breaking parameter F(q) is used to compute scalar and
gaugino masses is left for Appendix A where we will demonstrate that
the approximation of considering the insertion parameter F(0) is good
provided that the mild condition M � 0.1/R is fulfilled.

F = αH

π

∫ ∞

0
dp2 p2

∑
n

[
Mn(ω)

p2 + M2
n (ω)

− Mn(0)

p2 + M2
n (0)

]

× M

p2 + M2 (3.3)

where λI = CGH
φI

is the quadratic Casimir operator of the rep-

resentation RGH
φI

of GH. The integral has different behaviors
for RM < 1 and RM > 1. In fact it can be written as

F = αH

4π

M

R

⎧⎨
⎩
g0(ω), for RM � 1 : g0(ω) = 2i [Li2(r) − Li2(1/r)] /π

1/ (MR)2 g∞(ω), for RM � 1 : g∞(ω) = 3i [Li4(r) − Li4(1/r)] /π3
(3.4)

where r = e−2iπω. The functions g0(ω) and g∞(ω) are
plotted in Fig. 3 where we see that they satisfy the relation
g∞(ω) ∼ 0.1g0(ω). A quick glance at Eq. (3.4) shows that
the parameter F/M is larger for M � 1/R than for M � 1/R
so that in the following we will only consider the former case
of g0(ω).

3.2 The observable sector

Supersymmetry breaking is then transmitted through the
usual gauge mediation mechanism [3] to squark, slepton
and gaugino masses of the MSSM. In order to not spoil
the MSSM gauge coupling unification we can assume that
the messenger sector consists in complete SU (5) represen-
tations. For instance we can assume n5 multiplets in the
5 + 5̄, [(D, L) + (D̄, L̄)], and n10 multiplets in the 10 + 10,
[(Q,U, E) + (Q̄, Ū , Ē)]. The mass generated by gauge
mediation for gauginos and scalars can then be written as

M3 = α3

4π

[
n5
D + n10(2
Q + 
U )

]
,

M2 = α2

4π

[
n5
L + 3n10
Q

]
,

M1 = α1

4π

6

5

[
n5

(
1

3

D + 1

2

L

)

+n10

(
1

6

Q + 4

3

U + 
E

)]
, (3.5)

where 
I = CGH
I F/M (I = D, L , Q,U, E), and

m2
f̃

= 2

[
C f̃

3

( α3

4π

)2

2

3+C f̃
2

( α2

4π

)2

2

2+C f̃
1

( α1

4π

)2

2

1

]

(3.6)

where C f̃
i is the quadratic Casimir operator of the f̃ rep-

resentation with the normalization C f
1 = 3

5Y
2
f , and where

all couplings are at the scale M . Similarly the scales 
i are
defined as
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Fig. 3 Left panel Plot of g0(ω).
Right panel Plot of g∞(ω)
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2
3 = n5


2
D + n10(2
2

Q + 
2
U ),


2
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L + 3n10


2
Q,


2
1 = 6

5

[
n5

(
1

3

2

D+ 1

2

2

L

)
+n10

(
1

6

2

Q+ 4

3

2

U +
2
E

)]
.

(3.7)

To simplify the analysis we will assume that the structure
of SU (5) multiplets is not spoiled by GH so that 
I ≡ 
5 =
CGH

5 F/M (I = D, L) and 
I ≡ 
10 = CGH
10 F/M (I =

Q,U, E)5 in which case the previous equations yield

Mi = αi

4π
[n5
5 + 3n10
10] ,


2
i = n5


2
5 + 3n10


2
10. (3.8)

As we want the LSP, and thus the dark matter component of
the universe, to be a well tempered Bino/Higgsino admixture
(B̃/H̃ ) we need sfermions to be heavier than M1 at the low
scale, a condition which prevents a large number of messen-
gers (as we will next see). So from Eq. (3.8) it is obvious
that the case where only the number n5 of 5 + 5̄ is charged
under GH, i.e.CGH

5 
= 0, while the messengers in the 10+10

are neutral under GH and thus CGH
10 = 0 (i.e. 
10 = 0), is

preferred as n10 has multiplicity three in (3.8). In this case
we obtain the usual expressions of minimal gauge mediation

Mi = αi

4π

G, 
G = n5
5,


2
i = 
2

S, 
2
S = n5


2
5, (3.9)

and we should keep n5 as small as possible. Moreover, to
keep the multiplicity of the representationsRGH

5 to the lowest
possible values we will assume that GH = U (1)H.

In this framework, as the masses are generated at the scale
M and run to the scale μ0 ∼ O(TeV) by the renormalization
group equations, the lightest gaugino is the U (1) Bino and
the lightest scalar is the right-handed slepton �̃R .6 As the

5 This amounts to assuming that all messengers in a given representa-
tion r of SU (5) are in the same representation of the hidden group GH

with quadratic Casimir operator CGH
r .

6 In particular, considering the small effect of the τ Yukawa coupling,
the lightest slepton would be the τ̃R .

lightest supersymmetric particle (LSP) is stable7 we need
the Bino (B̃ with mass ∼ M1(μ0)) to be lighter than �̃R
as we already mentioned. In this case we would also need
the neutral Higgsino H̃ Dirac mass μ (see next section) to
be μ ∼ M1 to avoid the over-closure of the Universe and
predict the thermal dark matter density measured by WMAP.
This is the so-called well tempered B̃/H̃ scenario [29]. The
conditions for the Bino to be lighter than �̃R are shown in the
left panel of Fig. 4 where we plot contour lines of the ratio
m2

�̃R
(μ0)/M2

1 (μ0) in the plane (log10 M/GeV, n5).

We can see that for M � 108 GeV there is the bound n5 ≤
2. In particular forn5 = 1 the value of M is not constrained by
the LSP requirement, and for n5 = 2 we have M � 107 GeV.
Finally for n5 = 3 we have M � 1010 GeV, which essentially
saturates the bound obtained in Appendix A; see Eq. (3.17).8

All these predictions are independent on the value of n10 as
we are assuming CGH

10 = 0 and thus the 10 + 10 consists
in a supersymmetric sector. As shown in the right panel of
Fig. 4, where we show contour lines of constant 1/αGUT in
the plane (log10 M/GeV, n10) for n5 = 2, their presence will
modify the value of the unification gauge coupling αGUT and
the model predictions.

There is another way of avoiding the constrains provided
by the left plot of Fig. 4. It consists in assuming that the
LSP is mainly Higgsino-like with a (heavy) mass μ(μ0) ∼
1 TeV [29] so that it would be possible to have μ(μ0) �
m

�̃R
(μ0) � M1(μ0). However, in this case M1 � 1 TeV

which would imply, in the minimal gauge mediation scenario
we are assuming in this paper, a very heavy gluino M3 � 5
TeV, and thus a quite heavy supersymmetric spectrum.

3.3 Numerical results

To explicitly compute the value of 
S we will use the fact
that αH is the four-dimensional gauge coupling of GH, so its
value is given by [30]

αH = 2αGUT/(RMs) (3.10)

7 We are here imposing R-parity.
8 We can relax the allowed window by lifting the condition that GH
does not spoil the structure of SU (5) multiplets. This is a possibility
we will not pursue in this paper.
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Fig. 4 Left panel Contour lines
of m2

�̃R
(μ0)/M2

1 (μ0) in the

plane (log10 M/GeV, n5). Right
panel Contour lines of 1/αGUT
in the plane
(log10 M/GeV, n10) for
n5 = 2, where n10 is the number
of messengers in the 10 + 10 of
SU (5) uncharged under GH
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where αGUT is the SM coupling at the unification scale, and
we defined Ms to be the fundamental (string) scale. The value
of αH can be written in terms of the reduced 4D Planck scale
MP = 2.4 × 1018 GeV, using the relation [30]

M2
P = M3

s R

8πα2
GUT

(MsRT )dT (3.11)

where we have included a possible additional number dT
of extra dimensions (where the group GH does not prop-
agate) with radii RT slightly larger than the string length
�s = 1/Ms . This situation can be pictured for instance in type
I strings where the SM would correspond to states localized
on a D3-brane and the large SS dimension inside a D7-brane,
in which case dT = 2.

We can then write


S = KHg0(ω) (1/R)5/3 (1/MP)2/3 (Ms RT )dT /3 (3.12)

where the pre-factor KH given by

KH = √
n5

( αGUT

64 π4

)1/3
CGH

φ � 10−1.1

√
n5

2
α

1/3
GUTC

GH
φ

(3.13)

contains all the model dependence on the hidden sector.
We will fix the radius as 1/R(ω) ≡ δ1/4/R0(ω), where

R0(ω) is the value of the radius fixed by the plot in Fig. 2 and δ

is the suppression coefficient which should make the gravita-
tional contribution to the squared scalar masses negligible, as
compared to those obtained from gauge mediation. In fact,
as explained above, we will require that gravity mediation
contributions do not spoil the flavor blindness of the gauge
mediation mechanism.

For our numerical estimates we have fixed the value of δ

depending on the two cases concerning moduli masses which
we have defined in the previous sections.

(i) Heavy moduli: For decoupled moduli we have considered
all extra dimensions (apart from the SS breaking one)
small, with values equal to �s (i.e. RT Ms = 1) and fixed
the parameter δ to the value δ = 10−2 in Fig. 5. In this
case the relationship for the scales MP and 
S is given
by

M2
P = M3

s R

8πα2
GUT


S =KHg0(ω) (1/R)5/3 (1/MP)2/3 (3.14)

(ii) Light moduli: For non-decoupled moduli we have
assumed dT = 2 largish extra dimensions with radii
larger than �s by a factor RT Ms = O(few) and the value
δ = 10−4 in Fig. 6. In this case the relationship for the
scales MP and 
S is given by

M2
P = M3

s R

8πα2
GUT

(Ms RT )2


S =KHg0(ω) (1/R)5/3 (1/MP)2/3 (Ms RT )2/3. (3.15)

The contour plot for fixed values of 
S (in TeV) is
plotted for δ = 10−2 (and dT = 0) in the left panel of
Fig. 5, and for δ = 10−4 in the left panel of Fig. 6, for
dT = 2 and RT Ms = 3, in the plane (ω, KH). The pre-
ferred value of 
S can be obtained from the lower exper-
imental limit on the gluino mass M3 � 1.5 TeV, which
translates into the bound M1 � 250 GeV for our minimal
gauge mediation.9 Then from Eq. (3.9) we can extract the
value 
S = 4πM3/(

√
n5α3(M3)) � 230 TeV/

√
n5. This

value imposes constraints on the hidden sector parameter
KH, which should be as large as possible. First of all we see
that the value of KH depends on the value of the unifica-
tion coupling constant and the number of messengers which

9 These bounds could be evaded in non-minimal gauge mediation mod-
els, as in models of general gauge mediation [31].
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Fig. 5 Left panel Contour lines
of constant 
S (in TeV) in the
plane (ω, KH) for the case of
heavy moduli. We have fixed
δ = 10−2 and no largish extra
dimensions, RT Ms = 1. Right
panel Plot of
log10[1/R(ω)/GeV] (lower
line) and log10[Ms/GeV] (upper
line) as functions of ω. For the
upper line we have considered
the case αGUT = O(1). 100
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Fig. 6 Left panel Contour lines
of constant 
S (in TeV) in the
plane (ω, KH) for the case of
light moduli. We have fixed
δ = 10−4 and dT = 2,
RT Ms = 3. Right panel Plot of
log10[1/R(ω)/GeV] (lower
line) and log10[Ms/GeV] (upper
line) as functions of ω. For the
upper line we have considered
the case αGUT = O(1)
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are non-singlets under the group GH. The gauge coupling
unification value for the MSSM is αMSSM

GUT � 1/24 for a uni-
fication scale MGUT � 2 × 1016 GeV. The possible presence
of n10 states in complete representations of SU (5) increases
the value of αGUT leaving (at one-loop) the value of the uni-
fication scale unmodified, as it was shown in the right panel
of Fig. 4.

After fixing δ we are then left with the parameters:

M, n5, n10, and CGH
5 . (3.16)

In the simplest framework of minimal gauge mediation con-
sidered here, and as from the previous considerations, we
are left to consider the cases of n5 = 1, 2. Moreover, the
messenger mass M is constrained to be of order

M � (0.1/R) ∼ 1010 GeV (3.17)

from the validity of our approximation for F , as explained in
Appendix A, combined with a conservative value of (1/R0)

extracted from Fig. 2. Notice that the requirement F/M2 < 1
(a condition to avoid tachyons in the messenger sector in
gauge mediation) is always satisfied because of the smallness
of αH. Clearly, CGH

5 has a strong impact on the value of KH

and the spectrum of the model. This is given by the squared
of the charge of the messengers under U (1)H, Q2

H. Typical

values could be for example CGH
5 = 1 (Q5 = ±1), in which

case the model is more contrived as we shall discuss shortly,
or CGH

5 = 4 (Q5 = ±2), which gives more room for the
other parameters. Examples of models with extraU (1)’s and
their charges can be found in the literature; see e.g. Ref. [32].

For CGH
5 = 1, the necessary values of KH require larger

values of αGUT. This could be achieved by increasing n5

and/or n10 and lowering M . However, keeping the Bino as
the LSP requires instead lower n5, and higher M , values,
which creates a tension. Hence, we choose to keep M in the
range 108–1010 GeV and introduce a number of neutral mes-
sengers, n10 > 0. For example, for δ = 10−2 valid sets
[M, n5, n10, αGUT] leading to phenomenologically viable
spectra are e.g. [108 GeV, 1, 1, 1/10] or [107 GeV, 2, 2, 1].
A larger range on the parameters would of course be allowed
for bigger values of CGH

5 . In particular for δ = 10−4 the
required value of the inverse radius is reduced by a factor
101/2 � 3.2, and the value of 
S is correspondingly reduced
(considering that we are assumingdT = 2 largish dimensions
with RT Ms = 3) by a factor of 105/6 ×(RT Ms)

−dT /3 � 2.6,
with respect to the case of δ = 10−2. This reduction on the
value of 
S , with respect to the case of δ = 10−2, can easily
be compensated by increasing the value of αGUT and/or the
value of the group factor CGH

5 , so that values as CGH
5 = 4

might be preferred. The used values of 1/R and the corre-
sponding value of Ms according to Eq. (3.11), for the case
αGUT � O(1), are shown in the right panels of Figs. 5 and
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Fig. 7 Left panel Contour lines
of |μ| in GeV for a = b = 1 in
the plane (ω, n). Right panel
Plot of |μ(ω)| for the case
f (T ) = log(T ) for
a � b � 1/32π2
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6, from which we can see that Ms � MGUT. The value of
Ms scales as α

2/3
GUT so that for αGUT = 1/10 the value of Ms

should be reduced by a factor ∼ 0.22, still in the ballpark of
unification scales.

Finally, we would like to comment about the presence of
the secludedU (1)H. At one-loop the messengers could a pri-
ori introduce a kinetic mixing betweenU (1)H and the hyper-
charge U (1)Y . This mixing vanishes in the simplest case of
messengers in full representations of SU (5) and common
mass as considered above. It is otherwise suppressed by the
smallness of the hidden gauge coupling to be � 10−5. A
soft mass for GH charged scalars living on the other end of
the large dimension is induced at one-loop by the hidden
gaugino mass as in [33,34]. Their vacuum expectation value
could then generate a mass for the U (1)H gauge boson of
order ∼ (loop factor)1/2gH/R ∼ O(107 GeV), where gH

is the hidden gauge group coupling. A quantitative discus-
sion of the phenomenological and cosmological implications
requires considering explicit models of the hidden sector, a
subject which goes beyond the scope of this paper.

4 μ/Bμ terms

It is well known that gauge mediation cannot induce μ/Bμ

terms, as gauge interactions cannot generate them with-
out direct couplings between the Higgs and messenger sec-
tors [3]. However, gravitational interactions could do the job
as in the Giudice–Masiero mechanism [16]. In this section
we will illustrate this point by assuming that some particular
effective operators are generated in the higher-dimensional
theory.

The SS breaking can be understood in terms of supersym-
metry breaking induced by the F term of the radion [35]
superfield T̃ , with bosonic components.10

T̃ /Ms ≡ T = RMs + θ2m3/2, FT̃ = m3/2Ms (4.1)

10 We will use the dimensionless superfield T .

where m3/2 is the mass of the gravitino zero mode given in
Eq. (2.1). The radion superfield then induces bulk gaugino
λH masses through the coupling

L = 1

4

∫
d2θTWHαW

α
H . (4.2)

The radion superfield in Eq. (4.1) can also induce the μ and
Bμ parameters required for electroweak breaking through
effective operators as

∫
d4θ{[a2 | f (T )|2 + b f (T †)]H1 · H2 + h.c.} (4.3)

where H1 and H2 are the two Higgs doublets of the MSSM,
a and b are real parameters and f (T ) is a real function.11

Using (4.3) one can compute the values of the μ and Bμ

parameters as

|μ| = m3/2| f ′
T (RMs)||b + a2 f (RMs)|

Bμ = a2 m2
3/2| f ′

T (RMs)|2 (4.4)

where we have to impose the phenomenological condition
from electroweak symmetry breaking |μ|2 � |Bμ|, which
requires the relation

|b + a2 f (RMs)| � |a|. (4.5)

For instance by using an asymptotic form (for large T )
f (T ) � T−n and fixing 1/R = 1/R(ω) we can determine
the value of the μ parameter for a � b � 1 as in the left
panel plot of Fig. 7, where we plot contour lines of constant
|μ| in GeV in the plane (ω, n). The case f (T ) � log(T ) is
also plotted (right panel), for the case a � b � 1

32π2 . As
we can see this case only works if both a and b parameters
are loop suppressed so that condition (4.5) is also satisfied.

11 One can also introduce in (4.3) two different functions f (T †) +
|g(T )|2, but here we trade this freedom for the arbitrariness of the real
coefficients a and b.
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In all cases the value of Ms from the right panel of Fig. 5,
which corresponds to αGUT = O(1), has been used and the
electroweak breaking condition |μ|2 � Bμ is fulfilled.

5 Conclusion

In this work, we presented a novel mechanism of supersym-
metry breaking where the SM gaugino, squark, and slep-
ton masses arise predominantly from flavor blind gauge-
mediated interactions, while the gravitino mass is super-
heavy due to an appropriate sequestering of the supersym-
metry breaking sector. We have presented an example for
how μ and Bμ parameters could be generated at the same
time by effective supergravity interactions, as in the Giudice–
Masiero mechanism.

Some important questions have been left aside. For
instance, the radion stabilization was not discussed here. The
potential generated for the modulus T should be such that at
its minimum it reproduces the required hierarchy between
the compactification and string scales. We are assuming here
that the required stabilization mechanism will not perturb
the main features of the mechanism presented here. Also,
one needs to understand the origin of the effective opera-
tors describing the couplings of the radion to matter fields,
as assumed in Sect. 4. We believe that such issues should be
addressed in a more fundamental theory. The proposed mech-
anism should be in principle realized in string theory, since
all basic ingredients we use already exist in type I construc-
tions with intersecting D-branes, but all calculations have
been done in the context of the effective field theory by sum-
ming over the contribution of the tower of KK modes. This
can be tested by an explicit string implementation and model
building which is left for future research as a very interesting
open problem.
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A Calculation of �(q2)

In Sect. 3 we have computed the seed of supersymmetry
breaking for the calculation of gauge mediation as F = �(0)

for zero external momentum. In this appendix we will com-
pute �(q2) for arbitrary external momentum q. To simplify
the notation we will use inn this section units in which
1/R ≡ 1 so all masses m are scaled as mR. We will also
consider the case where M � 1 as in Sect. 3. The integral
(3.3) is then generalized to

F(q) = αH

π
Cφ

H I (q) (A.1)

where

I (q) =
∫ ∞

0
dp2 p2

∑
n

[
Mn(ω)

p2 + M2
n (ω)

M

(p + q)2 + M2

− Mn(0)

p2 + M2
n (0)

M

(p + q)2 + M2

]
(A.2)

and rotation to Euclidean momenta is performed. We now
introduce integration over

∫ 1
0 dx and the change of integra-

tion momentum p → p − q(1 − x) and p2 → x p2

I (q) =
∫ 1

0
dx

∫ ∞

0
dp2 p2

×
∑
n

[
Mn(ω)M[

M2
n (ω) + A

]2 − Mn(0)M[
M2

n (0) + A
]2

]
(A.3)

where

A = p2 + B, B = q2(1 − x) + M2(1 − x)/x . (A.4)

After performing the summation over n and the integration
over p one easily obtains

I (q) = i
∫ 1

0
dx

{√
B log

[
1 − e2π(

√
B−iω)

]

+ 1

2π
Li2

(
e2π(

√
B−iω)

)
+ h.c.

}
. (A.5)

In particular, for M � 1,
√
B = q

√
1 − x , I (0) = g0(ω)/4,

and we recover (as we should) the corresponding case studied
in Sect. 3 (see Eq. (3.4)). Moreover, the function I (q) is
dominated by its value at the q = 0 region as we can see
in the left panel of Fig. 8 where we plot contour lines of
log10[F(q)/F(0)] in the plane (ω, q). We can see that, for
any value of ω, the function F(q) is dominated by its value
at q = 0.

In gauge mediation we define the supersymmetry breaking
parameter 
 ∝ F/M , which seeds the gaugino and scalar
masses. We can compare 
 with the value 
eff induced after
integration of F(q) over the one-loop (for gaugino masses) or
two-loop (for scalar masses) diagrams with internal momen-
tum q. In view of the result of the left panel of Fig. 8 we
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Fig. 8 Left panel Contour lines of log10[F(q)/F(0)]. Right panel Plot of 
eff/
 for different values of ω

expect that 
eff/
 � 1 for MR � 1 as, in the integration
over q, the momentum q is rescaled as q → qM . This result
is quantified in the right panel of Fig. 8 where we have com-
puted the value of the parameter 
eff/
 when 
eff is con-
tributing to the one-loop gaugino masses. We can see that

eff/
 � O(1) is fulfilled for MR � 0.1. Then as we got
from the right panel of Fig. 5 that 1/R � 1011 GeV, the pre-
vious condition translates into the mild condition M � 1010

GeV, a region where the approximation done in Sect. 3 is
fully justified.
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