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Abstract

Computing over large platforms calls for the ability to maintain distributed structures at large scale.
Among the many different structures proposed in this context, the prefix tree structure has been identified
as an adequate one for indexing and retrieving information. One weakness of using such a distributed
structure stands in its poor native fault tolerance, leading to the use of preventive costly mechanisms such
as replication.

Self-stabilization is a suitable approach to design reliable solutions for dynamic systems, and was
recently enhanced with new models to be able to deal with large scale dynamic platforms. A self-stabilizing
system is guaranteed to reach a correct configuration, whatever its initial state is. Following this path, it
is becoming possible to make distributed structures self-stabilizing at large scale.

In this paper, we focus on making tries self-stabilizing over such platforms, and propose a self-stabilizing
maintenance algorithm for a prefix tree using a message passing model. The proof of self-stabilization is
provided, and simulation results are given, to better capture its performances. Still based on simulations,
we provide evidences that the protocol, beyond its capacity to repair the structure, can significantly improve
the system’s availability, even when the system is not yet stabilized.
Keywords: Distributed algorithms; Overlay Networks; Prefix Trees; Service Discovery; Fault-Tolerance;
Self-Stabilization

1 Introduction

Platforms connecting geographically distributed computing resources have become a low cost alternative to
supercomputers, bringing new challenges, related to their scale and dynamics. Information retrieval within
such platforms, in particular to solve the resource discovery issue, was quickly identified as a big challenge,
requiring fully-decentralized, or peer-to-peer (P2P) approaches [26]. The term “resource” should be here
understood in a broad sense: it can refer to a storage facility, software utility or computing instruments.

The quest for the support of complex queries for resource discovery systems led to the design of different
overlay structures. In particular, tries, whose variants are also known as lexicographic trees, prefix trees, and
radix trees, have been identified as an adequate indexing structure. A trie is a particular tree in which nodes
are labelled with strings and all descendants of a node are labelled with a string prefixed by the label of this
node, the root node being usually labelled by the empty string. These structures allows to parallelize range
queries, automated completion of partial search strings, and can be easily extended to support multi-attribute
queries.

Although fault-tolerance is a mandatory feature in systems targeted for large scale platforms (in particular
to avoid data loss and ensure a correct routing process), trie-based overlays offer a limited inherent robustness
in a dynamic setting. The failure of one or more nodes can lead to the loss of the objects they store, and,
more importantly, can lead to the inconsistencies in the distributed structure, making the system unable to
process queries correctly. In recent trie-based overlay networks, fault tolerance was either ignored, or handled
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through replication, which can be very costly in terms of computing and storage. Moreover, replication does
not ensure the system’s recovery after arbitrary transient failures affecting the memory, the computation, and
the network.

In this paper, we take an alternate path to replication, and address the problem of the maintenance of
a distributed trie. The solution proposed relies on self-stabilization. Self-stabilization [14, 15] is a general
technique to design distributed systems that can handle arbitrary transient faults. A self-stabilizing system,
regardless of the initial state of the processes and initial messages in the links, is guaranteed to converge to
the intended behavior in finite time. The protocol designed to maintain a correct trie, referred to as the
Self-Stabilizing Trie (SST) protocol, can tolerate any type of transient faults, in particular memory corruption
and communication failures. Its correctness proof is provided. Simulation results are also provided, allowing
to better capture its performance. In particular, we discuss the use of this approach in real settings through
the simulation of the SST-based resource discovery system facing continuous failures. We show that using
such a self-stabilizing approach can drastically improve the satisfaction ratio of queries sent by users, even
during the repair phase.
Outline. The next section presents the series of works dealing with the maintenance of distributed structures
in a dynamic setting. In particular, our work is put into perspective against recent works making distributed
structures self-stabilizing. Section 3 presents the preliminaries for the algorithms, namely the models and
the data structures considered. Section 4 presents the SST protocol, and gives a detailed correctness proof.
Section 5 presents the simulation results. The contribution is summarized and open directions are discussed
in Section 6.

2 Related Works

2.1 Trie-structured Overlay Networks

Information retrieval in P2P settings has been extensively studied. Early approaches were based on DHTs [36,
37, 40]. However, in spite of their scalability, their limit stands in their rather limited mechanisms of search,
as they support only exact queries. A great deal of research went into finding ways to enhance them with more
complex searching mechanisms. In particular, different algorithms were proposed to support multi-attribute
range queries [5, 32, 38, 39]. In this research track, trie-structured overlays were introduced. Trie-based
approaches outperform others in the sense that logarithmic (or constant if we assume an upper bound on the
depth of the trie) latency is achieved by parallelizing the resolution of the query in several branches of the
trie [2, 12, 33, 35]. Let us briefly review some of them.

The prefix hash tree (PHT), proposed in [35], maintains a dynamic trie built with the set of possible
keys, the trie being mapped over a DHT-structured network. Fault tolerance within PHT is delegated to the
DHT layer. Skip Graphs, introduced in [2], are similar to tries, and build upon skip lists, using their own
probabilistic fault-tolerance guarantees. P-Grid [12] is a similar binary trie whose nodes, in different sub-parts
of the trie, are linked by shortcuts as in Kademlia [33]. Fault tolerance in P-Grid is based on probabilistic
replication.

2.2 DLP-Tables

In this paper, we focus on the DLPT (Distributed Lexicographic Placement Table) approach, a trie-based
information retrieval architecture, initially described in [8] in the context of service discovery over dynamic
computational grids. The architecture is two-layered. The upper layer is a prefix tree indexing the information
about services available on the platform. Each node of the tree maintains information about services sharing
a particular name (or key), also used to label the tree node. This tree is built dynamically as services are
registered by some servers in the computational platform, as illustrated by Figure 2.1. Nodes storing some
services’ references (and labelled by actual names of services) are grey-filled, the others, created to ensure
the consistency of the index structure and enact the routing of queries, are labelled by virtual keys. In our
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example, a DGEMM is first declared1(a). A DTRSM is declared resulting in the creation of their parent, whose label
is their greatest common prefix, i.e., D (b). Finally, a DTRMM is added and the node DTR is created (c). This
tree is mapped onto the lower layer, i.e., the physical network. While this mapping is out of the scope of the
paper, it may for instance rely on a distributed hash table to distribute the tree nodes onto processors. This
issue has been devised in [9]. Simulations available in [8] show that, using different data sets, approximately
1/3 of nodes are labelled by virtual keys. In other words, 1/3 of the nodes simply ensures the consistency
of the architecture, the others storing actual services’ information. To avoid losing service information, it
may be necessary to use replication. Still, ensuring the consistency of the structure and the routing process
cannot be based on replication, which fails to address several requirements detailed above, and it requires new
mechanisms. This paper proposes such mechanisms.

Figure 2.1: Construction of the prefix tree in DLPT approach.

To sum up, fault tolerance in trie-based overlay networks has been, until recently, mostly ignored, delegated
to other layers, or implemented using replication mechanisms. In the following section, we detail the research
efforts directed towards alternate, best-effort solutions to enhance these overlays with solutions to deal with
the high dynamics of the platform.

2.3 Topology Maintenance in Dynamic Systems

Over the last years, a fair amount of works dealt with the maintenance of distributed structures facing the
dynamics of the platform. Few works, like for instance [31] showed how to guarantee the continuous correctness
of distributed structures under concurrent joins and leaves, but without considering failures.

Hayes et al. proposed the Forgiving Tree [22], a distributed structure which is ensured, under periodic
adversarial deletion of one of its node, to maintain strong guarantees on its diameter and degree. Upon each
adversarial deletion, both the time needed to recover and the number of messages sent are constant. The
authors have extended their work to adversarial insertions of nodes in [21], but still with one adversarial
move at a time. In [4], a spanning tree maintenance algorithm is proposed, also providing strong guarantees
about degree and diameter, but under an infinite arrival model with bounded concurrency (the number of
concurrently active nodes at a given time is bounded). However, these works still assume that processes are
reliable.

Tackling the problem in faulty environments, some answers came from the self-stabilization area. Some
investigations took interest in distributed search tree networks, e.g., [24] and [25] for 2-3 trees and heap trees,
respectively. A self-stabilizing lexicographic distributed structure is proposed in [19] as an application of
r-operators. The protocol proposed in [7] deals with prefix tree maintenance. It has the nice property of
being snap-stabilizing [6], i.e., it guarantees that it always behaves according to its specification — it is a
self-stabilizing algorithm which is optimal in terms of stabilization time since its stabilizes in 0 steps. However,

1Labels used are function’s names found in the BLAS linear algebra library [18]. For instance, DGEMM is a double-precision
general matrix multiplication.
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the algorithms in [7] requires the initial topology to be a rooted connected tree, and has been proved in a
coarse theoretical model (namely, the state model introduced by Dijkstra in [14]).

However, we should here point out that all the previously mentioned solutions are designed for distributed
systems defined by their topology, each node having a set of neighbors, and communicating with them through
a finite number of links. In today’s emerging platforms, like the Internet, each node P1 can communicate
with any other node P2, provided that P1 knows the address of P2. The topology of P2P networks, or more
generally of high-level protocols is logical, built on top of the physical network. Details of the physical topology,
and the underlying routing process are abstracted. In other words, in a peer-to-peer overlay network, neighbors
are the peers that a peer is aware of, i.e., of which it knows the address. As a consequence, traditional models
cannot be used to model peer-to-peer networks.

Nevertheless, new models have been proposed. Shaker and Reeves [1] give an intuitive and simple for-
malization of the bootstrapping problem. Recall that, to join the overlay, a node first needs to discover any
node which is already a member of the overlay, by using an out-of-band mechanism. Shaker and Reeves put
in words the fact that any peer-to-peer system needs a weakly-connected bootstrapping system, i.e., able to
gather the addresses of all alive nodes inside the overlay to ensure its convergence to a connected consistent
overlay starting from any possibly disconnected topology. In the same paper, they give a self-stabilizing pro-
tocol to maintain an overlay network, assuming the presence of a continuous weakly-connected bootstrapping
service. Each node periodically initiates lookup to the bootstrap system. Dolev and Kat [16] propose a similar
bootstrap-dependent self-stabilizing overlay network based on their HyperTree structure. The HyperTree is
a virtual tree structure built using IP addresses in which in-degree and out-degree of nodes are ensured to
be b logb n where n is the actual number of machines and b, an integer greater than one. The maximum
number of hops in a lookup in the HyperTree is bounded by logb n. Following these two works, in [23], a
model is proposed for the design of distributed algorithms for large scale systems, opening doors for further
systematic investigation of self-stabilization solutions in peer-to-peer networks. A spanning tree maintenance
protocol illustrates the model. Some works focused on the publish/subscribe paradigm, often implemented
by peer-to-peer networks. Several papers, e.g., [13, 41] design such protocols, but enhancing them with the
self-stabilizing property.

A recent series of works proposed self-stabilizing overlay structures: In [11, 34], self-stabilizing protocol
maintaining skip lists are proposed. In [27], a variant of the skip graph distributed structure is made self-
stabilizing, with the main advantage of having a sublinear convergence time, which is not the case of previous
attempts of self-stabilizing dynamic network structures. In [28], the same authors came up with a similar
result (however, requiring polynomial time) for Delaunay graphs. Recently, they proposed a self-stabilizing
version of Chord [29]. In [20], the authors introduced topological self-stabilization, which consists to guarantee
that from any connected topology, an overlay with desirable properties eventually holds. They consider the
local graph linearization, i.e., how to build a distributed sorted list of the nodes in a self-stabilizing manner.

3 Preliminaries

In this section, we describe the distributed system model considered, specify the distributed data structures
maintained, and formally present self-stabilization.

3.1 Model

A P2P network consists of a set of asynchronous processors, henceforth referred to as peers. By asynchronous,
we mean that there is no bound on message delay, clock drift, or execution speed rate. Peers are endowed
with distinct IDs. They communicate by exchanging messages. Any peer P1 can communicate with another
peer P2 provided P1 knows the id of P2. We abstract out the details of the actual physical routing, as done
in most peer-to-peer systems.

The distributed structure considered, used as an indexing system to store the information is a prefix tree.
Nodes of this tree are mapped onto the peers of the network. Henceforth, the word node refers to a node of
the tree, i.e., a logical entity. Each peer maintains a part of the indexing system, i.e., some (logical) nodes
of the prefix tree. Each (logical) node is implemented as a process running on a peer. In other words, a
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process implements a node. Each node is labelled. When the system is correct – such a state is defined later
in Definition 3.1 – each node label is unique. We assume that each node keeps its label constant in a safe
memory location, meaning that the labels are actual labels supposed to be stored within the trie. A single
node is responsible for all services having a common name. However, initially, the system is not stabilized
yet, and the structure may contain multiple nodes with the same label. Thus, we cannot use labels to identify
the nodes. We chose to identify nodes by the process implementing it. A process is identified by a unique
combination of the peer running it and a port number. Our protocol maintaining the prefix tree runs on
all processes. Nodes and processes are basically different visions of the same object. In the remainder, we
use these terms interchangeably. Recall that an important aspect of this work is that the topology itself can
change during its reconstruction.

Communication between processes is carried out by exchanging messages. A process p is able to communi-
cate with a process q, if and only if p knows the id of q. We assume that a copy of every message sent by p to
q is eventually received by q, unless q crashed or was deleted. The message delay is assumed to be bounded.
We assume that messages are delivered in the order they were sent (channels are FIFO), and that, as long as
a message is not processed by the receiving process, it is in transit.

We assume the presence of an oracle able to return process references. This oracle is similar to the one
described in [23]. By calling it, a process can obtain the identifier of a random existing process of the system.
In more detail, the oracle service provides two primitives. The first one, named GetRunningProcess(),
returns the identifier of a randomly chosen process. The second one, named GetNewProcess() creates a
new empty process (without initializing it) and returns the process’ identifier. In order to be able to prove the
termination of the algorithm, we need to assume that a finite number of calls to this service suffices to collect
the identifiers of all processes in the system. The oracle may return the id of a process that left the system or
never existed, but only during a limited amount of time. The implementation of such an oracle may rely on
any centralized or decentralized directory, for instance based on a DHT enhanced with reliable broadcast [30].
A deeper discussion of this implementation falls beyond the scope of this paper.

3.2 Data Structure

We now formally describe the distributed structure we maintain. Let an ordered alphabet A be a finite set of
letters. Let ≺ be an order on A. A non-empty word w over A is a finite sequence of letters a1, . . . , ai, . . . , al
where l > 0. The concatenation of two words u and v, denoted as u ◦ v, or simply uv, is equal to the word
a1, . . . , ai, . . . , ak, b1, . . . , bj , . . . , bl such that u = a1, . . . , ai, . . . , ak and v = b1, . . . , bj , . . . , bl. Let ε be the
empty word such that for every word w, wε = εw = w. The length of a word w, denoted by |w|, is equal
to the number of letters of w. |ε| = 0. A word u is a prefix (respectively, proper prefix ) of a word v if
there exists a word w such that v = uw (resp., v = uw and u 6= v). The Greatest Common Prefix (resp.,
Proper Greatest Common Prefix ) of a collection of words w1, . . . , wp (p ≥ 2), denoted GCP (w1, . . . , wp) (resp.
PGCP (w1, . . . , wp)), is the longest prefix u shared by all of them (resp., with ∀i such that 1 ≤ i ≤ p, u 6= wi).

Definition 3.1 (PGCP Tree) A Proper Greatest Common Prefix Tree is a labelled rooted tree such that
the following properties are true for every node of the tree:

1. The node label is a proper prefix of any label in its subtree (itself excluded).

2. The greatest common prefix of any pair of labels of children of a given node are the same and equal to
the node label.

In regard to this definition, configurations presenting different kinds of inconsistency can be envisioned, as
illustrated by Figure 3.2. Figure 3.2(a) shows a correct PGCP tree, which is the final goal of the reconstruc-
tion. Figure 3.2(b) shows a PGCP forest comprising several disconnected PGCP trees. Such a situation can
occur after some node left the system, as well as in the initial configuration. Other possible arbitrary initial
configurations are shown in Figure 3.2(c) and 3.2(d). The former illustrates a labelled tree where nodes are
arbitrarily placed. The latter combines a disconnection pattern, an arbitrary node placement, and a wrong
topology (materialized by the presence of a cycle).
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(a) (b)

(c) (d)

Figure 3.2: Possible configurations of the initial overlay.

3.3 Self-Stabilization

Define a transition system as a triple S = (C, 7→, I), where C is a set of configurations, 7→ is a binary transition
relation on C, and I ⊂ C is the set of initial configurations. A configuration is a vector with n+ 1 components,
where the first n components are the state of n processes and the last one is a multi-set of messages in transit
in m links. We define an execution of S as a maximal sequence E = (γ0, γ1, γ2, ..., γi, γi+1, ...), where γ0 ∈ I
and for i ≥ 0, γi 7→ γi+1.

A predicate Π over C, the set of system configurations, is closed for a transition system S if and only if
every state of an execution e that starts in a state satisfying Π, also satisfies Π.

Definition 3.2 (Self-Stabilization) A transition system S = (C, 7→, I) is a self-stabilizing system with
respect to a predicate Π if and only if the following conditions hold:

No Initialization: I = C,

Closure: Π is closed,

Convergence: For every execution e of S, there exists a configuration of e for which Π is true.
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4 Self-Stabilizing Trie Protocol

In this section, we present the SST protocol. This protocol is self-stabilizing and self-organizing, meaning, the
initial state of the structure can be an arbitrary labelled graph, but will eventually converge to a PGCP tree.
In particular, SST handles any configuration presented in Figure 3.2.

4.1 Assumptions

Communications. SST assumes the existence of an underlying Self-Stabilizing End-to-End (SSEE) com-
munication protocol. Both layers communicate using send/receive primitives over FIFO message queues.
The implementation of such an SSEE protocol falls beyond the scope of this paper. The reader may refer
to [3, 17] for such protocols. Every process p (we use p to denote both the id of p and the address used by

other processes to communicate with p) has a label lp. We denote by p̂, the pair (p, lp). Note that p̂ = p̂′ is
equivalent to (p = p′)∧ (lp = lp′). A node p also maintains a copy of the identifier and label of its parent into

f̂p and of its children into the finite set denoted Ĉp. Note that Ĉp, p̂ and f̂p are variables, and that Cp is the

result of a macro that extracts the first element of every pairs in Ĉp. The “send(<m>, q)” primitives sends
message m to node q and returns a boolean. It always terminates; if the recipient q is alive, m is queued at q
and true is returned; otherwise, (q is no longer available or m is lost) false is returned.

Oracle Usage. The SST protocol assumes the function GetEpsilon(), which returns an arbitrary alive ε-
process, i.e., a node labelled by ε. Basically, the GetEpsilon() function calls the oracle primitive GetRunningProcess()
as many times as necessary and checks whether the process returned is an ε-process. Since we assume that a
finite number of calls to the oracle suffices to get all identifiers of alive nodes, GetEpsilon() also returns an
ε-process in a finite time. The NewProcess(lbl, f, C) primitive initializes the parameters of a process. (The

label, parent and children variables are filled with lbl, f̂ , and Ĉ, respectively.)

Failure Detection. We assume the presence of an underlying heartbeat protocol: any node that does not
receive news from one of its children or parent during a given time, removes the node from its neighborhood
set. Note that when deleting a given child q ∈ Cp, all the data associated with q is deleted.

The protocol is made of a set of rules. The periodic rule runs on each node as detailed in Algorithm 1,
periodically. The upon receipt rules, detailed in Algorithm 2, are initiated upon receipt of a message. All rules
are atomic. (They can not be interrupted by the arrival of another message or by the expiration of the time
out.)

4.2 Algorithm

The SST protocol is illustrated in Figure 4.3. It shows the steps involved in the repairing of a structure, where
the periodic rule is first triggered on the node labelled A−B (in steps a-d), and then on the node labelled ε1
(in steps e-f).

The Prefixes(l) function returns all the strings which are a prefix of the string l, including l and ε. The
GCP(l1, l2) function returns the greatest common prefix of strings l1 and l2.

Each node p periodically initiates the action described in Algorithm 1. p begins by eliminating the particular
problematic cases where p is either a parent or a child of itself (Lines 1.03-1.04).

Lines 1.05-1.15 deal with parent maintenance. These lines ensure that eventually, there will be one and
only one root, i.e., only one node p eventually satisfies fp = ⊥. To achieve this, the possible root nodes merge.
Let us consider a root node p to explain this part of the algorithm. There are two possible situations:

1. If the label of p is ε (refer to d-e), p tries to connect to another node q, also labelled ε. (On Figure 4.3(e),
ε1 discovers ε2.) Then, q becomes a child of p (Line 1.09). p informs q that its parent changed using
UpdateParent message. Upon receipt of that message, q updates its parent variable (Lines 5.01-5.02
of Algorithm 2). Since p and q are labelled identically, they will merge (the merging process is detailed
below), thus reducing the number of roots by one.
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Algorithm 1 Periodic rule, on process p

1.01 Variables: p̂ = (p, lp), id and label of p

f̂p = (fp, lfp ), id and label of the parent of p

Ĉp = {q̂1 = (q1, lq1 ), . . . , q̂k = (qk, lqk )}, set of children of p
Tq, ∀q ∈ Cp time before considering q as not its child anymore

Cp ≡ {q | (q, lq) ∈ Ĉp}, set of totally ordered ids of children of p

1.02 upon TimeOut do
1.03 if fp = p then fp := ⊥ endif

1.04 if p ∈ Cp then Ĉp := Ĉp \ {p̂} endif
1.05 if fp = ⊥ then
1.06 if lp = ε then
1.07 q := GetEpsilon()
1.08 if q < p then

1.09 Ĉp := Ĉp ∪ {(q, ε)}
1.10 send(<UpdateParent, p̂ >, q)
1.11 endif
1.12 else
1.13 new := GetNewProcess()
1.14 send(<Host, (ε,⊥, {p̂})>, new)

1.15 f̂p := (new, ε)
1.16 endif
1.17 endif
1.18 while ∃q ∈ Cp | lq = lp do
1.19 send(<Merge, p̂ >, q)
1.20 done
1.21 while ∃(q1, q2) ∈ C2

p : lp ∈ Prefixes(lq1 ) ∧ lq1 ∈ Prefixes(lq2 )) do
1.22 send(<UpdateParent, q̂1 >, q2)

1.23 Ĉp := Ĉp \ {q̂2}
1.24 done
1.25 while ∃(q1, q2) ∈ C2

p : lp ∈ Prefixes(lq1 ) ∧ lp ∈ Prefixes(lq2 ) ∧ |GCP (lq1 , lq2 )| > |lp| do
1.26 lnew := GCP(lq1 , lq2 )
1.27 new := GetNewProcess()
1.28 send(<Host, (lnew, p, {q1, q2})>, new)
1.29 send(<UpdateParent, n̂ew>, q1)
1.30 send(<UpdateParent, n̂ew>, q2)

1.31 Ĉp := Ĉp \ {q̂1, q̂2} ∪ {n̂ew}
1.32 done
1.33 if fp 6= ⊥ then
1.34 send(<Parent?, p̂ >, fp)
1.35 endif
1.36 done

2. If p is not labelled by ε, a new node labelled ε is artificially created as the parent of p. (See Figure 4.3(a−
b): the AB node creates the ε2 node.) The new node ε2 will eventually execute the periodic rule, and
fall in the case explained before.

Lines 1.18-1.31 deal with children maintenance. They ensure that every set of children satisfies Defini-
tion 3.1, eventually. This phase eliminates sequentially, three families of problematic cases:

1. Firstly, we deal with cases where the set of children of p contains a node q whose label is the same as p.
This is done by initiating the merging of node p and node q: On Line 1.19, p sends a Merge message to
such a process q. The steps involved upon receipt of the Merge message are given by Lines 7.01-10.03
in Algorithm 2: Upon receipt of the Merge message, q informs its children that their new parent is
their current grandparent (p is the parent of q), through GrandParent messages. Upon receipt of this
message, the children of q update their parent with p. To ensure a good synchronization, q waits until
all of its children have been “adopted” by p, i.e., q waits for the GFDone message. q then informs p
that the merging process is completed, through the sending the MDone message. Finally, q terminates.
This process is illustrated in Figure 4.3(f): ε1 and ε2 merge.

2. Secondly, we eliminate cases where a pair of children does not satisfy the second part of Definition 3.1.
For instance, assume that a child of p, named q1 prefixes another child q2. The greatest common prefix of
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Algorithm 2 Upon receipt rules, on process p

2.01 upon receipt of <Parent?, q̂> do
2.02 if lp ∈ Prefixes(lq) then
2.03 if send(<Child, p̂ >, q) then

2.04 Ĉp := Ĉp ∪ {q̂}
2.05 endif
2.06 else
2.07 send(<Orphan, p̂ >, q)

2.08 Ĉp := Ĉp \ {q̂}
2.09 endif
2.10 done

3.01 upon receipt of <Child, q̂ > do
3.02 if fp = q then lfp := lq endif
3.03 done

4.01 upon receipt of <Orphan, q̂ > do
4.02 if fp = q then fp := ⊥ endif
4.03 done

5.01 upon receipt of <UpdateParent, q̂ > do

5.02 if (lq ∈ Prefixes(lp))∧ send(<Parent?, p̂ >, q) then f̂p := q̂ endif
5.03 done

6.01 upon receipt of <Host, l, f̂ , Ĉ > do

6.02 NewProcess (l, f̂ , Ĉ)
6.03 done

7.01 upon receipt of <Merge, q̂ > do
7.02 if (fp = q) ∧ (lq = lp) then

7.03 ∀q′ ∈ Cp, send(<GrandParent, f̂p, p̂ >, q′)
7.04 endif
7.05 done

8.01 upon receipt of <GrandParent, n̂ewf , q̂ > do
8.02 if (fp = q) ∧ (lq ∈ Prefixes(lp)) then

8.03 f̂p := n̂ewf
8.04 send(<GFDone, p̂ >, q)
8.05 endif
8.06 done

9.01 upon receipt of <GFDone, q̂ > do
9.02 if (q ∈ Cp) ∧ (lp ∈ Prefixes(lq)) then

9.03 Ĉp := Ĉp \ {q̂}
9.04 if Ĉp = ∅ then
9.05 send(<MDone, p̂ >, fp)
9.06 Kill()
9.07 endif
9.08 endif
9.09 done

10.01 upon receipt of <MDone, q̂ > do
10.02 if (q ∈ Cp) ∧ (lp ∈ Prefixes(lq)) then

10.03 Ĉp := Ĉp \ {q̂}
10.04 endif
10.05 done
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Figure 4.3: SST protocol

their labels is clearly equal to the label of q1. However, their greatest common prefix, by Definition 3.1,
must be the label of p. To repair this, q2 becomes the child of q1 (in Lines 1.21-1.23). On Figure 4.3(c),
the ABEA node becomes the child of the ABE node.

3. Thirdly, we check that there is no pair (q1, q2) in our set of children such that the greatest common prefix,
say g, of their labels is greater than its own label (Lines 1.25-1.31). In this case, to satisfy Definition 3.1
(without deleting nodes), a new node must be created. This new node, labelled by g, is the child of p,
and the common parent of q1 and q2. On Figure 4.3d, the ABD node is created.

The purpose of Lines 1.33-1.34 is for p to check the validity of its parent. Upon receipt of the Parent
message, the parent of p decides whether p is its child, depending on their labels, and informs p of the result.
It uses a Child message to indicate that it considers p as its child. Otherwise, it sends an Orphan message.
Lines 3.01-4.02 detail the action upon receipt of these messages. Upon receipt of Child, p updates the label
of its parent. Upon receipt of Orphan, it becomes a root, and will execute the periodic rule, eventually.
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4.3 Proof of Self-Stabilization

In this section, we show that, whatever its initial state is, the topology of the indexing system converges to
a correct trie satisfying Definition 3.1 in a finite time, and that it remains correct as long as no new fault
occurs. In order to prove the stabilization, we need to make two traditional assumptions: (i) The frequency
of fault occurrence is low. (ii) The time between two occurrences of faults is higher than the time required to
recover from a fault. In the proofs given in this section, we will consider a suffix of an execution starting after
all faults took place, i.e., in this particular execution segment, no further faults will occur. Let P be the set
of alive processes. Recall that every “send(<m>, q)” executed by a process p ∈ P terminates and when this
happens, either m is received by q or q /∈ P .

A configuration γ satisfies Predicate Π1 if and only if, assuming that a process p ∈ P infinitely often sends
a message to a process q ∈ P (q 6= p), the following two conditions are true in every execution e starting from
γ: (1) Safety : The sequence of messages received by q is a prefix of the sequence of messages sent by p; (2)
Liveness: q receives a message infinitely often.

The following lemma follows from the fact that we assume an underlying self-stabilizing end-to-end com-
munication protocol.

Lemma 4.1 The system is self-stabilizing with respect to Π1.

Corollary 4.1 Every message received by a process in P in a configuration that satisfies Π1, was sent by
another process in P .

According to Lemma 4.1, in the remainder of this paper, we consider executions starting from configurations
satisfying Π1 only.

Lemma 4.2 Starting from a configuration satisfying Π1, every process in P executes Lines 1.02-1.34 infinitely
often.

Proof. The set Ĉp is finite and the loop is executed atomically (no message receipt can interrupt the
execution of the loop). Moreover, each execution of send terminates. So, none of the three “while loops”
(Lines 1.18-1.31) can loop forever. 2

Corollary 4.2 Starting from a configuration satisfying Π1, the system eventually contains no process p such
that fp = p or p ∈ Cp.

Proof. Process p executes Lines 1.03 and 1.04 infinitely often. Moreover, the algorithm contains no line
in which fp := p or Ĉp := Ĉp ∪ {p̂}. 2

We will now show that, starting from a configuration satisfying Π1, the child set (Cp) of each process p ∈ P
eventually contains no child q such that q /∈ P , i.e., q is alive.

Lemma 4.3 Let p be a process in P . In every execution starting from a configuration γ satisfying Π1, if there
exists q ∈ Cp such that q /∈ P , then eventually, q /∈ Cp.

Proof. Follows from the assumption of an underlying heartbeat protocol between neighbors. 2

Let Π2 be the predicate over C such that γ ∈ C satisfies Π2 iff ∀p ∈ P , ∀q ∈ Cp, q ∈ P .

Lemma 4.4 The system is self-stabilizing with respect to Π2.

Proof. From Corollary 4.1, no process p ∈ P can receive a message from a process q /∈ P . So, in any
execution starting from a configuration γ satisfying Π1, no process p can add a process id q such that q /∈ P .
p can add a process q in Cp using Lines 1.09 and 1.31 in which case q was returned by a Get*() function
assumed to return ids in P . It can also add q using Line 2.04, in which case q was sent by q itself, and is thus
alive. By Lemma 4.3, if there exists some process p ∈ P such that Cp contains ids not in P , then each of these
ids is eventually removed from Cp. Thus, eventually, ∀p ∈ P , ∀q ∈ Cp, q ∈ P . 2
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From now on, according to Lemma 4.4, we consider only executions that start from configurations satisfying
Π2. Also, we do not mention P because all process references are assumed to be in P .

Let Π3 be the predicate over C such that γ ∈ C satisfies Π3 iff in every execution starting from γ satisfying
Π2, for each process p: (1) p executed Lines 1.02-1.34 at least once, and (2) if p sent a message “Parent?”
to q, then p received the corresponding response (a message <CHILD> or <Orphan>) from q. The next
lemma follows directly from Lemma 4.2 and the fact that every message receipt action terminates.

Lemma 4.5 The system is self-stabilizing with respect to Π3.

In the remainder, we consider that the executions start from configurations satisfying Π3. Lemma 4.5
ensures that for every process p, each label in Ĉp is correct, i.e., is equal to the actual label of q. p adds or
updates the child labels in three ways. First, using Line 2.04 in which case the label was sent by q itself and
is thus correct. Second, by using Line 1.09 in which case q was returned by GetEpsilon() and the label is
set to ε. Third, by using Line 1.31 in which case the label was computed by p itself and then sent to new. We
will now show that, starting from a configuration satisfying Π3, the child set (Cp) of each process p eventually
contains no child id q such that lp /∈ Prefixes(lq).

Lemma 4.6 Let p and q be two processes. If there exists an execution starting from a configuration satisfying
Π3 containing a system transition γt 7→ γt+1 such that q /∈ Cp in γt and q ∈ Cp in γt+1, then lp ∈ Prefixes(lq).

Proof. To add q to Cp, p executes one of the following lines: (1) Line 1.09. In this case, lp = lq = ε.
(2) Line 1.31. In this case, q = new and lq = GCP (lq1 , lq2), where both lq1 and lq2 are prefixed by lp. (3)
Line 2.04. This line is executed only if lp ∈ Prefixes(q) (Line 2.02). 2

Lemma 4.7 Let γ be a configuration satisfying Π3. Let p and q be a pair of processes such that, in γ, q ∈ Cp.
If there exists an execution e starting from γ such that q ∈ Cp forever, then lp ∈ Prefixes(lq).

Proof. Assume by contradiction that there exists e starting from γ such that q ∈ Cp forever, and
lp /∈ Prefixes(lq). Two cases appear:

1. There exists a configuration γ′ ∈ e such that fq 6= p forever (fq 6= p in every execution starting from γ′).
In that case, assuming the presence of an underlying heartbeat protocol between neighbors, p will not
receive heartbeats from q and eventually remove it from the set of its children. A contradiction.

2. fq = p infinitely often. So, q sends Parent? to p infinitely often. Upon receipt of this message, p
removes q from Cp (Line 2.08). A contradiction.

2

Let Π4 be the predicate over C such that γ ∈ C satisfies Π4 iff given two processes p, q, if q ∈ Cp in γ, then
lp ∈ Prefixes(lq).

Lemma 4.8 The system is self-stabilizing with respect to Π4.

Proof. By Lemma 4.7, for every process p, if Cp contains q such that lp /∈ Prefixes(lq), then q is eventually
removed from Cp. By Lemma 4.6, for every p, q can be added to Cp only if lp ∈ Prefixes(lq). So, eventually,
if q ∈ Cp, then lp ∈ Prefixes(lq). 2

Corollary 4.3 In every execution starting from a configuration γ satisfying Π4, no process receives a message
Orphan anymore.

Proof. A message Orphan is sent from a parent to one of its child upon receipt of a message Parent?.
Since Π4 holds, for every q ∈ Cp in γ, lp belongs to Prefixes(lq). So, upon the receipt of a message Parent?
sent by q to p, p cannot send Orphan to q in a configuration γ that satisfies Π4. 2

We will now show that the number of trees will eventually become one. According to Lemma 4.8, we
consider executions starting from configurations satisfying Π4.
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Lemma 4.9 In every execution starting from a configuration γ satisfying Π4, the number of times a process
p sets fp to ⊥ is less than or equal to 1.

Proof. Assume by contradiction that there exists an execution e starting from γ and a process p setting fp
to ⊥ more than once. In a configuration satisfying Π4, by Corollary 4.2 and Lemma 4.4, p can set fp to ⊥ upon
receipt of a message Orphan only. So, p receives Orphan at least once, which contradicts Corollary 4.3. 2

Let % be the number of processes p such that fp = ⊥.

Lemma 4.10 In every configuration γ satisfying Π4, if % = 0 in γ, then % eventually becomes greater than 0
and remains greater than 0 thereafter.

Proof. Assume by contradiction that % = 0 in γ and there exists an execution e starting from γ such that
% is equal to 0 infinitely often. There are two cases to consider:

1. % = 0 in every configuration of e, i.e., ∀p, fp 6= ⊥ in every configuration. So, no process ever receives
Orphan. Let p be a process such that ∀q 6= p, lq /∈ Prefixes(lp)—i.e., lp is minimum. (Note that in
every configuration satisfying Π4, ∀q 6= p, p /∈ Cq.) Upon the first receipt of Parent? sent by p to its
parent, say p′, p′ sends Orphan to p. A contradiction.

2. % = 0 infinitely often. From Lemma 4.9, ∀p ∈ P , p sets fp at most once. So, % increases from 0 to a
value x ≤ |P |. Then, since we assume that % = 0 infinitely often, it means that % will then be equal to
0, eventually. And since % can not increase anymore, it will remains equal to 0, which is the first case.

2

Lemma 4.11 In every execution starting from a configuration γ satisfying Π4, % eventually becomes equal to
1.

Proof. By Lemma 4.10, if % = 0 in γ, then % eventually becomes greater than 0 and remains greater than
0 thereafter. If there exists an execution that starts from γ during which % increases, then by Lemma 4.9,
then % increases a finite number of times bounded by |P |. Therefore, in every execution from γ, there exists
a configuration γt from which % reaches a maximum value x ∈ [1, |P |].

Assume by contradiction that there exists an execution e, a value y ∈ [2, x], and a configuration γt′ in e
with t′ ≥ t such that % = y and remains equal to y thereafter. There are two cases to consider:

1. Among the y nodes, there exists p such that lp 6= ε. Then, p eventually executes Lines 1.13-1.15 a new
ε-process is created, taking p as its child. The number of roots is unchanged but, eventually, every root
is labelled by ε.

2. The label of the y nodes is equal to ε. Let p be the ε-processes having the maximum identifier. By
executing Line 1.07, p eventually chooses an ε-process q such that q sets fq to p upon receipt of the
message UpdateParent sent by p, and the number of roots is decremented. A contradiction.

2

Let Π5 be the predicate over C such that % = 1.

Lemma 4.12 The system is self-stabilizing with respect to Π5.

Proof. Follows from Lemmas 4.9, 4.10, and 4.11. 2

In every configuration satisfying Π5, there exists a single process r such that lr = ε and fr = ⊥. In the next
and last step of the proof, we show that if the parent of a process p changes, then p moves toward the leaves
such that the tree eventually forms a PGCP tree. We consider only executions that start from configuration
satisfying Π5.
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Lemma 4.13 In every execution starting from a configuration γ satisfying Π5, if a process p sets fp to q,
then lq ∈ Prefixes(lp).

Proof. In every configuration γ satisfying Π5, a process can change fp by executing the receipt of either a
message GrandParent or UpdateParent, in both cases, sent by its parent. In both cases, fp is set to q
such that lq ∈ Prefixes(lp). 2

Lemma 4.14 In every execution starting from a configuration γ satisfying Π5, the number of pairs p, q such
that lp = lq eventually becomes equal to 0.

Proof. Note that in every configuration γ satisfying Π5, one among {p, q} is the parent of the other.
Without loss of generality, we assume that p is the parent of q. By the repeated executions of Lines 1.18-
1.19 and 7.01-10.03 on each pair p, q, all the children of q eventually become the children p and q eventually
disappears. 2

Let Π6 be the predicate over C such that γ ∈ C satisfies Π6 iff the distributed data structure maintained
by the variables of Algorithm 1 and 2 forms a Proper Greatest Common Prefix Tree. We want ∀p,∀q1, q2 ∈
Cp, lp =GCP(lq1 , lq2). Considering the results of Lemmas 4.1, 4.4, 4.5, 4.8, 4.12, 4.13, and 4.14, there remains
to eliminate problematic cases expressed by conditions of Line 1.21 and Line 1.25. By the repeated executions
of Lines 1.21-1.31, we can claim the final result of our algorithm:

Theorem 4.1 The system is self-stabilizing with respect to Π6.

5 Simulation

Our work is in line with the progress of computing platforms from centralized control and static settings toward
autonomic distributed infrastructures, i.e., bringing self-* capabilities to the system, mainly self-management
and self-adaptiveness. Self-stabilization turns out to be a suitable approach to reach this goal. In this section,
we aim at highlighting such approach toward implementation in real environment. We also provide a rough
complexity of convergence time in an environment close to the intended platforms.

In order to do so, we establish the convergence time in terms of rounds that is a well-known and widely
used time complexity in the area of self-stabilization [15]. The notion of round has been defined in a model
where the communications are abstracted by the ability for neighboring nodes to share registers. It captures
the execution rate of the slowest node in any execution. In the message passing model, we get close to this
concept by considering that both the message transit time and the computation time are globally constant.
More specifically, the simulator was implemented using Python and implements discrete time: at each time
step i, a message sent at step i− 1 is received by the destination node, which, on receipt, triggers the action
to be triggered upon receipt of the message (possibly generating new messages, in their turn to be received at
step i+ 1).

5.1 SST Scalability

We tested the scalability of the protocol facing a randomly created initial configuration. The script developed
creates this initial configuration. More precisely, a high level of randomness is used, ensuring the topology
created suffers from many problems with high probability (w.h.p.). In the following, random refers to uniformly
random. Nodes are constructed sequentially. Firstly, to create one node, a label is constructed, with a size
randomly chosen in the range [1, 20], and its composing characters are randomly picked in the Latin alphabet.
Secondly, some nodes are randomly chosen from the set of already created nodes, to be its parent and children,
in the sense that this node considers them as parent and children, but this relation is not symmetric w.h.p.,
since these last nodes have also chosen their relatives in a random manner. For example, p may consider its
parent label is l although q is labelled l′ 6= l, or p may assume q as its parent while q does not consider p as its
child. Doing so, the initial graphs contain inconsistencies of different nature (w.h.p.), related to the prefixing
rules, to the neighboring symmetry, and, more simply, to the copy of the labels of one’s neighbors.
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As illustrated in Figure 5.4(a), when the size of the graph increases, the convergence time increases loga-
rithmically. To explain this, we need to observe that during the reconstruction, two phases appear. The first
one, dealing with the non-symmetric connections and the inconsistent labels. As these actions can be achieved
with a lot of parallelism on distinct sets of nodes, they globally require a constant number of steps. The second
phase consists in nodes aggregating into trees. The operation of merging two trees has a complexity related
to their depths.

Figure 5.4(b) gives the average number of messages each node exchanges during one period, as a function
of the number of nodes. It suggests a linear behavior in the worst case, with a very low slope (≈ 0.08).

These two results confirm that the utilization of the CPU and network resources grow slowly, when the
size of initial graph increase.

5.2 SST in Practice

Finally, we wanted to explore the advantage of using such an approach in real settings, by observing the
satisfaction ratio of discovery requests sent to a structure continuously undergoing failure, but enhanced with
the SST protocol running in background.

To do so, discovery requests on a given service (or label) are encapsulated into a message, which is sent
to a randomly picked node. Then, the message is routed in the structure until it reaches the node labelled
by the name of the requested service. The question to be investigated is then “Whatever the actual state of
the structure is (correct, or on its way to be correct), to what extent the SST protocol allows to improve the
satisfaction of requests sent ?” Thus the tree simulated continuously underwent failures, at a rate higher than
the convergence time, making the tree continuously incorrect, under the same discrete-time conditions as used
before.

In Figure 5.5, the X-axis gives the time (60 discrete steps). The tree size is approximately 70. In this case,
as we can see on previously discussed Figure 5.4(a), slightly more than 10 time steps are needed to converge.
So, in this experiment, some faults are injected (inconsistant labels or connection) every 10 steps. At each step,
a set of requests are sent to the tree. The Y-axis gives the percentage of clients’ requests satisfied. A request
is considered as satisfied if it reached its destination node in the tree, whatever the node initially contacted
by the request is. Figure 5.5(a) shows the results when the network does not provide any fault-tolerance
mechanism, and Figure 5.5(b) shows the results when the system is enhanced with the SST protocol.

As it can be expected for the non fault-tolerant version of the system, the satisfaction ratio drops quickly,
as soon as some failures are injected. Moreover, each new set of failures injected affects more the satisfaction
ratio. In contrast, when the system is enhanced with the SST protocol, even if the tree is never fully correct,
we observe that the satisfaction ratio is greatly improved as soon as the protocol starts handling errors
introduced: The ratio is almost doubled after one step. This suggests, beyond the actual convergence to the
correct topology, that the algorithm allows to reach a good state quickly. This stands in the fact that the
algorithm is highly parallel, making it possible to perform a lot of repairing action in a short time.

6 Conclusion

This paper provides a self-stabilizing distributed protocol able to recover a correct trie starting from an
arbitrary labelled graph topology, with nodes in an arbitrary state, and links containing arbitrary messages.

Simulations demonstrated that the convergence time follows a logarithmic behavior and that the amount
of communications induced grows slowly with the size of the tree. We also conducted simulations about a
more practical impact of such a protocol. They suggest that the SST protocol, beyond its formal convergence,
can significantly improve the performance of a prefix-tree based distributed indexing system, even in a highly
dynamic setting.

Recently, the SST protocol was implemented within the service discovery component of SBAM2, a decen-
tralized middleware system, and deployed over a real platform [10]. Those experiments confirmed the behavior
presented in Section 5.

2http://graal.ens-lyon.fr/SBAM
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Figure 5.4: SST protocol: Repairing arbitrary topologies.
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Figure 5.5: The SST protocol facing continuous faults.
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