
HAL Id: hal-01347461
https://hal.sorbonne-universite.fr/hal-01347461

Submitted on 25 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Snap-Stabilizing Committee Coordination
Borzoo Bonakdarpour, Stéphane Devismes, Franck Petit

To cite this version:
Borzoo Bonakdarpour, Stéphane Devismes, Franck Petit. Snap-Stabilizing Committee Coordination.
Journal of Parallel and Distributed Computing, 2016, 87, pp.26-42. �10.1016/j.jpdc.2015.09.004�. �hal-
01347461�

https://hal.sorbonne-universite.fr/hal-01347461
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Snap-Stabilizing Committee CoordinationI

Borzoo Bonakdarpour

Department of Computing And Software, McMaster University

Stéphane Devismes∗

VERIMAG UMR 5104, Université Joseph Fourier, Grenoble

Franck Petit
LIP6 UMR 7606, UPMC Sorbonne Universités, Paris

Abstract

In the committee coordination problem, a committee consists of a set of professors and committee
meetings are synchronized, so that each professor participates in at most one committee meeting
at a time. In this paper, we propose two snap-stabilizing distributed algorithms for the committee
coordination. Snap-stabilization is a versatile property which requires a distributed algorithm to
efficiently tolerate transient faults. Indeed, after a finite number of such faults, a snap-stabilizing
algorithm immediately operates correctly, without any external intervention. We design snap-
stabilizing committee coordination algorithms enriched with some desirable properties related to
concurrency, (weak) fairness, and a stronger synchronization mechanism called 2-Phase Discus-
sion. In our setting, all processes are identical and each process has a unique identifier. The
existing work in the literature has shown that (1) in general, fairness cannot be achieved in com-
mittee coordination, and (2) it becomes feasible if each professor waits for meetings infinitely of-
ten. Nevertheless, we show that even under this latter assumption, it is impossible to implement a
fair solution that allows maximal concurrency. Hence, we propose two orthogonal snap-stabilizing
algorithms, each satisfying 2-phase discussion, and either maximal concurrency or fairness. The
algorithm that implements fairness requires that every professor waits for meetings infinitely often.
Moreover, for this algorithm, we introduce and evaluate a new efficiency criterion called the degree
of fair concurrency. This criterion shows that even if it does not satisfy maximal concurrency, our
snap-stabilizing fair algorithm still allows a high level of concurrency.

Keywords: Distributed algorithms, snap-stabilization, self-stabilization, committee coordination

IA preliminary version of this paper has been published in IPDPS’2011 [1].
∗Corresponding author.
Email addresses: borzoo@mcmaster.ca (Borzoo Bonakdarpour), stephane.devismes@imag.fr

(Stéphane Devismes), franck.petit@lip6.fr (Franck Petit)
URL: www.cas.mcmaster.ca/˜borzoo/ (Borzoo Bonakdarpour),

www-verimag.imag.fr/˜devismes/ (Stéphane Devismes),
http://pagesperso-systeme.lip6.fr/Franck.Petit/ (Franck Petit)

Preprint submitted to JPDC July 24, 2015

2010 MSC: 68W15, 68M15

1. Introduction1

Distributed systems are often constructed based on an asynchrony assumption. This assump-2

tion is quite realistic, given the principle that distributed systems must be conveniently expandable3

in terms of size and geographical scale. It is, nonetheless, inevitable that processes running across4

a distributed system often need to synchronize for various reasons, such as exclusive access to5

a shared resource, termination, agreement, rendezvous, etc. Implementing synchronization in an6

asynchronous distributed system has always been a challenge, because of obvious complexity and7

significant cost; if synchronization is handled in a centralized fashion using traditional shared-8

memory constructs such as barriers, it may turn into a major bottleneck, and, if it is handled in9

a fully distributed manner, it may introduce significant communication overhead, unfair behavior,10

and be vulnerable to numerous types of faults.11

The classic committee coordination problem [2] characterizes a general type of synchronization12

called n-ary rendezvous as follows:13

“Professors in a certain university have organized themselves into committees. Each14

committee has an unchanging membership roster of one or more professors. From15

time to time a professor may decide to attend a committee meeting; he starts waiting16

and remains waiting until a meeting of a committee of which he is a member is started.17

All meetings terminate in finite time. The restrictions on convening a meeting are as18

follows: (1) meeting of a committee may be started only if all members of that com-19

mittee are waiting, and (2) no two committees can meet simultaneously, if they have a20

common member. The problem is to ensure that (3) if all members of a committee are21

waiting, then a meeting involving some member of this committee is convened.”22

In the context of a distributed system, professors and committees can be mapped onto processes and23

synchronization events (e.g., rendezvous) respectively. Moreover, the three properties identified in24

this definition are known as (1) Synchronization, (2) Exclusion, and (3) Progress, respectively.25

Most of the existing algorithms that solve the committee coordination problem [2, 3, 4, 5, 6, 7]26

overlook properties that are vital in practice. Examples include satisfying fairness or reaching27

maximum concurrency among convened committees and/or professors in a meeting. Moreover,28

to our knowledge, none of the existing algorithms is resilient to the occurrence of faults. These29

features are significantly important when a committee coordination algorithm is implemented to30

ensure distributed mutual exclusion in code generation frameworks, such as process algebras, e.g.,31

CSP, Ada, and BIP [8].32

With this motivation, in this paper, we propose snap-stabilizing [9, 10] distributed algorithms33

for the committee coordination problem, where all processes are identical and each process has a34

unique identifier. Snap-stabilization is a versatile property which requires a distributed algorithm35

to efficiently tolerate transient faults. Indeed, after a finite number of such faults (e.g., memory cor-36

ruptions, message losses, etc.), a snap-stabilizing algorithm immediately operates correctly, with-37

out any external (e.g., human) intervention. A snap-stabilizing algorithm is also a self-stabilizing38

2

[11] algorithm that stabilizes in 0 steps. In other words, our algorithms are optimal in terms of sta-39

bilization time, i.e., every meeting convened after the last fault satisfies every requirement of the40

committee coordination. By contrast, an algorithm that would be only self (but not snap) stabilizing41

only recovers a correct behavior in finite time after the occurrence of the last fault. Nevertheless, to42

the best of our knowledge, the committee coordination problem was never addressed in the area of43

self-stabilization. Therefore, the algorithms proposed in this paper are also the first self-stabilizing44

committee coordination protocols.45

Our snap-stabilizing committee coordination algorithms are enriched with other desirable prop-46

erties. These properties include Professor Fairness, Maximal Concurrency, and 2-Phase Discus-47

sion. The former property means that every professor which requests to participate in a committee48

meeting that he is a member of, eventually does. Roughly speaking, the second of the aforemen-49

tioned properties consists in allowing as many committees as possible to meet simultaneously.50

The latter (2-Phase Discussion) requires professors to collaborate for a minimum amount of time51

before leaving a meeting.52

We first consider Maximal Concurrency and Professor Fairness. As in [7], to circumvent the53

impossibility of satisfying fairness [5], each time we consider professor fairness in the sequel of the54

paper, we assume that every professor waits for a meeting infinitely often. Under this assumption,55

we show that Maximal Concurrency and Professor Fairness are two mutually exclusive proper-56

ties, i.e., it is impossible to design a committee coordination algorithm (even non-stabilizing) that57

satisfies both features simultaneously.58

Consequently, we focus on the aforementioned contradictory properties independently by pro-59

viding the two snap-stabilizing algorithms. The former maximizes concurrency at the cost of not60

ensuring professor fairness. On the contrary, the second algorithm maintains professor fairness,61

but maximal concurrency cannot be guaranteed. Both algorithms are based on the straightforward62

idea that coordination of the various meetings must be driven by a priority mechanism that helps63

each professor to know whether or not he can participate in a meeting. Such a mechanism can be64

implemented using a token circulating among the professors. To ensure fairness, when a professor65

holds a token, he has the higher priority to convene a meeting. He then retains the token until he66

joined the meeting. In that case, some neighbors of the token holder can be prevented from partic-67

ipating in other meetings so that the token holder eventually does. This results in decreasing the68

level of concurrency. In order to guarantee maximal concurrency (but at the risk of being unfair), a69

waiting professor must release the token if he is not yet able to convene a meeting to give a chance70

to other committees in which all members are already waiting.71

Thus, in the first algorithm, we show the implementability of committee coordination with72

Maximal Concurrency even if professors are not required to wait for meetings infinitely often. To73

the best of our knowledge this is the first committee coordination algorithm that implements max-74

imal concurrency. Moreover, the algorithm is snap-stabilizing and satisfies 2-Phase Discussion.75

We also propose a snap-stabilizing algorithm that satisfies Fairness on professors (respectively,76

committees) and respects 2-Phase Discussion. As mentioned earlier, this algorithm assumes that77

every professor waits for a meeting infinitely often. Following our impossibility result, the algo-78

rithm does not satisfy Maximal Concurrency. However, we show that it still allows a high level of79

concurrency. We analyze this level of concurrency according to a newly defined criterion called80

3

the degree of fair concurrency. We also study the waiting time of our algorithm.81

Organization. The rest of the paper is organized as follows. In Section 2, we present the pre-82

liminary concepts. Section 3 is dedicated to definitions of Maximal Concurrency and Fairness83

in committee coordination. Then, in Section 4, we propose our first snap-stabilizing algorithm84

that satisfies both Maximal Concurrency and 2-phase Discussion. In Section 5, we present our85

snap-stabilizing algorithm that satisfies Fairness and 2-phase Discussion. Our analysis on level86

of concurrency and waiting time is also presented in this section. Related work is discussed in87

Section 6. Finally, we present concluding remarks and discuss future work in Section 7.88

2. Background89

2.1. Distributed Systems as Hypergraphs90

Considering the committee coordination problem in the context of distributed systems, pro-91

fessors and committees are mapped onto processes and synchronization events (e.g., rendezvous)92

respectively. We assume that each process has a unique identifier and the set of all identifiers is a93

total order. We simply denote the identifier of a process p by p.94

For the sake of simplicity, we assume that each committee has at least two members.1 Hence,95

we model a distributed system as a simple self-loopless hypergraphH = (V, E) where V is a finite96

set of vertices representing processes and E is a finite set of hyperedges representing synchroniza-97

tion events, such that for all ε ∈ E , we have ε ∈ 2V , i.e., each hyperedge is formed by a subset of98

vertices.99

Let v be a vertex in V and ε be a hyperedge in E . We denote by v ∈ ε the fact that vertex v is100

incident to hyperedge ε. We denote the set of hyperedges incident to vertex v by Ev. We say that101

two distinct vertices u and v are neighbors if and only if u and v are incident to some hyperedge ε;102

i.e., there exists ε ∈ E , such that u, v ∈ ε. The set of all neighbors of v is denoted by N(v).103

In the committee coordination problem, professors in the same committee need to communicate104

with each other. We assume that two processes can directly communicate with each other if and105

only if they are neighbors. This induces what we call an underlying communication network106

defined as follows: the underlying communication network of a distributed system H = (V, E) is107

an undirected simple connected graph GH = (V,EE), where EE = {{p1, p2} | p1 ∈ V ∧ p2 ∈108

V ∧ p1 ∈ N(p2)}. Figure 1(b) shows the underlying communication network of the hypergraph109

given in Figure 1(a).110

2.2. Computational Model111

The communication between processes are carried out using locally shared variables. Each112

process owns a set of locally shared variables, henceforth referred to as variables. Each variable113

ranges over a fixed domain and the process can read and write them. Moreover, a process can also114

read variables of its neighbors.2 The state of a process is defined by the value of its variables. A115

1Adapting our results to take singleton committees into account is straightforward.
2In particular, a process can read the identifiers of its neighbors.

4

2

4

5

1

3

6

(a) Hypergraph H = (V, E),
where V = {1, 2, 3, 4, 5, 6} and
E = {{1, 2}, {1, 2, 3, 4}, {2, 4, 5},
{3, 6}, {4, 6}}.

2

4

5

1

3

6

(b) Graph GH = (V,EE), where
EE = {{1, 2}, {1, 3}, {1, 4}, {2, 3},
{2, 4}, {2, 5}, {3, 4}, {3, 6}, {4, 5},
{4, 6}}

Figure 1: An example of a hypergraph and its underlying communication network.

process can change its state by executing its local algorithm. The local algorithm of a process p is116

described using a finite ordered list of guarded actions of the form:117

〈label〉 :: 〈guard〉 7→ 〈statement〉.118

The label of an action is only used to identify the action in discussions and proofs. The guard of119

an action of p is a Boolean expression involving a subset of variables of p and its neighbors. The120

statement of an action of p updates a subset of variables of p. The order of the list follows the order121

of appearance of the actions in the code of the local algorithm and give priorities to actions: action122

A has higher priority than action B if and only if A appears after B in the code.123

A configuration γ in a distributed system is an instance of the state of its processes. We denote124

the set of all configurations of a distributed system H by ΓH. The concurrent execution of the125

set of all local algorithms defines a distributed algorithm. We say that an action of a process p is126

enabled in a configuration γ if and only if its guard is true in γ. By extension, process p is said to127

be enabled in γ if and only if at least one of its actions is enabled in γ. An action can be executed128

only if its guard is enabled. We denote by Enabled(γ) the subset of processes that are enabled in129

configuration γ.130

When the configuration is γ and Enabled(γ) 6= ∅, a daemon (or scheduler) selects a non-empty131

set X ⊆ Enabled(γ); then every process of X atomically executes its priority enabled action,132

leading to a new configuration γ′, and so on. The transition from γ to γ′ is called a step (of A).133

The possible steps induce a binary relation over configurations of A, denoted by 7→.134

A computation of a distributed system is a maximal sequence of configurations γ0, γ1, . . . such135

that (1) γ0 is an arbitrary configuration, and (2) for each configuration γi, with i ≥ 0, γi 7→ γi+1.136

Maximality of a computation means that the computation is either infinite or eventually reaches a137

terminal configuration (i.e., a configuration where no action is enabled).138

A daemon is defined as a predicate over computations. There exist several kinds of daemons.139

Here, we consider a distributed weakly fair daemon. Distributed means that, at each step, if one or140

5

more processes are enabled, then the daemon selects at least one (maybe more) of these processes.141

Weak fairness means that every continuously enabled process is eventually selected by the daemon.142

We say that a process p is neutralized in γi 7→ γi+1, if p is enabled in γi and not enabled in γi+1,143

but did not execute any action in γi 7→ γi+1. To compute the time complexity, we use the notion144

of round [12]. This notion captures the execution rate of the slowest process in any computation.145

The first round of a computation e is the minimal prefix of e, γ0 . . . γi, containing the activation or146

the neutralization of every process that is enabled in the initial configuration. Let eγi be the suffix147

of e starting from γi (the last configuration of the first round of e). The second round of e is the148

first round of eγi , and so on.149

The fair composition [13] of two algorithms P1 and P2 consists in running P1 and P2 in alter-150

nation in such a way that there is no computation suffix, where a process is continuously enabled151

w.r.t. Pi (i ∈ {1, 2}) without executing any of its enabled actions w.r.t. Pi.152

2.3. The Committee Coordination Problem153

The original committee coordination problem is as follows [2]. LetH = (V, E) be a distributed154

system. Each process in V represents a professor and each hyperedge in E represents a committee.155

We say that two committees ε1 and ε2 are conflicting if and only if ε1 ∩ ε2 6= ∅. A professor can156

be in anyone of the following three states: (1) idle, (2) waiting, and (3) meeting. A professor may157

remain in the idle state for an arbitrary (even infinite) period of time. An idle professor may start158

waiting for a committee meeting. A professor remains waiting until all participating professors159

of a committee, which he is a member of, agree on meeting. Moreover, a professor may leave a160

meeting, become idle, and subsequently be waiting for a new committee meeting.161

Chandy, Misra [2], and Bagrodia [4] require that any solution to the problem must satisfy the162

following specification:163

• (Exclusion) No two conflicting committees may meet simultaneously.164

• (Synchronization) A committee meeting may convene only if all members of that committee165

are waiting.166

• (Progress) If all members of a committee ε are waiting, then some professor in ε eventually167

goes to the meeting state.168

2.4. 2-Phase Discussion169

The original Committee Coordination problem specification does not constrain professors with170

respect to their time spent in a committee meeting in any ways. Thus, distributed algorithms for171

committee coordination have been developed regardless this issue. For instance, solutions pro-172

posed in [2, 4] that employ the dining philosophers problem [14] in order to resolve committee173

conflicts satisfy the specification presented in Subsection 2.3, but have the following shortcoming.174

Since a philosopher acquires and releases forks all at once, members of the corresponding com-175

mittee have to leave the meeting all together.3 There are two problems with such a restriction: (1)176

3The same argument holds for solutions based on the drinking philosophers [14] and tokens.

6

an implicit strong synchronization is assumed on terminating a committee meeting, and (2) fast177

professors have to wait for slow professors to finish the task for which they setup a rendezvous.178

We constrain the specification such that upon agreement on a meeting, the meeting takes place179

until a professor unilaterally leaves (that is, without waiting for other professors) the meeting. The180

reason for this requirement is due to the fact that in practical settings, based upon the speed of pro-181

cesses (professors), the type of local computation, and required resources, each process may spend182

a different time period to utilize resources or execute a critical section. Nevertheless, we also re-183

quire that each professor must spend a minimum amount of time to discuss issues in the meeting.184

The intuition for this constraint is that processes participate in a rendezvous to share resources or185

do some minimal computation and, hence, they should not be allowed to leave the meeting imme-186

diately after it convenes. Another reason for requiring this minimal discussion by all professors187

is inspired by the fact that in the recent applications of using rendezvous interactions to generate188

correct distributed and multi-core code, such interactions normally involve data transmission and189

even code execution at interaction level [15, 16]. The following definition elegantly captures this190

requirement.191

Definition 1 (2-Phase Discussion) We define the 2-phase discussion by the following two proper-192

ties:193

• Phase 1. (Essential Discussion) Upon a meeting convenes, a first session of discussion194

should take place until each participating professor has the opportunity to execute a task195

involving information from all or part of the participants.196

• Phase 2. (Voluntary Discussion) Upon a meeting convenes and after fulfilling the es-197

sential discussion, the discussion (and consequently the meeting) continues until a professor198

voluntarily terminates his/her discussion (and consequently the meeting).199

In the following, we call 2-phase committee coordination problem the committee coordination200

problem enriched with the essential and voluntary discussions.201

2.5. Snap-stabilization202

Snap-stabilization [9, 10] is a versatile property which requires a distributed algorithm to ef-203

ficiently tolerate transient faults. Indeed, after a finite number of such faults (e.g., memory cor-204

ruptions), a snap-stabilizing algorithm immediately operates correctly, without any external (e.g.205

human) intervention. By contrast, the related concept of self-stabilization [11] only guarantees that206

the system eventually recovers to a correct behavior.207

In (self- or snap-) stabilizing systems, we consider the system immediately after the occurrence208

of the last fault. That is, we study the system starting from an arbitrary configuration reached due to209

the occurrence of transient faults, but from which no fault will ever occur. By abuse of language,210

this configuration is referred to as initial configuration of the system in the literature. A snap-211

stabilizing algorithm then guarantees that starting from any arbitrary initial configuration, any of212

its computations always satisfies the specification of the problem.213

This means, in particular, that in (self- or snap-) stabilizing systems there is no fault model in214

the literal sense. As we study the system after the last fault, we do not treat the faults but their con-215

sequences. The result of a finite number of transient faults being the arbitrary perturbation of the216

7

system configuration, we consider any computation started in any arbitrary initialized configura-217

tion, but in which there is no fault. So, for example, to show that our algorithms are snap-stabilizing218

w.r.t the committee coordination problem, we have to show that the specification of the commit-219

tee coordination problem (e.g., exclusion, progress, synchronization, etc) is always satisfied in all220

possible (fault-free) computations starting from all possible (arbitrary) configurations.221

It is important to note that snap-stabilizing algorithms are not insensitive to transient faults.222

Actually, a snap-stabilizing algorithm guarantees that any task execution started after the end of223

the faults operates correctly. However, there is no guarantees for tasks executed completely or224

in part during faults. By contrast, self- but not snap- stabilizing algorithms require to start task225

execution several times (yet a finite number of time) before correctly performing them (that is, w.r.t.226

their specification). Hence, snap-stabilization is a specialization of self-stabilization that offers227

stronger safety guarantees. For example, in the committee coordination problem, snap-stabilization228

ensures that every meeting convened after the last transient faults satisfies every requirement of229

the committee coordination problem. However, there is no guarantees for the meetings started230

during the transient faults, except that they do not interfere with the execution of the meetings that231

convened after the last fault.232

3. Maximal Concurrency versus Fairness in Committee Coordination233

3.1. Definitions234

In practical applications, it is crucial to allow as many processes as possible to execute simul-235

taneously without violating other correctness constraints. Although the level of concurrency has236

significant impact on performance and resource utilization, it does not appear as a constraint in the237

original committee coordination problem. Moreover, the solutions proposed by Chandy and Misra238

[2] and Bagrodia [3, 4] result in decreasing the level of concurrency drastically, making them less239

appealing for practical purposes. Examples include the circulating token mechanism among con-240

flicting committees [3], and reduction to the dining philosophers problems, where a “manager”241

handles multiple committees. Reduction to the drinking philosophers problem such as those in242

[2, 4, 17] results in more concurrency, but not maximal. This is due to the fact that existing solu-243

tions to the drinking philosophers problem try to achieve concurrency and fairness simultaneously,244

which we will show is impossible in committee coordination.245

We formulate the issue of concurrency, so that as many committees as possible meet simul-246

taneously. Our definition of maximal concurrency is inspired by the efficiency property given in247

[18]. Informally, we define maximal concurrency as follows: if there is at least one committee,248

such that all its members are waiting, then eventually a new meeting convenes even if no other249

meeting terminates in the meantime. In other words, while it is possible, new meetings should be250

able to convene, regardless the duration of meetings that already hold. Now, to formally define251

maximal concurrency we need, in particular, to express the constraint “regardless of the duration252

of meetings that already hold”. For that purpose, we borrow the ideas of Datta et al [18] by us-253

ing the following artefact: we let a professor (process) remains in the meeting state forever. We254

emphasize that we make this assumption only to define our constraint; our results in this paper do255

assume finite-time meetings as mentioned earlier.256

8

Definition 2 (Maximal Concurrency) Assume that there is a set of professors P1 that are all in257

infinite-time meetings. Let P2 be a set of professors waiting to enter a committee meeting (Obvi-258

ously, P1 ∩ P2 = ∅ and idle processes are in neither P1 nor P2). Let Π be the set of hyperedges259

having all their incident professors in P2. If Π 6= ∅, then a meeting between every professor260

incident to some hyperedge ε ∈ Π eventually convenes.261

We note that in Definition 2, we use the term “maximal”, because our intention is not to enforce262

the largest number of committees (i.e., maximum) to meet simultaneously, this latter problem is263

clearlyNP-hard! In other words, committees convene until the systems is exhausted. This greedy264

approach does not always result in obtaining the maximum number of committees that can meet at265

the same time.266

Following the results in [5], if a professor’s status does not become waiting infinitely often,267

achieving fairness is impossible. Thus, we consider fairness assuming professors always eventually268

switch to the waiting status. In this context, we define fairness on professors (also called weak269

fairness, [6]) as follows.270

Definition 3 (Professor Fairness) Every professor participates infinitely often in a committee meet-271

ing that he is a member of.272

3.2. Negative Result273

The next theorem shows that Maximal Concurrency and Professor Fairness are incompatible.274

Its proof follows ideas similar to the impossibility results of Joung [19] as well as Tsay and Bagro-275

dia [5].276

The idea behind this result is rather simple: Consider any process p. To satisfy professor277

fairness, a meeting having p as member must eventually convene. To have such a guarantee, the al-278

gorithm may eventually have to prevent some neighbors of p from participating in meetings until a279

meeting including them and p can convene. These blockings may happen while no meeting includ-280

ing p can be yet convened. This constraint then prevents some meetings from holding concurrently.281

That is, making maximal concurrency impossible.282

Theorem 1 Assuming that every professor waits for meetings infinitely often, it is impossible283

to design an algorithm (even non-stabilizing) for an arbitrary distributed system that solves the284

committee coordination problem and simultaneously satisfies Maximal Concurrency and Professor285

Fairness.286

Proof. Suppose by contradiction that there exists an algorithm A (be it stabilizing or not)287

working in any topology that satisfies both Maximal Concurrency and Professor Fairness. Now,288

consider a computation of A on hypergraph H = (V, E) where V = {1, 2, 3, 4, 5} and E =289

{{1, 2}, {1, 3, 5}, {3, 4}}). Figure 2 shows three possible configurations A, B, and C obtained by290

executing algorithm A on H. In the figure, solid bold lines represent meetings that are currently291

being held. Also, a process that is not in a meeting is supposed to be waiting. For example, in292

configuration A, professors 1 and 2 are meeting and professors 3, 4, and 5 are waiting.293

We first show that there are computations of A that eventually reach configuration A. As294

professors 1 and 2 wait for meetings infinitely often, by Professor Fairness, a meeting between295

9

1 2

43

A

5

1 2

43

B

5

1 2

43

C

5

Figure 2: Impossibility of Maximal Concurrency and Professor Fairness.

professors 1 and 2 eventually convenes. When this happens, if professors 3 and 4 are meeting,296

then their meeting can terminate before the one between 1 and 2. So, the system may reach a297

configuration where only 1 and 2 are meeting. After that, assuming that professors 3, 4, and 5298

immediately go to the waiting state, then the system reaches configuration A.299

From configuration A, if the committee {1, 2} takes an arbitrary long (but finite) time, then300

a meeting of the committee {3, 4} must eventually convene in order to satisfy Maximal Concur-301

rency and the system reaches configuration B. Now, suppose meeting {1, 2} terminates first and302

professors 1 and 2 immediately go to waiting state again. So, 1, 2, and 5 are waiting and 3 and 4303

are in a meeting (configuration C). Following a similar reasoning, configuration B can be reached304

from configuration C, and configuration A can be reached from configuration B. By repeating305

this pattern infinitely many times, we obtain a possible computation ofA, where professor 5 never306

participates in any meeting while being continuously waiting, which contradicts with Professor307

Fairness. �
308

Note that Maximal Concurrency and Professor Fairness can be simultaneously achieved in309

some particular networks, e.g., networks where no committees are in conflict, or networks where310

some professor belongs to all committees (e.g., a complete hypergraph, or a star topology). In the311

latter case, note that all committees are conflicting and so at most one can meet at a time.312

We note that every algorithm that satisfies Professor Fairness also satisfies Progress. Also,313

observe that Professor Fairness does not imply that particular committees eventually convene. We314

define such a property as follows.315

Definition 4 (Committee Fairness) Every committee meeting convenes infinitely often.316

Notice that since Committee Fairness implies Professor Fairness, impossibility of satisfying317

both Maximal Concurrency and Committee Fairness trivially follows.318

Corollary 1 Assuming that every professor waits for meetings infinitely often, it is impossible to319

design an algorithm (even non-stabilizing) for an arbitrary distributed system that solves the com-320

mittee coordination problem and simultaneously satisfies Maximal Concurrency and Committee321

Fairness.322

Theorem 1 shows that Professor Fairness and Maximal Concurrency are contradictory proper-323

ties to satisfy. Thus, in order to satisfy one property, we have to omit the other. Omitting fairness324

results in an algorithm such as the one presented in Section 4. Omitting maximal concurrency325

results in an algorithm such as the one presented in Section 5.326

10

Note that both algorithms use a single token circulation that ensures the progress in the former327

case and the fairness in the latter. As a matter of fact, they mainly differ in the way they handle328

the token. Concerning the second algorithm, one can suggest that the use of several tokens (e.g.,329

the local mutual exclusion mechanism in [20]) instead of a single one would enhance the fairness330

guarantee. However, increasing the number of tokens results in decreasing the degree of (fair)331

concurrency,4 which is the target metric here. The key idea is that the token is used to give priority332

to convene a meeting. However, the token is not mandatory to join a meeting, unless a process333

is starved to join a meeting. Then, to guarantee fairness, it is mandatory that the token holder334

selects a committee and sticks with that committee until it meets, even if some members of that335

committee are currently participating in another meeting. In this case, every other waiting member336

of that committee has to wait until the meeting convenes while they may participate in a meeting337

of another committee. This results in decreasing the degree of concurrency (that is why our second338

algorithm does not satisfy Maximal Concurrency): every waiting member of the committee selected339

by the token holder is blocked until the committee is able to convene. Hence, increasing the340

number of tokens increases the number of blocked processes which in turn decreases the degree of341

concurrency. In other word, enforcing the fairness decreases concurrency.342

3.3. Complexity Analysis of Fair Solutions343

We now introduce and study two complexity measures: degree of fair concurrency and waiting344

time. First, in order to characterize the impact of fairness on reducing the number of processes that345

can run concurrently, we introduce the notion of Degree of Fair Concurrency. Roughly speaking,346

this degree is the minimum number of committees that can meet concurrently without compromis-347

ing Professor Fairness.348

Definition 5 (Degree of Fair Concurrency) Let A be a committee coordination algorithm that349

satisfies Professor Fairness. Let professors remain in a meeting for infinite time.5 Under such an350

assumption the system reaches a quiescent state where the status of all professors do not change351

any more. The Degree of Fair Concurrency of A is then the minimum number of meetings held in352

a quiescent state.353

When considering fair solutions, it is of practical interest to evaluate the Waiting Time. In our354

context where processes are either waiting or meeting, we define waiting time as follows:355

Definition 6 (Waiting Time) The maximum time before a process participates in a committee356

meeting is waiting time.357

4. Snap-stabilizing 2-Phase Committee Coordination with Maximal Concurrency358

In this section, we propose a Snap-stabilizing algorithm that satisfies Maximal Concurrency as359

well as the 2-Phase Discussion. We present our algorithm in Subsection 4.1. The correctness360

proof appears in Subsection 4.2.361

4The term “degree of fair concurrency” is formally explained in Subsection 3.3
5As in Definition 2, infinite meetings are used only for formalization.

11

4.1. Algorithm362

Our algorithm is a composition of two modules: (1) a Snap-stabilizing algorithm – denoted363

CC1 – that ensures Exclusion, Synchronization, Maximal Concurrency, and 2-Phase Discussion,364

and (2) a self-stabilizing module – denoted T C – that manages a circulating token for ensuring365

Progress. Each process p runs this algorithm, where the intention of p in participating or leaving366

a committee are declared by truthfulness of input predicates RequestIn(p) and RequestOut(p),367

respectively.368

Remark 1 We emphasize that this composition is snap-stabilizing, as the self-stabilizing token369

circulation is not used to ensure any safety property.370

Token Circulation Module. We assume that the token circulation module is a black box with the371

following property:372

Property 1373

• T C contains one action to pass the token from neighbor to neighbor:

T :: Token(p) 7→ ReleaseTokenp

• Once stabilized, every process executes action T infinitely often, but when T is enabled in a374

process, it is not enabled in any other process.375

• T C stabilizes independently of the activations of action T .376

To obtain such a token circulation, one can compose a self-stabilizing leader election algorithm377

(e.g., in [21, 22, 23]) with one of the self-stabilizing token circulation algorithms in [24, 25, 26, 27]378

for arbitrary rooted networks. The composition only consists of two algorithms running concur-379

rently with the following rule: if a process decides that it is the leader, it executes the root code of380

the token circulation. Otherwise, it executes the code of the non-root process.381

Composition. The composition of CC1 and T C is denoted by CC1 ◦ T C. Actually, CC1 ◦ T C is a382

fair composition of CC1 and T C that does not explicitly contain action T : in CC1 ◦ T C, action T is383

emulated by CC1, where predicate Token(p) and the statement ReleaseTokenp are given as inputs384

in CC1.385

Committee Coordination Module. Algorithm CC1 is identical for all processes in the distributed386

system. Its code is given in Algorithm 1. Interactions between each professor p and his local algo-387

rithm are managed using two input predicates: RequestIn(p) and RequestOut(p). These predicates388

express the fact that a professor autonomously decides to wait and leave a meeting, respectively.389

The predicate RequestIn(p) holds when professor p requests participation in a committee meeting.390

The predicate RequestOut(p) holds when p desires to stop discussing in a meeting. Thus, p even-391

tually satisfies RequestOut(p) during the meeting or after some members left it. So, once p has392

done its essential discussion, it can voluntary leave the meeting when it satisfies RequestOut(p).393

Each process p maintains a status variable Sp ∈ {idle, looking,waiting, done}, a Boolean vari-394

able Tp, and an edge pointer Pp. We explain the goal of these variables below:395

12

Algorithm 1 Pseudo-code of CC1 for process p.
Inputs:
RequestIn(p) : Predicate: input from the system indicating desire for participating in a committee
RequestOut(p) : Predicate: input from the system indicating desire for leaving a committee
Token(p) : Predicate: input from T C indicating process p owns the token
ReleaseToken(p) : Statement: output to T C indicating process p releases the token

Constants:
Ep : Set of hyperedges incident to process p

Variables:
Sp ∈ {idle, looking,waiting, done} : Status
Pp ∈ Ep ∪ {⊥} : Edge pointer
Tp : Boolean

Macros:
FreeEdgesp = {ε ∈ Ep | ∀q ∈ ε : Sq = looking}
FreeNodesp = {q | ∃ε ∈ FreeEdgesp : q ∈ ε}
TFreeNodesp = {q ∈ FreeNodesp | Tq}
Candsp = if (TFreeNodesp 6= ∅) then TFreeNodesp else FreeNodesp fi

Predicates:
Ready(p) ≡ ∃ε ∈ Ep : ∀q ∈ ε : ((Pq = ε) ∧ (Sq ∈ {looking,waiting}))
LocalMax(p) ≡ p = max(Candsp)
MaxToFreeEdge(p) ≡ (FreeEdgesp 6= ∅) ∧ LocalMax(p) ∧ ¬Ready(p) ∧ (Pp /∈ FreeEdgesp)
JoinLocalMax(p) ≡ (FreeEdgesp 6= ∅) ∧ ¬LocalMax(p) ∧ ¬Ready(p) ∧

(∃ε ∈ FreeEdgesp : (Pmax(Candsp) = ε ∧ Pp 6= ε))

Meeting(p) ≡ ∃ε ∈ Ep : ∀q ∈ ε : (Pq = ε ∧ Sq ∈ {waiting, done})
LeaveMeeting(p) ≡ ∃ε ∈ Ep : ((Pp = ε) ∧ (∀q ∈ ε : ((Pq = ε) ⇒ (Sq = done))))
Useless(p) ≡ Token(p) ∧ [(Sp = idle) ∨ (Sp = looking ∧ FreeEdgesp = ∅)]
Correct(p) ≡ [(Sp = idle) ⇒ (Pp =⊥)] ∧

[(Sp = waiting) ⇒ Ready(p) ∨ Meeting(p)] ∧
[(Sp = done) ⇒ Meeting(p) ∨ LeaveMeeting(p)]

Actions:
Step1 :: RequestIn(p) ∧ (Sp = idle) 7→ Sp := looking;Pp :=⊥;

Step21 :: MaxToFreeEdge(p) 7→ Pp := ε, such that ε ∈ FreeEdgesp;
Step22 :: JoinLocalMax(p) 7→ Pp := ε, such that (ε ∈ Ep ∧ ε = Pmax(Candsp));

Token1 :: Token(p) 6= Tp 7→ Tp := Token(p);
Token2 :: Useless(p) 7→ ReleaseToken(p);Tp := false;

Step31 :: Ready(p) ∧ (Sp = looking) 7→ Sp := waiting;
Step32 :: Meeting(p) ∧ (Sp = waiting) 7→ 〈EssentialDiscussion〉;Sp := done;

Step4 :: LeaveMeeting(p) ∧ RequestOut(p) 7→ Sp := idle;Pp :=⊥; if Token(p) then ReleaseToken(p) fi; Tp := false;

Stab1 :: ¬Correct(p) ∧ (Sp = idle) 7→ Pp :=⊥;
Stab2 :: ¬Correct(p) ∧ (Sp 6= idle) 7→ Sp := looking;Pp :=⊥;

13

1. When process p is idle (that is Sp = idle) but desires to participate in a committee meeting396

(that is, if RequestIn(p) is true), it changes its status from idle to looking and initializes its397

edge pointer Pp to ⊥ (action Step1).398

2. Next, process p starts looking for an available committee to join. Process p shows interest399

in joining a committee whose processes are all looking by setting its edge pointer Pp to the400

corresponding hyperedge, if such a hyperedge exists (actions Step21 and Step22).401

To obtain agreement on the committees to convene, we implement token-based priorities.402

When a looking process p is the one with highest priority in its neighborhood, it points to403

an edge corresponding to a committee whose processes are all looking (if any) and sticks404

with it. Looking processes with low priorities select the committee chosen by their looking405

neighbor of highest priority, described next.406

Each process p maintains a Boolean variable Tp which shows whether or not it owns a token.407

A token holder has a higher priority than its neighbors to convene a committee. In case of408

several token holders (only during the stabilization of token circulation), we give priority to409

the looking token holder with the maximum identifier.410

A token holder releases its token in two cases: (1) when it leaves a meeting or (2) when it411

is currently not guaranteed to eventually convene a committee (that is, in each of its incident412

committees, at least one member is not looking). Note that the algorithm does not guarantee413

fairness because of this latter case.414

In order to guarantee Maximal Concurrency, we have to authorize committees to meet when415

all members are looking and if there is no looking token holder in the neighborhood. In this416

case, among the looking processes we give priority to the looking process with the maximum417

identifier.418

3. Once all processes of a hyperedge are looking and agree on that hyperedge, they are all ready419

to start their discussion. To this end, a process changes its status from looking to waiting6
420

to show that it is waiting for the committee to convene (action Step31). A meeting of the421

committee convenes when all its members change their status to waiting. Then, each process422

executes its essential discussion and then switches its status to done (action Step32).423

4. Finally, a process is allowed to leave the committee meeting when all processes of that424

committee have fulfilled their essential discussion, i.e., they are all in the done status. In this425

case, the meeting takes place until a process p unilaterally decides to leave it (that is, until426

RequestOut(p) is true) after a finite period of voluntary discussion. To leave the committee427

meeting, it switches its status to idle again, resets its hyperedge pointer, and releases the428

token if it owns it (action Step4). Then, the committee meeting is terminated, and every429

other member q switches to idle since it satisfies RequestOut(q).430

The rest of actions of the algorithm deal with token circulation and snap-stabilization. In431

particular, action Token1 deals with setting variable Tp to true, so that neighboring processes432

realize that p owns the token. If p owns the token and has no desire to take part in a committee433

meeting, or, there does not exist an available committee for p to participate, then it releases the434

6Note that both looking and waiting status form the waiting state of the original problem specification [2].

14

token (action Token2). Finally, actions Stab1 and Stab2 correct the state of a process, if faults435

perturb the state of the process to a state where predicate Correct does not hold. Predicate Correct436

holds at states where (1) the process is idle and it has no interest in participating in a committee437

meeting, (2) it is waiting and interested in a committee whose processes are gathering to convene438

a meeting, and (3) it has fulfilled its essential discussion and other processes in the corresponding439

committee are either in {waiting, done} status, or, the meeting is terminated, that is some processes440

have left the meeting and the others are done in the meeting.441

Example. In this paragraph, we illustrate the need of the token to ensure progress. Figure 3 pro-442

vides an example of computation that starts from a configuration where each professor state is443

correct. In the figure, each circle represents a professor and arrows inside the circle represent the444

P -pointers (if a circle contains no arrow, this means that the corresponding professor p satisfies445

Pp =⊥). Numbers represent identifiers. The status of the professors is given below the circles.446

The token holder is represented by a bold circle. A boxed “T” near a circle means that the corre-447

sponding professor p satisfies Tp = true.448

In this example, professors in the committee {5, 6} desire to participate in a meeting. So, at449

least one of them should eventually does, according to the progress property. Because they have450

low identifiers, we can prevent them from convening a meeting until at least one of them get the451

token.452

In 3(a), two meetings are almost done: {9, 10} and {1, 2, 3}, that is, all involved professors are453

doing their voluntary discussion. Notice that Professor 1 holds the token and T1 = true. Profes-454

sor 4 is currently not interesting in convening any meeting. All other professors are looking for455

convening a meeting and point to their highest priority all-looking committee. Now, Professors 7456

and 8 are agreeing to convene a meeting: they are both enabled to switch to the waiting status.457

In Step 3(a) 7→3(b), all members of meetings {1, 2, 3} and {9, 10} simultaneously leave the458

meeting by executing Step4. Moreover, Professor 8 switches to the waiting status by executing459

Step31. Note in particular that Professor 1 releases the token and resets T1 to false. Professor 2 is460

now the token holder. Since his status is idle, he is enabled to release the token. Professor 2 will461

release the token without setting T2 to true in the meantime.462

In Step 3(b)7→3(c), Professor 7 switches to status waiting. So, the meeting {7, 8} convenes.463

In the meantime, both Professors 9 and 10 start again to look for a meeting by executing Step1.464

Moreover, Professor 2 releases the token. So, in configuration 3(c), Professor 3 is the token holder465

and Professor 6 should look for another meeting. For Professor 6, the committee of highest priority466

is {6, 9}. Similarly, Professor 9 (resp. Professor 10) considers {9, 10} as the one of highest priority.467

In Step 3(c) 7→3(d), Professor 3 releases the token, Professors 7 and 8 perform their essential468

discussion (Step32), Professors 10 (Step21) and 9 (Step22) agree to convene a meeting, and Profes-469

sor 6 points to Committee {6, 9}. Note that Professor 4 is the token holder in configuration 3(d),470

but he has no interest in convening any meeting so his action Token2 is enabled.471

In Step 3(d)7→3(e), Professor 4 releases the token, Professors 8 and 9 leave their meeting472

(Step4), and Professor 10 switches to the waiting status by executing Step31. In configuration 3(e),473

Professor 6 is the token holder, consequently he has highest priority. However, meeting {8, 9} is474

ready to convene, so Professor 9, in particular, will not change his pointer P9.475

In Step 3(e)7→3(f), Professor 9 switches to status waiting, so the meeting of Committee {9, 10}476

15

1

2

3
4

5
6

78

10 9 T

idle done

done

done

done done

lookinglooking

looking

looking

(a)

1

2

3
4

5
6

78

10 9

idle idle

idle

idle

idle idle

lookingwaiting

looking

looking

(b)

1

2

3
4

5
6

78

10 9

idle idle

idle

idle

looking looking

waitingwaiting

looking

looking

(c)

1

2

3
4

5
6

78

10 9

idle idle

idle

idle

looking looking

donedone

looking

looking

(d)

1

2

3
4

5
6

78

10 9

idle idle

idle

idle

waiting looking

idleidle

looking

looking

(e)

1

2

3
4

56
78

10 9

idle idle

idle

idle

waiting waiting

lookinglooking

looking

looking

T

(f)

1

2

3
4

56
78

10 9

T

idle idle

idle

idle

done done

lookinglooking

looking

looking

(g)

1

2

3
4

56
78

10 9

T

idle idle

idle

idle

idle idle

waitinglooking

waiting

looking

(h)

1

2

3
4

56
78

10 9

T

idle idle

idle

idle

looking looking

donelooking

done

looking

(i)

Figure 3: Example

convenes. In the meantime, Professors 8 and 9 start again to look for a meeting by executing477

Step1. Finally, Professor 6 executes T6 ← true (Token1) to inform all its neighbors that he is the478

token holder. In configuration 3(f), Professors 5, 6, 7, and 8 are all looking for a meeting like in479

configuration 3(a), but this time Committee {6, 7} has the highest priority.480

In Step 3(f)7→3(g), Professors 9 and 10 perform their essential discussion (Step32) and Profes-481

sors 6 (Step21) and 7 (Step22) agree to convene a meeting (Professor 8 also executes Step22).482

In Step 3(g) 7→3(h), the meeting of Committee {9, 10} ends because Professors 9 and 10 simul-483

taneously leave it, and a meeting of Committee {6, 7} convenes because Processors 6 and 7 both484

execute Step31.485

In Step 3(h)7→3(i), Professors 6 and 7 perform their essential discussion (Step32). Moreover,486

Professors 10 and 9 start again to look for a meeting by executing Step1.487

16

4.2. Correctness of Algorithm CC1 ◦ T C488

We recall that in the following proofs, we assume that computations of CC1 ◦ T C start from489

arbitrary configurations. First, we define the terminology used in the proofs.490

We map the state of a professor defined in Section 2.3 to the status of a process defined in491

Algorithm 1 as follows. We say that a process p is idle if and only if Sp = idle. A process p is492

waiting if and only if Sp ∈ {looking,waiting}. If p is waiting and Pp = ε, where ε ∈ Ep, then we493

say that p attends the committee ε. A committee ε meets, if and only if for every process p ∈ ε,494

we have Pp = ε and Sp ∈ {waiting, done}. When a committee ε meets, every process p ∈ ε is495

participating in ε. Let γ0γ1 . . . be a computation. We say that a committee meeting ε convenes in496

γi, where i > 0, if and only if ε does not meet in γi−1, but it meets in γi. For all i > 0, we say that497

a committee meeting ε terminates in γi, if and only if ε meets in γi−1, but does not meets in γi. If498

a committee meeting ε terminates in γi, where i > 0, then there exists a process p, such that (i)499

(Pp = ε ∧ Sp = done) in γi−1, and (ii) (Pp =⊥ ∧ Sp = idle) in γi. In this case, we say that p500

leaves the committee meeting ε on transition γi−1 7→ γi.501

For every process p, we assume the existence of two predicates: RequestIn(p) and RequestOut(p).502

The predicate RequestIn(p) holds when p (or an application at p) requests the participation of p in503

a committee meeting. When a committee involving pmeets or p is still involved in a meeting that is504

terminated (in this latter case the predicate LeaveMeeting(p) holds), the predicate RequestOut(p)505

eventually holds, meaning that p wants to voluntarily stop discussing. Once RequestOut(p) is506

true, it remains true until p becomes idle. Note also that, when necessary, we materialize the507

assumption on infinite meetings by assuming that, for all processes p:508

• If p satisfies Sp = done but ¬Meeting(p) holds, then the predicate RequestOut(p) eventu-509

ally holds. Indeed, in this case, the meeting involving p is already terminated.510

• However, if p is involved in a meeting, then the meeting never ends. Consequently, Meeting(p)511

⇒¬RequestOut(p) forever.512

Remark 2 Guards of actions Step1, Step21, Step22, Step31, Step32, and Step4 are mutually exclu-513

sive at each professor.514

Lemma 1 Every computation of CC1 ◦ T C satisfies Exclusion.515

Proof. Let ε and ε′ be two conflicting committees, i.e., ε∩ ε′ 6= ∅. Let p be a process in ε∩ ε′. By516

definition, if ε (respectively, ε′) meets, then Pp = ε (respectively, Pp = ε′). Hence, ε and ε′ cannot517

meet simultaneously. �
518

Lemma 2 When committee meeting ε convenes, every process p ∈ ε satisfies (Pp = ε ∧ Sp =519

waiting).520

Proof. Consider a committee ε that convenes in γi. By definition, the committee ε meets in521

γi, but not in γi−1. Moreover, for every p ∈ ε, we have (Pp = ε ∧ Sp ∈ {waiting, done}) in522

γi. Also, there must exist a process q in committee ε, such that Sq ∈ {idle, looking} or Pq 6= ε in523

γi−1. We now prove the lemma by contradiction. Assume that there exists process r ∈ ε, such that524

17

Sr = done in γi. Then, either (1) Sr = done in γi−1, or (2) r executes action Step32 on transition525

γi−1 7→ γi. In case (1), during γi−1 → γi, process q cannot set (Sq,Pq) to:526

• (waiting,ε), because of the state of r; or527

• (done,ε), because otherwise Sq = waiting and Pq = ε in γi−1.528

In case (2), ε already meets in γi−1 (see Predicate Meeting(r)), which is a contradiction. Thus, for529

every p ∈ ε, we have (Pp = ε ∧ Sp = waiting) in γi and, hence, the lemma holds. �
530

Corollary 2 Every computation of CC1 ◦ T C satisfies Synchronization.531

Lemma 3 For every process p, if Correct(p) holds, then Correct(p) continues to hold forever.532

Proof. We prove this lemma by showing that if a process p satisfies Correct(p) in some configu-533

ration γ, then p satisfies Correct(p) in configuration γ′ where γ 7→ γ′ is a transition.534

According to the definition of Correct , we distinguish the following four cases in γ:535

(a) Sp = idle ∧ Pp =⊥. Obviously, if p does not modify Sp or Pp in the next step, then536

Correct(p) holds in the next configuration step as well. Now, the only action modifying Sp537

and/or Pp that may be enabled in p is Step1. If p executes action Step1, then Pp := looking538

and Correct(p) still holds in γ′.539

(b) Sp = looking. Obviously, if p does not modify Sp in the next step, then Correct(p) holds in540

the next configuration step as well. Now, suppose that p modifies Sp on transition γ 7→ γ′.541

In this case, p has to execute Step31. Consequently, in γ we have Pp = ε, where ε ∈ Ep, and,542

∀q ∈ ε : (Pq = ε ∧ Sq ∈ {looking,waiting}). Now, in this case, every process q ∈ ε satisfies543

Ready(q) and ¬Meeting(q). So, no process q ∈ ε can modify Pq on transition γ 7→ γ′.544

Moreover, every process q ∈ ε can only execute Step31 to modify Sq on transition γ 7→ γ′.545

Thus, in configuration γ′, the predicate ∀q ∈ ε : (Pq = ε ∧ Sq ∈ {looking,waiting}) still546

holds and, as a consequence, Correct(p) holds as well.547

(c) Sp = waiting ∧ Pp = ε, where ε ∈ Ep. In this case, Correct(p) implies the following548

possible subcases in γ:549

(1) ∀q ∈ ε : (Pq = ε ∧ Sq ∈ {looking,waiting}) ∧ ∃r ∈ ε : Sr = looking. In this subcase,550

every process q ∈ ε satisfies Ready(q) and ¬Meeting(q). So, no process q ∈ ε can551

modify Pq on transition γ 7→ γ′. Moreover, every process q ∈ ε can only execute552

Step31 to modify Sq on transition γ 7→ γ′. Thus, the predicate (∀q ∈ ε : (Pq = ε∧Sq ∈553

{looking,waiting}) holds in γ′ and, as a consequence, Correct(p) holds in γ′ as well.554

(2) ∀q ∈ ε : (Pq = ε ∧ Sq ∈ {waiting, done}). In this subcase, because of the state of555

p, every process q ∈ ε satisfies Meeting(q) and ¬LeaveMeeting(q). So, no process556

q ∈ ε can modify Pq on transition γ 7→ γ′. Moreover, every process q ∈ ε can only557

execute Step32 to modify Sq on transition γ 7→ γ′. Thus, the predicate (∀q ∈ ε : (Pq =558

ε ∧ Sq ∈ {waiting, done} still holds in γ′ and, as a consequence, Correct(p) holds as559

well.560

18

(d) Sp = done ∧ Pp = ε, where ε ∈ Ep. In this case, Correct(p) implies the following possible561

subcases in γ:562

(1) ∀q ∈ ε : (Pq = ε ∧ Sq ∈ {waiting, done}) ∧ ∃r ∈ ε : Sr = waiting). This subcase has563

been already considered in case (c).(2), so Correct(p) holds in γ′.564

(2) ∀q ∈ ε : (Pq = ε ⇒ Sq = done). In this case, no process q that satisfies Pq 6= ε can565

execute Pq := ε, because ε /∈ FreeEdgesq. Also, a process q that satisfies Pq = ε in γ566

(e.g., p) can only modify Pq and/or Sq by executing action Step4 on transition γ 7→ γ′.567

In this case, Sq := idle and Pq :=⊥. As a consequence, in γ′ either Sp := idle and568

Pp :=⊥, or Pp = ε ∧ ∀q ∈ ε : (Pq = ε⇒ Sq = done). Thus, Correct(p) holds in γ′ as569

well.570

Since in all possible cases, Correct(p) is preserved by the algorithm’s actions, the lemma holds.571

�
572

It is straightforward to see that a process that satisfies ¬Correct is enabled for either action573

Stab1 or action Stab2 (the priority actions). Moreover, since the daemon is weakly fair, Lemma 3574

implies the following corollary:575

Corollary 3 After at most one round, every process p satisfies Correct(p) forever.576

Lemma 4 After committee ε convenes, the predicate (∀p ∈ ε : (Pp = ε ∧ Sp = done))577

eventually holds.578

Proof. Consider a configuration γ where every process p ∈ ε satisfies (Pp = ε ∧ Sp ∈579

{waiting, done}), and, there exists a process q ∈ ε, such that (Pq = ε ∧ Sq = waiting). Then,580

every process p ∈ ε satisfies Correct(p) in γ and, by Lemma 3, (*) actions Stab1 and Stab2 are581

disabled forever at every p ∈ ε from γ. Now, in configuration γ, a process p ∈ ε, where Sp = done,582

cannot modify Pp or Sp. Moreover, in γ, a process q ∈ ε, where (Pq = ε ∧ Sq = waiting) cannot583

modify Pq and can only set Sq to done by executing action Step32, which is continuously enabled.584

Since we assume a weakly fair daemon, q eventually executes action Step32 by (*) and Remark 2.585

Hence, the lemma holds. �
586

Corollary 4 Every computation of CC1 ◦ T C satisfies the Essential Discussion.587

Proof. The proof is trivial by Lemmas 2, 4, and action Step32. �
588

Lemma 5 Every computation of CC1 ◦ T C satisfies the Voluntary Discussion.589

Proof. Let a committee ε convene in configuration γi. By Lemmas 2, every process p ∈ ε satisfies590

Correct(p) in γi and, by Lemma 3, (*) actions Stab1 and Stab2 are disabled forever at every p ∈ ε.591

By Corollary 4, every process of committee ε eventually executes its essential discussion. Thus,592

following Lemmas 2 and 4, the system reaches a configuration γj (j > i), where every process593

p ∈ ε satisfies (Pp = ε ∧ Sp = done). In such a configuration, a process p in ε can update its Pp594

and/or Sp only if it satisfies the predicate RequestOut(p). Now, by hypothesis it will happen, and in595

19

this case, Step4 will be the priority enabled action at p (by (*)) meaning that it voluntarily decides596

to leave the meeting. Moreover, by definition, since a process eventually satisfies RequestOut597

continuously and the daemon is weakly fair, the meeting eventually terminates due to execution of598

action Step4 by some process. Therefore, the lemma holds. �
599

Observe that in the algorithm, a process that does not satisfy Correct can only execute either600

action Stab1 or action Stab2. Thus:601

Remark 3 If a process p is waiting and satisfies ¬Correct(p), it remains waiting (at least) until it602

satisfies Correct(p).603

Lemma 6 Every computation of CC1 ◦ T C satisfies Progress.604

Proof. We prove this lemma by contradiction. Suppose there exists a computation c of CC1 ◦ T C605

that does not satisfy Progress.606

Let E∞γ be the subset of E such that ∀ε ∈ E , ε ∈ E∞γ if and only if for all processes p ∈ ε, p is607

waiting in γ, but will never more participate in a meeting during c. By definition, ∀γi, γj such that608

γj occurs after γi in c, we have E∞γi ⊆ E
∞
γj

. Moreover, the number of processes being finite, there609

exist configurations γi in c such that E∞γi = E∞γj , for every configuration γj that occurs after γi in c.610

Let now consider such a configuration, say γ1, and let V ∞ be the subset of all processes that611

are incident to a hyperedge in E∞γ1 . We distinguish the following two cases in γ1:612

(a) There is a process p ∈ V ∞ that eventually satisfies Ready(p). This case implies that613

Pp = ε, where ε ∈ Ep. By definition of Ready , every process q ∈ ε satisfies (Pq = ε ∧ Sq ∈614

{looking,waiting}), which in turns, implies Correct(q). So, by Lemma 3, (*) actions Stab1615

and Stab2 are disabled forever at every q ∈ ε from γ1.616

Now, observe that in configuration γ1 a process p in ε, where Sp = waiting, cannot modify617

Pp or Sp. Also, every process q ∈ ε such that (Pq = ε ∧ Sq = looking) cannot modify Pq618

and can only modify Sq by action Step31, which is its priority enabled action in γ1 (by (*)619

and Remark 2). Hence, as the daemon is weakly fair, the committee meeting ε eventually620

convenes, which is a contradiction.621

(b) No process p of V ∞ eventually satisfies Ready(p). By Remark 3,622

(1) Every p of V ∞ remains waiting forever.623

(Indeed, the only way to lose the waiting status is to switch to the meeting status.)624

Observe that by definition, we have625

(2) FreeEdgesp 6= ∅.626

Again, following Remark 3,627

(3) FreeEdgesp is fixed.628

By Corollary 3, there exists a configuration γ2 in c after γ1 where:629

20

(4) All processes satisfy Correct forever.630

By Property 1, eventually there exists a unique token in the network. If a process in V ∞631

eventually get the token, then it never releases it by (1), (2), and (3).632

Assume now, by the contradiction, that no process in V ∞ eventually gets this token (from633

γ2). Assume first that a token holder participates in a meeting. Then it eventually releases the634

token by Lemma 5. In contrast, if it never more participates in any meeting, then it has status635

idle forever, so its action Token2 is continuously enabled. As the daemon being weakly fair636

and Token2 is its priority enabled action (by (4)), the process eventually releases the token.637

Hence, there exists a configuration γ3 in c after γ2 where:638

(5) There exists a unique process ` ∈ V ∞ that satisfies Token(`) forever.639

(6) Every process p ∈ V \ {`} satisfies ¬Token(p) forever.640

Every process p having status idle forever and that never gets the token has action Token1641

that is continuously enabled (its priority enabled action by (4))) if Tp = true. The daemon642

being weakly fair, eventually satisfies Tp = false forever. Moreover, by definition every643

other process q in V \ V ∞ convenes and terminates meetings infinitely often, and each time644

q executes Step4, Tq is reset to false. Hence, from (5), we can deduce that there exists a645

configuration γ4 in c after γ3 where:646

(7) Every process q in V \ V ∞ satisfies ¬Tq forever.647

By (4) and the fact that no process in V ∞ satisfies Ready , we have (in particular, from γ4):648

(8) all processes in V ∞ are in looking status.649

Consider then a process q in V ∞ such that Tq 6= Token(q) (from γ4). Then, q is continuously650

enabled, by (5) and (6). So, it is eventually selected by the weakly fair daemon. Now, when651

selected, its actions Stab1 and Stab2 are disabled by (4). Moreover, Step31, Step32, and652

Step4 are also disabled at q, otherwise q will lose its looking status, a contradiction to (8).653

So, q necessarily executes Token1 (n.b., Token2 is disabled at q by (2), (3), and (8)) and654

there exists a configuration γ5 in c after γ4 where:655

(9) ` satisfies T` forever.656

(10) Every process q ∈ V \ {`} satisfies ¬Tq forever.657

In particular, (8), (9), and (10) hold for all processes incident to a hyperedge of FreeEdges`.658

So, LocalMax (`) = ` and LocalMax (r) = `, where r is any process incident to a hyperedge659

of FreeEdges`. So, if P` /∈ FreeEdges`, then action Step21 is its priority enabled action (by660

(4) and Remark 2). ` remains enabled until it executes it. So, ` eventually does, because661

the daemon is weakly fair. Hence, eventually P` = ε forever, where ε ∈ FreeEdges`. Then,662

every process r ∈ ε, such that Pr = ε is disabled forever, because ` never satisfies Ready(`),663

by hypothesis. Finally, action Step22 is continuously enabled action at every process s ∈ ε664

21

such that Ps 6= ε, moreover it is their priority enabled action by (4) and Remark 2. Again,665

because the daemon is weakly fair, every process s eventually executes it. Hence, eventually666

` satisfies Ready(`), which is a contradiction.667

�
668

Lemma 7 Every computation of CC1 ◦ T C satisfies Maximal Concurrency.669

Proof. Assume there is a set P1 of processes that are all in infinite-time meetings. Let P2 be a set670

of processes waiting. Let Π be the set of hyperedges whose all incident processes are in P2. We671

now prove the lemma by contradiction. Suppose that Π 6= ∅ and no meeting between processes672

incident to an hyperedge in Π eventually convenes. We distinguish the following two cases:673

(a) There exists a process p ∈ P2 that eventually satisfies Ready(p). In this case, using the same674

reasoning as in case (a) in the proof of Lemma 6, we obtain a contradiction.675

(b) No process in P2 eventually satisfies Ready(p). Let p be a process in P2. In this case,676

following Remark 3, p must remain waiting forever (the only way to leave the waiting status677

is to switch to the meeting status). Observe that by definition, FreeEdgesp 6= ∅. Using the678

same reasoning as in case (b) of the proof of Lemma 6, there exists a configuration γ in679

which:680

(1) There exists a process ` that satisfies T` forever.681

(2) Every process q ∈ V \ {`} satisfies ¬Tq forever.682

(3) Every process in V satisfies Correct forever.683

Now, if ` ∈ P2, then using the same reasoning as in case (b) of the proof of Lemma 6, we684

reach a contradiction. If ` /∈ P2, then, let pmax be the process of P2 having the greatest685

identifier. Then using the reasoning similar to the case (b) in the proof of Lemma 6 (pmax686

has the same role as ` in the proof of Lemma 6), we reach a contradiction.687

�
688

Theorem 2 The composition CC1 ◦ T C is a snap-stabilizing algorithm that solves the 2-phase689

committee coordination problem and satisfies Maximal Concurrency.690

Proof. Given Lemmas 1-7, the proof of the theorem trivially follows. �
691

22

5. Snap-Stabilizing 2-Phase Committee Coordination with Fairness692

We now consider the 2-phase committee coordination problem in systems where processes are693

waiting for meetings infinitely often. In such a setting, an idle process always eventually becomes694

waiting. Hence, for simplicity (and without loss of generality), we assume that processes are695

always requesting when they are not in a meeting. As a consequence, the predicate RequestIn(p)696

and the state idle are implicit in the actions of the next algorithm. In Subsection 5.1, we present697

a snap-stabilizing algorithm that guarantees the properties of 2-phase committee coordination and698

Professor Fairness. The proof of correctness of the algorithm is presented in Subsection 5.2. Then,699

in Subsection 5.3, we analyze the complexity of our algorithm. Finally, we discuss Committee700

Fairness in Subsection 5.4.701

5.1. Algorithm702

Our algorithm is the composite algorithm CC2 ◦ T C, where (1) CC2 is a Snap-stabilizing algo-703

rithm that ensures Exclusion, Synchronization, and 2-Phase Discussion, and (2) T C is the same704

self-stabilizing module that manages a circulating token as in Section 4. It ensures Fairness, and705

consequently Progress.706

Algorithm CC2 is identical for all processes in the distributed system. Its code is given in707

Algorithm 2. Similar to Algorithm CC1, each process p maintains Sp, Pp, and Tp with the same708

meaning. Also, the token defines priorities to convene committees. However, to guarantee fairness,709

in this algorithm, a token is released only when its holder leaves a meeting.710

After receiving a token, a looking process p selects a smallest (in terms of members) incident711

committee ε (this constraint is used only to slightly enhance the concurrency) using its edge pointer712

Pp (Step11). Note that unlike the previous algorithm, the members of the chosen committee are not713

necessarily all looking. Then, process p sticks with committee ε until ε convenes. By assumption,714

other members of committee ε are eventually looking and, hence, ε is selected by action Step12.715

In order to obtain the best concurrency as possible (recall that maximal concurrency is impos-716

sible in this case), a process that is not in a committee ε must not wait for a process involved in ε.717

To that goal, we introduce the Boolean variable L, which shows whether or not a process is locked.718

A locked process is one that is incident to a hyperedge that contains a process that (1) owns the719

token, (2) has set its pointer to that hyperedge, and (3) is looking to start a committee meeting. The720

locks are maintained using action Lock . Hence, processes that are not in ε try to convene commit-721

tees that do not involve locked processes (Step13 and Step14). As in Algorithm CC1, we use the722

process identifiers to define priorities among the looking processes not in ε. The rest of actions of723

the algorithm are similar to those of Algorithm CC1.724

Figure 4 illustrates the need of the Boolean L. In this configuration, Professor 8 chooses the725

committee {1, 2, 5, 8} because Professor 1 has the token. Moreover, this committee cannot meet726

before the meeting of committee {3, 4, 5} terminates. Now, to ensure fairness, Professors 1, 2,727

and 8 should not change their P -pointers so that eventually a meeting of {1, 2, 5, 8} convenes.728

Furthermore, to obtain a better concurrency, Committee {6, 7, 9} should be allowed to meet. Now,729

for Professor 9, Committee {8, 9} has higher priority than Committee {6, 7, 9}. By definition, all730

members of Committee {1, 2, 5, 8} are locked. So, thank to the Boolean L8, Professor 9 realizes731

23

Algorithm 2 Pseudo-code of CC2 for process p.
Inputs:
RequestOut(p) : Predicate: input from the system indicating desire for leaving a committee
Token(p) : Predicate: input from T C indicating process p owns the token
ReleaseTokenp : Statement: output to T C indicating process p releases the token

Constant:
Ep : Set of hyperedges incident to p

Variables:
Tp, Lp : Booleans
Pp ∈ Ep ∪ {⊥} : Edge pointer
Sp ∈ {looking,waiting, done} : Status

Macros:
FreeEdgesp = {ε ∈ Ep | ∀q ∈ ε : (Sq = looking ∧ ¬Lq ∧ ¬Tq)}
FreeNodesp = {q | ∃ε ∈ FreeEdgesp : q ∈ ε}
TPointingEdgesp = {ε ∈ Ep | ∃q ∈ ε : (Pq = ε ∧ Tq ∧ Sq = looking)}
TPointingNodesp = {q | ∃ε ∈ TPointingEdgesp : q ∈ ε}
MinSizep = minε∈Ep |ε|
MinEdgesp = {ε ∈ Ep | |ε| = MinSizep}

Predicates:
Locked(p) ≡ TPointingEdgesp 6= ∅
Ready(p) ≡ ∃ε ∈ Ep : ∀q ∈ ε : (Pq = ε ∧ Sq ∈ {looking,waiting})
Meeting(p) ≡ ∃ε ∈ Ep : ∀q ∈ ε : (Pq = ε ∧ Sq ∈ {waiting, done})
LeaveMeeting(p) ≡ ∃ε ∈ Ep : (Pp = ε ∧ Sp = done ∧ (∀q ∈ ε : (Pq = ε ⇒ Sq 6= waiting)))
LocalMax(p) ≡ p = max(FreeNodesp)
MaxToFreeEdge(p) ≡ ¬Token(p) ∧ ¬Locked(p) ∧ FreeEdgesp 6= ∅ ∧ LocalMax(p) ∧ ¬Ready(p) ∧

Pp /∈ FreeEdgesp
JoinLocalMax(p) ≡ ¬Token(p) ∧ ¬Locked(p) ∧ FreeEdgesp 6= ∅ ∧ ¬LocalMax(p) ∧ ¬Ready(p) ∧

∃ε ∈ FreeEdgesp : (Pmax(FreeNodesp) = ε ∧ Pp 6= ε)

TokenHolderToEdge(p) ≡ Token(p) ∧ (Sp = looking) ∧ ¬Ready(p) ∧ (Pp /∈ MinEdgesp)
JoinTokenHolder(p) ≡ ¬Token(p) ∧ (Sp = looking) ∧ ¬Ready(p) ∧ Locked(p) ∧ (Pp /∈ TPointingEdgesp)
Correct(p) ≡ [(Sp = waiting) ⇒ Ready(p) ∨ Meeting(p)] ∧

[(Sp = done) ⇒ Meeting(p) ∨ LeaveMeeting(p)]
Actions:
Lock :: Locked(p) 6= Lp 7→ Lp := Locked(p);

Step11 :: TokenHolderToEdge(p) 7→ Pp := ε such that ε ∈ MinEdgesp;
Step12 :: JoinTokenHolder(p) 7→ Pp := ε such that ε ∈ Ep, where Pmax(TPointingNodesp)

= ε;

Step13 :: MaxToFreeEdge(p) 7→ Pp := ε such that ε ∈ FreeEdgesp;
Step14 :: JoinLocalMax(p) 7→ Pp := ε such that ε ∈ Ep, where Pmax(FreeNodesp) = ε;

Token :: Token(p) 6= Tp 7→ Tp := Token(p);

Step2 :: Ready(p) ∧ (Sp = looking) 7→ Sp := waiting;
Step3 :: Meeting(p) ∧ (Sp = waiting) 7→ 〈EssentialDiscussion〉;Sp := done;
Step4 :: LeaveMeeting(p) ∧ RequestOut(p) 7→ Sp := looking;Pp :=⊥;Tp := false;

if Token(p) then ReleaseTokenp fi;

Stab :: ¬Correct(p) 7→ Sp := looking;Pp :=⊥;

24

that he should not give priority to {8, 9}. Consequently, he will select {6, 7, 9} by action Step13,732

improving concurrency.733

looking

lookinglooking

looking

looking
looking waiting

waiting
waiting

T 1
2 3

45
8

7

6
9

L L

LL

Figure 4: Example of locked professors.

5.2. Correctness of CC2 ◦ T C734

We recall that in the following proofs, we assume that computations of CC2 ◦ T C start from an735

arbitrary configuration. In the proofs below we use some notions and terminology already defined736

in Subsection 4.2.737

Following a similar approach to the one used in Subsection 4.2, we have the following technical738

results:739

Remark 4 Guards of actions Step11, Step12, Step13, Step14, Step2, Step3, and Step4 are mutually740

exclusive at each professor.741

Lemma 8 For every process p, if Correct(p) holds, then Correct(p) holds forever.742

Corollary 5 After at most one round, every process p satisfies Correct(p) forever.743

From these technical results, we can deduce the following lemma using the same reasoning as744

in Subsection 4.2.745

Lemma 9 Every computation of CC2 ◦ T C satisfies:746

1. Exclusion,747

2. Synchronization,748

3. Essential Discussion, and749

4. Voluntary Discussion.750

We now focus on the Professor Fairness.751

Lemma 10 From any configuration where every process q satisfies Correct(q), we have: if a752

process p that satisfies Ready(p), Meeting(p), or Sp = done, then p eventually executes action753

Step4.754

25

Proof. Observe that from such a configuration, (*) every process q satisfies Correct(q) forever by755

Lemma 8. As a consequence, from that point every process p that satisfies Ready(p), Meeting(p),756

or Sp = done satisfies one of the following cases:757

• LeaveMeeting(p) holds. In this case, Sp = done and Pp 6=⊥. Let ε be the value of Pp.758

Sp = done implies ¬Ready(p). So, while Sp = done, no process q can execute Step2 to759

then satisfy Pq = ε ∧ Sq = waiting. Also, every process q that satisfies Pq = ε ∧ Sq = done760

can only update Sq and/or Pq by executing action Step4 by (*), that is Sq := looking and761

Pq :=⊥. As a consequence, while p does not execute action Step4, LeaveMeeting(p) holds.762

Now RequestOut(p) eventually continuously holds, and, thus, action Step4 is eventually763

continuously enabled at p. As the daemon is weakly fair, p is eventually selected to execute764

an action, and this action is Step4 by (*), which proves the lemma in this case.765

• Meeting(p) ∧ ¬LeaveMeeting(p) holds. Then, Meeting(p) implies that Pp 6=⊥. Let ε766

be the value of Pp. No process r ∈ ε can update Pr. Moreover, for every process r ∈ ε,767

r can modify its status Sr only if Sr = waiting. Now, Step3 is enabled at every of those768

processes, and this action is their priority enabled action by (*) and Remark 4. Observe that769

(Meeting(p) ∧ ¬LeaveMeeting(p)) holds until all these processes have moved and, as the770

daemon is weakly fair, they eventually move. At this point this case can be reduced to the771

previous case, which proves the lemma in this case.772

• Ready(p) ∧ ¬Meeting(p) holds. Then, Ready(p) implies that Pp 6=⊥. Let ε be the value773

of Pp. No process r ∈ ε can update Pr. Moreover, for every process r ∈ ε, r can modify774

its status Sr only if Sr = looking. Now, Step2 is enabled at every of those processes, and775

this action is their priority enabled action by (*) and Remark 4. Observe that Ready(p) ∧776

¬Meeting(p) holds until all these processes have moved and, as the daemon is weakly fair,777

they eventually move. At this point this case can be reduced to the previous case, which778

proves the lemma in this case.779

Thus, in any case, p eventually executes Step4 and the lemma holds. �
780

Lemma 11 In every computation of CC2 ◦ T C, no process can hold a token forever.781

Proof. By Property 1, the system eventually reaches a configuration from which there is a unique782

token forever. Assume, by the contradiction, that after such a configuration, some process ` holds783

the unique token forever, i.e. Token(`) holds forever and for every process p 6= `, ¬Token(p)784

holds forever.785

Then, using the same reasoning as in case (b) of the proof of Lemma 6, we can deduce that the786

system reaches a configuration γ from which:787

(1) ` satisfies Token(`) ∧ T` forever.788

(2) Every process p 6= ` satisfies ¬Token(p) ∧ ¬Tp forever.789

(3) Every process satisfies Correct forever.790

26

Let us study the following two cases:791

(a) From γ, S` = done, Ready(`), or Meeting(`) eventually holds. In this case, we obtain a792

contradiction by Lemma 10.793

(b) From γ, S` 6= done, ¬Ready(`), and ¬Meeting(`) hold forever. We study the following two794

subcases:795

– P` ∈ MinEdges`. In this subcase, by (3), we deduce that S` = looking and P` ∈796

MinEdges` hold forever.797

Then, let ε be the hyperedge pointed by P`. By (1) and (2), we have (TPointingEdgesp,798

Locked(p)) that is equal to ({ε}, true) forever for every process p ∈ ε such that p 6= `.799

If p satisfies (Sp = looking ∧ ¬Ready(p)), eventually Pp = ε because of the weakly800

fair daemon and action Step12 (by (3) and Remark 4, p executes Step12 when selected801

by the daemon). Then, p becomes disable forever because ¬Ready(`) holds forever.802

If p satisfies (Sp 6= looking ∨ Ready(p)), then (Sp = done ∨ Ready(p) ∨ Meeting(p))803

holds by (3). By Lemma 10, p eventually satisfies (Sp = looking ∧ ¬Ready(p)), and804

we retrieve the previous case. So eventually Pp = ε and p becomes disabled forever.805

Hence, we can conclude that eventually Pp = ε holds for every process p ∈ ε, that is806

Ready(`), which is a contradiction.807

– P` /∈ MinEdges`. In this subcase, by (3) and the fact that S` = done ∨ Ready(`) ∨808

Meeting(`) never holds, we can deduce that S` = looking holds forever. Hence, by (1),809

action Step11 is continuously enabled at `, as the daemon is weakly fair, ` eventually810

executes an enabled action. This action is Step11 by (3) and Remark 4, and we retrieve811

the previous case, which leads to a contradiction.812

�
813

We now deduce the next corollary from Property 1 and Lemma 11:814

Corollary 6 In every computation of CC2 ◦ T C, every process holds a token infinitely many times.815

Lemma 12 Every computation of CC2 ◦ T C satisfies Professor Fairness.816

Proof. Assume by contradiction that eventually some process p stops participating in any meeting.817

In this case, it no more executes action Step3. This means, in particular, that the process no more818

executes Sp := done. As a consequence, it eventually no more executes action Step4. In particular,819

it eventually no more executes ReleaseTokenp, which contradicts Property 1 and Corollary 6. �
820

By Lemma 9, 12, and the fact that fairness implies progress, we have:821

Theorem 3 The composition CC2 ◦ T C is a snap-stabilizing algorithm that solves the 2-phase822

committee coordination problem and satisfies Professor Fairness.823

27

5.3. Complexity Analysis824

We now analyze the degree of fair concurrency of Algorithm CC2 ◦ T C. To this end, we825

recall some concepts from graph theory. A matching in a hypergraph H = (V, E) is a subset S826

of hyperedges of H, such that no two hyperedges in S have a vertex in common. We denote by827

MH the set of all possible matchings of a hypergraph H. The size of a matching is the number828

of hyperedges that it contains. A maximal matching of H is a matching of H that has no superset829

which is a matching ofH. We denote byMMH the set of all maximal matchings of a hypergraph830

H. AsH is clear from the context, we omit it fromM andMM. Obviously,MM⊆M.831

Observe that by definition, the degree of fair concurrency d satisfies 1 ≤ d ≤ minMM, where832

minMM is the size of the smallest maximal matching. The length of a hyperedge ε (denoted by833

|ε|) is the number of nodes incident to ε. For every process p, we denote by Emin
p the subset of834

hyperedges incident to p of minimum length, i.e., ε ∈ Emin
p if and only if ε ∈ Ep and ∀ε′ ∈ Ep,835

|ε| ≤ |ε′|. Let minEp denote the minimum length of a hyperedge incident to p. Let MaxMin =836

maxp∈V (Emin
p).837

We denote by HY the subhypergraph induced by V \ Y . Given a hyperedge ε and a vertex p,838

we define Yε,p = {y ∈ 2ε | p ∈ y ∧ |y| < |ε|}. Let Almost(ε,X), where ε is a hyperedge and X is839

a set of vertices, be the set {m ∈MMHX | ∀q ∈ ε \X : q is incident to a hyperedge of m}. Let840

AMM(p) =
⋃
ε∈Emin

p

⋃
y∈Yε,p Almost(ε, y), where p is a vertex. LetAMM =

⋃
p∈V AMM(p).841

Observe that AMM may be equal to the emptyset, e.g., when there is only one hyperedge inH.842

The set AMM as defined above characterizes the cases where Professor Fairness and Maxi-843

mal Concurrency exhibit their conflicting natures. Consider the case where a process p is the token844

holder and cannot participate in a meeting. In this case, there exists a neighbor of p, say q, in a845

smallest hyperedge ε incident to p, such that q is participating in another committee meeting. It846

follows that processes in ε (including p) that are currently not meeting are blocked until ε convenes.847

This implies that the current setting does not form a maximal matching and, hence, maximal con-848

currency cannot be achieved. Thus, in order to analyze the Degree of Fair Concurrency, one needs849

to consider the set of all maximal matchings of the subhypergraph induced by removing those850

blocked processes.851

We formally characterize the degree of fair concurrency of our algorithm in Theorem 4. We852

obtain this theorem thanks to several technical results proven below.853

Lemma 13 If committee meetings never terminate, the system eventually reaches a configuration854

from which some process p is the unique token holder forever.855

Proof. First, the system eventually reaches a configuration from which there is a unique token856

forever, by Property 1. Assume, by contradiction, that this token moves infinitely many times.857

Then, infinitely many actions Step4 are executed. The number of processes being finite, there is a858

process q that executes infinitely many actions Step4. After executing Step4, Sq = looking. Now,859

before executing Step4 again, q must execute Step2 followed by Step3 to go through status done.860

Now, in that case, a meeting of a committee whose q is member convenes and that meeting never861

terminates, by hypothesis. So, q cannot execute Step4 ever in that case, because otherwise it would862

cause the termination of a meeting, and we obtain a contradiction. �
863

28

Lemma 14 If committee meetings never terminate, the system eventually reaches a configuration864

γ from which for every process p, Sp = done⇒ Meeting(p).865

Proof. Let c = γ0, ... be a computation. The number of processes being finite, assume, by866

contradiction, that there is a process p such that p satisfies Sp = done ∧ ¬Meeting(p) in infinitely867

many configurations of c, while committee meetings never terminate. Consider the following two868

cases:869

• There exists i such that ∀j ≥ i, Sp = done ∧ ¬Meeting(p) in γj . Then, by Corol-870

lary 5, p eventually satisfies Correct(p) forever, which implies that p eventually satisfies871

LeaveMeeting(p) forever. Moreover, p eventually satisfies RequestOut(p) continuously.872

Hence, as the daemon is weakly fair, p eventually executes Step4, and we obtain a contra-873

diction.874

• There exists infinitely many steps γi 7→ γi+1 of c where Sp = done ∧ ¬Meeting(p) in γi875

and Sp 6= done ∨ Meeting(p) in γi+1. In this case, p participates infinitely many times in876

meetings that convene and then terminate, a contradiction.877

�
878

Following a similar reasoning, we have:879

Lemma 15 If committee meetings never terminate, the system eventually reaches a configuration880

γ from which for every process p, Sp 6= waiting.881

From Lemmas 14 and 15, we have the following corollary:882

Corollary 7 If committee meetings never terminate, the system eventually reaches a configuration883

γ from which for every process p, either Sp = looking forever, or Sp = done forever.884

Lemma 16 If committee meetings never terminate, then the system eventually reaches a configu-885

ration γ from which there is some process ` such that:886

1. ` is the only token holder forever.887

2. T` = true forever.888

3. Every process p 6= ` satisfies Tp = false forever.889

4. There exists ε ∈ E` such that:890

(a) P` = ε forever.891

(b) ∀p ∈ ε, Lp = true forever.892

(c) ∀p ∈ V \ ε, Lp = false forever.893

Proof. Case 1 follows from Lemma 13.894

Consider Cases 2 and 3. From case 1, we know that for every process p, the value of Token(p)895

does not change anymore. So, if p satisfies Tp 6= Token(p), then this remains true until p executes896

action Token. Now, eventually actions Stab, Step2, Step3, and Step4 are disabled forever at p897

by Corollaries 5, 7, and Remark 4. So, eventually, p is selected by the daemon to execute action898

Token. Hence, eventually, the value of Tp is fixed and Tp = Token(p) forever.899

29

Consider now case 4a. Eventually the system reaches a configuration from which (*) every900

process p satisfies Correct(p) forever (by Corollary 5), Sp = done ⇒ Meeting(p) (by Lemma901

14), and either Sp = looking forever, or Sp = done forever (by Corollary 7).902

From such a configuration:903

• If S` = done, then ` is in an infinite meeting and consequently, there exists ε ∈ E` such that904

P` = ε forever.905

• Otherwise, S` = looking and Token(`) holds forever by 1. If ` eventually satisfies Ready(`),906

p can execute Step2 by (*) and Remark 4, a contradiction to Corollary 7. So, ¬Ready(`)907

forever and we have either P` ∈ MinEdgesp and P` is fixed to that value forever; or, action908

Step11 is continuously enabled. In this latter case, the daemon being weakly fair, ` eventually909

executes Step11 (by (*), 2, and Remark 4) and we retrieve the previous case.910

Hence case 4a holds in both cases.911

Finally, consider Cases 4b and 4c. Let p be process. From γ, if eventually Lp = Locked(p)912

holds, then Lp is fixed forever by 2, 4a, and Corollary 7. In this case, p satisfies Cases 4b and 4c.913

Otherwise, eventually actions Stab, Step2, Step3, and Step4 are eventually disabled forever at p914

by Corollary 5 and Corollary 7. By 2 and 3, action Token is also eventually disabled forever. From915

that point, p can execute actions Step11 to Step14 at most once before some neighboring process916

executes action Lock to definitely fix the value of its variable L. So, as the number of neighbors is917

finite, action Lock is eventually the only action that p can execute. Thus, as the daemon is weakly918

fair, p eventually execute action Lock and we retrieve the previous case. �
919

Lemma 17 If committee meetings never terminate, the system eventually reaches a configuration920

γ where FreeEdgesp = ∅ forever for all processes p.921

Proof. Consider a computation c = γ0 . . . where committee meetings never terminate.922

Then, the system eventually reaches configuration from which: for every process p, the value923

of FreeEdgesp is fixed and Correct(p) = true forever by Lemma 16, Corollaries 5, and 7.924

Assume that, from such a configuration, FreeEdges 6= ∅ for some processes. Let q be the one925

among those processes with the highest identity. ∀ε ∈ FreeEdgesq, ∀s ∈ ε, LocalMax (s) = q (in926

particular LocalMax (q) = q) holds continuously until a meeting involving q convenes, by Lemma927

16. Then, by definition of action Step13, Remark 4, and the fact that the daemon is weakly fair,928

q eventually sticks its pointer on some hyperedge ε of FreeEdgesq and then eventually satisfies929

Ready(q) by definition of action Step14. Then, again by definition of action Step2, Remark 4,930

and the fact that the daemon is weakly fair, some process of ε eventually executes action Step2, a931

contradiction to Corollary 7.932

Hence, eventually every process r satisfies FreeEdgesr = ∅ forever. �
933

Theorem 4 Degree of Fair Concurrency of Algorithm CC2 ◦ T C is at least minMM∪AMM.934

Proof. If committee meetings never terminate, the system eventually reaches a configuration γ935

where:936

30

1. Every process s satisfies:937

(a) FreeEdgess = ∅ (Lemma 17).938

(b) Ss = looking if and only if s is not in any meeting (Corollary 5 and Lemma 14).939

2. By Lemma 16, there is a unique process ` such that:940

(a) ` is the only token holder forever.941

(b) T` = true forever.942

(c) Every process p 6= ` satisfies T` = false forever.943

(d) There exists ε ∈ E` such that:944

i. P` = ε forever.945

ii. ∀p ∈ ε, Lp = true forever.946

iii. ∀p ∈ V \ ε, Lp = false forever.947

Consider the following two cases in γ:948

• ` participates in a meeting ε. Let r be a process that does not participate in a meeting in γ.949

Then, eventually FreeEdgesr = ∅ by case 1a. In this case, for each hyperedge ε′ incident950

to r, there a process t ∈ ε′, such that Tt, Lt, or St 6= looking holds. In the two first cases, t951

participates in the meeting ε by case 2. In the latter case, t participates in another meeting952

by case 1b.953

It follows that for all processes r that is not in a meeting in γ and for all hyperedges ε′ incident954

to r, there exists a process in ε′ that participates in a meeting in γ. Hence, the meetings that955

hold in γ form a maximal matching of the underlying hypergraphH.956

• ` does not participate in any meeting. In γ, P` = ε such that ε ∈ Emin
` (see action Step13).957

Also, there is at least one neighbor of ` that participates in a meeting in γ. Let X be the958

subset of processes in ε that do not participate in a meeting in γ. Then, X ⊂ ε and ` ∈ X .959

Following a reasoning similar to the previous case, we can deduce that for all processes s960

that is not in a meeting in γ and for all hyperedges ε′ incident to s, there exists a process in ε′961

that either participates in a meeting in γ or is a process of X . Hence, the meetings that hold962

in γ form a maximal matching of Almost(ε,X).963

Hence, the meetings that hold in γ form a matching ofMM∪AMM. �
964

In the next theorem, we present a lower bound for minMM∪AMM.965

Theorem 5 minMM∪AMM ≥ (minMM−MaxMin + 1).966

Proof.967

• By definition MaxMin > 0. So, minMM ≥ minMM−MaxMin + 1.968

• Let x be the size of the smallest matching in AMM. By definition, there exists a process969

p, a hyperedge ε ∈ Emin
p , and a set of processes X where X ⊂ ε and p ∈ X , such that there970

exists a maximal matching S of Almost(ε,X) of size x. By definition, S is a matching of971

H. Moreover, there exists a maximal matching S ′ ofH such that S ⊂ S ′. By definition there972

exists at most one hyperedge of S ′ incident to some process in X . Hence, |S| ≥ |S ′| − |X|,973

31

i.e., |S| ≥ |S ′| − |ε| + 1, which in turn implies that |S| ≥ minMM−|ε| + 1. It follows that974

|S| ≥ minMM−MaxMin + 1. Hence, the size of the smallest matching in AMM is at975

least minMM−MaxMin + 1.976

�
977

To evaluate Waiting Time of CC2 ◦ T C, we need to introduce maxDisc which is the maximum978

amount of rounds a process discusses in a meeting. We assume that T C is a fair composition of979

the token circulation algorithm in [27] and the leader election algorithm in [23]. It follows that980

the following properties hold: (1) starting from any configuration, there is a unique token in the981

distributed system inO(n) rounds, and (2) once there is a unique token,O(n) processes can receive982

the token before a process receives the token.983

Theorem 6 In Algorithm CC2◦T C, the worst case Waiting Time is O(maxDisc ×n) rounds, where984

n is the number of processes.985

Proof. First, from [27, 23], Corollary 5, and Property 1, we know that starting from any arbitrary986

configuration, the system reaches a configuration γ from where every process satisfies Correct and987

there is one token forever in O(n) rounds. Now, consider a token holder p in any configuration that988

follows γ, where p satisfies one of the following three cases:989

• Sp = done. In this case, in at most one round, p satisfies LeaveMeeting(p) and at most990

maxDisc rounds later, it is enabled to execute Step4. Hence, p releases the token inO(maxDisc)991

rounds.992

• Sp = waiting. In this case, in at most one round, p satisfies Meeting(p) and after one more993

round, it satisfies Sp = done. Hence, from the previous case, we can deduce that p releases994

the token in O(maxDisc) rounds.995

• Sp = looking. In this case, in one round p sets Tp to true. One another round later, p sets Pp996

to ε where ε ∈ Emin
p . After this round and similarly to the previous case, every other process997

in ε that was in a meeting, leaves its meeting and joins meeting ε in O(maxDisc) rounds,998

which leads to the status Sp = waiting in the next round. Hence, from the previous cases, we999

can deduce that p releases the token in O(maxDisc) rounds.1000

It follows that after O(n) rounds, a process can keep the token for O(maxDisc) consecutive1001

rounds before releases it. Now, from [27, 23], we know that O(n) processes can hold the token1002

before a given process receives it. Hence, the Waiting Time is O(maxDisc ×n) rounds.1003

�
1004

5.4. Committee Fairness1005

Algorithm CC2 ◦ T C can be easily modified to satisfy the Committee Fairness as follows.1006

Every time a process acquires the token, it sequentially selects a new incident committee. This1007

way, we obtain an algorithm, called Algorithm CC3 ◦ T C that satisfies Committee Fairness. Wait-1008

ing Time of this algorithm remains the same as that of Theorem 6, but Degree of Fair Concur-1009

rency will be slightly degraded. Recall that Yε,p = {y ∈ 2ε | p ∈ y ∧ |y| < |ε|}. Now,1010

32

we let AMM′(p) =
⋃
ε∈Ep

⋃
y∈Yε,p Almost(ε, y) and AMM′ =

⋃
p∈V AMM′(p). Also, let1011

MaxHEdge = maxε∈E |ε|.1012

Following a proof similar to the one of Theorem 4, we trivially obtain the proof of the following1013

theorem.1014

Theorem 7 The degree of fair concurrency of Algorithm CC3 ◦ T C is at least minMM∪AMM′ .1015

In the next theorem, we present a lower bound for minMM∪AMM′ . Its proof is similar to the1016

one used in the proof of Theorem 5.1017

Theorem 8 minMM∪AMM′ ≥ minMM−MaxHEdge + 1.1018

6. Related Work1019

Solutions to the committee coordination problem mostly focus on the three properties of the1020

original problem described in Subsection 2.3 [2, 3, 4, 5, 6, 7]. In the seminal work by Chandy and1021

Misra [2], the committee coordination problem is reduced to the dining or drinking philosophers1022

problems [14]. Each philosopher represents a committee, neighboring philosophers have a com-1023

mon member, and a meeting is held only when the corresponding philosopher is eating. Bagrodia1024

[3] solves the problem by introducing the notion of managers. Each manager handles a set of1025

committees and two managers may have intersecting sets of assigned committees. Each commit-1026

tee member notifies its corresponding committee managers that it desires to participate. Conflicts1027

between two committees (i.e., committees that share a member) managed by the same manager1028

are resolved locally within the manager. Conflicts between two committees managed by different1029

managers are resolved using a circulating token. In a later work [4], Bagrodia combines a message1030

count mechanism (to ensure Synchronization) with a reduction to dining/drinking philosophers (to1031

ensure Exclusion).1032

Joung [19] extends the original committee coordination problem by considering fairness prop-1033

erties. One such property, called weak fairness in [19] or professor fairness in this paper, requires1034

that if a professor is waiting to participate in some committee meeting, then he must eventually1035

participate in a committee meeting (not necessarily the same). The main result is the impossibility1036

of implementing a fair committee coordination algorithm if one of the following conditions hold:1037

• One process’s readiness to participate in a committee can be known by another only through1038

communication, and the time it takes two processes to communicate is not negligible.1039

• A process decides autonomously when it will attempt participating in a committee, and at a1040

time that cannot be predicted in advance.1041

Joung’s result holds for fairness on multi-party committees as well. Tsay and Bagrodia [5] reach1042

the same result with respect to the second condition identified by Joung [19].1043

In [7], Kumar circumvents the impossibility result of Tsay and Bagrodia by making the fol-1044

lowing additional assumption: every professor waits for meetings infinitely often. In this model,1045

Kumar proposes an algorithm that solves the committee coordination problem with professor fair-1046

ness using multiple tokens, each representing one committee. Based on the same assumption,1047

several other committee coordination algorithms that satisfy fairness can be found in [6].1048

33

7. Conclusion1049

In this paper, we proposed two Snap-stabilizing distributed algorithms for the committee co-1050

ordination problem. The first algorithm satisfies 2-Phase Discussion as well as Maximal Concur-1051

rency. The second algorithm satisfies 2-Phase Discussion as well as Professor Fairness assuming1052

that every professor waits for meetings infinitely often. As we showed, even under this latter1053

assumption, satisfaction of both Maximal Concurrency and Professor Fairness is impossible.1054

For the second algorithm, we introduced and analyzed the degree of fair concurrency to show1055

that it still allows high level of concurrency. We also evaluated an upper bound on waiting time.1056

Finally, with a slight modification, we obtained another algorithm that respects Committee Fair-1057

ness.1058

For future work, several interesting research directions are open. One can consider other com-1059

binations of properties. For instance, we conjecture that providing both Maximal Concurrency1060

and bounded waiting time is impossible. Another problem is to design a fault-tolerant committee1061

coordination algorithm in the message-passing model. An important issue is to address dynamic1062

hypergraphs, where professors (processes) can enter or leave the hypergraph, and, new commit-1063

tees may be created or some committees may be dissolved or merged. Optimality is also an open1064

question in that one can study the optimal bound on the degree of fair concurrency. Another inter-1065

esting line of research is enforcing priorities on convening committees. Finally, we are planning1066

to implement the algorithms presented in this paper in distributed code generation frameworks1067

such as the one in [8]. Our algorithms will allow generating fully distributed code from high-level1068

component-based models.1069

References1070

[1] B. Bonakdarpour, S. Devismes, F. Petit, Snap-stabilizing committee coordination, in:1071

IPDPS’2011, 25th IEEE International Parallel and Distributed Processing Symposium, 2011,1072

pp. 231–242.1073

[2] K. M. Chandy, J. Misra, Parallel program design: a foundation, Addison-Wesley Longman1074

Publishing Co., Inc., Boston, MA, USA, 1988.1075

[3] R. Bagrodia, A distributed algorithm to implement n-party rendezvous, in: Foundations of1076

Software Technology and Theoretical Computer Science, Seventh Conference (FSTTCS),1077

1987, pp. 138–152.1078

[4] R. Bagrodia, Process synchronization: Design and performance evaluation of distributed al-1079

gorithms, IEEE Transactions on Software Engineering (TSE) 15 (9) (1989) 1053–1065.1080

[5] Y.-K. Tsay, R. Bagrodia, Some impossibility results in interprocess synchronization, Dis-1081

tributed Computing 6 (4) (1993) 221–231.1082

[6] C. Wu, G. Bochmann, M. Y. Yao, Fairness of n-party synchronization and its implementation1083

in a distributed environment, in: Workshop on Distributed Algorithms (WDAG), 1993, pp.1084

279–293.1085

34

[7] D. Kumar, An implementation of n-party synchronization using tokens, in: Distributed Com-1086

putung Systems (ICDCS), 1990, pp. 320–327.1087

[8] B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, J. Sifakis, A framework for automated dis-1088

tributed implementation of component-based models, Distributed Computing 25 (5) (2012)1089

383–409.1090

[9] A. Bui, A. K. Datta, F. Petit, V. Villain, State-optimal snap-stabilizing pif in tree networks,1091

in: A. Arora (Ed.), WSS, IEEE Computer Society, 1999, pp. 78–85.1092

[10] A. Bui, A. K. Datta, F. Petit, V. Villain, Snap-stabilization and PIF in tree networks, Dis-1093

tributed Computing 20 (1) (2007) 3–19.1094

[11] E. W. Dijkstra, Self-stabilizing systems in spite of distributed control, Communications of1095

the ACM 17 (11).1096

[12] S. Dolev, A. Israeli, S. Moran, Uniform dynamic self-stabilizing leader election, IEEE Trans-1097

actions on Parallel and Distributed Systems 8 (4) (1997) 424–440.1098

[13] S. Dolev, Self-stabilization, MIT Press, 2000.1099

[14] K. M. Chandy, J. Misra, The drinking philosophers problem, ACM Transactions on Program-1100

ming Languages and Systems (TOPLAS) 6 (4) (1984) 632–646.1101

[15] B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, J. Sifakis, Automated conflict-free dis-1102

tributed implementation of component-based models, in: IEEE Symposium on Industrial1103

Embedded Systems (SIES), 2010, pp. 108–117.1104

[16] B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, J. Sifakis, From high-level component-1105

based models to distributed implementations, in: ACM International Conference on Embed-1106

ded Software (EMSOFT), 2010, pp. 209–218.1107

[17] J. L. Welch, N. A. Lynch, A modular drinking philosophers algorithm, Distributed Computing1108

6 (4) (1993) 233–244.1109

[18] A. K. Datta, R. Hadid, V. Villain, A self-stabilizing token-based k-out-of-l exclusion algo-1110

rithm, Concurrency and Computation: Practice and Experience 15 (11-12) (2003) 1069–1111

1091.1112

[19] Y.-J. Joung, On fairness notions in distributed systems: I. a characterization of implementabil-1113

ity, Information and Computation 166 (1) (2001) 1–34.1114

[20] M. Gairing, W. Goddard, S. T. Hedetniemi, P. Kristiansen, A. A. McRae, Distance-two infor-1115

mation in self-stabilizing algorithms, Parallel Processing Letters 14 (3-4) (2004) 387–398.1116

[21] A. Arora, M. Gouda, Distributed reset, IEEE Transactions on Computers 43 (1994) 316–331.1117

35

[22] S. Dolev, T. Herman, Superstabilizing protocols for dynamic distributed systems, Chicago1118

Journal of Theoretical Computer Science 1997.1119

[23] A. K. Datta, L. L. Larmore, P. Vemula, Self-stabilizing leader election in optimal space, in:1120

Stabilization, Safety, and Security of Distributed Systems (SSS), 2008, pp. 109–123.1121

[24] S.-T. Huang, N.-S. Chen, Self-stabilizing depth-first token circulation on networks, Dis-1122

tributed Computing 7 (1) (1993) 61–66.1123

[25] A. K. Datta, C. Johnen, F. Petit, V. Villain, Self-stabilizing depth-first token circulation in1124

arbitrary rooted networks, Distributed Computing 13 (4) (2000) 207–218.1125

[26] A. Cournier, S. Devismes, V. Villain, A snap-stabilizing DFS with a lower space requirement,1126

in: Self-Stabilizing Systems (SSS), 2005, pp. 33–47.1127

[27] A. Cournier, S. Devismes, V. Villain, Light enabling snap-stabilization of fundamental pro-1128

tocols, ACM Transactions on Autonomous and Adaptive Systems (TAAS) 4 (1).1129

36

