Franck Petit
email: franck.petit@lip6.fr

Borzoo Bonakdarpour
email: borzoo@mcmaster.ca

Stéphane Devismes
email: stephane.devismes@imag.fr

Snap-Stabilizing Committee Coordination $

Keywords: Borzoo Bonakdarpour, Stéphane Devismes, Distributed algorithms, snap-stabilization, self-stabilization, committee coordination

Introduction

Distributed systems are often constructed based on an asynchrony assumption. This assumption is quite realistic, given the principle that distributed systems must be conveniently expandable in terms of size and geographical scale. It is, nonetheless, inevitable that processes running across a distributed system often need to synchronize for various reasons, such as exclusive access to a shared resource, termination, agreement, rendezvous, etc. Implementing synchronization in an asynchronous distributed system has always been a challenge, because of obvious complexity and significant cost; if synchronization is handled in a centralized fashion using traditional sharedmemory constructs such as barriers, it may turn into a major bottleneck, and, if it is handled in a fully distributed manner, it may introduce significant communication overhead, unfair behavior, and be vulnerable to numerous types of faults.

The classic committee coordination problem [START_REF] Chandy | Parallel program design: a foundation[END_REF] characterizes a general type of synchronization called n-ary rendezvous as follows:

"Professors in a certain university have organized themselves into committees. Each committee has an unchanging membership roster of one or more professors. From time to time a professor may decide to attend a committee meeting; he starts waiting and remains waiting until a meeting of a committee of which he is a member is started. All meetings terminate in finite time. The restrictions on convening a meeting are as follows: (1) meeting of a committee may be started only if all members of that committee are waiting, and (2) no two committees can meet simultaneously, if they have a common member. The problem is to ensure that (3) if all members of a committee are waiting, then a meeting involving some member of this committee is convened."

In the context of a distributed system, professors and committees can be mapped onto processes and synchronization events (e.g., rendezvous) respectively. Moreover, the three properties identified in this definition are known as (1) Synchronization, (2) Exclusion, and (3) Progress, respectively.

Most of the existing algorithms that solve the committee coordination problem [START_REF] Chandy | Parallel program design: a foundation[END_REF][START_REF] Bagrodia | A distributed algorithm to implement n-party rendezvous[END_REF][START_REF] Bagrodia | Process synchronization: Design and performance evaluation of distributed algorithms[END_REF][START_REF] Tsay | Some impossibility results in interprocess synchronization[END_REF][START_REF] Wu | Fairness of n-party synchronization and its implementation in a distributed environment[END_REF][START_REF] Kumar | An implementation of n-party synchronization using tokens[END_REF] overlook properties that are vital in practice. Examples include satisfying fairness or reaching maximum concurrency among convened committees and/or professors in a meeting. Moreover, to our knowledge, none of the existing algorithms is resilient to the occurrence of faults. These features are significantly important when a committee coordination algorithm is implemented to ensure distributed mutual exclusion in code generation frameworks, such as process algebras, e.g., CSP, Ada, and BIP [START_REF] Bonakdarpour | A framework for automated distributed implementation of component-based models[END_REF].

With this motivation, in this paper, we propose snap-stabilizing [START_REF] Bui | State-optimal snap-stabilizing pif in tree networks[END_REF][START_REF] Bui | Snap-stabilization and PIF in tree networks[END_REF] distributed algorithms for the committee coordination problem, where all processes are identical and each process has a unique identifier. Snap-stabilization is a versatile property which requires a distributed algorithm to efficiently tolerate transient faults. Indeed, after a finite number of such faults (e.g., memory corruptions, message losses, etc.), a snap-stabilizing algorithm immediately operates correctly, without any external (e.g., human) intervention. A snap-stabilizing algorithm is also a self-stabilizing [START_REF] Dijkstra | Self-stabilizing systems in spite of distributed control[END_REF] algorithm that stabilizes in 0 steps. In other words, our algorithms are optimal in terms of stabilization time, i.e., every meeting convened after the last fault satisfies every requirement of the committee coordination. By contrast, an algorithm that would be only self (but not snap) stabilizing only recovers a correct behavior in finite time after the occurrence of the last fault. Nevertheless, to the best of our knowledge, the committee coordination problem was never addressed in the area of self-stabilization. Therefore, the algorithms proposed in this paper are also the first self-stabilizing committee coordination protocols.

Our snap-stabilizing committee coordination algorithms are enriched with other desirable properties. These properties include Professor Fairness, Maximal Concurrency, and 2-Phase Discussion. The former property means that every professor which requests to participate in a committee meeting that he is a member of, eventually does. Roughly speaking, the second of the aforementioned properties consists in allowing as many committees as possible to meet simultaneously.

The latter (2-Phase Discussion) requires professors to collaborate for a minimum amount of time before leaving a meeting.

We first consider Maximal Concurrency and Professor Fairness. As in [START_REF] Kumar | An implementation of n-party synchronization using tokens[END_REF], to circumvent the impossibility of satisfying fairness [START_REF] Tsay | Some impossibility results in interprocess synchronization[END_REF], each time we consider professor fairness in the sequel of the paper, we assume that every professor waits for a meeting infinitely often. Under this assumption, we show that Maximal Concurrency and Professor Fairness are two mutually exclusive properties, i.e., it is impossible to design a committee coordination algorithm (even non-stabilizing) that satisfies both features simultaneously.

Consequently, we focus on the aforementioned contradictory properties independently by providing the two snap-stabilizing algorithms. The former maximizes concurrency at the cost of not ensuring professor fairness. On the contrary, the second algorithm maintains professor fairness, but maximal concurrency cannot be guaranteed. Both algorithms are based on the straightforward idea that coordination of the various meetings must be driven by a priority mechanism that helps each professor to know whether or not he can participate in a meeting. Such a mechanism can be implemented using a token circulating among the professors. To ensure fairness, when a professor holds a token, he has the higher priority to convene a meeting. He then retains the token until he joined the meeting. In that case, some neighbors of the token holder can be prevented from participating in other meetings so that the token holder eventually does. This results in decreasing the level of concurrency. In order to guarantee maximal concurrency (but at the risk of being unfair), a waiting professor must release the token if he is not yet able to convene a meeting to give a chance to other committees in which all members are already waiting. Thus, in the first algorithm, we show the implementability of committee coordination with Maximal Concurrency even if professors are not required to wait for meetings infinitely often. To the best of our knowledge this is the first committee coordination algorithm that implements maximal concurrency. Moreover, the algorithm is snap-stabilizing and satisfies 2-Phase Discussion.

We also propose a snap-stabilizing algorithm that satisfies Fairness on professors (respectively, committees) and respects 2-Phase Discussion. As mentioned earlier, this algorithm assumes that every professor waits for a meeting infinitely often. Following our impossibility result, the algorithm does not satisfy Maximal Concurrency. However, we show that it still allows a high level of concurrency. We analyze this level of concurrency according to a newly defined criterion called the degree of fair concurrency. We also study the waiting time of our algorithm.

Organization. The rest of the paper is organized as follows. In Section 2, we present the preliminary concepts. Section 3 is dedicated to definitions of Maximal Concurrency and Fairness in committee coordination. Then, in Section 4, we propose our first snap-stabilizing algorithm that satisfies both Maximal Concurrency and 2-phase Discussion. In Section 5, we present our snap-stabilizing algorithm that satisfies Fairness and 2-phase Discussion. Our analysis on level of concurrency and waiting time is also presented in this section. Related work is discussed in Section 6. Finally, we present concluding remarks and discuss future work in Section 7.

Background

Distributed Systems as Hypergraphs

Considering the committee coordination problem in the context of distributed systems, professors and committees are mapped onto processes and synchronization events (e.g., rendezvous) respectively. We assume that each process has a unique identifier and the set of all identifiers is a total order. We simply denote the identifier of a process p by p.

For the sake of simplicity, we assume that each committee has at least two members. 1 Hence, we model a distributed system as a simple self-loopless hypergraph H = (V, E) where V is a finite set of vertices representing processes and E is a finite set of hyperedges representing synchronization events, such that for all ∈ E, we have ∈ 2 V , i.e., each hyperedge is formed by a subset of vertices.

Let v be a vertex in V and be a hyperedge in E. We denote by v ∈ the fact that vertex v is incident to hyperedge . We denote the set of hyperedges incident to vertex v by E v . We say that two distinct vertices u and v are neighbors if and only if u and v are incident to some hyperedge ; i.e., there exists ∈ E, such that u, v ∈ . The set of all neighbors of v is denoted by N (v).

In the committee coordination problem, professors in the same committee need to communicate with each other. We assume that two processes can directly communicate with each other if and only if they are neighbors. This induces what we call an underlying communication network defined as follows: the underlying communication network of a distributed system

H = (V, E) is an undirected simple connected graph G H = (V, E E), where E E = {{p 1 , p 2 } | p 1 ∈ V ∧ p 2 ∈ V ∧ p 1 ∈ N (p 2)}.

Computational Model

The communication between processes are carried out using locally shared variables. Each process owns a set of locally shared variables, henceforth referred to as variables. Each variable ranges over a fixed domain and the process can read and write them. Moreover, a process can also read variables of its neighbors. 2 The state of a process is defined by the value of its variables. A process can change its state by executing its local algorithm. The local algorithm of a process p is described using a finite ordered list of guarded actions of the form:

(b) Graph G H = (V, E E), where E E = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 6}, {4, 5}, {4, 6}}
label :: guard → statement .
The label of an action is only used to identify the action in discussions and proofs. The guard of an action of p is a Boolean expression involving a subset of variables of p and its neighbors. The statement of an action of p updates a subset of variables of p. The order of the list follows the order of appearance of the actions in the code of the local algorithm and give priorities to actions: action A has higher priority than action B if and only if A appears after B in the code.

A configuration γ in a distributed system is an instance of the state of its processes. We denote the set of all configurations of a distributed system H by Γ H . The concurrent execution of the set of all local algorithms defines a distributed algorithm. We say that an action of a process p is enabled in a configuration γ if and only if its guard is true in γ. By extension, process p is said to be enabled in γ if and only if at least one of its actions is enabled in γ. An action can be executed only if its guard is enabled. We denote by Enabled(γ) the subset of processes that are enabled in configuration γ.

When the configuration is γ and Enabled(γ) = ∅, a daemon (or scheduler) selects a non-empty set X ⊆ Enabled(γ); then every process of X atomically executes its priority enabled action, leading to a new configuration γ , and so on. The transition from γ to γ is called a step (of A).

The possible steps induce a binary relation over configurations of A, denoted by →.

A computation of a distributed system is a maximal sequence of configurations γ 0 , γ 1 , . . . such that (1) γ 0 is an arbitrary configuration, and (2) for each configuration γ i , with i ≥ 0, γ i → γ i+1 .

Maximality of a computation means that the computation is either infinite or eventually reaches a terminal configuration (i.e., a configuration where no action is enabled).

A daemon is defined as a predicate over computations. There exist several kinds of daemons.

Here, we consider a distributed weakly fair daemon. Distributed means that, at each step, if one or more processes are enabled, then the daemon selects at least one (maybe more) of these processes.

Weak fairness means that every continuously enabled process is eventually selected by the daemon.

We say that a process p is neutralized in γ i → γ i+1 , if p is enabled in γ i and not enabled in γ i+1 , but did not execute any action in γ i → γ i+1 . To compute the time complexity, we use the notion of round [START_REF] Dolev | Uniform dynamic self-stabilizing leader election[END_REF]. This notion captures the execution rate of the slowest process in any computation.

The first round of a computation e is the minimal prefix of e, γ 0 . . . γ i , containing the activation or the neutralization of every process that is enabled in the initial configuration. Let e γ i be the suffix of e starting from γ i (the last configuration of the first round of e). The second round of e is the first round of e γ i , and so on.

The fair composition [START_REF] Dolev | Self-stabilization[END_REF] of two algorithms P 1 and P 2 consists in running P 1 and P 2 in alternation in such a way that there is no computation suffix, where a process is continuously enabled w.r.t. P i (i ∈ {1, 2}) without executing any of its enabled actions w.r.t. P i .

The Committee Coordination Problem

The original committee coordination problem is as follows [START_REF] Chandy | Parallel program design: a foundation[END_REF]. Let H = (V, E) be a distributed system. Each process in V represents a professor and each hyperedge in E represents a committee.

We say that two committees 1 and 2 are conflicting if and only if 1 ∩ 2 = ∅. A professor can be in anyone of the following three states: (1) idle, (2) waiting, and (3) meeting. A professor may remain in the idle state for an arbitrary (even infinite) period of time. An idle professor may start waiting for a committee meeting. A professor remains waiting until all participating professors of a committee, which he is a member of, agree on meeting. Moreover, a professor may leave a meeting, become idle, and subsequently be waiting for a new committee meeting.

Chandy, Misra [START_REF] Chandy | Parallel program design: a foundation[END_REF], and Bagrodia [START_REF] Bagrodia | Process synchronization: Design and performance evaluation of distributed algorithms[END_REF] require that any solution to the problem must satisfy the following specification:

• (Exclusion) No two conflicting committees may meet simultaneously.

• (Synchronization) A committee meeting may convene only if all members of that committee are waiting.

• (Progress) If all members of a committee are waiting, then some professor in eventually goes to the meeting state.

2-Phase Discussion

The original Committee Coordination problem specification does not constrain professors with respect to their time spent in a committee meeting in any ways. Thus, distributed algorithms for committee coordination have been developed regardless this issue. For instance, solutions proposed in [START_REF] Chandy | Parallel program design: a foundation[END_REF][START_REF] Bagrodia | Process synchronization: Design and performance evaluation of distributed algorithms[END_REF] that employ the dining philosophers problem [START_REF] Chandy | The drinking philosophers problem[END_REF] in order to resolve committee conflicts satisfy the specification presented in Subsection 2.3, but have the following shortcoming.

Since a philosopher acquires and releases forks all at once, members of the corresponding committee have to leave the meeting all together. 3 There are two problems with such a restriction: [START_REF] Bonakdarpour | Snap-stabilizing committee coordination[END_REF] an implicit strong synchronization is assumed on terminating a committee meeting, and (2) fast professors have to wait for slow professors to finish the task for which they setup a rendezvous.

We constrain the specification such that upon agreement on a meeting, the meeting takes place until a professor unilaterally leaves (that is, without waiting for other professors) the meeting. The reason for this requirement is due to the fact that in practical settings, based upon the speed of processes (professors), the type of local computation, and required resources, each process may spend a different time period to utilize resources or execute a critical section. Nevertheless, we also require that each professor must spend a minimum amount of time to discuss issues in the meeting.

The intuition for this constraint is that processes participate in a rendezvous to share resources or do some minimal computation and, hence, they should not be allowed to leave the meeting immediately after it convenes. Another reason for requiring this minimal discussion by all professors is inspired by the fact that in the recent applications of using rendezvous interactions to generate correct distributed and multi-core code, such interactions normally involve data transmission and even code execution at interaction level [START_REF] Bonakdarpour | Automated conflict-free distributed implementation of component-based models[END_REF][START_REF] Bonakdarpour | From high-level componentbased models to distributed implementations[END_REF]. The following definition elegantly captures this requirement.

Definition 1 (2-Phase Discussion) We define the 2-phase discussion by the following two properties:

• Phase 1. (Essential Discussion) Upon a meeting convenes, a first session of discussion should take place until each participating professor has the opportunity to execute a task involving information from all or part of the participants.

• Phase 2. (Voluntary Discussion) Upon a meeting convenes and after fulfilling the essential discussion, the discussion (and consequently the meeting) continues until a professor voluntarily terminates his/her discussion (and consequently the meeting).

In the following, we call 2-phase committee coordination problem the committee coordination problem enriched with the essential and voluntary discussions.

Snap-stabilization

Snap-stabilization [START_REF] Bui | State-optimal snap-stabilizing pif in tree networks[END_REF][START_REF] Bui | Snap-stabilization and PIF in tree networks[END_REF] is a versatile property which requires a distributed algorithm to efficiently tolerate transient faults. Indeed, after a finite number of such faults (e.g., memory corruptions), a snap-stabilizing algorithm immediately operates correctly, without any external (e.g. human) intervention. By contrast, the related concept of self-stabilization [START_REF] Dijkstra | Self-stabilizing systems in spite of distributed control[END_REF] only guarantees that the system eventually recovers to a correct behavior.

In (self-or snap-) stabilizing systems, we consider the system immediately after the occurrence of the last fault. That is, we study the system starting from an arbitrary configuration reached due to the occurrence of transient faults, but from which no fault will ever occur. By abuse of language, this configuration is referred to as initial configuration of the system in the literature. A snapstabilizing algorithm then guarantees that starting from any arbitrary initial configuration, any of its computations always satisfies the specification of the problem. This means, in particular, that in (self-or snap-) stabilizing systems there is no fault model in the literal sense. As we study the system after the last fault, we do not treat the faults but their consequences. The result of a finite number of transient faults being the arbitrary perturbation of the system configuration, we consider any computation started in any arbitrary initialized configuration, but in which there is no fault. So, for example, to show that our algorithms are snap-stabilizing w.r.t the committee coordination problem, we have to show that the specification of the committee coordination problem (e.g., exclusion, progress, synchronization, etc) is always satisfied in all possible (fault-free) computations starting from all possible (arbitrary) configurations.

It is important to note that snap-stabilizing algorithms are not insensitive to transient faults.

Actually, a snap-stabilizing algorithm guarantees that any task execution started after the end of the faults operates correctly. However, there is no guarantees for tasks executed completely or in part during faults. By contrast, self-but not snap-stabilizing algorithms require to start task execution several times (yet a finite number of time) before correctly performing them (that is, w.r.t. their specification). Hence, snap-stabilization is a specialization of self-stabilization that offers stronger safety guarantees. For example, in the committee coordination problem, snap-stabilization ensures that every meeting convened after the last transient faults satisfies every requirement of the committee coordination problem. However, there is no guarantees for the meetings started during the transient faults, except that they do not interfere with the execution of the meetings that convened after the last fault.

Maximal Concurrency versus Fairness in Committee Coordination

Definitions

In practical applications, it is crucial to allow as many processes as possible to execute simultaneously without violating other correctness constraints. Although the level of concurrency has significant impact on performance and resource utilization, it does not appear as a constraint in the original committee coordination problem. Moreover, the solutions proposed by Chandy and Misra [START_REF] Chandy | Parallel program design: a foundation[END_REF] and Bagrodia [START_REF] Bagrodia | A distributed algorithm to implement n-party rendezvous[END_REF][START_REF] Bagrodia | Process synchronization: Design and performance evaluation of distributed algorithms[END_REF] result in decreasing the level of concurrency drastically, making them less appealing for practical purposes. Examples include the circulating token mechanism among conflicting committees [START_REF] Bagrodia | A distributed algorithm to implement n-party rendezvous[END_REF], and reduction to the dining philosophers problems, where a "manager" handles multiple committees. Reduction to the drinking philosophers problem such as those in [START_REF] Chandy | Parallel program design: a foundation[END_REF][START_REF] Bagrodia | Process synchronization: Design and performance evaluation of distributed algorithms[END_REF][START_REF] Welch | A modular drinking philosophers algorithm[END_REF] results in more concurrency, but not maximal. This is due to the fact that existing solutions to the drinking philosophers problem try to achieve concurrency and fairness simultaneously, which we will show is impossible in committee coordination.

We formulate the issue of concurrency, so that as many committees as possible meet simultaneously. Our definition of maximal concurrency is inspired by the efficiency property given in [START_REF] Datta | A self-stabilizing token-based k-out-of-l exclusion algorithm[END_REF]. Informally, we define maximal concurrency as follows: if there is at least one committee, such that all its members are waiting, then eventually a new meeting convenes even if no other meeting terminates in the meantime. In other words, while it is possible, new meetings should be able to convene, regardless the duration of meetings that already hold. Now, to formally define maximal concurrency we need, in particular, to express the constraint "regardless of the duration of meetings that already hold". For that purpose, we borrow the ideas of Datta et al [START_REF] Datta | A self-stabilizing token-based k-out-of-l exclusion algorithm[END_REF] by using the following artefact: we let a professor (process) remains in the meeting state forever. We emphasize that we make this assumption only to define our constraint; our results in this paper do assume finite-time meetings as mentioned earlier.

Definition 2 (Maximal Concurrency) Assume that there is a set of professors P 1 that are all in infinite-time meetings. Let P 2 be a set of professors waiting to enter a committee meeting (Obviously, P 1 ∩ P 2 = ∅ and idle processes are in neither P 1 nor P 2). Let Π be the set of hyperedges having all their incident professors in P 2 . If Π = ∅, then a meeting between every professor incident to some hyperedge ∈ Π eventually convenes.

We note that in Definition 2, we use the term "maximal", because our intention is not to enforce the largest number of committees (i.e., maximum) to meet simultaneously, this latter problem is clearly N P-hard! In other words, committees convene until the systems is exhausted. This greedy approach does not always result in obtaining the maximum number of committees that can meet at the same time.

Following the results in [START_REF] Tsay | Some impossibility results in interprocess synchronization[END_REF], if a professor's status does not become waiting infinitely often, achieving fairness is impossible. Thus, we consider fairness assuming professors always eventually switch to the waiting status. In this context, we define fairness on professors (also called weak fairness, [START_REF] Wu | Fairness of n-party synchronization and its implementation in a distributed environment[END_REF]) as follows.

Definition 3 (Professor Fairness) Every professor participates infinitely often in a committee meeting that he is a member of.

Negative Result

The next theorem shows that Maximal Concurrency and Professor Fairness are incompatible.

Its proof follows ideas similar to the impossibility results of Joung [START_REF] Joung | On fairness notions in distributed systems: I. a characterization of implementability[END_REF] as well as Tsay and Bagrodia [START_REF] Tsay | Some impossibility results in interprocess synchronization[END_REF].

The idea behind this result is rather simple: Consider any process p. To satisfy professor fairness, a meeting having p as member must eventually convene. To have such a guarantee, the algorithm may eventually have to prevent some neighbors of p from participating in meetings until a meeting including them and p can convene. These blockings may happen while no meeting including p can be yet convened. This constraint then prevents some meetings from holding concurrently.

That is, making maximal concurrency impossible.

Theorem 1 Assuming that every professor waits for meetings infinitely often, it is impossible to design an algorithm (even non-stabilizing) for an arbitrary distributed system that solves the committee coordination problem and simultaneously satisfies Maximal Concurrency and Professor Fairness.

Proof.

Suppose by contradiction that there exists an algorithm A (be it stabilizing or not)

working in any topology that satisfies both Maximal Concurrency and Professor Fairness. Now, being held. Also, a process that is not in a meeting is supposed to be waiting. For example, in configuration A, professors 1 and 2 are meeting and professors 3, 4, and 5 are waiting.

consider a computation of A on hypergraph H = (V, E) where V = {1, 2, 3, 4, 5} and E = {{1, 2}, {1, 3, 5}, {3, 4}}).
We first show that there are computations of A that eventually reach configuration A. As professors 1 and 2 wait for meetings infinitely often, by Professor Fairness, a meeting between professors 1 and 2 eventually convenes. When this happens, if professors 3 and 4 are meeting, then their meeting can terminate before the one between 1 and 2. So, the system may reach a configuration where only 1 and 2 are meeting. After that, assuming that professors 3, 4, and 5 immediately go to the waiting state, then the system reaches configuration A.

From configuration A, if the committee {1, 2} takes an arbitrary long (but finite) time, then a meeting of the committee {3, 4} must eventually convene in order to satisfy Maximal Concurrency and the system reaches configuration B. Now, suppose meeting {1, 2} terminates first and professors 1 and 2 immediately go to waiting state again. So, 1, 2, and 5 are waiting and 3 and 4 are in a meeting (configuration C). Following a similar reasoning, configuration B can be reached from configuration C, and configuration A can be reached from configuration B. By repeating this pattern infinitely many times, we obtain a possible computation of A, where professor 5 never participates in any meeting while being continuously waiting, which contradicts with Professor Fairness.

Note that Maximal Concurrency and Professor Fairness can be simultaneously achieved in some particular networks, e.g., networks where no committees are in conflict, or networks where some professor belongs to all committees (e.g., a complete hypergraph, or a star topology). In the latter case, note that all committees are conflicting and so at most one can meet at a time.

We note that every algorithm that satisfies Professor Fairness also satisfies Progress. Also, observe that Professor Fairness does not imply that particular committees eventually convene. We define such a property as follows.

Definition 4 (Committee Fairness) Every committee meeting convenes infinitely often.

Notice that since Committee Fairness implies Professor Fairness, impossibility of satisfying both Maximal Concurrency and Committee Fairness trivially follows.

Corollary 1 Assuming that every professor waits for meetings infinitely often, it is impossible to design an algorithm (even non-stabilizing) for an arbitrary distributed system that solves the committee coordination problem and simultaneously satisfies Maximal Concurrency and Committee Fairness.

Theorem 1 shows that Professor Fairness and Maximal Concurrency are contradictory properties to satisfy. Thus, in order to satisfy one property, we have to omit the other. Omitting fairness results in an algorithm such as the one presented in Section 4. Omitting maximal concurrency results in an algorithm such as the one presented in Section 5.

Note that both algorithms use a single token circulation that ensures the progress in the former case and the fairness in the latter. As a matter of fact, they mainly differ in the way they handle the token. Concerning the second algorithm, one can suggest that the use of several tokens (e.g., the local mutual exclusion mechanism in [START_REF] Gairing | Distance-two information in self-stabilizing algorithms[END_REF]) instead of a single one would enhance the fairness guarantee. However, increasing the number of tokens results in decreasing the degree of (fair) concurrency, 4 which is the target metric here. The key idea is that the token is used to give priority to convene a meeting. However, the token is not mandatory to join a meeting, unless a process is starved to join a meeting. Then, to guarantee fairness, it is mandatory that the token holder selects a committee and sticks with that committee until it meets, even if some members of that committee are currently participating in another meeting. In this case, every other waiting member of that committee has to wait until the meeting convenes while they may participate in a meeting of another committee. This results in decreasing the degree of concurrency (that is why our second algorithm does not satisfy Maximal Concurrency): every waiting member of the committee selected by the token holder is blocked until the committee is able to convene. Hence, increasing the number of tokens increases the number of blocked processes which in turn decreases the degree of concurrency. In other word, enforcing the fairness decreases concurrency.

Complexity Analysis of Fair Solutions

We now introduce and study two complexity measures: degree of fair concurrency and waiting time. First, in order to characterize the impact of fairness on reducing the number of processes that can run concurrently, we introduce the notion of Degree of Fair Concurrency. Roughly speaking, this degree is the minimum number of committees that can meet concurrently without compromising Professor Fairness.

Definition 5 (Degree of Fair Concurrency) Let A be a committee coordination algorithm that satisfies Professor Fairness. Let professors remain in a meeting for infinite time. 5 Under such an assumption the system reaches a quiescent state where the status of all professors do not change any more. The Degree of Fair Concurrency of A is then the minimum number of meetings held in a quiescent state.

When considering fair solutions, it is of practical interest to evaluate the Waiting Time. In our context where processes are either waiting or meeting, we define waiting time as follows:

Definition 6 (Waiting Time) The maximum time before a process participates in a committee meeting is waiting time.

Snap-stabilizing 2-Phase Committee Coordination with Maximal Concurrency

In this section, we propose a Snap-stabilizing algorithm that satisfies Maximal Concurrency as well as the 2-Phase Discussion. We present our algorithm in Subsection 4.1. The correctness proof appears in Subsection 4.2.

Algorithm

Our algorithm is a composition of two modules: (1) a Snap-stabilizing algorithm -denoted CC1 -that ensures Exclusion, Synchronization, Maximal Concurrency, and 2-Phase Discussion, and (2) a self-stabilizing module -denoted T C -that manages a circulating token for ensuring Progress. Each process p runs this algorithm, where the intention of p in participating or leaving a committee are declared by truthfulness of input predicates RequestIn(p) and RequestOut(p), respectively.

Remark 1 We emphasize that this composition is snap-stabilizing, as the self-stabilizing token circulation is not used to ensure any safety property.

Token Circulation Module. We assume that the token circulation module is a black box with the following property: Property 1

• T C contains one action to pass the token from neighbor to neighbor:

T :: Token(p) → ReleaseToken p
• Once stabilized, every process executes action T infinitely often, but when T is enabled in a process, it is not enabled in any other process.

• T C stabilizes independently of the activations of action T .

To obtain such a token circulation, one can compose a self-stabilizing leader election algorithm (e.g., in [START_REF] Arora | Distributed reset[END_REF][START_REF] Dolev | Superstabilizing protocols for dynamic distributed systems[END_REF][START_REF] Datta | Self-stabilizing leader election in optimal space[END_REF]) with one of the self-stabilizing token circulation algorithms in [START_REF] Huang | Self-stabilizing depth-first token circulation on networks[END_REF][START_REF] Datta | Self-stabilizing depth-first token circulation in arbitrary rooted networks[END_REF][START_REF] Cournier | A snap-stabilizing DFS with a lower space requirement[END_REF][START_REF] Cournier | Light enabling snap-stabilization of fundamental protocols[END_REF] for arbitrary rooted networks. The composition only consists of two algorithms running concurrently with the following rule: if a process decides that it is the leader, it executes the root code of the token circulation. Otherwise, it executes the code of the non-root process. Committee Coordination Module. Algorithm CC1 is identical for all processes in the distributed system. Its code is given in Algorithm 1. Interactions between each professor p and his local algorithm are managed using two input predicates: RequestIn(p) and RequestOut(p). These predicates express the fact that a professor autonomously decides to wait and leave a meeting, respectively.

The predicate RequestIn(p) holds when professor p requests participation in a committee meeting.

The predicate RequestOut(p) holds when p desires to stop discussing in a meeting. Thus, p eventually satisfies RequestOut(p) during the meeting or after some members left it. So, once p has done its essential discussion, it can voluntary leave the meeting when it satisfies RequestOut(p).

Each process p maintains a status variable S p ∈ {idle, looking, waiting, done}, a Boolean variable T p , and an edge pointer P p . We explain the goal of these variables below:

Actions:

Step To obtain agreement on the committees to convene, we implement token-based priorities.

When a looking process p is the one with highest priority in its neighborhood, it points to an edge corresponding to a committee whose processes are all looking (if any) and sticks with it. Looking processes with low priorities select the committee chosen by their looking neighbor of highest priority, described next.

Each process p maintains a Boolean variable T p which shows whether or not it owns a token.

A token holder has a higher priority than its neighbors to convene a committee. In case of several token holders (only during the stabilization of token circulation), we give priority to the looking token holder with the maximum identifier.

A token holder releases its token in two cases: (1) when it leaves a meeting or (2) when it is currently not guaranteed to eventually convene a committee (that is, in each of its incident committees, at least one member is not looking). Note that the algorithm does not guarantee fairness because of this latter case.

In order to guarantee Maximal Concurrency, we have to authorize committees to meet when all members are looking and if there is no looking token holder in the neighborhood. In this case, among the looking processes we give priority to the looking process with the maximum identifier.

3. Once all processes of a hyperedge are looking and agree on that hyperedge, they are all ready to start their discussion. To this end, a process changes its status from looking to waiting 6to show that it is waiting for the committee to convene (action Step 31). A meeting of the committee convenes when all its members change their status to waiting. Then, each process executes its essential discussion and then switches its status to done (action Step 32).

4. Finally, a process is allowed to leave the committee meeting when all processes of that committee have fulfilled their essential discussion, i.e., they are all in the done status. In this case, the meeting takes place until a process p unilaterally decides to leave it (that is, until RequestOut(p) is true) after a finite period of voluntary discussion. To leave the committee meeting, it switches its status to idle again, resets its hyperedge pointer, and releases the token if it owns it (action Step 4). Then, the committee meeting is terminated, and every other member q switches to idle since it satisfies RequestOut(q).

The rest of actions of the algorithm deal with token circulation and snap-stabilization. In particular, action Token 1 deals with setting variable T p to true, so that neighboring processes realize that p owns the token. If p owns the token and has no desire to take part in a committee meeting, or, there does not exist an available committee for p to participate, then it releases the token (action Token 2 3) it has fulfilled its essential discussion and other processes in the corresponding committee are either in {waiting, done} status, or, the meeting is terminated, that is some processes have left the meeting and the others are done in the meeting.

Example. In this paragraph, we illustrate the need of the token to ensure progress. Figure 3 The token holder is represented by a bold circle. A boxed "T" near a circle means that the corresponding professor p satisfies T p = true.

In this example, professors in the committee {5, 6} desire to participate in a meeting. So, at least one of them should eventually does, according to the progress property. Because they have low identifiers, we can prevent them from convening a meeting until at least one of them get the token.

In 3(a), two meetings are almost done: {9, 10} and {1, 2, 3}, that is, all involved professors are doing their voluntary discussion. Notice that Professor 1 holds the token and T 1 = true. Professor 4 is currently not interesting in convening any meeting. All other professors are looking for convening a meeting and point to their highest priority all-looking committee. Now, Professors 7 and 8 are agreeing to convene a meeting: they are both enabled to switch to the waiting status.

In Step 3(a) →3(b), all members of meetings {1, 2, 3} and {9, 10} simultaneously leave the meeting by executing Step 4 . Moreover, Professor 8 switches to the waiting status by executing

Step 31 . Note in particular that Professor 1 releases the token and resets T 1 to false. Professor 2 is now the token holder. Since his status is idle, he is enabled to release the token. Professor 2 will release the token without setting T 2 to true in the meantime.

In Step 3(b) →3(c), Professor 7 switches to status waiting. So, the meeting {7, 8} convenes.

In the meantime, both Professors 9 and 10 start again to look for a meeting by executing Step 1 .

Moreover, Professor 2 releases the token. So, in configuration 3(c), Professor 3 is the token holder and Professor 6 should look for another meeting. For Professor 6, the committee of highest priority is {6, 9}. Similarly, Professor 9 (resp. Professor 10) considers {9, 10} as the one of highest priority.

In Professor 6 is the token holder, consequently he has highest priority. However, meeting {8, 9} is ready to convene, so Professor 9, in particular, will not change his pointer P 9 .

In Step 3(e) →3(f), Professor 9 switches to status waiting, so the meeting of Committee {9, 10}

Correctness of Algorithm CC1 • T C

We recall that in the following proofs, we assume that computations of CC1 • T C start from arbitrary configurations. First, we define the terminology used in the proofs.

We map the state of a professor defined in Section 2.3 to the status of a process defined in Algorithm 1 as follows. We say that a process p is idle if and only if S p = idle. A process p is waiting if and only if S p ∈ {looking, waiting}. If p is waiting and P p = , where ∈ E p , then we say that p attends the committee . A committee meets, if and only if for every process p ∈ , we have P p = and S p ∈ {waiting, done}. When a committee meets, every process p ∈ is participating in . Let γ 0 γ 1 . . . be a computation. We say that a committee meeting convenes in γ i , where i > 0, if and only if does not meet in γ i-1 , but it meets in γ i . For all i > 0, we say that a committee meeting terminates in γ i , if and only if meets in γ i-1 , but does not meets in γ i . If a committee meeting terminates in γ i , where i > 0, then there exists a process p, such that (i)

(P p = ∧ S p = done) in γ i-1
, and (ii) (P p =⊥ ∧ S p = idle) in γ i . In this case, we say that p leaves the committee meeting on transition γ i-1 → γ i .

For every process p, we assume the existence of two predicates: RequestIn(p) and RequestOut(p).

The predicate RequestIn(p) holds when p (or an application at p) requests the participation of p in a committee meeting. When a committee involving p meets or p is still involved in a meeting that is terminated (in this latter case the predicate LeaveMeeting(p) holds), the predicate RequestOut(p) eventually holds, meaning that p wants to voluntarily stop discussing. Once RequestOut(p) is true, it remains true until p becomes idle. Note also that, when necessary, we materialize the assumption on infinite meetings by assuming that, for all processes p:

• If p satisfies S p = done but ¬Meeting(p) holds, then the predicate RequestOut(p) eventually holds. Indeed, in this case, the meeting involving p is already terminated.

• However, if p is involved in a meeting, then the meeting never ends. Consequently, Meeting(p) ⇒ ¬RequestOut(p) forever. Proof. Let and be two conflicting committees, i.e., ∩ = ∅. Let p be a process in ∩ . By definition, if (respectively,) meets, then P p = (respectively, P p =). Hence, and cannot meet simultaneously.

Lemma 2 When committee meeting convenes, every process p ∈ satisfies (P p = ∧ S p = waiting).

Proof.

Consider a committee that convenes in γ i . By definition, the committee meets in γ i , but not in γ i-1 . Moreover, for every p ∈ , we have (P p = ∧ S p ∈ {waiting, done}) in γ i . Also, there must exist a process q in committee , such that S q ∈ {idle, looking} or P q = in γ i-1 . We now prove the lemma by contradiction. Assume that there exists process r ∈ , such that S r = done in γ i . Then, either (1) S r = done in γ i-1 , or (2) r executes action Step 32 on transition γ i-1 → γ i . In case (1), during γ i-1 → γ i , process q cannot set (S q ,P q) to:

• (waiting,), because of the state of r; or

• (done,), because otherwise S q = waiting and P q = in γ i-1 .

In case (2), already meets in γ i-1 (see Predicate Meeting(r)), which is a contradiction. Thus, for every p ∈ , we have (P p = ∧ S p = waiting) in γ i and, hence, the lemma holds. In this case, p has to execute Step 31 . Consequently, in γ we have P p = , where ∈ E p , and, ∀q ∈ : (P q = ∧ S q ∈ {looking, waiting}). Now, in this case, every process q ∈ satisfies Ready(q) and ¬M eeting(q). So, no process q ∈ can modify P q on transition γ → γ .

Moreover, every process q ∈ can only execute Step 31 to modify S q on transition γ → γ .

Thus, in configuration γ , the predicate ∀q ∈ : (P q = ∧ S q ∈ {looking, waiting}) still holds and, as a consequence, Correct(p) holds as well.

(c) S p = waiting ∧ P p = , where ∈ E p . In this case, Correct(p) implies the following possible subcases in γ:

(1) ∀q ∈ : (P q = ∧ S q ∈ {looking, waiting}) ∧ ∃r ∈ : S r = looking. In this subcase, every process q ∈ satisfies Ready(q) and ¬M eeting(q). So, no process q ∈ can modify P q on transition γ → γ . Moreover, every process q ∈ can only execute

Step 31 to modify S q on transition γ → γ . Thus, the predicate (∀q ∈ : (P q = ∧ S q ∈ {looking, waiting}) holds in γ and, as a consequence, Correct(p) holds in γ as well.

(2) ∀q ∈ : (P q = ∧ S q ∈ {waiting, done}). In this subcase, because of the state of p, every process q ∈ satisfies M eeting(q) and ¬LeaveM eeting(q). So, no process q ∈ can modify P q on transition γ → γ . Moreover, every process q ∈ can only execute

Step 32 to modify S q on transition γ → γ . Thus, the predicate (∀q ∈ : (P q = ∧ S q ∈ {waiting, done} still holds in γ and, as a consequence, Correct(p) holds as well.

(d) S p = done ∧ P p = , where ∈ E p . In this case, Correct(p) implies the following possible subcases in γ:

(1) ∀q ∈ : (P q = ∧ S q ∈ {waiting, done}) ∧ ∃r ∈ : S r = waiting). This subcase has been already considered in case (c).(2), so Correct(p) holds in γ .

(2) ∀q ∈ : (P q = ⇒ S q = done). In this case, no process q that satisfies P q = can execute P q := , because / ∈ FreeEdges q . Also, a process q that satisfies P q = in γ (e.g., p) can only modify P q and/or S q by executing action Step 4 on transition γ → γ .

In this case, S q := idle and P q :=⊥. As a consequence, in γ either S p := idle and P p :=⊥, or P p = ∧ ∀q ∈ : (P q = ⇒ S q = done). Thus, Correct(p) holds in γ as well.

Since in all possible cases, Correct(p) is preserved by the algorithm's actions, the lemma holds.

It is straightforward to see that a process that satisfies ¬Correct is enabled for either action Stab 1 or action Stab 2 (the priority actions). Moreover, since the daemon is weakly fair, Lemma 3 implies the following corollary:

Corollary 3 After at most one round, every process p satisfies Correct(p) forever.

Lemma 4 After committee convenes, the predicate (∀p ∈ : (P p = ∧ S p = done))

eventually holds.

Proof.

Consider a configuration γ where every process p ∈ satisfies (P p = ∧ S p ∈ {waiting, done}), and, there exists a process q ∈ , such that (P q = ∧ S q = waiting). Then, every process p ∈ satisfies Correct(p) in γ and, by Lemma 3, (*) actions Stab 1 and Stab 2 are disabled forever at every p ∈ from γ. Now, in configuration γ, a process p ∈ , where S p = done, cannot modify P p or S p . Moreover, in γ, a process q ∈ , where (P q = ∧ S q = waiting) cannot modify P q and can only set S q to done by executing action Step 32 , which is continuously enabled.

Since we assume a weakly fair daemon, q eventually executes action Step 32 by (*) and Remark 2.

Hence, the lemma holds. By Corollary 4, every process of committee eventually executes its essential discussion. Thus, following Lemmas 2 and 4, the system reaches a configuration γ j (j > i), where every process p ∈ satisfies (P p = ∧ S p = done). In such a configuration, a process p in can update its P p and/or S p only if it satisfies the predicate RequestOut(p). Now, by hypothesis it will happen, and in this case, Step 4 will be the priority enabled action at p (by (*)) meaning that it voluntarily decides to leave the meeting. Moreover, by definition, since a process eventually satisfies RequestOut continuously and the daemon is weakly fair, the meeting eventually terminates due to execution of action Step 4 by some process. Therefore, the lemma holds.

Observe that in the algorithm, a process that does not satisfy Correct can only execute either action Stab 1 or action Stab 2 . Thus:

Remark 3 If a process p is waiting and satisfies ¬Correct(p), it remains waiting (at least) until it satisfies Correct(p).

Lemma 6 Every computation of CC1 • T C satisfies Progress.

Proof. We prove this lemma by contradiction. Suppose there exists a computation c of CC1 • T C that does not satisfy Progress.

Let E ∞ γ be the subset of E such that ∀ ∈ E, ∈ E ∞ γ if and only if for all processes p ∈ , p is waiting in γ, but will never more participate in a meeting during c. By definition, ∀γ i , γ j such that

γ j occurs after γ i in c, we have E ∞ γ i ⊆ E ∞ γ j .
Moreover, the number of processes being finite, there exist configurations γ i in c such that E ∞ γ i = E ∞ γ j , for every configuration γ j that occurs after γ i in c.

Let now consider such a configuration, say γ 1 , and let V ∞ be the subset of all processes that are incident to a hyperedge in E ∞ γ 1 . We distinguish the following two cases in γ 1 :

(a) There is a process p ∈ V ∞ that eventually satisfies Ready(p). This case implies that P p = , where ∈ E p . By definition of Ready, every process q ∈ satisfies (P q = ∧ S q ∈ {looking, waiting}), which in turns, implies Correct(q). So, by Lemma 3, (*) actions Stab 1

and Stab 2 are disabled forever at every q ∈ from γ 1 . Now, observe that in configuration γ 1 a process p in , where S p = waiting, cannot modify P p or S p . Also, every process q ∈ such that (P q = ∧ S q = looking) cannot modify P q and can only modify S q by action Step 31 , which is its priority enabled action in γ 1 (by (*) and Remark 2). Hence, as the daemon is weakly fair, the committee meeting eventually convenes, which is a contradiction.

(b) No process p of V ∞ eventually satisfies Ready(p). By Remark 3,

(1) Every p of V ∞ remains waiting forever.

(Indeed, the only way to lose the waiting status is to switch to the meeting status.)

Observe that by definition, we have

(2) FreeEdges p = ∅.

Again, following Remark 3,

(3) FreeEdges p is fixed.

By Corollary 3, there exists a configuration γ 2 in c after γ 1 where: such that P s = , moreover it is their priority enabled action by (4) and Remark 2. Again, because the daemon is weakly fair, every process s eventually executes it. Hence, eventually satisfies Ready(), which is a contradiction.

Lemma 7 Every computation of CC1 • T C satisfies Maximal Concurrency.

Proof. Assume there is a set P 1 of processes that are all in infinite-time meetings. Let P 2 be a set of processes waiting. Let Π be the set of hyperedges whose all incident processes are in P 2 . We now prove the lemma by contradiction. Suppose that Π = ∅ and no meeting between processes incident to an hyperedge in Π eventually convenes. We distinguish the following two cases:

(a) There exists a process p ∈ P 2 that eventually satisfies Ready(p). In this case, using the same reasoning as in case (a) in the proof of Lemma 6, we obtain a contradiction.

(b) No process in P 2 eventually satisfies Ready(p). Let p be a process in P 2 . In this case, following Remark 3, p must remain waiting forever (the only way to leave the waiting status is to switch to the meeting status). Observe that by definition, FreeEdges p = ∅. Using the same reasoning as in case (b) of the proof of Lemma 6, there exists a configuration γ in which:

(1) There exists a process that satisfies T forever.

(2) Every process q ∈ V \ { } satisfies ¬T q forever.

(3) Every process in V satisfies Correct forever. Now, if ∈ P 2 , then using the same reasoning as in case (b) of the proof of Lemma 6, we reach a contradiction. If / ∈ P 2 , then, let p max be the process of P 2 having the greatest identifier. Then using the reasoning similar to the case (b) in the proof of Lemma 6 (p max has the same role as in the proof of Lemma 6), we reach a contradiction.

Theorem 2

The composition CC1 • T C is a snap-stabilizing algorithm that solves the 2-phase committee coordination problem and satisfies Maximal Concurrency.

Proof. Given Lemmas 1-7, the proof of the theorem trivially follows.

Snap-Stabilizing 2-Phase Committee Coordination with Fairness

We now consider the 2-phase committee coordination problem in systems where processes are waiting for meetings infinitely often. In such a setting, an idle process always eventually becomes waiting. Hence, for simplicity (and without loss of generality), we assume that processes are always requesting when they are not in a meeting. As a consequence, the predicate RequestIn(p)

and the state idle are implicit in the actions of the next algorithm. In Subsection 5.1, we present a snap-stabilizing algorithm that guarantees the properties of 2-phase committee coordination and

Professor Fairness. The proof of correctness of the algorithm is presented in Subsection 5.2. Then, in Subsection 5.3, we analyze the complexity of our algorithm. Finally, we discuss Committee Fairness in Subsection 5.4.

Algorithm

Our algorithm is the composite algorithm CC2 • T C, where (1) CC2 is a Snap-stabilizing algorithm that ensures Exclusion, Synchronization, and 2-Phase Discussion, and (2) T C is the same self-stabilizing module that manages a circulating token as in Section 4. It ensures Fairness, and consequently Progress.

Algorithm CC2 is identical for all processes in the distributed system. Its code is given in Algorithm 2. Similar to Algorithm CC1, each process p maintains S p , P p , and T p with the same meaning. Also, the token defines priorities to convene committees. However, to guarantee fairness, in this algorithm, a token is released only when its holder leaves a meeting.

After receiving a token, a looking process p selects a smallest (in terms of members) incident committee (this constraint is used only to slightly enhance the concurrency) using its edge pointer P p (Step 11). Note that unlike the previous algorithm, the members of the chosen committee are not necessarily all looking. Then, process p sticks with committee until convenes. By assumption, other members of committee are eventually looking and, hence, is selected by action Step 12 .

In order to obtain the best concurrency as possible (recall that maximal concurrency is impossible in this case), a process that is not in a committee must not wait for a process involved in .

To that goal, we introduce the Boolean variable L, which shows whether or not a process is locked.

A locked process is one that is incident to a hyperedge that contains a process that (1) owns the token, (2) has set its pointer to that hyperedge, and (3) is looking to start a committee meeting. The locks are maintained using action Lock . Hence, processes that are not in try to convene committees that do not involve locked processes (Step 13 and Step 14). As in Algorithm CC1, we use the process identifiers to define priorities among the looking processes not in . The rest of actions of the algorithm are similar to those of Algorithm CC1.

Correctness of CC2 • T C

We recall that in the following proofs, we assume that computations of CC2 • T C start from an arbitrary configuration. In the proofs below we use some notions and terminology already defined in Subsection 4.2. We now focus on the Professor Fairness.

Lemma 10 From any configuration where every process q satisfies Correct(q), we have: if a process p that satisfies Ready(p), Meeting(p), or S p = done, then p eventually executes action

Step 4 .

Proof. Observe that from such a configuration, (*) every process q satisfies Correct(q) forever by Lemma 8. As a consequence, from that point every process p that satisfies Ready(p), Meeting(p), or S p = done satisfies one of the following cases:

• LeaveMeeting(p) holds. In this case, S p = done and P p =⊥. Let be the value of P p . S p = done implies ¬Ready(p). So, while S p = done, no process q can execute Step 2 to then satisfy P q = ∧ S q = waiting. Also, every process q that satisfies P q = ∧ S q = done can only update S q and/or P q by executing action Step 4 by (*), that is S q := looking and P q :=⊥. As a consequence, while p does not execute action Step 4 , LeaveMeeting(p) holds. Now RequestOut(p) eventually continuously holds, and, thus, action Step 4 is eventually continuously enabled at p. As the daemon is weakly fair, p is eventually selected to execute an action, and this action is Step 4 by (*), which proves the lemma in this case.

• Meeting(p) ∧ ¬LeaveMeeting(p) holds. Then, Meeting(p) implies that P p =⊥. Let be the value of P p . No process r ∈ can update P r . Moreover, for every process r ∈ , r can modify its status S r only if S r = waiting. Now, Step 3 is enabled at every of those processes, and this action is their priority enabled action by (*) and Remark 4. Observe that (Meeting(p) ∧ ¬LeaveMeeting(p)) holds until all these processes have moved and, as the daemon is weakly fair, they eventually move. At this point this case can be reduced to the previous case, which proves the lemma in this case.

• Ready(p) ∧ ¬Meeting(p) holds. Then, Ready(p) implies that P p =⊥. Let be the value of P p . No process r ∈ can update P r . Moreover, for every process r ∈ , r can modify its status S r only if S r = looking. Now, Step 2 is enabled at every of those processes, and this action is their priority enabled action by (*) and Remark 4. Observe that Ready(p) ∧ ¬Meeting(p) holds until all these processes have moved and, as the daemon is weakly fair, they eventually move. At this point this case can be reduced to the previous case, which proves the lemma in this case.

Thus, in any case, p eventually executes Step 4 and the lemma holds. Lemma 11 In every computation of CC2 • T C, no process can hold a token forever.

Proof. By Property 1, the system eventually reaches a configuration from which there is a unique token forever. Assume, by the contradiction, that after such a configuration, some process holds the unique token forever, i.e. Token() holds forever and for every process p = , ¬Token(p) holds forever.

Then, using the same reasoning as in case (b) of the proof of Lemma 6, we can deduce that the system reaches a configuration γ from which:

(1) satisfies Token() ∧ T forever.

(2) Every process p = satisfies ¬Token(p) ∧ ¬T p forever.

(3) Every process satisfies Correct forever.

Let us study the following two cases: (a) From γ, S = done, Ready(), or Meeting() eventually holds. In this case, we obtain a contradiction by Lemma 10.

(b) From γ, S = done, ¬Ready(), and ¬Meeting() hold forever. We study the following two subcases:

-P ∈ MinEdges . In this subcase, by (3), we deduce that S = looking and P ∈ MinEdges hold forever.

Then, let be the hyperedge pointed by P . By (1) and (2 holds by [START_REF] Bagrodia | A distributed algorithm to implement n-party rendezvous[END_REF]. By Lemma 10, p eventually satisfies (S p = looking ∧ ¬Ready(p)), and we retrieve the previous case. So eventually P p = and p becomes disabled forever.

Hence, we can conclude that eventually P p = holds for every process p ∈ , that is Ready(), which is a contradiction.

-P / ∈ MinEdges . In this subcase, by (3) and the fact that S = done ∨ Ready() ∨ Meeting() never holds, we can deduce that S = looking holds forever. Hence, by Proof. Assume by contradiction that eventually some process p stops participating in any meeting.

In this case, it no more executes action Step 3 . This means, in particular, that the process no more executes S p := done. As a consequence, it eventually no more executes action Step 4 . In particular, it eventually no more executes ReleaseToken p , which contradicts Property 1 and Corollary 6.

By Lemma 9, 12, and the fact that fairness implies progress, we have:

Theorem 3 The composition CC2 • T C is a snap-stabilizing algorithm that solves the 2-phase committee coordination problem and satisfies Professor Fairness.

Lemma 14 If committee meetings never terminate, the system eventually reaches a configuration γ from which for every process p, S p = done ⇒ Meeting(p).

Proof.

Let c = γ 0 , ... be a computation. The number of processes being finite, assume, by contradiction, that there is a process p such that p satisfies S p = done ∧ ¬Meeting(p) in infinitely many configurations of c, while committee meetings never terminate. Consider the following two cases:

• There exists i such that ∀j ≥ i, S p = done ∧ ¬Meeting(p) in γ j . Then, by Corollary 5, p eventually satisfies Correct(p) forever, which implies that p eventually satisfies LeaveM eeting(p) forever. Moreover, p eventually satisfies RequestOut(p) continuously.

Hence, as the daemon is weakly fair, p eventually executes Step 4 , and we obtain a contradiction.

• There exists infinitely many steps γ i → γ i+1 of c where S p = done ∧ ¬Meeting(p) in γ i and S p = done ∨ Meeting(p) in γ i+1 . In this case, p participates infinitely many times in meetings that convene and then terminate, a contradiction.

Following a similar reasoning, we have:

Lemma 15 If committee meetings never terminate, the system eventually reaches a configuration γ from which for every process p, S p = waiting.

From Lemmas 14 and 15, we have the following corollary:

Corollary 7 If committee meetings never terminate, the system eventually reaches a configuration γ from which for every process p, either S p = looking forever, or S p = done forever.

Lemma 16 If committee meetings never terminate, then the system eventually reaches a configuration γ from which there is some process such that:

1. is the only token holder forever.

2. T = true forever.

3.

Every process p = satisfies T p = false forever.

4. There exists ∈ E such that: (b) S s = looking if and only if s is not in any meeting (Corollary 5 and Lemma 14).

2. By Lemma 16, there is a unique process such that:

(a) is the only token holder forever.

(b) T = true forever.

(c) Every process p = satisfies T = false forever.

(d) There exists ∈ E such that:

i. P = forever.

ii. ∀p ∈ , L p = true forever.

iii. ∀p ∈ V \ , L p = false forever.

Consider the following two cases in γ:

• participates in a meeting . Let r be a process that does not participate in a meeting in γ.

Then, eventually FreeEdges r = ∅ by case 1a. In this case, for each hyperedge incident to r, there a process t ∈ , such that T t , L t , or S t = looking holds. In the two first cases, t participates in the meeting by case 2. In the latter case, t participates in another meeting by case 1b.

It follows that for all processes r that is not in a meeting in γ and for all hyperedges incident to r, there exists a process in that participates in a meeting in γ. Hence, the meetings that hold in γ form a maximal matching of the underlying hypergraph H.

• does not participate in any meeting. In γ, P = such that ∈ E min (see action Step 13).

Also, there is at least one neighbor of that participates in a meeting in γ. Let X be the subset of processes in that do not participate in a meeting in γ. Then, X ⊂ and ∈ X.

Following a reasoning similar to the previous case, we can deduce that for all processes s that is not in a meeting in γ and for all hyperedges incident to s, there exists a process in that either participates in a meeting in γ or is a process of X. Hence, the meetings that hold in γ form a maximal matching of Almost(, X).

Hence, the meetings that hold in γ form a matching of MM ∪ AMM.

In the next theorem, we present a lower bound for min MM∪AMM .

Theorem 5 min MM∪AMM ≥ (min MM -MaxMin + 1).

Proof.

• By definition MaxMin > 0. So, min MM ≥ min MM -MaxMin + 1.

• Let x be the size of the smallest matching in AMM. By definition, there exists a process p, a hyperedge ∈ E min p , and a set of processes X where X ⊂ and p ∈ X, such that there exists a maximal matching S of Almost(, X) of size x. By definition, S is a matching of To evaluate Waiting Time of CC2 • T C, we need to introduce max Disc which is the maximum amount of rounds a process discusses in a meeting. We assume that T C is a fair composition of the token circulation algorithm in [START_REF] Cournier | Light enabling snap-stabilization of fundamental protocols[END_REF] and the leader election algorithm in [START_REF] Datta | Self-stabilizing leader election in optimal space[END_REF]. It follows that the following properties hold: (1) starting from any configuration, there is a unique token in the distributed system in O(n) rounds, and (2) once there is a unique token, O(n) processes can receive the token before a process receives the token.

Theorem 6 In Algorithm CC2 • T C, the worst case Waiting Time is O(max Disc ×n) rounds, where n is the number of processes.

Proof. First, from [START_REF] Cournier | Light enabling snap-stabilization of fundamental protocols[END_REF][START_REF] Datta | Self-stabilizing leader election in optimal space[END_REF], Corollary 5, and Property 1, we know that starting from any arbitrary configuration, the system reaches a configuration γ from where every process satisfies Correct and there is one token forever in O(n) rounds. Now, consider a token holder p in any configuration that follows γ, where p satisfies one of the following three cases:

• S p = done. In this case, in at most one round, p satisfies LeaveMeeting(p) and at most max Disc rounds later, it is enabled to execute Step 4 . Hence, p releases the token in O(max Disc) rounds.

• S p = waiting. In this case, in at most one round, p satisfies Meeting(p) and after one more round, it satisfies S p = done. Hence, from the previous case, we can deduce that p releases the token in O(max Disc) rounds.

• S p = looking. In this case, in one round p sets T p to true. One another round later, p sets P p to where ∈ E min p . After this round and similarly to the previous case, every other process in that was in a meeting, leaves its meeting and joins meeting in O(max Disc) rounds, which leads to the status S p = waiting in the next round. Hence, from the previous cases, we can deduce that p releases the token in O(max Disc) rounds.

It follows that after O(n) rounds, a process can keep the token for O(max Disc) consecutive rounds before releases it. Now, from [START_REF] Cournier | Light enabling snap-stabilization of fundamental protocols[END_REF][START_REF] Datta | Self-stabilizing leader election in optimal space[END_REF], we know that O(n) processes can hold the token before a given process receives it. Hence, the Waiting Time is O(max Disc ×n) rounds.

Committee Fairness

Algorithm CC2 • T C can be easily modified to satisfy the Committee Fairness as follows.

Every time a process acquires the token, it sequentially selects a new incident committee. This Following a proof similar to the one of Theorem 4, we trivially obtain the proof of the following theorem.

Theorem 7 The degree of fair concurrency of Algorithm CC3 • T C is at least min MM∪AMM .

In the next theorem, we present a lower bound for min MM∪AMM . Its proof is similar to the one used in the proof of Theorem 5.

Theorem 8 min MM∪AMM ≥ min MM -MaxHEdge + 1.

Related Work

Solutions to the committee coordination problem mostly focus on the three properties of the original problem described in Subsection 2.3 [START_REF] Chandy | Parallel program design: a foundation[END_REF][START_REF] Bagrodia | A distributed algorithm to implement n-party rendezvous[END_REF][START_REF] Bagrodia | Process synchronization: Design and performance evaluation of distributed algorithms[END_REF][START_REF] Tsay | Some impossibility results in interprocess synchronization[END_REF][START_REF] Wu | Fairness of n-party synchronization and its implementation in a distributed environment[END_REF][START_REF] Kumar | An implementation of n-party synchronization using tokens[END_REF]. In the seminal work by Chandy and Misra [START_REF] Chandy | Parallel program design: a foundation[END_REF], the committee coordination problem is reduced to the dining or drinking philosophers problems [START_REF] Chandy | The drinking philosophers problem[END_REF]. Each philosopher represents a committee, neighboring philosophers have a common member, and a meeting is held only when the corresponding philosopher is eating. Bagrodia [START_REF] Bagrodia | A distributed algorithm to implement n-party rendezvous[END_REF] solves the problem by introducing the notion of managers. Each manager handles a set of committees and two managers may have intersecting sets of assigned committees. Each committee member notifies its corresponding committee managers that it desires to participate. Conflicts between two committees (i.e., committees that share a member) managed by the same manager are resolved locally within the manager. Conflicts between two committees managed by different managers are resolved using a circulating token. In a later work [START_REF] Bagrodia | Process synchronization: Design and performance evaluation of distributed algorithms[END_REF], Bagrodia combines a message count mechanism (to ensure Synchronization) with a reduction to dining/drinking philosophers (to ensure Exclusion).

Joung [START_REF] Joung | On fairness notions in distributed systems: I. a characterization of implementability[END_REF] extends the original committee coordination problem by considering fairness properties. One such property, called weak fairness in [START_REF] Joung | On fairness notions in distributed systems: I. a characterization of implementability[END_REF] or professor fairness in this paper, requires that if a professor is waiting to participate in some committee meeting, then he must eventually participate in a committee meeting (not necessarily the same). The main result is the impossibility of implementing a fair committee coordination algorithm if one of the following conditions hold:

• One process's readiness to participate in a committee can be known by another only through communication, and the time it takes two processes to communicate is not negligible.

• A process decides autonomously when it will attempt participating in a committee, and at a time that cannot be predicted in advance.

Joung's result holds for fairness on multi-party committees as well. Tsay and Bagrodia [START_REF] Tsay | Some impossibility results in interprocess synchronization[END_REF] reach the same result with respect to the second condition identified by Joung [START_REF] Joung | On fairness notions in distributed systems: I. a characterization of implementability[END_REF].

In [START_REF] Kumar | An implementation of n-party synchronization using tokens[END_REF], Kumar circumvents the impossibility result of Tsay and Bagrodia by making the following additional assumption: every professor waits for meetings infinitely often. In this model, Kumar proposes an algorithm that solves the committee coordination problem with professor fairness using multiple tokens, each representing one committee. Based on the same assumption, several other committee coordination algorithms that satisfy fairness can be found in [START_REF] Wu | Fairness of n-party synchronization and its implementation in a distributed environment[END_REF].

Conclusion

In this paper, we proposed two Snap-stabilizing distributed algorithms for the committee coordination problem. The first algorithm satisfies 2-Phase Discussion as well as Maximal Concurrency. The second algorithm satisfies 2-Phase Discussion as well as Professor Fairness assuming that every professor waits for meetings infinitely often. As we showed, even under this latter assumption, satisfaction of both Maximal Concurrency and Professor Fairness is impossible.

For the second algorithm, we introduced and analyzed the degree of fair concurrency to show that it still allows high level of concurrency. We also evaluated an upper bound on waiting time.

Finally, with a slight modification, we obtained another algorithm that respects Committee Fairness.

For future work, several interesting research directions are open. One can consider other combinations of properties. For instance, we conjecture that providing both Maximal Concurrency and bounded waiting time is impossible. Another problem is to design a fault-tolerant committee coordination algorithm in the message-passing model. An important issue is to address dynamic hypergraphs, where professors (processes) can enter or leave the hypergraph, and, new committees may be created or some committees may be dissolved or merged. Optimality is also an open question in that one can study the optimal bound on the degree of fair concurrency. Another interesting line of research is enforcing priorities on convening committees. Finally, we are planning to implement the algorithms presented in this paper in distributed code generation frameworks such as the one in [START_REF] Bonakdarpour | A framework for automated distributed implementation of component-based models[END_REF]. Our algorithms will allow generating fully distributed code from high-level component-based models.

Figure 1 (

 1 b) shows the underlying communication network of the hypergraph given in Figure 1(a).

 Hypergraph H = (V, E), where V = {1, 2, 3, 4, 5, 6} and E = {{1, 2}, {1, 2, 3, 4}, {2, 4, 5}, {3, 6}, {4, 6}}.

Figure 1 :

 1 Figure 1: An example of a hypergraph and its underlying communication network.

Figure 2

 2 shows three possible configurations A, B, and C obtained by executing algorithm A on H. In the figure, solid bold lines represent meetings that are currently

5 Figure 2 :

 52 Figure 2: Impossibility of Maximal Concurrency and Professor Fairness.

 Composition. The composition of CC1 and T C is denoted by CC1 • T C. Actually, CC1 • T C is a fair composition of CC1 and T C that does not explicitly contain action T : in CC1 • T C, action T is emulated by CC1, where predicate Token(p) and the statement ReleaseToken p are given as inputs in CC1.

 input from the system indicating desire for participating in a committee RequestOut(p): Predicate: input from the system indicating desire for leaving a committee Token(p) : Predicate: input from T C indicating process p owns the token ReleaseToken(p) : Statement: output to T C indicating process p releases the token Constants: Ep : Set of hyperedges incident to process p Variables: Sp ∈ {idle, looking, waiting, done} : Status Pp ∈ Ep ∪ {⊥} : Edge pointer Tp : Boolean Macros:FreeEdges p = { ∈ Ep | ∀q ∈ : Sq = looking} FreeNodesp = {q | ∃ ∈ FreeEdges p : q ∈ } TFreeNodesp = {q ∈ FreeNodesp | Tq} Candsp = if (TFreeNodesp = ∅)then TFreeNodesp else FreeNodesp fi Predicates: Ready(p) ≡ ∃ ∈ Ep : ∀q ∈ : ((Pq =) ∧ (Sq ∈ {looking, waiting})) LocalMax (p) ≡ p = max(Candsp) MaxToFreeEdge(p) ≡ (FreeEdges p = ∅) ∧ LocalMax (p) ∧ ¬Ready(p) ∧ (Pp / ∈ FreeEdges p) JoinLocalMax (p) ≡ (FreeEdges p = ∅) ∧ ¬LocalMax (p) ∧ ¬Ready(p) ∧ (∃ ∈ FreeEdges p : (P max(Candsp) = ∧ Pp =)) Meeting(p) ≡ ∃ ∈ Ep : ∀q ∈ : (Pq = ∧ Sq ∈ {waiting, done}) LeaveMeeting(p) ≡ ∃ ∈ Ep : ((Pp =) ∧ (∀q ∈ : ((Pq =) ⇒ (Sq = done)))) Useless(p) ≡ Token(p) ∧ [(Sp = idle) ∨ (Sp = looking ∧ FreeEdges p = ∅)] Correct(p) ≡ [(Sp = idle) ⇒ (Pp =⊥)] ∧ [(Sp = waiting) ⇒ Ready(p) ∨ Meeting(p)] ∧ [(Sp = done) ⇒ Meeting(p) ∨ LeaveMeeting(p)]

 provides an example of computation that starts from a configuration where each professor state is correct. In the figure, each circle represents a professor and arrows inside the circle represent the P -pointers (if a circle contains no arrow, this means that the corresponding professor p satisfies P p =⊥). Numbers represent identifiers. The status of the professors is given below the circles.

 Step 3(c) →3(d), Professor 3 releases the token, Professors 7 and 8 perform their essential discussion (Step 32), Professors 10 (Step 21) and 9 (Step 22) agree to convene a meeting, and Professor 6 points to Committee {6, 9}. Note that Professor 4 is the token holder in configuration 3(d), but he has no interest in convening any meeting so his action Token 2 is enabled. In Step 3(d) →3(e), Professor 4 releases the token, Professors 8 and 9 leave their meeting (Step 4), and Professor 10 switches to the waiting status by executing Step 31 . In configuration 3(e),

Figure 3 :

 3 Figure 3: Example

Remark 2 Lemma 1

 21 Guards of actions Step 1 , Step 21 , Step 22 , Step 31 , Step 32 , and Step 4 are mutually exclusive at each professor. Every computation of CC1 • T C satisfies Exclusion.

Corollary 4 Lemma 5

 45 Every computation of CC1 • T C satisfies the Essential Discussion. Proof. The proof is trivial by Lemmas 2, 4, and action Step 32 . Every computation of CC1 • T C satisfies the Voluntary Discussion. Proof. Let a committee convene in configuration γ i . By Lemmas 2, every process p ∈ satisfies Correct(p) in γ i and, by Lemma 3, (*) actions Stab 1 and Stab 2 are disabled forever at every p ∈ .

Figure 4

 4 Figure 4 illustrates the need of the Boolean L. In this configuration, Professor 8 chooses the committee {1, 2, 5, 8} because Professor 1 has the token. Moreover, this committee cannot meet before the meeting of committee {3, 4, 5} terminates. Now, to ensure fairness, Professors 1, 2, and 8 should not change their P -pointers so that eventually a meeting of {1, 2, 5, 8} convenes.

Figure 4 :

 4 Figure 4: Example of locked professors.

Following a similarRemark 4 Lemma 8 Corollary 5 Lemma 9 3 .

 48593 approach to the one used in Subsection 4.2, we have the following technical results: Guards of actions Step 11 , Step 12 , Step 13 , Step 14 , Step 2 , Step 3 , and Step 4 are mutually exclusive at each professor. For every process p, if Correct(p) holds, then Correct(p) holds forever. After at most one round, every process p satisfies Correct(p) forever. From these technical results, we can deduce the following lemma using the same reasoning as in Subsection 4.2. Every computation of CC2 • T C satisfies: Essential Discussion, and 4. Voluntary Discussion.

), we have (TPointingEdges p , Locked (p)) that is equal to ({ }, true) forever for every process p ∈ such that p = . If p satisfies (S p = looking ∧ ¬Ready(p)), eventually P p = because of the weakly fair daemon and action Step 12 (by (3) and Remark 4, p executes Step 12 when selected by the daemon). Then, p becomes disable forever because ¬Ready() holds forever. If p satisfies (S p = looking ∨ Ready(p)), then (S p = done ∨ Ready(p) ∨ Meeting(p))

Corollary 6

 6 , actionStep 11 is continuously enabled at , as the daemon is weakly fair, eventually executes an enabled action. This action is Step 11 by (3) and Remark 4, and we retrieve the previous case, which leads to a contradiction.We now deduce the next corollary from Property 1 and Lemma 11: In every computation of CC2 • T C, every process holds a token infinitely many times.Lemma 12 Every computation of CC2 • T C satisfies Professor Fairness.

(1 .

 1 a) P = forever. (b) ∀p ∈ , L p = true forever. (c) ∀p ∈ V \ , L p = false forever. Proof. Case 1 follows from Lemma 13. Consider Cases 2 and 3. From case 1, we know that for every process p, the value of Token(p) does not change anymore. So, if p satisfies T p = Token(p), then this remains true until p executes action Token. Now, eventually actions Stab, Step 2 , Step 3 , and Step 4 are disabled forever at p by Corollaries 5, 7, and Remark 4. So, eventually, p is selected by the daemon to execute action Token. Hence, eventually, the value of T p is fixed and T p = Token(p) forever. Every process s satisfies: (a) FreeEdges s = ∅ (Lemma 17).

 way, we obtain an algorithm, called Algorithm CC3 • T C that satisfies Committee Fairness. Waiting Time of this algorithm remains the same as that of Theorem 6, but Degree of Fair Concurrency will be slightly degraded. Recall that Y ,p = {y ∈ 2 | p ∈ y ∧ |y| < | |}. Now, we let AMM (p) = ∈Ep y∈Y ,p Almost(, y) and AMM = p∈V AMM (p). Also, let MaxHEdge = max ∈E | |.

 When process p is idle (that is S p = idle) but desires to participate in a committee meeting (that is, if RequestIn(p) is true), it changes its status from idle to looking and initializes its edge pointer P p to ⊥ (action Step 1).2. Next, process p starts looking for an available committee to join. Process p shows interest in joining a committee whose processes are all looking by setting its edge pointer P p to the corresponding hyperedge, if such a hyperedge exists (actions Step 21 and Step 22).

	1.				
	Step 21	::	MaxToFreeEdge(p)		
	Token 1	::	Token(p) = Tp	→ Tp := Token(p);
	Token 2	::	Useless(p)	→ ReleaseToken(p); Tp := false;
	Step 31	::	Ready(p) ∧ (Sp = looking)	→ Sp := waiting;
	Step 32	::	Meeting(p) ∧ (Sp = waiting)	→	EssentialDiscussion ; Sp := done;
	Step 4	::	LeaveMeeting(p) ∧ RequestOut(p)		
	Stab 1	::	¬Correct(p) ∧ (Sp = idle)	→ Pp :=⊥;
	Stab 2	::	¬Correct(p) ∧ (Sp = idle)	→ Sp := looking; Pp :=⊥;

1 :: RequestIn(p) ∧ (Sp = idle) → Sp := looking; Pp :=⊥; → Pp := , such that ∈ FreeEdges p ; Step 22 :: JoinLocalMax (p) → Pp := , such that (∈ Ep ∧ = P max(Candsp)); → Sp := idle; Pp :=⊥; if T oken(p) then ReleaseToken(p) fi; Tp := false;

). Finally, actions Stab 1 and Stab 2 correct the state of a process, if faults perturb the state of the process to a state where predicate Correct does not hold. Predicate Correct holds at states where (1) the process is idle and it has no interest in participating in a committee meeting, (2) it is waiting and interested in a committee whose processes are gathering to convene a meeting, and (

 Corollary 2 Every computation of CC1 • T C satisfies Synchronization.Lemma 3 For every process p, if Correct(p) holds, then Correct(p) continues to hold forever.Proof. We prove this lemma by showing that if a process p satisfies Correct(p) in some configu-

ration γ, then p satisfies Correct(p) in configuration γ where γ → γ is a transition.

According to the definition of Correct, we distinguish the following four cases in γ: (a) S p = idle ∧ P p =⊥. Obviously, if p does not modify S p or P p in the next step, then Correct(p) holds in the next configuration step as well. Now, the only action modifying S p and/or P p that may be enabled in p is Step 1 . If p executes action Step 1 , then P p := looking and Correct(p) still holds in γ . (b) S p = looking. Obviously, if p does not modify S p in the next step, then Correct(p) holds in the next configuration step as well. Now, suppose that p modifies S p on transition γ → γ .

 9} has higher priority than Committee {6, 7, 9}. By definition, all members of Committee {1, 2, 5, 8} are locked. So, thank to the Boolean L 8 , Professor 9 realizes that he should not give priority to {8, 9}. Consequently, he will select {6, 7, 9} by action Step 13 ,

	Furthermore, to obtain a better concurrency, Committee {6, 7, 9} should be allowed to meet. Now, for Professor 9, Committee {8, improving concurrency.

 |S| ≥ |S | -| | + 1, which in turn implies that |S| ≥ min MM -| | + 1. It follows that |S| ≥ min MM -MaxMin + 1. Hence, the size of the smallest matching in AMM is at least min MM -MaxMin + 1.

H. Moreover, there exists a maximal matching S of H such that S ⊂ S . By definition there exists at most one hyperedge of S incident to some process in X. Hence, |S| ≥ |S | -|X|, i.e.,

Adapting our results to take singleton committees into account is straightforward.

In particular, a process can read the identifiers of its neighbors.

The same argument holds for solutions based on the drinking philosophers[START_REF] Chandy | The drinking philosophers problem[END_REF] and tokens.

The term "degree of fair concurrency" is formally explained inSubsection 3.3

As in Definition 2, infinite meetings are used only for formalization.

Note that both looking and waiting status form the waiting state of the original problem specification[START_REF] Chandy | Parallel program design: a foundation[END_REF].

(4) All processes satisfy Correct forever.

By Property 1, eventually there exists a unique token in the network. If a process in V ∞ eventually get the token, then it never releases it by (1), [START_REF] Chandy | Parallel program design: a foundation[END_REF], and [START_REF] Bagrodia | A distributed algorithm to implement n-party rendezvous[END_REF].

Assume now, by the contradiction, that no process in V ∞ eventually gets this token (from γ 2). Assume first that a token holder participates in a meeting. Then it eventually releases the token by Lemma 5. In contrast, if it never more participates in any meeting, then it has status idle forever, so its action Token 2 is continuously enabled. As the daemon being weakly fair and Token 2 is its priority enabled action (by (4)), the process eventually releases the token.

Hence, there exists a configuration γ 3 in c after γ 2 where:

(5) There exists a unique process ∈ V ∞ that satisfies Token() forever. [START_REF] Wu | Fairness of n-party synchronization and its implementation in a distributed environment[END_REF] Every process p ∈ V \ { } satisfies ¬Token(p) forever.

Every process p having status idle forever and that never gets the token has action Token 1 that is continuously enabled (its priority enabled action by (4))) if T p = true. The daemon being weakly fair, eventually satisfies T p = f alse forever. Moreover, by definition every other process q in V \ V ∞ convenes and terminates meetings infinitely often, and each time q executes Step 4 , T q is reset to f alse. Hence, from (5), we can deduce that there exists a configuration γ 4 in c after γ 3 where: [START_REF] Kumar | An implementation of n-party synchronization using tokens[END_REF] Every process q in V \ V ∞ satisfies ¬T q forever. By (4) and the fact that no process in V ∞ satisfies Ready, we have (in particular, from γ 4): [START_REF] Bonakdarpour | A framework for automated distributed implementation of component-based models[END_REF] all processes in V ∞ are in looking status.

Consider then a process q in V ∞ such that T q = Token(q) (from γ 4). Then, q is continuously enabled, by (5) and [START_REF] Wu | Fairness of n-party synchronization and its implementation in a distributed environment[END_REF]. So, it is eventually selected by the weakly fair daemon. Now, when selected, its actions Stab 1 and Stab 2 are disabled by [START_REF] Bagrodia | Process synchronization: Design and performance evaluation of distributed algorithms[END_REF]. Moreover, Step 31 , Step 32 , and

Step 4 are also disabled at q, otherwise q will lose its looking status, a contradiction to [START_REF] Bonakdarpour | A framework for automated distributed implementation of component-based models[END_REF]. So, q necessarily executes Token 1 (n.b., Token 2 is disabled at q by (2), (3), and (8)) and there exists a configuration γ 5 in c after γ 4 where: (9) satisfies T forever. [START_REF] Bui | Snap-stabilization and PIF in tree networks[END_REF] Every process q ∈ V \ { } satisfies ¬T q forever. In particular, (8), [START_REF] Bui | State-optimal snap-stabilizing pif in tree networks[END_REF], and [START_REF] Bui | Snap-stabilization and PIF in tree networks[END_REF] Observe that AMM may be equal to the emptyset, e.g., when there is only one hyperedge in H.

The set AMM as defined above characterizes the cases where Professor Fairness and Maximal Concurrency exhibit their conflicting natures. Consider the case where a process p is the token holder and cannot participate in a meeting. In this case, there exists a neighbor of p, say q, in a smallest hyperedge incident to p, such that q is participating in another committee meeting. It follows that processes in (including p) that are currently not meeting are blocked until convenes.

This implies that the current setting does not form a maximal matching and, hence, maximal concurrency cannot be achieved. Thus, in order to analyze the Degree of Fair Concurrency, one needs to consider the set of all maximal matchings of the subhypergraph induced by removing those blocked processes.

We formally characterize the degree of fair concurrency of our algorithm in Theorem 4. We obtain this theorem thanks to several technical results proven below.

Lemma 13 If committee meetings never terminate, the system eventually reaches a configuration from which some process p is the unique token holder forever.

Proof. First, the system eventually reaches a configuration from which there is a unique token forever, by Property 1. Assume, by contradiction, that this token moves infinitely many times.

Then, infinitely many actions Step 4 are executed. The number of processes being finite, there is a process q that executes infinitely many actions Step 4 . After executing Step 4 , S q = looking. Now, before executing Step 4 again, q must execute Step 2 followed by Step 3 to go through status done.

Now, in that case, a meeting of a committee whose q is member convenes and that meeting never terminates, by hypothesis. So, q cannot execute Step 4 ever in that case, because otherwise it would cause the termination of a meeting, and we obtain a contradiction.

Consider now case 4a. Eventually the system reaches a configuration from which (*) every process p satisfies Correct(p) forever (by Corollary 5), S p = done ⇒ Meeting(p) (by Lemma 14), and either S p = looking forever, or S p = done forever (by Corollary 7).

From such a configuration:

• If S = done, then is in an infinite meeting and consequently, there exists ∈ E such that P = forever.

• Otherwise, S = looking and Token() holds forever by 1. If eventually satisfies Ready(), Lemma 17 If committee meetings never terminate, the system eventually reaches a configuration γ where FreeEdges p = ∅ forever for all processes p.

Proof. Consider a computation c = γ 0 . . . where committee meetings never terminate.

Then, the system eventually reaches configuration from which: for every process p, the value of FreeEdges p is fixed and Correct(p) = true forever by Lemma 16, Corollaries 5, and 7.

Assume that, from such a configuration, FreeEdges = ∅ for some processes. Let q be the one among those processes with the highest identity. ∀ ∈ FreeEdges q , ∀s ∈ , LocalMax (s) = q (in particular LocalMax (q) = q) holds continuously until a meeting involving q convenes, by Lemma 16. Then, by definition of action Step 13 , Remark 4, and the fact that the daemon is weakly fair, q eventually sticks its pointer on some hyperedge of FreeEdges q and then eventually satisfies Proof. If committee meetings never terminate, the system eventually reaches a configuration γ where: