
HAL Id: hal-01347699
https://hal.sorbonne-universite.fr/hal-01347699

Preprint submitted on 21 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probabilistic Opacity in Refinement-Based Modeling
Béatrice Bérard, Olga Kouchnarenko, John Mullins, Mathieu Sassolas

To cite this version:
Béatrice Bérard, Olga Kouchnarenko, John Mullins, Mathieu Sassolas. Probabilistic Opacity in
Refinement-Based Modeling. 2015. �hal-01347699�

https://hal.sorbonne-universite.fr/hal-01347699
https://hal.archives-ouvertes.fr

Probabilistic Opacity in
Refinement-Based Modeling?

Béatrice Bérard1,2 and Olga Kouchnarenko3 and John Mullins4,?? and
Mathieu Sassolas5

1 Sorbonne Université, UPMC Univ Paris 06, UMR 7606, LIP6, Paris, France
2 CNRS, UMR 7606, F-75005 Paris, France

3 Université de Franche-Comté, FEMTO-ST, CNRS UMR 6174, Inria/NGE,
Besançon, France

4 Dept. of Computer & Software Eng., École Polytechnique de Montréal
Montreal (Quebec), Canada, H3C 3A7

5 Université Paris-Est, LACL, Créteil, France

Abstract. Given a probabilistic transition system (PTS) A partially
observed by an attacker, and an ω-regular predicate ϕ over the traces of
A, measuring the disclosure of the secret ϕ in A means computing the
probability that an attacker who observes a run of A can ascertain that
its trace belongs to ϕ. In the context of refinement, we consider specifica-
tions given as Interval-valued Discrete Time Markov Chains (IDTMCs),
which are underspecified Markov chains where probabilities on edges are
only required to belong to intervals. Scheduling an IDTMC S produces
a concrete implementation as a PTS and we define the worst case dis-
closure of secret ϕ in S as the maximal disclosure of ϕ over all PTSs
thus produced. We compute this value for a subclass of IDTMCs and we
prove that refinement can only improve the opacity of implementations.

1 Introduction

Context and motivation. When modeling complex systems, a top-down
approach based on the refinement of models allows to gradually specify
various system requirements. These refinements are designed to preserve
some behavioral properties, like safety, reachability, and liveness under
some conditions.

Security requirements, which are not behavioral ones [1], may not
fare well under refinement, unless tailored specially to do so, as in [2].

? Partially supported by a grant from Coopération France-Québec, Service Coopé-
ration et Action Culturelle 2012/26/SCAC (French Government), the NSERC Dis-
covery Individual grant No. 13321 (Government of Canada), the FQRNT Team
grant No. 167440 (Quebec’s Government) and the CFQCU France-Quebec Cooper-
ative grant No. 167671 (Quebec’s Government).

?? This research has been partially done while this author was visiting the LIP6, Uni-
versité Pierre & Marie Curie.

Several known security properties such as noninference or anonymity can
be encoded in the framework of opacity [3,4,2]. In this context, an external
observer tries to discover whether a predicate (given as an ω-regular set)
holds by partially observing the system through a projection of its actions.
A system is opaque if the attacker fails to discover this information. In
the possibilistic setting, a violation of opacity captures the existence of
at least one perfect leak.

In probabilistic models like Discrete Time Markov Chains (DTMCs),
naturally random events such as faults, message transmission failure, ac-
tions of an external environment, etc. can be taken into account. Opacity
was extended in the probabilistic setting [5,6] to provide a measure of the
set of runs disclosing information on the truth value of the predicate. As
a result, opacity increases when the disclosure – which is the focus of this
paper – decreases.

a

b c

b

c

d

1
4 1

2

1
4

1

1

1

1

1

(a) A1

a

b c

b

c

d

3
4 1

8

1
8

1

1

1

1

1

(b) A2

a

b c

b

c

d

[1
8
, 8
9
]

[1
8
, 2
3
]

[1
9
, 1
3
]

[1, 1]

[1, 1]

[1, 1]

[1, 1]

[1, 1]

(c) S

Fig. 1. Probabilistic systems A1 or A2 implementing underspecified sys-
tem S.

Consider for instance the two systems in Fig. 1(a)-(b), which are
DTMCs with the addition of labels on states (indicated inside). We as-
sume that the occurrence of b must be kept secret and that all labels
except b are observable. In this case, the only runs disclosing the secret
are those observed by adω, since every such run betrays the occurrence of
b. The probability of disclosure is 1/4 in A1 while it is 3/4 in A2, hence
A1 is more secure than A2. Our aim is to establish sufficient conditions
on systems like A1 and A2, that can be compared, for one of them to be
more secure than the other.

In the process of system modeling, it is common practice to use un-
derspecified models as first steps of specification. A first approach is to
consider sub-stochastic models where transition probabilities need not
sum up to 1. In this framework, the notions of satisfaction and simula-
tion were extensively studied in [7]. The second approach is to introduce
non-determinism in the model which makes possible the description of
some choices of the environment [8,9,10,11,6]. These models have also
been studied in relation to the refinement process [8]. For example, both
systems of Fig. 1(a)-(b) could have been derived from a single underspeci-
fied system S with the same structure but imprecise probabilities, like the
one in Fig. 1(c). A particular case of such models is the Interval-valued
DTMCs (IDTMCs) where the transition probabilities are underspecified
by giving only bounds in the form of intervals, as done in Fig. 1(c). The
refinement consists for example in restricting these intervals. Implemen-
tation, on the other hand, reduces the bounds to a single point, thus
providing a Discrete Time Markov Chain.

Scheduling is an effective way to obtain an implementation: at each
step, the scheduler provides a distribution satisfying the bounds, pro-
ducing a (possibly infinite) DTMC on-the-fly. As such, a scheduler can
represent a strategy of an agent inside the system. In the case of opacity,
this scheduler is adversarial in the sense that it tries to disclose as much
information as possible to the passive observer.

Contribution. In this work, we investigate the effect of refinement of prob-
abilistic systems on opacity. Disclosure, as any security measure, is de-
fined on IDTMCs as the worst case scenario for all its implementations,
although not every implementation is obtained through scheduling.

In order to evaluate the disclosure of an IDTMC under realistic as-
sumptions, we study the supremum of the disclosure of all scheduled
implementations: this measures the information obtained by the passive
observer when the system is controlled by the smartest scheduler in coali-
tion with the observer. We show how to compute this value for a sub-
class of IDTMCs, namely IDTMCs where no transition can be completely
blocked by the scheduler. The computation is based on techniques pro-
posed in [10]. Note that the previous approach in [6] has already used
schedulers to evaluate disclosure, although in the context of (fully speci-
fied) Markov Decision Processes.

We then show that a refinement of an IDTMC can only improve the
opacity of all implementations obtained by scheduling. This can be viewed
as an extension of the work in [2] to the probabilistic setting. The main

difficulty of this result comes from the restriction of the implementations
to those obtained by scheduling.

Organization of the paper. In Section 2 we present the underlying models
for specification and implementation, with the satisfaction relation and
the simulation relation. We define probabilistic disclosure in this context
and show how to compute it (for a restricted case) in Section 3. Finally,
we prove monotonicity of opacity under simulation in Section 4. Due to
lack of space, several proofs are provided in a separate appendix.

2 Finite automata and probabilistic models for
refinement

In this section, we present the models used in this work: finite automata
and the probabilistic models for specifications and implementations, as
well as the satisfaction and simulation relations.

The set of natural numbers is denoted by N. The composition of rela-
tions R2 and R1 is defined by R2◦R1 = {(x, z) | ∃y, (x, y) ∈ R1∧(y, z) ∈
R2}. Given a finite alphabet Σ, we denote by Σ∗ (resp. Σω) the set of
finite (resp. infinite) words over Σ, with Σ∞ = Σ∗ ∪Σω and ε the empty
word.

Given a countable set Z, a discrete distribution is a mapping µ : Z →
[0, 1] such that

∑
z∈Z µ(z) = 1. The support of µ is supp(µ) = {z ∈ Z |

µ(z) > 0}. The set of all discrete distributions on Z is denoted byDist(Z).
When dealing with a distribution on domain Z1×Z2 (a joint distribution),
it is convenient to write µ(Y1, Y2) =

∑
y1∈Y1,y2∈Y2 µ(y1, y2) for Y1 ⊆ Z1

and Y2 ⊆ Z2. Moreover, we abusively write µ(y1, Y2) = µ({y1}, Y2) and
µ(Y1, y2) = µ(Y1, {y2}).

2.1 Models

Definition 2.1 (Deterministic Parity Automaton). A deterministic
parity automaton (DPA) is a tuple A = (Q,Σ, δ, q0, F), where Q is a
finite set of states, Σ is an input alphabet, δ : Q×Σ → Q is a transition
function, q0 ∈ Q is an initial state, and F is a mapping from Q to a finite
set of colors {1, . . . , k}.

A run of A on a word w = a1a2 · · · ∈ Σω is an infinite sequence
ρ = q0q1 · · · ∈ Qω such that for all i ≥ 0, qi+1 = δ(qi, ai+1). For such a
run ρ, we define Inf(ρ) as the set of states appearing infinitely often in
the sequence. The run is accepting if min{F (q) | q ∈ Inf(ρ)} is even.

In this case, the corresponding word is accepted by A and L(A) is the
subset of Σω of words accepted by A. A subset K of Σω is ω-regular if
there is an automaton A such that K = L(A).

For the probabilistic context, we consider two models: Probabilistic
Transition Systems (PTSs) for implementations, and Interval-valued Dis-
crete Time Markov chains (IDTMCs) for specifications.

Probabilistic transition systems are a particular case of the probabilis-
tic processes of [8], with the restriction of a countable set of states. They
are classical Discrete Time Markov Chains (DTMCs), with the addition
of state labeling.

Definition 2.2 (Probabilistic Transition System). Let Σ be an al-
phabet. A probabilistic transition system (PTS) over Σ is a 4-tuple A =
〈Q, qinit, ∆, L〉 where

– Q is a countable set of states, with qinit ∈ Q the initial state,
– ∆ : Q → Dist(Q) is a mapping associating with any state q ∈ Q a

distribution ∆(q) over Q, with finite support,
– L : Q→ Σ is the labeling function on states.

A (finite or infinite) run of A starting from state q ∈ Q is a sequence
of states ρ = q0q1q2 . . . such that q0 = q and for each i, 0 ≤ i < |ρ|,
∆(qi)(qi+1) > 0. When the run is finite ρ = q0q1 . . . qn, we note qn = lst(ρ).
The trace of ρ is the word tr(ρ) = L(q0)L(q1) . . . ∈ Σ∞. We denote by
Runsq(A) the set of infinite runs starting from q and we set Runs(A) =
Runsqinit(A), and Tr(A) = {tr(ρ) | ρ ∈ Runs(A)}, the set of traces
of A. We also define FRunsq(A) the set of finite runs starting from q,
and similarly FRuns(A) = FRunsqinit(A) and FTr(A) = {tr(ρ) | ρ ∈
FRuns(A)}, the subset of Σ∗ of finite traces of A.

Recall [12] that a probability measure PA can be defined on Runs(A):
measurable sets are generated by cones, where the cone Cρ associated
with a finite run ρ = q0q1 . . . qn is the subset of infinite runs in Runs(A)
having ρ as prefix. The probability of Cρ is PA(Cρ) =

∏n−1
i=0 ∆(qi)(qi+1).

The cone of a word w ∈ Σ∗ is defined by Cw =
⋃
ρ∈tr−1(w)Cρ. For an

ω-regular language K, we denote by PA(K) the probability of K in A.
This probability is well defined (since ω-regular sets are measurable [13])
and can be computed given a DPA for K [14].

The specifications we consider here are given by Interval-valued Dis-
crete Time Markov chains, introduced in [8] and further investigated
in [10,11] from a verification point of view. We denote by I the set of
intervals in [0, 1].

Definition 2.3 (Interval-valued Discrete Time Markov Chains).
An Interval-valued Discrete Time Markov Chains (IDTMC) is a 4-tuple
S = (S, sinit, T, λ) where

– S is a finite set of states, with sinit ∈ S the initial state,

– T : S → (S → I) associates with any state s ∈ S a mapping T (s)
from S into I,

– λ : S → Σ is the labeling function.

By extension, f ∈ T (s) will denote any function f : S → [0, 1] such
that for all s′ ∈ S, f(s′) ∈ T (s)(s′) and

∑
s′∈S f(s′) = 1.

Several semantic interpretations for IDTMCs have been considered
in [8,10,11]. The simplest one is Uncertain Markov Chains, which corre-
sponds to first choosing all distributions for the states, with probabilities
belonging to the specified intervals. In this case, the resulting model is a
PTS, with the same structure as the specification.

A richer semantics consists in choosing the distribution at each step,
as in a Markov Decision Process, hence the name Interval Markov De-
cision Process (IMDP). Note that an IMDP can be translated into an
exponentially larger MDP [10], but the transformed MDP is ill-suited to
model refinement.

Finally, the most general semantics is directly given by the satisfaction
relation from [8] recalled later.

We first describe the IMDP semantics. A run of S starting from a state
s is a sequence s

µ1−→ s1
µ2−→ . . . where si ∈ S and each µi is a distribution

over S such that ∀s ∈ S, µi(s) ∈ T (si−1)(s). As before, we denote by
Runss(S) the set of runs starting from s, we set Runs(S) = Runssinit(S),
FRuns(S) is the set of finite runs of S starting from sinit, and for a run

ρ = s
µ1−→ s1

µ2−→ . . . sn−1
µn−→ sn in FRuns(S) we define lst(ρ) = sn.

To associate a probability measure with the runs, it is necessary to
resolve the non determinism by a scheduler that chooses a distribution at
each step. More precisely:

Definition 2.4 (Scheduler). A scheduler A for an IDTMC specifica-
tion S = (S, sinit, T, λ), is a mapping A : FRuns(S) → Dist(S) such that
for each run ρ with s = lst(ρ), A(ρ)(s′) ∈ T (s)(s′).

We denote by Sched(S) the set of schedulers for S. Like for Markov
Decision Processes, scheduling S with A produces a PTS denoted by
S(A) where states are finite runs: Q ⊆ FRuns(S), the initial state is the
run containing only the initial state of S: qinit = sinit, and for ρ ∈ Q,

L(ρ) = λ(lst(ρ)) and ∆(ρ)(ρ′) = A(ρ)(s′) for ρ′ = ρ
A(ρ)−−−→ s′. We note

sat(S) = {S(A) | A ∈ Sched(S)}.
Note that the Uncertain Markov Chains semantics corresponds to the

particular case of memoryless schedulers: there is a mapping B : S →
Dist(S) such that A(ρ) = B(lst(ρ)). In this case the set of states of the
PTS S(A) is Q = S with ∆(s)(s′) = B(s)(s′) ∈ T (s)(s′).

2.2 Satisfaction relation

We now turn to the general satisfaction relation defined in [8].

Definition 2.5 (Satisfaction relation). A PTS A = 〈Q, qinit, ∆, L〉
satisfies IDTMC S = (S, sinit, T, λ), written A � S, if there exists a
relation R ⊆ Q× S such that qinitRsinit and if qRs then

1. L(q) = λ(s),
2. there exists a joint distribution δ ∈ Dist(Q× S) such that

(a) δ(q′, S) = ∆(q)(q′) for all q′ ∈ Q,
(b) δ(Q, s′) ∈ T (s)(s′) for all s′ ∈ S,
(c) q′Rs′ whenever δ(q′, s′) > 0.

We write sat(S) = {A | A � S} for the set of all PTSs that satisfy
specification S; these are called implementations of S.

As a first result, we show that scheduling an IDTMC specification is
a particular case of implementation:

Proposition 2.6. Let S be an IDTMC specification. For each scheduler
A of S, we have: S(A) � S, hence sat(S) ⊆ sat(S).

Proof. The relation R ⊆ Q × S is defined by R = {(ρ, s) | lst(ρ) = s}.
We prove that the relation R is a satisfaction relation by defining δ(ρ,s)
over Q× S as follows:

δ(ρ,s)(ρ
′, s′) =

{
A(ρ)(s′) if ρ′ = ρ

A(ρ)−−−→ s′,
0 otherwise.

(1)

The first condition results from the definition of the labeling and con-
ditions 2 and 3 come from the fact that the joint distribution δ(ρ,s) is
diagonal in this case.

2 (a) δ(ρ′, S) = A(ρ)(s′) = ∆(ρ)(ρ′) with ρ′ = ρ
A(ρ)−−−→ s′ for all ρ′ ∈ Q.

(b) δ(Q, s′) = A(ρ)(s′) ∈ T (s)(s′) with s = lst(ρ) for all s′ ∈ S.

3. ρ′Rs′ whenever δ(ρ′, s′) > 0 since s′ = lst(ρ′) by definition of R. ut

Indeed, for any scheduler A, S(A) is a kind of unfolding of S, which
restricts the structure of S(A): at each step, the scheduler chooses a valid
distribution among successor states. Hence not every implementation can
be mapped to a scheduler. Said otherwise, not all implementations can
be put in relation with S with a satisfaction relation where the joint dis-
tributions δ are diagonal. This means that the inclusion sat(S) ⊆ sat(S)
is strict.

q0, a

q1, b

q2, b

[1
2
, 1]

[1
2
, 1]

[1, 1]

[1, 1]

(a) A specification S0

q0, a

q1, b

q2, b

1
2

1
2

1

1

(b) A1, the only
scheduling of S0

r0, a

r1, b

r2, b

r3, b

1
3

1
3

1
3

1

1

1
(c) A2, an implementation

(not a scheduling) of S0

Fig. 2. A specification with an implementation that is not the result of
scheduling.

For example, consider the specification S0 of Fig. 2(a). There is a
single possible scheduler for this specification: the one that picks in q0
probability 1

2 to go to either q1 or q2 (A1 in Fig. 2(b)). However, the PTS
A2 of Fig. 2(c) is also an implementation of this specification (A2 |= S0)
where r2 is split between q1 and q2. The corresponding matrix is

δ(q0, r0) =


r0 r1 r2 r3

q0 1 0 0 0
q1 0 1

3
1
6 0

q2 0 0 1
6

1
3


Finally, the refinement relation between specifications is simply de-

fined as inclusion of the satisfaction sets:

Definition 2.7 (Refinement). For two IDTMC specifications S1 and
S2, S1 refines S2 if sat(S1) ⊆ sat(S2).

2.3 Simulation relation

The notion of simulation relation between probabilistic specifications was
introduced in [8], where it is proved to be a sufficient condition for refine-
ment: S2 simulates S1 implies that all implementations of S1 are imple-
mentations of S2. This notion is adapted to our setting in Definition 2.8
below. We then investigate the effect of simulation when implementa-
tions are considered with respect to schedulers only. Therefore we study
the relations between sat(S1) and sat(S2) whenever S2 simulates S1.

Definition 2.8 (Simulation relation). For S1 = (S1, s1,init, T1, λ1)
and S2 = (S2, s2,init, T2, λ2) two IDTMC specifications, S2 simulates S1 if
there exists a relation R ⊆ S1 × S2 such that s1,initRs2,init and if s1Rs2
then:

1. λ1(s1) = λ2(s2),

2. there exists a function δ : S1 → Dist(S2) such that for all f ∈ T1(s1)
and s′2 ∈ S2, ∑

s′1∈S1

f(s′1) · δ(s′1)(s′2)

 ∈ T2(s2)(s′2), (2)

3. s′1Rs′2 whenever δ(s′1)(s
′
2) > 0.

a

q0

S1 :

b

q1

b

q2

[1
3
, 2
3
]

[1
4
, 1
3
]

[1, 1]

[1, 1]

a

r0

S2 : b

r1

[0, 1]
[1, 1]

1 1

1

Fig. 3. A simulation of S1 by S2.

In Figure 3, dashed lines illustrate the simulation relation R of S1
by S2 labeled with δ(qi)(rj) since for Condition (2), we may in this case
uniformly use the function:

δ(qi)(rj) =

{
1 if (qi, qj) ∈ R
0 otherwise

Note that there is no simulation relation of S2 by S1. Indeed, let f ∈ T2(r0)
defined as f(r1) = 1. The only way to distribute f over S1 in order to
satisfy Eq. 2 is to distribute 2

3 of f to q1 and 1
3 to q2. Hence, it forces to

set δ(r1)(q1) to 2
3 and δ(r1)(q2) to 1

3 but this choice for δ is not uniform
for any f ∈ T2(r0) as it does not satisfy Eq. 2 for f(r1) = 1

2 for instance.
Let us notice that in the case of PTSs, Definition 2.8 is still valid but

intervals reduce to points and Equation 2 becomes∑
s′1∈S1

(
∆1(s1)(s

′
1) · δ(s′1)(s′2)

)
= ∆2(s2)(s

′
2). (3)

2.4 Simulation vs satisfaction

Remark that not only simulation and satisfaction are defined over differ-
ent kind of models, they express different requirements. Indeed, simula-
tion is symmetrical in the models used but asymmetrical in its semantics
since one model must contain the behavior of the other. In contrast, sat-
isfaction concerns different models but the behavior of the PTS must
exactly comply to the IDTMC specification: it can neither add behaviors
nor introduce new ones.

Nevertheless, these notions coincide when the simulated IDTMC is in
fact a PTS:

Proposition 2.9. Let A be a PTS satisfying an IDTMC specification S.
Then S simulates A when seen as an IDTMC where intervals are reduced
to a point.

Proof (Sketch). The core of the proof relies on building a function δsim for
the simulation relation, from function δsat given by the satisfaction rela-
tion. For any pair of states q ∈ Q of PTS A and s ∈ S of IDTMC S, define
δsim(q, s) = δsat(q,s)

δsat(q,S)
. One can show that this δsim satisfies Condition (2)

of Definition 2.8.

Also, as noted before, simulation implies inclusion of the set of imple-
mentations:

Proposition 2.10 ([8]). S2 simulates S1 implies that sat(S1) ⊆ sat(S2).

3 Opacity

The original definition of opacity was given in [4] for (non probabilistic)
transition systems, with respect to some observation function O and some
predicate ϕ (the secret) on the runs of the system.

3.1 Opacity for probabilistic models

We consider an ω-regular set ϕ ⊆ Σω and we say that a run ρ of a PTS
A satisfies ϕ if its trace belongs to ϕ. We consider also an observation
function O : Σω → Σ∞ob , where Σob is a subset of Σ representing its
visible part. If πob is the standard projection from Σ∞ onto Σ∞ob mapping
any element a ∈ Σ \ Σob to ε, the observation function is defined on
a word w by O(w) = πob(w). Alternatively, we could consider a subset
Pob of a set of observable atomic propositions P . Then, by setting Pu =
P \ Pob, Σob = 2Pob and Σu = 2Pu , Σ could be viewed as the product
Σob × Σu. The observation function O would be then defined on a word
w by O(w) = π1(w), where π1 is the projection from (Σob × Σu)∞ onto
Σ∞ob mapping each element on its first component.

The observation class of a word w is [w]O = O−1(O(w)): for the
observer, each word in this class is undistinguishable from w. Then ϕ is
opaque with respect to A and O if each time a word satisfies ϕ, another
word in the same observation class does not. We denote by V(A,O, ϕ)
the set of words violating this condition:

V(A,O, ϕ) = (Tr(A) ∩ ϕ) \ (O−1(O(Tr(A) \ ϕ))).

Definition 3.1 (Opacity). Let A be a PTS, with observation function
O. A predicate ϕ is opaque in A for O if V(A,O, ϕ) = ∅.

Equivalently, ϕ is opaque if for any w satisfying ϕ, [w]O * ϕ. Variants
of opacity have been defined, with other observation functions and predi-
cates, or by requiring symmetry: the predicate ϕ is symmetrically opaque
in A for O if both ϕ and Σω \ ϕ are opaque.

The notion of probabilistic opacity [15] extends this boolean property
by defining a measure of the set of runs violating opacity:

Definition 3.2 (Probabilistic Disclosure). Let A be a PTS, with ob-
servation function O and ω-regular predicate ϕ. The probabilistic disclo-
sure of ϕ in A for O is Disc(A,O, ϕ) = PA(V(A,O, ϕ)).

For instance, recall systems A1 and A2 of Fig. 1. The secret predicate
in this case is the set of runs ϕb = abΣω and the observation function is
the projection π{a,c,d} onto {a, c, d}ω. This predicate is not opaque since
the run abdω discloses the occurrence of b. This is measured by the dis-
closure: Disc(A1, πa,c,d, ϕb) = PA1(abdω) = 1

4 and Disc(A2, πa,c,d, ϕb) =
PA2(abdω) = 3

4 .
Note that dealing with symmetric opacity would simply require to add

both measures for ϕ andΣω\ϕ. Also remark that disclosure only measures
probabilities of the observer being sure that the run is in the secret. For
example, one can model anonymity of an agent α initiating some protocol
by defining ϕα as the set of all runs initiated by α. Anonymity of α is
then equivalent to opacity of ϕα. In the case where anonymity is not
guaranteed, disclosure provides a measure of the threat. In the case where
anonymity holds, this measure will be 0 and does not give any insight on
the “strength” of anonymity. Other notions measuring this strength were
proposed in [16,17] and quantitative opacity for partial disclosure of the
secret have also been defined in [5], although they are not linear hence do
not fare well under standard optimization techniques.

In order to compare systems with respect to opacity, we consider two
PTSs A1 and A2 over the same alphabet Σ, with a given observation
function O. We say that A1 is more opaque than A2 if Disc(A1,O, ϕ) ≤
Disc(A2,O, ϕ).

We lift the definition of probabilistic disclosure from PTSs to IDTMC
specifications as follows:

Disc(S,O, ϕ) = sup
A∈sat(S)

Disc(A,O, ϕ)

From the results in [8] mentioned in Proposition 2.10, it is easy to see
that if S2 simulates S1, then Disc(S1,O, ϕ) ≤ Disc(S2,O, ϕ).

To obtain a similar result for the notion of satisfaction restricted to
schedulers, we define the restriction of the disclosure to scheduled imple-
mentations:

Disc(S,O, ϕ) = sup
A∈sat(S)

Disc(A,O, ϕ) = sup
A∈Sched(S)

Disc(S(A),O, ϕ)

Note that this notion differs from the similar one in [6] for Markov
Decision Processes. The notion presented here is finer since the set of runs
measured by the disclosure depends on the scheduled implementation.
In [6], the set of runs of the disclosure is defined on the (unscheduled)
MDP, and its probability is optimized afterwards. This would not be

consistent in IDTMCs, since two scheduled implementations can have
different sets of edges with non-null probability, as explained below.

3.2 Computing the probabilistic disclosure of a specification

When the interval of an edge of an IDTMC is non-punctual and closed
on the left by 0, then this edge may be present or not in an implemen-
tation. Otherwise said, in the case of schedulers, this action can be com-
pletely blocked. In keeping with the terminology of [8], we call these edges
modal edges, and IDTMCs that contain such edges are also called modal
IDTMCs.

Definition 3.3 (Modal edge). An edge T (s)(s′) in IDTMC S is modal
if there exists a scheduler A such that in S(A), for any run ρ with lst(ρ) =

s, ∆(ρ)(ρ
A(ρ)−−−→ s′) = 0.

From a modeling point of view, modal edges add a lot of flexibility for
refinement. This however means that the range of potential implemen-
tation is larger and so it will be harder to obtain meaningful properties.
Therefore such edges are desirable in an early modeling phase but less
so in the latest refinements. In the context of opacity, removing an edge
drastically changes the disclosure, since it can remove ambiguities.

We illustrate the importance of modal edges when computing the
disclosure of a specification. For example, consider the modal IDTMC
Sm of Fig. 4(a), with an observation function that observes a and b and a
secret being the presence of c. An implementation of Sm that blocks the

a c b
[0; 1]

[0; 1]

[1; 1]

[1; 1]

(a) A modal IDTMC Sm.

a c b
]0; 1]

]0; 1]

[1; 1]

[1; 1]

(b) A non-modal IDTMC Snm.

a c b
1 1

1

(c) A disclosing implementation of
Sm (but not of Snm).

a c b
1− ε

ε

1

1

(d) A non-disclosing implementa-
tion of Snm (and Sm), ε > 0.

Fig. 4. The influence of modal transitions on disclosure.

direct edge from a to b (Fig. 4(c)) has a disclosure of 1, since the secret
is guaranteed to be part of the only possible run. On the other hand, in
the non-modal version of the IDTMC (Fig. 4(b)), such implementations
are banned and only implementations that retain a small probability to
avoid c are allowed. In these implementations, the disclosure is 0, since
every run is observed as abω and it is possible that c did not occur.

In the case of non-modal IDTMCs, disclosure can be computed. The
proof relies on a translation from IMDP to MDP and synchronization
with DPA; it can be found in Appendix A.

Theorem 3.4. Computing the value of disclosure for an IDTMC speci-
fication S without modal edges can be done in 2EXPTIME.

Remarks on modal edges. When a scheduler is faced with the choice to
include or exclude a modal edge, it can produce several versions of PTSs,
say A1 and A2, with Tr(A1) 6= Tr(A2), hence V(A1,O, ϕ) 6= V(A2,O, ϕ).
In addition, these choices may be history dependent, as in the example of
Fig. 5, with ϕ = aΣω and only letters c and d being observed. Intuitively,
a way for the scheduler to always disclose the presence of an initial a is to
always follow an a by the same letter, say a c. However, this choice must be
made after the first letter has been seen. Moreover, leaving the possibility
of a run ad · · · to occur means that run ac · · · does not disclose ϕ. As a
result, the scheduler should also take into account ϕ and the observation
function before committing to a choice with respect to modal edges. So
far, the general case of modal IDTMCs remains open.

a

b

c

d

1
2

1
2

1

1

[0; 1]

[0; 1]

1

1

Fig. 5. IDTMC where the choice on modal edge requires history.

4 Monotonicity of opacity under simulation

This section is devoted to the proof of the following result:

Theorem 4.1. Let S1 and S2 be IDTMC specifications such that S2 sim-
ulates S1. Then Disc(S1,O, ϕ) ≤ Disc(S2,O, ϕ).

Since scheduling is a restrictive way to derive implementations from a
specification, it is not the case in general that sat(S1) ⊆ sat(S2): although
any scheduling S1(A1) of S1 with A1 is an implementation of S2 (by
Propositions 2.6 and 2.10), this implementation may not be a scheduling
(as illustrated by the example of Fig. 2).

S2 S1

S1(A1)S2(A2)

R

sat1
sat1 ◦ R

R′

sat2

Fig. 6. The result of Theorem 4.2.
Relation sat1 ◦ R always exists but
might not be a scheduling.

Instead, the proof builds a
scheduler A2 for S2 that produces
an implementation S2(A2) that
simulates S1(A1) (Theorem 4.2, il-
lustrated in Fig. 6). Then, this sim-
ulation is shown to ensure that
the probabilities of (cones of) finite
words coincide (Propositions 4.3
and 4.4). Disclosure being a mea-
surable event, coincidence of prob-
abilities on cones ensures coinci-
dence of probabilities for the dis-
closure.

Notations. Given two specifications S1 and S2 such that S2 simulates S1
through relation R, we define the relation ∼ on FRuns(S1)×FRuns(S2)
by: ρ1 ∼ ρ2 if |ρ1| = |ρ2| and at any intermediate step i, the corresponding
states satisfy s1,iRs2,i.

Let A1 and A2 be two schedulers of S1 and S2, respectively. We set
A1 = S1(A1) and A2 = S2(A2), with respective sets of states Q1 and
Q2. For ρ2 ∈ Q2, we set sim(ρ2) = {ρ1 ∈ Q1 | ρ1 ∼ ρ2}. We now

define a measure µρ2 over sim(ρ2) by µρ2(ρ1) =
PA1

(ρ1)

PA1
(sim(ρ2))

(where the

probability of finite run ρ is abusively written instead of the probability
of its cone Cρ).

We first show how to build a scheduler for S2 that simulates the
scheduling of S1. The proof of the theorem below is given in Appendix B.

Theorem 4.2. Let S1 and S2 be IDTMC specifications such that S2 sim-
ulates S1. Then for any A1 ∈ Sched(S1) there exists A2 ∈ Sched(S2) such
that S2(A2) simulates S1(A1).

Now we show that simulation between two PTSs is sufficient to com-
pare their disclosure. Namely, we show that the probabilities of cones of
words are equal in both systems. Note that although this property is well
known to hold for paths, it needs to be lifted to words in order to compare
disclosure.

We start by considering the sets of traces globally; although it is
folklore that simulation implies trace inclusion, we provide a proof for
completeness sake.

Proposition 4.3. Let A1 and A2 be PTSs such that A2 simulates A1.
Then Tr(A1) = Tr(A2).

Proof. We prove the proposition by induction on a strengthened state-
ment. Namely, we claim that for every finite run in A1 there exists a
similar run in A2. Since an infinite run is the limit of the sequence of its
finite prefixes, this claim is sufficient to prove the proposition. Assume
by induction that the proposition holds for every word of length n. Let
w ∈ FTr(A1) of length n+1. We write w = w0a for some a ∈ Σ. Consider
a run of A1 that produces w. It is of the form ρ0s

′
1 where λ(s′1) = a; let

s1 = lst(ρ0). Let ρ′0 be a run in A2, similar to ρ0, and s2 = lst(ρ′0). By
definition of simulation, there exists a function δ such that for any state
s′2 of A2,

∆2(s2)(s
′
2) =

∑
σ1∈S1

∆1(s1)(σ1) · δ(σ1)(s′2).

Moreover, whenever δ(σ1)(s
′
2) > 0, λ(s′1) = λ(s′2). Since δ(s′1) is a dis-

tribution over S2, δ(s
′
1)(s

′
2) > 0 for at least one state s′2. Hence ρ′0s

′
2 is

similar to ρ, which shows in particular that w ∈ FTr(A2). ut

We additionally show that probabilities coincide:

Proposition 4.4. Let A1 and A2 be PTSs such that A2 simulates A1.
Then for all w ∈ Σ∗, PA1(Cw) = PA2(Cw).

Since a given word may be produced by several paths, their probabilities
should be considered altogether. Hence the proof of the above proposition
is not immediate; it is quite technical and can be found in Appendix C.

Existing properties about simulation for PTSs can be retrieved as
consequences of the above result. They were for example obtained as a
particular case of sub-stochastic simulation in [7]. Although not neces-
sary to prove the main theorem, these results illustrate how constraining
simulation between PTSs is.

Recall that a probabilistic bisimulation [8] is a bisimulation that pre-
serves transition probabilities, i.e. a bisimulation relation R on states
such that for any equivalence class R of R, and any two related states
sRs′, ∆(s)(R) = ∆(s′)(R).

Corollary 4.5 ([7]). Let A1 and A2 be PTSs such that A2 simulates
A1. Then there exists a probabilistic bisimulation over the union of both
PTSs.

Corollary 4.6 ([7]). Let A1 and A2 be PTSs such that A2 simulates
A1. Then A1 also simulates A2.

We are now ready to prove Theorem 4.1.

Proof. Let A1 ∈ sat(S1). By Theorem 4.2 there exists A2 ∈ sat(S2) that
simulates A1. By Proposition 4.4, PA1(Cw) = PA2(Cw) for every word
w ∈ FTr(A1). Hence, for any ω-regular (hence measurable) language L,
one has PA1(L) = PA2(L). It is in particular the case for V(A1,O, ϕ) =
V(A2,O, ϕ). Therefore, Disc(A1,O, ϕ) = Disc(A2,O, ϕ). Consequently,
the theorem holds. ut

5 Conclusion

This work investigates how refinement of probabilistic models impacts the
security – modeled as opacity. We provide a procedure to compute the
worst-case opacity for a subclass of IDTMCs, and we show that opacity is
monotonic with respect to simulation when implementations are obtained
through scheduling.

Directions for future work include computing disclosure for IDTMCs
with modal edges. In addition, while we considered here only the worst
case scenario, it would be interesting to handle both the worst and the
best case, thus providing bounds on the disclosure of all possible imple-
mentations.

References

1. Clarkson, M.R., Schneider, F.B.: Hyperproperties. Journal of Computer Security
18(6) (September 2010) 1157–1210

2. Alur, R., Černý, P., Zdancewic, S.: Preserving secrecy under refinement. In:
Proc. of the 33rd Intl. Colloquium on Automata, Languages and Programming
(ICALP’06). Volume 4052 of LNCS., Springer (2006) 107–118

3. Mazaré, L.: Decidability of opacity with non-atomic keys. In: Proc. 2nd Work-
shop on Formal Aspects in Security and Trust (FAST’04). Volume 173 of Intl.
Federation for Information Processing., Springer (2005) 71–84

4. Bryans, J.W., Koutny, M., Mazaré, L., Ryan, P.Y.A.: Opacity generalised to tran-
sition systems. Intl. Jour. of Information Security 7(6) (2008) 421–435

5. Bérard, B., Mullins, J., Sassolas, M.: Quantifying opacity. Mathematical Structures
in Computer Science 25(2) (2015) 361–403

6. Bérard, B., Chatterjee, K., Sznajder, N.: Probabilistic opacity for Markov decision
processes. Inf. Process. Lett. 115(1) (2015) 52–59

7. Baier, C., Katoen, J.P., Hermanns, H., Wolf, V.: Comparative branching-time
semantics for Markov chains. Information and Computation 200 (2005) 149–214

8. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: LICS, IEEE Computer Society (1991) 266–277

9. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, MIT, Department of Electrical Engineering and Computer Sci-
ence (1995)

10. Chatterjee, K., Henzinger, T., Sen, K.: Model-checking omega-regular properties
of interval markov chains. In Amadio, R.M., ed.: Foundations of Software Science
and Computation Structure (FoSSaCS) 2008. (2008) 302–317

11. Benedikt, M., Lenhardt, R., Worrell, J.: LTL model checking of interval markov
chains. In: TACAS. Volume 7795 of LNCS., Springer (2013) 32–46

12. Billingsley, P.: Probability and Measure. 3rd edn. Wiley, New York, NY (1995)
13. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-

grams. In: Proceedings of 26th Annual Symposium on Foundations of Computer
Science (FOCS), IEEE Computer Society (1985) 327–338

14. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification.
Journal of the ACM 42(4) (1995) 857–907

15. Bérard, B., Mullins, J., Sassolas, M.: Quantifying opacity. In Ciardo, G., Segala, R.,
eds.: Proceedings of the 7th International Conference on Quantitative Evaluation
of Systems (QEST’10), IEEE Computer Society (September 2010) 263–272

16. Chaum, D.: The dining cryptographers problem: unconditional sender and recipi-
ent untraceability. Journal of Cryptology 1 (1988) 65–75

17. Bhargava, M., Palamidessi, C.: Probabilistic anonymity. In Abadi, M., de Alfaro,
L., eds.: Proceedings of the 16th International Conference on Concurrency Theory
(CONCUR’05). Volume 3653 of LNCS. (2005) 171–185

18. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
parity automata. Logical Methods in Computer Science 3(3) (2007)

A Computing the probabilistic disclosure of a
specification

A.1 Detecting modal edges.

The detection of modal edges is the first step toward computation of the
disclosure of an IDTMC.

Proposition A.1. The set of modal edges can be computed in time poly-
nomial in the number of edges.

Proof. The decision procedure for each edge is as follows:

– if an edge is not weighted by an interval containing 0, it is not modal;
– otherwise, compute the sum of maximal interval values of all other

edges stemming from the same state;
• if this sum is > 1, the edge is modal;
• if this sum is < 1, the edge is not modal;
• otherwise (the sum is = 1), the edge is modal if, and only if, all

intervals of other outgoing edges are closed on the right. ut

Note that the procedure does not rely entirely on the syntactic cri-
terion of an interval closed on 0: it is sufficient but may lead to false
positives. For example, consider a state with two outgoing edges e1, [

1
4 ; 2

3]
and e2, [0; 1]. The e2 edge is not actually modal since any probability dis-
tribution satisfying the specification can give at most 2

3 to e1, hence must
at least give weight 1

3 to e2. This is avoided by the pre-computation of
the least possible probability that can be put on an edge.

A.2 IDTMC without modal edges.

We now prove Theorem 3.4.
Note that intervals may be closed or open on any non-zero bound,

which is not the case of IDTMCs in [10] where all intervals are closed.
Hence although our procedure uses some of the ideas of Chatterjee et
al [10], it is adapted to deal with open intervals.

First remark that there exists a regular language K such that for any
scheduler A, Tr(S(A)) = K. This is only true because S is assumed non-
modal. Let AK be a PTS such that Tr(AK) = K; it can be chosen of
size |S|. By the definition of disclosure, if the secret ϕ is ω-regular and
the observation function O is a projection (see Section 3), then finding
the supremum of the disclosure means finding the maximal probability to
reach an ω-regular set of runs, namely V(AK ,O, ϕ).

Then open intervals can be safely ignored when trying to optimize the
probability of V(AK ,O, ϕ), i.e. they are treated as closed ones. Indeed,
if the optimal scheduler uses a value x which is the bound of an open
interval, then one can build a family of schedulers using value x ± 1

2n

for the nth scheduler. The limit probability of reaching V(AK ,O, ϕ) is
therefore the one computed when using exact value x. Remark that using
closed intervals may introduce intervals containing 0, although it is of
no concern since the observation classes are already defined and may not
change, only their probability may change. Said otherwise, this does not
mean that we are computing disclosure of the closed version, since it
is only a probability. On the example of Fig. 4(b), it means trying to
compute the maximal probability of the empty set, which is indeed zero.

The procedure is hence as follows. Starting from a DPA Aϕ for ϕ, a
DPA AV for V(AK ,O, ϕ) can be built, with size exponential in the size of
S and Aϕ (and with a number k of colors polynomial in the size of A and
Aϕ). This construction relies on intersections and complementations of
DPA, with a determinization step that brings the exponential blowup [18].

The construction of [10] yields a memoryless scheduler, although it
is memoryless on the product, and hence is finite-memory on the origi-
nal IDTMC. The procedure of [10] is in EXPTIME with respect to the
size of its input, hence computation of disclosure is doubly exponential:

22
O(|A|×|Aϕ|)

.

B Proof of Theorem 4.2

Let S1 = (S1, sinit,1, T1, λ1) and S2 = (S2, sinit,2, T2λ2) be interval-based
specifications such that S2 simulates S1 with R. Let sat1 be the satis-
faction relation related to A1 and A1 = S1(A1) = (Q1, qinit,1, ∆1, L1).
Then we show that there exists A2 ∈ Sched(S2) and a simulation relation
R′ such that sat1 ◦ R = R′ ◦ sat2 where sat2 is the satisfaction relation
related to A2. Then we define the scheduler A2 by:

A2(ρ2)(s
′
2) =

∑
ρ1∈sim(ρ2)

µρ2(ρ1)
∑
s′1∈S1

A1(ρ1)(s
′
1) · δ(s′1)(s′2)

for any s′2 ∈ S2, writing A2 = S2(A2) = (Q2, qinit,2, ∆2, L2). Now the
relation R′ can be defined as ∼ that relates runs that are similar “step
by step”, as defined above. To see that the conditions are satisfied, let
ρ1 and ρ2 be runs in Q1 and Q2 respectively. Then the distribution δ′ is
obtained by:

δ′(ρ1)(ρ2) =

{
µρ2(ρ1)δ(lst(ρ1))(lst(ρ2)) if ρ1 ∼ ρ2,
0 otherwise.

Since A1 and A2 are PTSs, we just need to show that Equation (3)
holds.

∆2(ρ2)(ρ
′
2) = A2(ρ2)(s

′
2)

=
∑

ρ1∈sim(ρ2)

µρ2(ρ1)
∑
s′1∈S1

A1(ρ1)(s
′
1) · δ(s′1)(s′2)

and since ρ′2 = ρ2 · s′2
=

∑
ρ1∈sim(ρ2)

∑
s′1∈S1

A1(ρ1)(s
′
1) · δ′(ρ1 · s′1)(ρ′2)

=
∑
ρ′1∈Q1

A1(ρ1)(s
′
1) · δ′(ρ′1)(ρ′2)

by defining ρ′1 = ρ1 · s′1 and remarking that

δ′ = 0 if its arguments are not similar runs

∆2(ρ2)(ρ
′
2) =

∑
ρ′1∈Q1

∆1(ρ1)(ρ
′
1) · δ′(ρ′1)(ρ′2). ut

C Proof of Proposition 4.4

Assume by induction that the proposition holds for every word of length
n. Let w ∈ FTr(A1) = FTr(A2) (recall Proposition 4.3) of length n + 1
with w = w0a for some a ∈ Σ. A run ρ′ of A2 that produces w can be
assumed to be of the form ρ′ = ρ′0s

′
2 with tr(ρ′0) = w0 and λ(s′2) = a.

Then PA2(Cρ′) = PA2(Cρ′0)∆2(s2)(s
′
2) where s2 = lst(ρ′0) and hence

PA2(Cw) =
∑

ρ′∈FRuns(A2)
tr(ρ′)=w

PA2(Cρ′)

=
∑

s2,s′2∈S2

∑
ρ′0∈FRuns(A2)

tr(ρ′0)=w0,
lst(ρ′0)=s2,lst(ρ

′)=s′2

PA2(Cρ′0)∆2(s2)(s
′
2)

Now let A1 s.t. A2 simulates A1 then, as

∑
ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

µρ′0(ρ0) =
∑
s1∈S1

∑
ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

µρ′0(ρ0) = 1

we get that

PA2(Cw) =
∑

s2,s′2∈S2

∑
ρ′0∈FRuns(A2)

tr(ρ′0)=w0,
lst(ρ′0)=s2,lst(ρ

′)=s′2

PA2(Cρ′0)∆2(s2)(s
′
2) ·

∑
s1∈S1

∑
ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

µρ′0(ρ0)

PA2(Cw) =
∑
s1∈S1
s2,s′2∈S2

∑
ρ′0∈FRuns(A2)
tr(ρ′0)=w0,

lst(ρ′0)=s2,lst(ρ
′)=s′2

PA2(Cρ′0)∆2(s2)(s
′
2)

∑
ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

µρ′0(ρ0)

As the terms are null if it is not the case that s1Rs2, we have:

=
∑
s1∈S1
s2,s′2∈S2

∑
ρ′0∈FRuns(A2)

tr(ρ′0)=w0,
lst(ρ′0)=s2,lst(ρ

′)=s′2

PA2(Cρ′0)
∑
s′1∈S1

∆1(s1)(s
′
1) ·

δs1,s2(s′1)(s
′
2)

∑
ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

µρ′0(ρ0)

And as the terms are null if λ(s′1) 6= λ(s′2) = λ(lst(ρ)), we have:

=
∑
s1∈S1
s2,s′2∈S2

∑
ρ′0∈FRuns(A2)
tr(ρ′0)=w0,

lst(ρ′0)=s2,lst(ρ
′)=s′2

PA2(Cρ′0)
∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∆1(s1)(s
′
1) ·

δs1,s2(s′1)(s
′
2)

∑
ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

µρ′0(ρ0)

=
∑
s1∈S1

∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∑
s2∈S2
s′2∈S2

δs1,s2(s′1)(s
′
2) ·


∑

ρ′0∈FRuns(A2)
tr(ρ′0)=w0,

lst(ρ′0)=s2,lst(ρ
′)=s′2

PA2(Cρ′0)∆1(s1)(s
′
1)

∑
ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

µρ′0(ρ0)


And since

∑
s′2∈S2

δs1,s2(s′1)(s
′
2) = 1, we have:

=
∑
s1∈S1

∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∑
s2∈S2

∑
ρ′0∈FRuns(A2)

tr(ρ′0)=w0,
lst(ρ′0)=s2

PA2(Cρ′0)∆1(s1)(s
′
1)

∑
ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

µρ′0(ρ0)

PA2(Cw) =
∑
s1∈S1

∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∑
ρ′0∈FRuns(A2)

tr(ρ′0)=w0

PA2(Cρ′0)∆1(s1)(s
′
1)

∑
ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

µρ′0(ρ0)

PA2(Cw) =
∑
s1∈S1

∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∆1(s1)(s
′
1)

∑
ρ′0∈FRuns(A2)

tr(ρ′0)=w0

∑
ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

PA2(Cρ′0)µρ′0(ρ0)

=
∑
s1∈S1

∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∆1(s1)(s
′
1)

∑
ρ′0∈FRuns(A2)

tr(ρ′0)=w0∑
ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

PA2(Cρ′0)
PA1(Cρ0)

PA1(sim(ρ′0))

=
∑
s1∈S1

∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∆1(s1)(s
′
1)

∑
ρ0∈FRuns(A1)

tr(ρ0)=w0

lst(ρ0)=s1

PA1(Cρ0)

PA1(sim(ρ′0))
·

∑
ρ′0∈FRuns(A2)

tr(ρ′0)=w0

PA2(Cρ′0)

=
∑
s1∈S1

∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∆1(s1)(s
′
1)

∑
ρ0∈FRuns(A1)

tr(ρ0)=w0

lst(ρ0)=s1

PA1(Cρ0)

PA1(sim(ρ′0))
·PA2(Cw0)

and by induction hypothesis, PA2(Cw0) = PA1(Cw0):

=
∑
s1∈S1

∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∆1(s1)(s
′
1)

∑
ρ0∈FRuns(A1)

tr(ρ0)=w0

lst(ρ0)=s1

PA1(Cρ0)

PA1(sim(ρ′0))
·PA1(Cw0)

and since PA1(sim(ρ′0)) = PA1(Cw0):

=
∑
s1∈S1

∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∆1(s1)(s
′
1)

∑
ρ0∈FRuns(A1)

tr(ρ0)=w0

lst(ρ0)=s1

PA1(Cρ0)

=
∑
s1∈S1

∑
ρ0∈FRuns(A1)

tr(ρ0)=w0

lst(ρ0)=s1

PA1(Cρ0)
∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∆1(s1)(s
′
1)

=
∑

ρ0∈FRuns(A1)
tr(ρ0)=w0

PA1(Cρ0)∆1(lst(ρ0))(lst(ρ))

PA2(Cw) = PA1(Cw) ut

	Probabilistic Opacity in Refinement-Based Modeling
	 Béatrice Bérard and Olga Kouchnarenko and John Mullins, and Mathieu Sassolas

