
HAL Id: hal-01348830
https://hal.sorbonne-universite.fr/hal-01348830v2

Submitted on 14 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Mobile Byzantine Fault Tolerant Distributed
Storage

Silvia Bonomi, Antonella del Pozzo, Maria Potop-Butucaru, Sébastien Tixeuil

To cite this version:
Silvia Bonomi, Antonella del Pozzo, Maria Potop-Butucaru, Sébastien Tixeuil. Optimal Mobile Byzan-
tine Fault Tolerant Distributed Storage. [Research Report] UPMC - Université Paris 6 Pierre et Marie
Curie. 2016. �hal-01348830v2�

https://hal.sorbonne-universite.fr/hal-01348830v2
https://hal.archives-ouvertes.fr

Optimal Mobile Byzantine Fault Tolerant Distributed Storage

Silvia Bonomi?, Antonella Del Pozzo?†, Maria Potop-Butucaru†, Sébastien Tixeuil†

?Sapienza Università di Roma,Via Ariosto 25, 00185 Roma, Italy
{bonomi, delpozzo}@dis.uniroma1.it

†Université Pierre & Marie Curie (UPMC) – Paris 6, France
{maria.potop-butucaru, antonella.del-pozzo, sebastien.tixeuil}@lip6.fr

February 14, 2017

Abstract

We present an optimal emulation of a server based regular read/write storage in a syn-
chronous round-free message-passing system that is subject to mobile Byzantine failures and
prove that the problem is impossible to solve in asynchronous settings. In a system with n
servers implementing a regular register, our construction tolerates faults (or attacks) that can
be abstracted by agents that are moved (in an arbitrary and unforeseen manner) by a com-
putationally unbounded adversary from a server to another in order to deviate the server’s
computation. When a server is infected by an adversarial agent, it behaves arbitrarily until the
adversary decides to ”move” the agent to another server. We investigate the case where the
movements of the mobile Byzantine agents are decided by the adversary and are completely
decoupled from the message communication delay. Our emulation spans two awareness models:
servers with and without self-diagnosis mechanism. In the first case servers are aware that the
mobile Byzantine agent has left and hence they can stop running the protocol until they recover
a correct state while in the second case, servers are not aware of their faulty state and continue
to run the protocol using an incorrect local state. Our results, proven optimal with respect to
the threshold of the tolerated mobile Byzantine faults in the first model, are significantly differ-
ent from the round-based synchronous models. Another interesting side result of our study is
that, contrary to the round-based synchronous consensus implementation for systems prone to
mobile Byzantine faults, our storage emulation does not rely on the necessity of a core of correct
processes all along the computation. That is, every server in the system can be compromised by
the mobile Byzantine agents at some point in the computation. This leads to another interesting
conclusion: storage is easier than consensus in synchronous settings, when the system is hit by
mobile Byzantine failures.

1 Introduction

Byzantine fault tolerance is at the core of Distributed Computing and a fundamental building block
in any reasonably sized distributed system. Byzantine failures encompass all possible cases that
can occur in practice (even unforeseen ones) as the impacted process may simply exhibit arbitrary
behavior. Specifically targeted attacks to compromise processes and/or virus infections can indeed
cause malicious code execution.

1

In classical Byzantine fault-tolerance, attacks and infections are typically abstracted as an upper
bound f on the number of Byzantine processes that a given set of n processes should be able to
tolerate. Such bounds permit to characterize the solvable cases for benchmarking problems in
Distributed Computing (e.g. Agreement and Register Emulation). However, this abstraction fails
the reality test of long-lived distributed services. With new exploits being publicized daily and
hackers offering services at amazingly low prices, every process is bound to be compromised in
a long lasting execution. On the light side, dedicated cure and software rejuvenation techniques
increase the possibility that a compromised node does not remain compromised forever, and may
be aware about its previously compromised status [15].

To integrate both aspects, Mobile Byzantine Failures (MBF) models have been introduced.
Then, faults are represented by Byzantine agents that are managed by a powerful omniscient
adversary that “moves” them from a process to another. Mobile Byzantine failures that have been
investigated so far consider round-based computations, and can be classified according to Byzantine
mobility constraints: (i) Byzantines with constrained mobility [5] may only move from one process
to another when protocol messages are sent (similarly to how viruses would propagate), while (ii)
Byzantines with unconstrained mobility [1, 3, 6, 11, 12, 13] may move independently of protocol
messages.

Buhrman et al. [5] studied the problem of Agreement when Byzantines have constrained mobil-
ity. In the case of unconstrained mobility, several variants were investigated, still for the Agreement
problem [1, 3, 6, 11, 12, 13]. Reischuk [12] considers that malicious agents are stationary for a given
period of time. Ostrovsky and Yung [11] introduce the notion of mobile viruses and define the ad-
versary as an entity that can inject and distribute faults. Garay [6], and more recently Banu et
al. [1], and Sasaki et al. [13] or Bonnet et al. [3] consider that processes execute synchronous rounds
composed of three phases: send, receive, and compute. Between two consecutive such synchronous
rounds, Byzantine agents can move from one node to another. Hence the set of faulty processes
at any given time has a bounded size, yet its membership may evolve from one round to the next.
The main difference between the aforementioned four works [1, 3, 6, 13] lies in the knowledge that
processes have about their previous infection by a Byzantine agent. In Garay’s model [6], a process
is able to detect its own infection after the Byzantine agent left it. More precisely, during the first
round following the leave of the Byzantine agent, a process enters a state, called cured, during
which it can take preventive actions to avoid sending messages that are based on a corrupted state.
Garay [6] proposed, in this model, an algorithm that solves Mobile Byzantine Agreement provided
that n > 6f . This bound was later dropped to n > 4f by Banu et al. [1]. Sasaki et al. [13]
investigated the same problem in a model where processes do not have the ability to detect when
Byzantine agents move, and show that the bound raises to n > 6f . Finally, Bonnet et al. [3] con-
siders an intermediate setting where cured processes remain in control on the messages they send
(in particular, they send the same message to all destinations, and they do not send obviously fake
information, e.g. fake id); this subtle difference on the power of Byzantine agents has an important
impact on the bounds for solving agreement: the bound becomes n > 5f and is proven tight.

Traditional solutions to build a Byzantine tolerant storage service (a.k.a. register emulation)
can be divided into two categories: replicated state machines [14], and Byzantine quorum systems
[2, 8, 10, 9]. Both approaches are based on the idea that the current state of the storage is replicated
among processes, and the main difference lies in the number of replicas that are simultaneously
involved in the state maintenance protocol. Recently, Bonomi et al. [4] proposed optimal self-
stabilizing atomic register implementations for round-based synchronous systems under the four

2

Mobile Byzantine models described in [1, 3, 6, 13].
Our Contribution. The main motivation for our work comes from realizing that the hypoth-

esis that Byzantine agent moves are tightly synchronized with protocol rounds is not a realistic
assumption, when Byzantine agents are driven by an adversary that can make use of out of band
resources for coordinating them. Indeed, infection and cure are independent from the protocol that
is executed on the servers, and typically result from external actions.

Our first contribution (Section 3) is to propose and formalize a general mobile Byzantine model,
where Byzantine agent movements are decoupled from the protocol computation steps (in particu-
lar, movements of the Byzantine agents are no more related to messages that are exchanged through
the protocol). We explore the fundamental implications of the relaxed hypothesis about Byzantine
agent movements, and nevertheless retain the dimension related to process awareness about its
failure state.

The second contribution of the paper is a protocol to emulate a regular register in our general
mobile Byzantine model. We first explore (Section 4) the instances of the model where this problem
is solvable (e.g. we provide impossibility results for the asynchronous setting), and in the solvable
cases, we present and prove protocols (Section 5 and Section 6) whose resilience is optimal with
respect to the number of Byzantine agents.

2 System Models

We consider a distributed system composed of an arbitrary large set of client processes C and a set
of n server processes S = {s1, s2 . . . sn}. Each process in the distributed system (i.e., both servers
and clients) is identified by a unique identifier. Servers run a distributed protocol emulating a
shared memory abstraction and such protocol is totally transparent to clients (i.e., clients do not
know the protocol executed by servers). The passage of time is measured by a fictional global clock
(e.g., that spans the set of natural integers). Processes in the system do not have access at the
fictional global time. At each time t, each process (either client or server) is characterized by its
internal state i.e., by the set of all its local variables and the corresponding values. We assume
that an arbitrary number of clients may crash while up to f servers are affected, at any time t,
by Mobile Byzantine Failures. The Mobile Byzantine Failure adversarial model considered in this
paper (and described in details below) is stronger than any other adversary previously considered
in the literature [1, 3, 5, 6, 11, 12, 13].

No agreement abstraction is assumed to be available at each process (i.e. processes are not able
to use consensus or total order primitives to agree upon the current values). Moreover, we assume
that each process has the same role in the distributed computation (i.e., there is no special process
acting as a coordinator).
Communication model. Processes communicate trough message passing. In particular, we as-
sume that: (i) each client ci ∈ C can communicate with every server trough a broadcast() primitive,
(ii) each server can communicate with every other server trough a broadcast() primitive, and (iii)
each server can communicate with a particular client trough a send() unicast primitive. We assume
that communications are authenticated (i.e., given a message m, the identity of its sender cannot
be forged) and reliable (i.e., spurious messages are not created and sent messages are neither lost
nor duplicated).
Timing Assumptions. We will consider two types of systems: (i) asynchronous (see Section 4.2)
and (ii) round-free synchronous (see Sections 5 and 6).

3

The system is asynchronous in the sense that there not exists any upper bound on communication
and computation latencies. As a consequence, messages are delivered but it is not possible do
compute any upper bounds on their delivery time. The system is round-free synchronous if: (i)
the processing time of local computations (except for wait statements) are negligible with respect
to communication delays, and are assumed to be equal to 0, and (ii) messages take time to travel
to their destination processes. In particular, concerning point-to-point communications, we assume
that if a process sends a message m at time t then it is delivered by time t + δp (with δp > 0).
Similarly, let t be the time at which a process p invokes the broadcast(m) primitive, then there is
a constant δb (with δb ≥ δp) such that all servers have delivered m at time t + δb. For the sake of
presentation, in the following we consider a unique message delivery delay δ (equal to δb ≥ δp), and
assume δ is known to every process.
Computation model. Each process of the distributed system executes a distributed protocol
P that is composed by a set of distributed algorithms. Each algorithm in P is represented by a
finite state automata and it is composed of a sequence of computation and communication steps. A
computation step is represented by the computation executed locally to each process while a com-
munication step is represented by the sending and the delivering events of a message. Computation
steps and communication steps are generally called events.

Definition 1 (Execution History) Let P be a distributed protocol. Let H be the set of all the
events generated by P at any process pi in the distributed system and let → be the happened-before
relation. An execution history Ĥ = (H,→) is a partial order on H satisfying the relation →.

Definition 2 (Valid State at time t) Let Ĥ = (H, →) be an execution history of a generic
computation and let P be the corresponding protocol. Let pi be a process and let statepi be the state
of pi at some time t. statepi is said to be valid at time t if it can be generated by executing P on
Ĥ.

3 Adversary Model

The Mobile Byzantine Failure (MBF) models considered so far in literature [1, 3, 5, 6, 11, 12, 13]
assume that faults, represented by Byzantine agents, are controlled by a powerful external adversary
that “moves” them from a server to another. Note that the term “mobile” does not necessary mean
that a Byzantine agent physically moves from one process to another but it rather captures the
phenomenon of a progressive infection, that alters the code executed by a process and its internal
state.

3.1 Mobile Byzantine Models for round-based computations

In all the above cited works the system evolves in synchronous rounds. Every round is divided in
three phases: (i) send where processes send all the messages for the current round, (ii) receive where
processes receive all the messages sent at the beginning of the current round and (iii) computation
where processes process received messages and prepare those that will be sent in the next round.
Concerning the assumptions on agent movements and servers awareness on their cured state the
Mobile Byzantine Models defined in [3, 6, 5, 13] are summarized as follows:

• Garay’s model [6]. In this model, agents can move arbitrarily from a server to another at
the beginning of each round (i.e. before the send phase starts). When a server is in the

4

cured state it is aware of its condition and thus can remain silent for a round to prevent the
dissemination of wrong information.

• Bonnet et al.’s model [3] and Sasaki et al.’s model [13]. As in the previous model, agents
can move arbitrarily from a server to another at the beginning of each round (i.e. before the
send phase starts). Differently from the Garay’s model, in both models it is assumed that
servers do not know if they are correct or cured when the Byzantine agent moved. The main
difference between these two models is that in the [13] model a cured process still acts as a
Byzantine one extra round.

• Buhrman’s model [5]. Differently from the previous models, agents move together with the
message (i.e., with the send or broadcast operation). However, when a server is in the cured
state it is aware of that.

Most of the previously cited models [1, 3, 5, 6, 13] consider that the Byzantine agents mobil-
ity is related to the round-based synchronous system communication. That is, processes execute
synchronous rounds composed of three phases: send, receive, compute. Only between two con-
secutive rounds, Byzantine agents are allowed to move from one node to another. In the sequel
we formalize and generalize the MBF model. Our generalization is twofold: (i) we decouple the
Byzantine agents movement from the structure of the computation making it round-free and hence
suitable for any distributed application and (ii) we model the infection diffusion in relation with
the detection/recovery capabilities of servers.

Informally, in the MBF model, when a Byzantine agent is hosted by a process, the adversary
takes the entire control of the process making it Byzantine faulty (i.e., it can corrupt the process’s
local variables, forces the process to send arbitrary messages etc...). Then, the Byzantine agent
moves away and it leaves the process with a possible corrupted state (i.e., in cured state). Such
movement abstracts, for example, a virus that has been detected and putted in quarantine or a
software update/patching of the machine.

As in the case of round-based MBF models [1, 3, 5, 6, 13], we assume that any process previously
infected by a mobile Byzantine agent has access to a tamper-proof memory storing the correct
protocol code. However, a healed (cured) server may still have a corrupted internal state and
cannot be considered correct. As a consequence, the notions of correct and faulty process need to
be redefined when dealing with Mobile Byzantine Failures.

Definition 3 (Correct process at time t) Let Ĥ = (H,→) be an execution history and let P
be the protocol generating Ĥ. A process is said to be correct at time t if (i) it is correctly executing
its protocol P and (ii) its state is a valid state at time t. We will denote as Co(t) the set of correct
processes at time t while, given a time interval [t, t′], we will denote as Co([t, t′]) the set of all the
processes that are correct during the whole interval [t, t′] (i.e., Co([t, t′]) =

⋂
τ ∈ [t,t′]Co(τ)).

Definition 4 (Faulty process at time t) Let Ĥ = (H,→) be an execution history and let P be
the protocol generating Ĥ. A process is said to be faulty at time t if it is controlled by a mobile
Byzantine agent and it is not executing correctly its protocol P (i.e., it is behaving arbitrarily). We
will denote as B(t) the set of faulty processes at time t while, given a time interval [t, t′], we will
denote as B([t, t′]) the set of all the processes that are faulty during the whole interval [t, t′] (i.e.,
B([t, t′]) =

⋂
τ ∈ [t,t′]B(τ)).

5

ΔS, CAM ΔS, CUM

ITB, CAM ITB, CUM

ITU, CAM ITU, CUM

Process Awareness (decreasing)

Ad
ve

rs
ar

y
Po

w
er

 (i
nc

re
as

in
g)

Figure 1: MBF model instances for round-free computations and their relations.

Definition 5 (Cured process at time t) Let Ĥ = (H,→) be an execution history and let P be
the protocol generating Ĥ. A process is said to be cured at time t if (i) it is correctly executing its
protocol P and (ii) its state is not a valid state at time t. We will denote as Cu(t) the set of cured
processes at time t while, given a time interval [t, t′], we will denote as Cu([t, t′]) the set of all the
processes that are cured during the whole interval [t, t′] (i.e., Cu([t, t′]) =

⋂
τ ∈ [t,t′]Cu(τ)).

3.2 Mobile Byzantine Models for round-free computations

We will discuss further how the MBF model for round-free computations introduced informally
in the previous section is able to abstract different attack scenarios mentioned in Section 1. In
addition, we will classify its six possible instances (see Figure 1) according to the adversary power
(from the weakest adversary model (∆S,CAM) to the strongest one (ITU,CUM)) showing the
relationships between them.

Our model takes into account two different attack dimensions: (i) how the external adversary
can coordinate the movement of the Byzantine agents and (ii) the process awareness about their
current failure state. The first point abstracts the capability of the external adversary to propagate
the infection with respect to the detection and recovery capability of processes while the second
point distinguishes between detection and proactive recovery capabilities. Thus, any instance of
our MBF model is characterized by a pair (X,Y), where X represents the coordination aspect (i.e.,
one among ∆S, ITB and ITU) and Y represents the process awareness (i.e., CAM vs. CUM).

The coordination dimension allows to characterize the infection spreading from a time point of
view. In particular:

• (∆S, ∗) allows to consider coordinated attacks where the external adversary needs to control a
subset of machines. In this case, compromising new machines will take almost the same time as
the time needed to detect the attack or the time necessary to rejuvenate. This may represent
scenarios with low diversity where compromising time depends only on the complexity of
the exploit and not on the target server. More formally, the external adversary moves all
the f mobile Byzantine Agents at the same time t and movements happen periodically (i.e.,
movements happen at time t0 + ∆, t0 + 2∆, . . . , t0 + i∆, with i ∈ N).

• (ITB, ∗) slightly relaxes the assumption about the time of the infection propagation. In
particular, in this case the Byzantine agents may affect different servers for different periods

6

of time. This abstracts in some way the possible different complexities of various attack steps
(each mobile agent can do a set of exploits and each exploit may take different time to succeed
and then to be detected). As a consequence, we are able to capture possible differences in
the detection and the rejuvenation times that are now different from server to server. More
formally, each of the f Mobile Byzantine Agent mai is forced to remain on a process for at
least a period ∆i. Given two mobile Byzantine Agents mai and maj , their movement periods
∆i and ∆j may be different.

• (ITU, ∗) further relaxes the coordination assumption and allows to consider extremely fast
infection and detection/rejuvenation processes. More formally, each Mobile Byzantine agent
mai is free to move at any time (i.e., it may occupy a process for one time unit, corrupt its
state and then leave). This case can be seen as a particular case of ITB where ∆i = 1 for
each mobile agent mai.

Let us note that, obviously, (∆S, ∗) is the more restrictive coordination case with respect to the
adversary power while (ITU, ∗) represents the maximum freedom (from the coordination point of
view) for the external adversary.

Example of (∆S, ∗) coordination, (ITB, ∗) coordination and (ITU, ∗) coordination are shown
respectively in Figure 2, Figure 3 and Figure 4 (where mai denotes the mobile Byzantine agents).

s5

s4

s3

s2

s1

s0

ma1

ma2

t0 t0 + ∆ . . . t0 + i∆

Figure 2: Example of a (∆S, ∗) run with f = 2.

The awareness dimension allows to distinguish between servers under continuous monitoring
from the non-monitored ones. Monitored systems are, in fact, characterized by detection and
reaction capabilities that enable them to detect their failure state and to act accordingly. On
the contrary, non-monitored servers have no self-diagnosis capabilities but they can try to prevent
infections by adopting pessimistic strategies that include proactive rejuvenation. In particular:

• (∗, CAM) is able to capture scenarios where servers are aware of a past infection as they
abstract environments characterized by the presence of monitors (e.g., antivirus, Intrusion
Detection System etc...) that are able to detect the infection and notify the server when the
threat is no more affecting the server.

7

s5

s4

s3

s2

s1

s0

ma1

ma2

∆2 ∆1

|B(t0 + ∆1, t0 + 2∆1)| = f

Figure 3: Example of a (ITB, ∗) run with f = 2.

• (∗, CUM) represents situations where the server is not aware of a possible past infection.
This scenario is typical of distributed systems subject to periodic maintenance and proactive
rejuvenation. In this systems, there is a schedule that reboots all the servers and reloads
correct versions of the code to prevent infections to be propagated in the whole network.
However, this happens independently from the presence of a real infection and implies that
there could be periods of time where the server execute the correct protocol however its
internal state is not aligned with non compromised servers.

It is easy to prove that CAM is a stronger awareness condition with respect to CUM and thus
represents a restriction over the adversary power.

Combining together a type of movement and one of the two awareness conditions, we obtain
six different instances of our MBF model for round-free computations, see Figure 1. The instance
(∆S,CAM) is the strongest one as it is the more restrictive for the external adversary and it
provides cured processes with the highest awareness while the instance (ITU,CUM) represents
the weakest model as it considers the most powerful adversary and provides no awareness to cured
processes.

As in the round-based models, we assume that the adversary can control at most f Byzantine
agents at any time (i.e., Byzantine agents are not replicating themselves while moving).

In our work, only servers can be affected by the mobile Byzantine agents1. It follows that, at any
time t |B(t)| ≤ f . However, during the system life, all servers may be affected by a Byzantine agent
(i.e., none of the server is guaranteed to be correct forever). In order to abstract the knowledge
a server has on its state (i.e. cured or correct), we assume the existence of a cured state oracle.
When invoked via report cured state() function, the oracle returns, in the CAM model, true to cured
servers and false to others. Contrarily, the cured state oracle returns always false in the CUM model.

1It is trivial to prove that in our model when clients are Byzantine it is impossible to implement deterministically
even a safe register. The Byzantine client will always introduce a corrupted value. A server cannot distinguish
between a correct client and a Byzantine one.

8

s5

s4

s3

s2

s1

s0

ma1

ma2

|B(t)| = f

t

Figure 4: Example of a (ITU, ∗) run with f = 2.

The implementation of the oracle is out of scope of this paper and the reader may refer to [11] for
further details.

4 Registers in MBF model

4.1 Register Specification

A register is a shared variable accessed by a set of processes (i.e., clients) through two operations,
namely read() and write(). Informally, the write() operation updates the value stored in the shared
variable while the read() obtains the value contained in the variable (i.e., the last written value).
The register state is maintained by the set of servers S. Every operation issued on a register is,
generally, not instantaneous and it can be characterized by two events occurring at its boundaries:
an invocation event and a reply event. These events occur at two time instants (i.e., invocation
time and the reply time) according to the fictional global time.
An operation op is complete if both the invocation event and the reply event occurred (i.e., the
client issuing the operation does not crash between the invocation time and the reply time). Then,
an operation op is failed if it is invoked by a process that crashes before the reply event occurs.

Given two operations op and op′, their invocation times (tB(op) and tB(op′)) and reply times
(tE(op) and tE(op′)), we say that op precedes op′ (op ≺ op′) if and only if tE(op) < tB(op′). If op
does not precede op′ and op′ does not precede op, then op and op′ are concurrent (noted op||op′).
Given a write(v) operation, the value v is said to be written when the operation is complete.
In this paper, we consider a single-writer/multi-reader (SWMR) regular register [7] specified as
follows:
— Termination: if a correct client invokes an operation, it eventually returns from that operation
(i.e., every operation issued by a correct client eventually terminates).
— Validity: A read() operation returns the last value written before its invocation (i.e. the value
written by the latest completed write() preceding it), or a value written by a concurrent write()
operation.

9

Our impossibility results (reported in the next section) are proven for the case of safe register
(weaker than the regular register in the Lamport’s hierarchy [7]). A read operation on a safe
register concurrent with a write operation may return any value in the register domain.

We will consider in the sequel only execution histories related to the register computation. In
particular, the set of relevant computation events H will be defined by the set of all the operations
issued on the register and the happened-before relation will be substituted by the precedence
relation ≺ between operations. Thus, we will consider a register execution history specified as
ĤR = (H,≺).

From the specification above, we can define the notion of valid value at time t as follow:

Definition 6 (Valid Value at time t) Let ĤR = (H, ≺) be a register execution history of a
regular register R. A valid value at time t is any value returned by a fictional read() operation on
the register R executed instantaneously at time t.

A protocol Preg is a collection of distributed algorithms implementing basic register operations
(i.e., Preg ⊆ {AR,AW } where AR is the algorithm implementing the read() operation and AW is
the algorithm implementing the write() operation). We will say that Preg is correct with respect to
its specification if it implements a register satisfying the specification.

4.2 Impossibility results

In this section we prove that, contrary to the static Byzantine tolerant implementations of registers,
in the case of MBF tolerant implementations a new operation, namely maintenance(), must be
implemented to prevent servers from losing the current register value. Then, we will show that in
an asynchronous system and in the presence of single Mobile Byzantine Agent, there is no protocol
Preg implementing a safe register and consequently a regular register.

Theorem 1 Let n be the number of servers emulating a safe register and let f be the number of
Mobile Byzantine Agents affecting servers. Let AR and AW be respectively the algorithms imple-
menting the read() and the write() operation assuming no communication between servers. If f > 0
then there exists no protocol Preg = {AR,AW } implementing a safe register in any of the MBF
models for round-free computations.

Proof Let us suppose by contradiction that Preg = {AR,AW } is a correct protocol implementing
a safe register. If Preg is correct, it means that both AR and AW implementing respectively the
read() and the write() operation terminates i.e., they stop to execute steps when the operation is
completed. Let t be the time at which the last operation op terminated and let us assume that
no other operation is invoked until time t′ > t. Let us note that during the time interval [t, t′]
no algorithm is running as all the operations issued in the past are completed. As a consequence,
no correct server and no cured server will change its state. However, considering that t′ does not
depend on Preg (i.e., it is not controlled by the register protocol but it is defined by clients) and
considering the mobility of the Mobile Byzantine agents, we may easily have a run where every
correct server is faulty and its state can be corrupted at some time in [t, t′].

Considering that Preg = {AR,AW } and that AR and AW are not running in [t, t′] we can have
that every server stores a non valid state at time t′ and the register value is lost. As a consequence,
AR has no way to read a valid value and the validity property is violated. It follows that Preg is
not correct and we have a contradiction. 2Theorem 1

10

From Theorem 1 it follows that, in presence of Mobile Byzantine Agents, a new operation must
be defined to allow cured servers to restore a valid state and avoid the loss of the register value.

Definition 7 (maintenance() and AM) A maintenance() operation is an operation that, when ex-
ecuted by a process pi, terminates at some time t leaving pi with a valid state at time t (i.e., it
guarantees that pi is correct at time t). A maintenance algorithm AM is an algorithm that imple-
ments the maintenance() operation.

As a consequence, any correct protocol Preg must include one more algorithm implementing the
maintenance() operation2 so that the corollary follows:

Corollary 1 Let n be the number of servers emulating a register and let f be the number of Mobile
Byzantine Agents in the system. That is, if f > 0 then any correct protocol Preg implementing
a register in the round-free Mobile Byzantine Failure model must include an algorithm AM (i.e.,
Preg = {AR,AW ,AM}).

Corollary 2 Let Preg = {AR,AW ,AM} be a protocol implementing a safe register in the (∆S,CAM)
Mobile Byzantine Failure Model. Let f > 0 be the number of Byzantine Agents controlled by the
external adversary. Any algorithm AM must involve at least one communication step.

Proof The claim simply follows by considering that cured servers have a compromised state thus,
they need to receive information from correct servers in order to be able to update their state to a
valid one. 2Lemma 2

4.3 Impossibilities in Asynchronous System

Lemma 1 Let Preg = {AR,AW ,AM} be a protocol implementing a safe register in the (∆S,CAM)
MBF model. Let f > 0 be the number of Byzantine Agents controlled by the external adversary. Any
algorithm AW and AR must involve at least one send− reply (resp. request− reply) communication
pattern (i.e., two communication steps).

Proof Let us recall that read() and write() operations are issued by clients and that the set of
clients C and the set of servers S maintaining the register are disjoint. As a consequence, when a
client ci wants to write a new value v in the register, it has necessarily to propagate it in the server
set. The same happens when a client cj wants to read: it has to ask servers the most up-to-date
value. It follows that a send (request) communication step is necessary.

Let us now show that the send communication step is not sufficient to provide a correct imple-
mentation of AW and AR.

In oder to be correct, AW must ensure the termination property. As a consequence, ci must be
able to decide when it can trigger the write return event. In particular, this can be done when at
least one correct server3 updated its internal state.

Let us recall that (i) processes communicate only by exchanging messages, (ii) clients (and in
particular the writer) do not know the failure state of servers and (iii) the system is asynchronous.

2Let us note that such an operation can also be embedded in the other algorithm. However, for the sake of clarity,
we will consider here only protocols where valid state recovery is managed by a specific operation.

3The exact number of processes is given by the implementation of AW algorithm. In any case, such number does
not affect the proof and it must be at least one.

11

As a consequence, the only way ci has to know that at least one server sj updated its state is to
wait for an acknowledgement from sj . As a consequence, a second communication step, i.e., a reply
step, is necessary for a correct implementation of AW .

The same reasoning applies for the termination of the read() operation and the claim follows.
2Lemma 1

Lemma 2 Let n be the number of servers emulating a safe register and let f be the number of
Byzantine agents in the (∆S,CAM) Mobile Byzantine Failure model. Let t be a time instant at
which f servers are faulty and f other servers are cured. Let op be a maintenance() operation issued
at time t. There does not exist a maintenance algorithm AM able to terminate in asynchronous
settings leaving cured servers with a valid state.

Proof Consider an arbitrary cured server s in the set of cured servers that triggers a maintenance
operation op. Assume that op is implemented by an algorithm AM in asynchronous settings. Two
cases may happen: (i) there is no write() operation concurrent with op or (ii) there is at least one
concurrent write() operation.

• Case 1: @ write(v)||op. Considering that no write() is concurrent with op, the only way s has
to come back to be correct is to get the valid value from correct servers. As a consequence,
every AM must include a communication step where correct servers send their stored value
to the cured server s (see Lemma 2). Let us recall that the system is asynchronous; thus it
is not possible to bound, a priori, the time needed by such messages to reach s. In addition,
s is aware just about its failure state but it is not aware about other failure states (in other
words, s cannot know, for any time t, the sets Co(t) and B(t)).

As a consequence, the termination condition of AM will depend on messages delivered by s
and coming from other servers. Let us recall that cured servers have a non-valid state and, in
order to terminate, AM must be able to decide a valid value to update the state of the cured
server.

Thus, the termination condition of AM must be able to select a valid value by considering all
the information received by s.

Let us now show that due to the Byzantine agents movement and the asynchrony of the
communication, we can always have an indistinguishability situation between valid values
and non valid values.

The indistinguishability comes from the following observations:

1. in every time interval [t0 + j∆, t0 + (j+ 1)∆] (with j ∈ N) the number of correct servers
sending valid values is n− (j+ 1)f . In fact, at any movement, the adversary may decide
to move the Byzantine agents on a totally disjoint set of servers (corrupting each time
f new servers) until everyone is corrupted. Where t0 is the initial time where f servers
and all the other servers where correct.

2. messages may take an arbitrary time to reach their destination and, in the worse case,
all the messages sent in a long time period may be delivered at the same time and not
following the FIFO order.

12

3. when a server is affected by the Byzantine agents, it can send an arbitrary number of
messages with an arbitrary content. In particular, given the sequence of messages sent
by a server before its compromising, such sequence can be permuted and sent again
creating a symmetry condition.

As a consequence, each time that s evaluates a set of messages, it can always have a symmetric
set and it will be forced to wait forever. Hence, the maintenance operation never terminates
which contradicts the assumption. The same scenario may happen for every cured server
starting a maintenance() operation and there is a time t′ such that Co(t′) = ∅ and none of
the maintenance() operation will terminate.

• Case 2: ∃ write(v)||op. Due to the asynchrony of the system, every write() operation may be
completed by interacting with servers always in the time period in which they are faulty. As
a consequence, the resulting computation is equivalent to the one in which the write() never
happened, we fall down in the previous case and the claim follows.

2Lemma 2

Theorem 2 Let n be the number of servers emulating the register and let f be the number of
Byzantine agents in the (∆S,CAM) Mobile Byzantine Failure model. If f > 0, then there exists
no protocol Preg = {AR,AW ,AM} implementing a safe register in a asynchronous system.

Proof Let us consider the time t0 at which the distributed computation starts. At time t0, we
have that f servers are affected by the mobile Byzantine agents (i.e., |B(t0)| = f) while all the
others are correct (i.e., |Co(t0) = n− f).

At time t0 + ∆, the adversary moves mobile agents and, in the worse case, such agents affect
a set of f servers completely disjoint from the previous one. Thus, in the computation we have f
servers controlled by the Byzantine agents (|B(t0 + ∆)| = f) , f different servers entering in the
cured state (|Cu(t0 + ∆)| = f)) and n− 2f correct processes (|Co(t0 + ∆)| = n− 2f). Let us recall
that, by assumption, cured servers know about their state (see CAM model) and thus they can
start executing the maintenance operation running the maintenance algorithm AM . Each of the
cured servers at time t0 + ∆, s, will start a maintenance() operation. Following Lemma 2 there is
no AM maintenance algorithm able to terminate leaving s with a valid state under asynchronous
communication model. As a consequence, the value of the register is lost and no client is able to
return a valid value of the register.

2Theorem 2

Note that the above result extends to any register specification and to any MBF instance defined
in Section 2 since (∆S,CAM) is the weakest adversary and safe is the weakest specification.

4.4 Lower bounds

Before to begin with lower bounds let us prove the following auxiliary Lemma.

Lemma 3 Let t be the time at which server si enters the cured set. There exists no maintenance
algorithm AM that guarantees si to become correct before t+ δ.

13

Proof The proof simply follow from the proof of Lemma 2, which commands that at least one
communication step completes. Being in a synchronous system, such a step requires at most δ time
to complete. 2Lemma 3

In Sections 4.5 and 4.6, we consider the following two possibilities for ∆: (i) δ ≤ ∆ < 2δ, and
(ii) 2δ ≤ ∆ < 3δ, both for the (∆S,CAM) and the (∆S,CUM) models. In the following, we
consider lower bounds with respect to the number of correct servers to implement a safe register.
Lower bounds for safe registers trivially extend to any stronger register, as those give the weakest
set of guarantees in Lamport’s hierarchy [7]. For each of the cases we consider, we assume that a
read() operation with no concurrent write() operation occurs. Now, each read() operation consists of
two phases: in the first one, a client requests the current value to all servers, and in the second one,
the client collects replies from servers. The necessity for these two steps can be proved following
a similar reasoning as in Lemma 1. In each scenario, we assume that each message sent to or by
faulty servers is instantaneously delivered, while each message sent to or by correct servers requires
δ time. Without loss of generality, let us assume that all faulty servers send the same value and
send it only once, for each period where they are faulty. Moreover, we make the assumption that
each cured server (in the CAM model) does not reply as long as it is cured. Yet, in the CUM model,
it behaves similarly to faulty servers, with the same assumptions on message delivery time. We
suppose there exists (thanks to Lemma 3) a maintenance() protocol that guarantees cured servers
to become correct within δ time. In the sequel, msj denotes the message m sent by sj .

4.5 δ ≤ ∆ < 2δ, (∆S,CAM) and (∆S,CUM) models.

Theorem 3 If δ ≤ ∆ < 2δ, γ ≤ δ and n ≤ 5f , then there exists no protocol Preg that implements
a safe register in the (∆S,CAM) model.

Proof Let us suppose for the purpose of contradiction that such a protocol Preg exists. Suppose
now that Preg implements a read() operation whose duration is exactly 2δ. When a client ci invokes
a read() operation op, ci successfully reads the register value (i.e., the valid value at tB(op)), by
the safe register validity property in the scenario with no concurrent write() operation. In such a
scenario (see Figure 5, where we depicted in red and in green the time in which a server is affected
and in a cured state respectively), let us consider a first execution E1 in which the register valid
value is 1 and ci invokes op. We also consider one mobile Byzantine agent. Now, if each faulty server
replies with 0, then ci collects: {1s0 , 0s1 , 0s2 , 1s3 , 0s3 , 1s4}. Since Preg implements a safe register and
there are not concurrent write() operations, then ci reads the valid value at tB(op), that is, 1. Let
us now consider a second execution E0 in which the register stores 0, and ci invokes op. If each
faulty server replies with 1, then ci collects: {0s0 , 1s1 , 1s2 , 0s3 , 1s3 , 0s4}. Since Preg implements a
safe register and there are not concurrent write() operations, then ci reads the valid value at tB(op),
that is, 0. In both executions E1 and E0, ci collects the same set of replies, yet gives two different
values, hence a contradiction.

We now extend the indistinguishability argument to longer durations for Preg completion. As-
sume Preg implements a read() operation has duration 3δ. In such a case (see Figure 6), the previous
executions E1 and E0 evolve in E′1 (in which ci collects: {1s0 , 0s1 ,1s1 , 0s2 , 1s3 , 0s3 , 1s4 ,0s4}) and
E′0 (in which ci collects: {0s0 , 1s1 ,0s1 , 1s2 , 0s3 , 1s3 , 0s4 ,1s4}), respectively. Again, since there are
not concurrent write() operations, due to the safe register validity property, ci return two different
values in the two executions, although the replies ci gets are the same in both cases. The case

14

of duration 4δ is similar. The previous executions E′1 and E′0 evolve in E′′1 (in which ci collects:
{1s0 ,0s0 , 0s1 , 1s1 , 0s2 ,1s2 , 1s3 , 0s3 , 1s4 , 0s4}) and E′′0 (in which ci collects: {0s01s0 , 1s1 , 0s1 , 1s20s2 , 0s3 ,
1s3 , 0s4 , 1s4}), respectively (see Figure 7). Again, with no concurrent write() operations, ci returns
two different values although receiving the same set of replies. At this point each server replied
with two different values. A simple induction argument implies that waiting more does not bring
any new way to break symmetry. 2Theorem 3

s0

s1

s2

s3

s4

req rep

Figure 5: A 2δ read() operation is performed
in a CAM model for δ ≤ ∆ < 2δ.

s0

s1

s2

s3

s4

req rep

Figure 6: A 3δ read() operation is performed
in a CAM model for δ ≤ ∆ < 2δ.

s0

s1

s2

s3

s4

req rep

Figure 7: A 4δ read() operation is performed
in a CAM model for δ ≤ ∆ < 2δ.

Theorem 4 If δ ≤ ∆ < 2δ, γ ≤ 2δ and n ≤ 8f , then there exists no protocol Preg that implements
a safe register abstraction in the (∆S,CUM) model.

Proof Let us suppose for the purpose of contradiction that such a protocol Preg exists. Suppose
now that Preg implements a read() operation whose duration is exactly 2δ. When a client ci invokes
a read() operation op, ci successfully reads the register value (i.e., the valid value at tB(op)), by
the safe register validity property in the scenario with no concurrent write() operation. In such a
scenario (see Figure 8, where we depicted in red and in yellow the time in which a server is affected
and in a cured state respectively), let us consider a first execution E1 in which the register valid
value is 1 and ci invokes op. We also consider one mobile Byzantine agent. Now, if each faulty server

15

replies with 0, then ci collects: {0s0 , 1s0 , 0s1 , 0s2 , 0s3 , 1s4 , 0s4 , 1s5 , 1s6 , 1s7}. Since Preg implements a
safe register and there are not concurrent write() operations, then ci reads the valid value at tB(op),
that is, 1. Let us now consider a second execution E0 in which the register stores 0, and ci invokes
op. If each faulty server replies with 1, then ci collects: {1s0 , 0s0 , 1s1 , 1s2 , 1s3 , 0s4 , 1s4 , 0s5 , 0s6 , 0s7}.
Since Preg implements a safe register and there are not concurrent write() operations, then ci reads
the valid value at tB(op), that is, 0. In both executions E1 and E0, ci collects the same set of
replies, yet gives two different values, hence a contradiction.

We now extend the indistinguishably argument to longer durations for Preg completion. Assume
Preg implements a read() operation has duration 3δ. In such a case (see Figure 4.5), the previous exe-
cutions E1 and E0 evolve in E′1 (in which ci collects: {0s0 , 1s0 , 0s1 ,1s1 , 0s2 , 0s3 , 1s4 , 0s4 , 1s5 ,0s5 , 1s6 , 1s7})
and E′0 (in which ci collects: {1s0 , 0s0 , 1s1 ,0s1 , 1s2 , 1s3 , 0s4 , 1s4 , 0s5 ,1s5 , 0s6 , 0s7}), respectively. Again,
since there are not concurrent write() operations, due to the safe register validity property, ci re-
turns two different values in the two executions, although the replies ci gets are the same in both
cases.

The case of duration 4δ is similar. The previous executions E′1 and E′0 evolve in E′′1 (in which
ci collects: {0s0 , 1s0 , 0s1 , 1s1 , 0s2 ,1s2 , 0s3 , 1s4 , 0s4 , 1s5 , 0s5 , 1s6 ,0s6 , 1s7}) and E′′0 (in which ci collects:
{1s0 , 0s0 , 1s1 , 0s1 , 1s2 ,0s2 , 1s3 , 0s4 , 1s4 , 0s5 , 1s5 , 0s6 ,1s6 , 0s7}), respectively (see Figure 4.5). Again,
with no concurrent write() operations, ci returns two different values although receiving the same
set of replies.

Finally, the case of duration 5δ is similar. The previous executions E′′1 and E′′0 evolve in E′′′1 (in
which ci collects: {0s0 , 1s0 , 0s1 , 1s1 , 0s2 , 1s2 , 0s3 ,1s3 , 1s4 , 0s4 , 1s5 , 0s5 , 1s6 , 0s6 , 1s7 ,0s7}) and E′′′0 (in
which ci collects: {1s0 , 0s0 , 1s1 , 0s1 , 1s2 , 0s2 , 1s3 ,0s3 , 0s4 , 1s4 , 0s5 , 1s5 , 0s6 , 1s6 , 0s7 , 1s7}), respectively
(see Figure 4.5). Again, with no concurrent write() operations, ci returns two different values
although receiving the same set of replies. At this point each server replied with two different
values. A simple induction argument implies that waiting more does not bring any new way to
break symmetry. 2Theorem 4

16

s0

s1

s2

s3

s4

s5

s6

s7

read()

Figure 8: A 2δ read() operation is performed
in the CUM model for δ ≤ ∆ < 2δ and γ ≤
2δ.

s0

s1

s2

s3

s4

s5

s6

s7

req rep

Figure 9: A 3δ read() operation is performed
in the CUM model for δ ≤ ∆ < 2δ and γ ≤
2δ.

s0

s1

s2

s3

s4

s5

s6

s7

req rep

Figure 10: A 4δ read() operation is per-
formed in the CUM model for δ ≤ ∆ < 2δ
and γ ≤ 2δ.

s0

s1

s2

s3

s4

s5

s6

s7

req rep

Figure 11: A 4δ read() operation is per-
formed in the CUM model for δ ≤ ∆ < 2δ
and γ ≤ 2δ.

17

4.6 2δ ≤ ∆ < 3δ, (∆S,CAM) and (∆S,CUM) models.

Theorem 5 If 2δ ≤ ∆ < 3δ, γ ≤ δ and n ≤ 4f , then there exists no protocol Preg that implements
a safe register abstraction in the (∆S,CAM) model.

Proof Let us suppose for the purpose of contradiction that such a protocol Preg exists. Suppose
now that Preg implements a read() operation whose duration is exactly 2δ. When a client ci invokes
a read() operation op, ci successfully reads the register value (i.e., the valid value at tB(op)), by
the safe register validity property in the scenario with no concurrent write() operation. In such a
scenario (see Figure 12, where we depicted in red and in green the time in which a server is affected
and in a cured state respectively), let us consider a first execution E1 in which the register valid
value is 1 and ci invokes op. We also consider one mobile Byzantine agent. Now, if each faulty
server replies with 0, then ci collects: {0s0 , 1s1 , 1s2 , 0s3}. Since Preg implements a safe register and
there are not concurrent write() operations, then ci reads the valid value at tB(op), that is, 1. Let us
now consider a second execution E0 in which the register stores 0, and ci invokes op. If each faulty
server replies with 1, then ci collects: {1s0 , 0s1 , 0s2 , 1s3}. Since Preg implements a safe register and
there are not concurrent write() operations, then ci reads the valid value at tB(op), that is, 0. In
both executions E1 and E0, ci collects the same set of replies, yet gives two different values, hence
a contradiction.

We now extend the indistinguishability argument to longer durations for Preg completion. As-
sume Preg implements a read() operation has duration 3δ. In such a case (see Figure 13), the
previous executions E1 and E0 evolve in E′1 (in which ci collects: {0s0 ,1s1 , 1s1 , 1s2 , 0s2 , 0s3})
and E′0 (in which ci collects: {1s0 ,0s0 , 0s1 , 0s2 ,1s2 , 1s3}), respectively. Again, since there are not
concurrent write() operations, due to the safe register validity property, ci return two different
values in the two executions, although the replies ci gets are the same in both cases. A dura-
tion of 4δ allows the same two executions E′1 and E′0 as in the 3δ case (see Figure 14), leading
to an identical outcome. The case of duration 5δ is similar. The previous executions E′1 and E′0
evolve in E′′1 (in which ci collects: {0s0 , 1s1 , 1s1 ,0s1 , 1s2 , 0s2 , 0s3 ,1s3}) and E′′0 (in which ci collects:
{1s0 , 0s0 , 0s1 ,1s1 , 0s2 , 1s2 , 1s3 ,0s3}), respectively (see Figure 15). Again, with no concurrent write()
operations, ci returns two different values although receiving the same set of replies. At this point
each server replied with two different values. A simple induction argument implies that waiting
more does not bring any new way to break symmetry. 2Theorem 3

s0

s1

s2

s3

read()

Figure 12: A 2δ read() operation is
performed in a CAM model in which
2δ ≤ ∆ < 3δ.

s0

s1

s2

s3

req rep

Figure 13: A 3δ read() operation is
performed in a CAM model in which
2δ ≤ ∆ < 3δ.

18

s0

s1

s2

s3

req rep

Figure 14: A 4δ read() operation is
performed in a CAM model in which
2δ ≤ ∆ < 3δ.

s0

s1

s2

s3

req rep

Figure 15: A 5δ read() operation is
performed in a CAM model in which
2δ ≤ ∆ < 3δ.

Theorem 6 If 2δ ≤ ∆ < 3δ, γ ≤ 2δ and n ≤ 5f , then there exists no protocol Preg that implements
a safe register abstractions in the (∆S,CUM) model.

Proof Let us suppose for the purpose of contradiction that such a protocol Preg exists. Suppose
now that Preg implements a read() operation whose duration is exactly 2δ. When a client ci invokes
a read() operation op, ci successfully reads the register value (i.e., the valid value at tB(op)), by
the safe register validity property in the scenario with no concurrent write() operation. In such a
scenario (see Figure 16, where we depicted in red and in green the time in which a server is affected
and in a cured state respectively), let us consider a first execution E1 in which the register valid
value is 1 and ci invokes op. We also consider one mobile Byzantine agent. Now, if each faulty server
replies with 0, then ci collects: {0s0 , 0s1 , 1s2 , 1s3 , 0s4 , 1s4}. Since Preg implements a safe register and
there are not concurrent write() operations, then ci reads the valid value at tB(op), that is, 1. Let
us now consider a second execution E0 in which the register stores 0, and ci invokes op. If each
faulty server replies with 1, then ci collects: {1s0 , 1s1 , 0s2 , 0s3 , 1s4 , 0s4}. Since Preg implements a
safe register and there are not concurrent write() operations, then ci reads the valid value at tB(op),
that is, 0. In both executions E1 and E0, ci collects the same set of replies, yet gives two different
values, hence a contradiction.

We now extend the indistinguishably argument to longer durations for Preg completion. Assume
Preg implements a read() operation has duration 3δ. In such a case (see Figure 4.6), we consider n ≤
6f , so that we build the following executions, E′1 (in which ci collects: {0s0 , 0s1 , 1s2 ,0s2 , 1s3 ,1s4 , 0s5 , 1s5})
and E′0 (in which ci collects: {1s0 , 1s1 , 0s2 ,1s2 , 0s3 ,0s4 , 1s5 , 0s5}), respectively. Again, since there
are not concurrent write() operations, due to the safe register validity property, ci returns two
different values in the two executions, although the replies ci gets are the same in both cases.

When we analyze the case of duration 4δ we consider directly n ≤ 5. The previous execu-
tions E1 and E0 evolve in E′′1 (in which ci collects: {0s0 ,1s0 , 0s1 , 1s2 ,0s2 , 1s3 , 0s4 , 1s4}) and E′′0 (in
which ci collects: {1s0 ,0s0 , 1s1 , 0s2 , 0s3 ,1s3 , 1s4 , 0s4}), respectively (see Figure 4.6). Again, with no
concurrent write() operations, ci returns two different values although receiving the same set of
replies.

When we consider the case of duration 5δ we consider n ≤ 6. The previous executions E′1
and E′0 evolve in E′′′1 (in which ci collects: {0s0 ,1s0 , 0s1 , 1s2 , 0s2 , 1s3 ,0s3 , 1s4 , 0s5 , 1s5}) and E′′′0 (in
which ci collects: {0s0 ,1s0 , 0s1 , 1s2 , 0s2 , 1s3 ,0s3 , 1s4 , 0s5 , 1s5}), respectively (see Fig. 4.6). Again,
with no concurrent write() operations, ci returns two different values although receiving the same

19

set of replies. It follows that if does not exist Preg solving the regular register for n ≤ 6f then it is
straightforward that such protocol does not exist for n ≤ 5f .

We can proceed in the same way for read() operation whose duration is 6δ (Fig. 4.6) and 7δ
((Fig. 4.6)).

At this point each server replied with two different values. A simple induction argument implies
that waiting more does not bring any new way to break symmetry. 2Theorem 6

s0

s1

s2

s3

s4

read()

Figure 16: A 2δ read() operation performed
in the CUM model for 2δ ≤ ∆ < 3δ and
γ ≤ 2δ.

s0

s1

s2

s3

s4

s5

req rep

Figure 17: A 3δ read() operation is per-
formed in the CUM model for 2δ ≤ ∆ < 3δ
and γ ≤ 2δ.

s0

s1

s2

s3

s4

req rep

Figure 18: A 4δ read() operation is per-
formed in the CUM model for 2δ ≤ ∆ < 3δ
and γ ≤ 2δ.

s0

s1

s2

s3

s4

s5

req rep

Figure 19: A 5δ read() operation is per-
formed in the CUM model for 2δ ≤ ∆ < 3δ
and γ ≤ 2δ.

20

Table 1: Parameters for PRreg Protocol.

k∆ ≥ 2δ, k ∈ {1, 2}k∆ ≥ 2δ, k ∈ {1, 2}k∆ ≥ 2δ, k ∈ {1, 2} nCAM ≥ (k + 3)f + 1nCAM ≥ (k + 3)f + 1nCAM ≥ (k + 3)f + 1 #replyCAM ≥ (k + 1)f + 1#replyCAM ≥ (k + 1)f + 1#replyCAM ≥ (k + 1)f + 1
k = 1 4f + 1 2f + 1
k = 2 5f + 1 3f + 1

s0

s1

s2

s3

s4

req rep

Figure 20: A 6δ read() operation is per-
formed in the CUM model for 2δ ≤ ∆ < 3δ
and γ ≤ 2δ.

s0

s1

s2

s3

s4

s5

req rep

Figure 21: A 7δ read() operation is per-
formed in the CUM model for 2δ ≤ ∆ < 3δ
and γ ≤ 2δ.

5 Optimal Regular Register Implementation in the (∆S,CAM)
model

In this section, we present an optimal protocol Preg that implements a SWMR Regular Register
in a round-free synchronous system for (∆S,CAM) instance of the proposed MBF model. Our
solution is based on the following three key points: (1) we implement a maintenance() operation
that is executed periodically at each Ti = t0 + i∆ time. In this way, the effect of a Byzantine
agent on a server disappears in a bounded period of time; (2) we implement read() and write()
operations following the classical quorum-based approach. The size of the quorum needed to carry
on the operations, and consequently the total number of servers required by the computation, is
computed by taking into account the time to terminate the maintenance() operation, δ and ∆; (3)
we define a forwarding mechanism to avoid that read() and write() messages are “lost” by some
server si due to a concurrent movement of the Byzantine agent during such operations. Note that
even though communication channels are reliable, we may have the following situation: a message
is sent by a client at time t and the Byzantine agents move at some t′ < t+ δ. As a consequence,
some faulty servers may receive the message in the interval [t, t′] and then agents move leaving
cured servers without any trace of the message.

Interestingly, we found that the number of replicas needed to tolerate f Byzantine agents does
not depend only on f but also on the ∆ and δ relationship (see Table 1).

21

5.1 Preg Detailed Description

The protocol Preg for the (∆S,CAM) model is described in Figures 22 - 24, which present the
maintenance(), write(), and read() operations, respectively.

Local variables at client ci. Each client ci maintains a set replyi that is used during the read()
operation to collect the three tuples 〈j, 〈v, sn〉〉 sent back from servers. Additionally, ci also main-
tains a local sequence number csn that is incremented each time it invokes a write() operation and
is used to timestamp such operations.

Local variables at server si. Each server si maintains the following local variables (we assume
these variables are initialized to zero, false or empty sets according their type):

• Vi: an ordered set containing tree tuples 〈v, sn〉, where v is a value and sn the corresponding
sequence number. Such tuples are ordered incrementally according to their sn values. The
function insert(Vi, 〈vk, snk〉) places the new value in Vi according to the incremental order
and, if there are more than three values, it discards from Vi the value associated to the lowest
sn.

• curedi: boolean flag updated by the cured state oracle. In particular, such variable is set to
true when si becomes aware of its cured state and it is reset during the algorithm when si
becomes correct.

• echo valsi and echo readi: two sets used to collect information propagated trough echo
messages. The first one stores tuple 〈j, 〈v, sn〉〉 propagated by servers just after the mobile
Byzantine agents moved, while the second stores the set of concurrently reading clients in
order to notify cured servers and expedite termination of read().

• fw valsi: set variable storing a triple 〈j, 〈v, sn〉〉 meaning that server sj forwarded a write
message with value v and sequence number sn.

• pending readi: set variable used to collect identifiers of the clients that are currently reading.

In order to simplify the code of the algorithm, let us define the following functions:

• select three pairs max sn(echo valsi): this function takes as input the set echo valsi and re-
turns, if they exist, three tuples 〈v, sn〉, such that there exist at least 2f + 1 occurrences
in echo valsi of such tuple. If more than three of such tuple exist, the function returns the
tuples with the highest sequence numbers. Otherwise if there are two tuples, the third tuple
returned is 〈⊥, 0〉.

• select value(replyi): this function takes as input the replyi set of replies collected by client ci
and returns the pair 〈v, sn〉 occurring at least #replyCAM times (see Table 1). If there are
more pairs satisfying such condition, it returns the one with the highest sequence number.

The maintenance() operation. Such operation is executed by servers periodically at any time
Ti = t0 + i∆.

If a server si is not in a cured state then it broadcasts an echo message carrying the set Vi
and the set pending readi (it contains identifiers of clients that are currently running a read()

22

operation maintenance() executed every Ti = t0 + ∆i :
(01) curedi ← report cured state();
(02) if (curedi) then
(03) Vi ← ∅; echo valsi ← ∅; echo readi ← ∅;
(04) wait(δ);
(05) insert(Vi, select three pairs max sn(echo valsi));
(06) curedi ← false;
(07) for each (j ∈ (pending readi ∪ echo readi)) do
(08) send reply (i, Vi) to cj ;
(09) endFor
(10) else
(11) broadcast echo(i, Vi, pending readi);
(12) if(@〈⊥, 0〉 ∈ Vi)then
(13) fw valsi ← ∅; echo valsi ← ∅;
(14) endif
(15) endif
——————————————————————————————————
when echo (j, Vj , pr) is received:
(16) echo valsi ← echo valsi ∪ Vj ;
(17) echo readi ← echo readi ∪ pr;

Figure 22: AM algorithm implementing the maintenance() operation (code for server si) in the
(∆S,CAM) model.

operation). Moreover if in Vi there are no 〈⊥, 0〉 values then it empties the fw valsi and echo valsi
sets, meaning that it is not trying to retrieve a value lost because si was affected by a Byzantine
agent while such value has been written.

Otherwise, if a server si is in a cured state it first cleans its local variables and then, after δ time
units, tries to update its state by checking the number of occurrences of each pair 〈v, sn〉 received
with echo messages. In particular, it updates Vi invoking the select three pairs max sn(echo valsi)
function that populates Vi with three or at least two tuples 〈v, sn〉. If there are only two tuple
〈v, sn〉, it means that there exists a concurrent write() operation that is updating the register value
concurrently with the maintenance() operation. Thus, si considers 〈⊥, 0〉 as the pair associated to
the value that is concurrently written. Finally, it assigns false to curedi, meaning that it is now
correct and starts replying to clients that are currently reading.

The write() operation. When the writer wants to write a value v, it increments its sequence
number csn and propagates v and csn to all servers. Then it waits for δ time units (the maximum
message transfer delay) before returning.

When a server si delivers a write, it updates its local variables and forwards the message,
trough a write fw(i, 〈v, csn〉), to others servers. This prevents the message loss in case servers
deliver such message while they are affected by mobile Byzantine agents. In addition, it also sends
a reply() message to all clients that are currently reading (clients in pending readi) to allow them
to terminate their read() operation.

When si delivers a write fw(j, 〈v, csn〉) message, it stores such message in fw valsi set. Such
set is constantly monitored together with echo valsi set to find a couple 〈v, sn〉 occurring at least
#replyCAM times. This continuous check enables servers in a cured state to store the new value
and reply to a reading client as soon as possible even in case they delivered such value when affected
by mobile Byzantine agents.

23

operation write(v):
(01) csn← csn+ 1;
(02) broadcast write(v, csn);
(03) wait (δ);
(04) return write confirmation;

(a) Client code (code for client ci).

when write(v, csn) is received:
(01) insert(Vi, 〈v, csn〉);
(02) for each j ∈ (pending readi ∪ echo readi) do
(03) send reply (i, {〈v, csn〉});
(04) endFor
(05) broadcast write fw(i, 〈v, csn〉);
—————————————————————————————————————
when write fw(j, 〈v, csn〉) is received:
(06) fw valsi ← fw valsi ∪ {〈j, 〈v, csn〉〉};
—————————————————————————————————————
when ∃〈j, 〈v, sn〉〉 ∈ (fw valsi ∪ echo valsi) occurring at least #replyCAM times:
(07) insert(Vi, 〈v, sn〉);
(08) ∀j : fw valsi ← fw valsi \ {〈j, 〈v, ts〉〉};
(09) ∀j : echo valsi ← echo valsi \ {〈j, 〈v, ts〉〉};
(10) for each (j ∈ (pending readi ∪ echo readi)) do
(11) send reply (i, {〈v, sn〉}) to cj ;
(12) endFor

(b) Server code (code for server si).

Figure 23: AW algorithm implementing the write(v) operation in the (∆S,CAM) model.

The read() operation. When a client wants to read, it broadcasts a read() request to all servers
and waits 2δ time (i.e., one round trip delay) to collect replies. When it is unblocked from the wait
statement, it selects a value v invoking the select value function on replyi set, sends an acknowl-
edgement message to servers to inform that its operation is now terminated and returns v as result
of the operation.

When a server si delivers a read(j) message from client cj it first puts its identifier in the set
pending readi to remember that cj is reading and needs to receive possible concurrent updates,
then si checks if it is in a cured state and if not, it sends a reply back to cj . Note that, the reply()
message carries the set Vi, which contains three tuples 〈value, ts〉 or two tuples 〈value, ts〉 and one
〈⊥, 0〉.

The last case occurs if si was affected by a Byzantine agent when the last write() operation
occurred so that si is still retrieving such value. As soon as si retrieve such value through the
fw valsi and echo valsi sets, such value is sent back to cj .

In any case, si forwards a read fw message to inform other servers about cj read request. This
is useful in case some server missed the read(j) message as it was affected by mobile Byzantine
agent when such message has been delivered.

When a read fw(j) message is delivered, cj identifier is added to pending readi set, as when
the read request is just received from the client.

When a read ack(j) message is delivered, cj identifier is removed from both pending readi
and echo readi sets as it does not need anymore to receive updates for the current read() operation.

24

operation read():
(01) replyi ← ∅;
(02) broadcast read(i);
(03) wait (2δ);
(04) 〈v, sn〉 ← select value(replyi);
(05) broadcast read ack(i);
(06) return v;
———————————————————————–
when reply (j, Vj) is received:
(07) for each (〈v, sn〉 ∈ Vj) do
(08) replyi ← replyi ∪ {〈j, 〈v, sn〉〉};
(09) endFor

(a) Client code (code for client ci).

when read (j) is received:
(01) pending readi ← pending readi ∪ {j};
(02) if (¬curedi)
(03) then send reply (i, Vi);
(04) endif
(05) broadcast read fw(j);
———————————————————————–
when read fw (j) is received:
(06) pending readi ← pending readi ∪ {j};
———————————————————————–
when read ack (j) is received:
(07) pending readi ← pending readi \ {j};
(08) echo readi ← echo readi \ {j};

(b) Server code (code for server si).

Figure 24: AR algorithm implementing the read() operation in the (∆S,CAM) model.

5.2 Correctness proofs

To prove the correctness of Preg, we first demonstrate that the termination property is satisfied i.e,
that read() and write() operations terminates. Due to the algorithm implementation, such property
is independent from the specific instance of the MBF model considered.

Lemma 4 If a correct client ci invokes write(v) operation at time t then this operation terminates
at time t+ δ.

Proof The claim simply follows by considering that a write confirmation event is returned to the
writer client ci after δ time, independently of the behavior of the servers (see lines 03-04, Figure
23(a)). 2Lemma 4

Lemma 5 If a correct client ci invokes read() operation at time t then this operation terminates
at time t+ 2δ.

Proof The claim simply follows by considering that a read() returns a value to the client after 2δ
time, independently of the behaviour of the servers (see lines 03-06, Figure 24(a)). 2Lemma 5

Theorem 7 (Termination) If a correct client ci invokes an operation, ci returns from that oper-
ation in finite time.

Proof The proof simply follows from Lemma 4 and Lemma 5. 2Theorem 7

Definition 8 (Faulty servers in the interval I) Let us define as B̃[t, t + T] the set of servers
that are affected by a Byzantine agent for at least one time unit in the time interval [t, t+T]. More
formally B̃[t, t+ T] =

⋃
τ∈[t,t+T]B(τ).

Definition 9 (MaxB̃(t, t+ T)) Let [t, t+ T] be a time interval. The cardinality of B̃(t, t+ T) is
maximum if for any t′, t′ > 0, is it true that |B̃(t, t+ T)| ≥ |B̃(t′, t′ + T)|. Let MaxB̃(t, t+ T) be
such cardinality.

25

Lemma 6 If δ ≤ ∆ < 3δ and T ≥ δ then MaxB̃(t, t+ T) = (d T∆e+ 1)f .

Proof For simplicity let us consider a single agent ma1, then we extend the reasoning to all the f
agents. In the [t, t+ T] time interval, with T ≥ δ, ma1 can affect a different server each ∆ time. It
follows that the number of times it may “jump” from a server to another is T

∆ . Thus the affected
servers are at most d T∆e plus the server on which ma1 is at t. Finally, extending the reasoning to

f agents, MaxB̃(t, t+ T) = (d T∆e+ 1)f , concluding the proof. 2Lemma 6

Table 2: Table summing up the value that we get substituting δ and ∆ in the formulas.

(MaxB̄(t, t+ 2δ) (MaxB̄(t, t+ δ) d 2δ
∆
e d δ

∆
e

k = 1 2f 2f 1 1
k = 2 3f 2f 2 1

Definition 10 (minC̃o(t, t+ T)) Let [t, t+ T] be a time interval. The cardinality of C̃o(t, t+ T)
is minimum if for any t′, t′ > 0, is it true that |C̃o(t, t+ T)| ≤ |C̃o(t, t′ + T)|. Let minC̃o(t, t+ T)
be such cardinality.

Any read() operation opR lasts from tB(opopR) to tE(opopR) for 2δ time. The previous definition
gives us the number of servers that are correct from the beginning to the end of the operation.
What is really useful is the number of servers that can correctly reply during such time. Servers
that are correct from tB(opopR)+δ to tE(opopR)−δ. Being correct from from tB(opopR)+δ means
that in the time interval [t,tB(opopR)+δ] servers were no Byzantine, at most they could have been
in a cured state, so able to deliver the read() message and since are correct at tB(opopR)+δ their
replies are also delivered by the reader by time tB(opopR)+2δ =tE(opopR). For tE(opopR)−δ the
reasoning is the similar. So let us define the minimum number of servers able to reply to a read()
operation.

Definition 11 (minC̃oR(t, t+ T)) Let [t, t+T] be a time interval. then C̃oR(t, t+T) denotes the
minimum number of never affected servers during a time interval [t, t+ T − δ]4 The cardinality of
C̃oR(t, t + T) is minimum if for any t′, t′ > 0, is it true that |C̃o(t, t + T)| ≤ |C̃o(t, t′ + T)|. Let
minC̃oR(t, t+ T) be such cardinality.

Now we can compute the minimum number of servers that correctly reply during the read()
operation as if each message to/from them requires δ time to be delivered. So that we consider
minC̃oR(tB(opR), tE(opR)). Concerning Byzantine servers that can reply we considermaxB̃(tB(opR),
tE(opR)) as if each message to/from them is delivered instantaneously.

Lemma 7 Let op be a read() operation issued at time t and terminating at time t + 2δ. If (i)
k∆ ≥ 2δ (with k ∈ {1, 2}) and (ii) nCAM ≥ (k+3)f+1, then minC̃oR(t, t+2δ) > MaxB̃(t, t+2δ)
and minC̃oR(t, t+ 2δ) ≥ #replyCAM .

Proof
Let us consider the two cases separately, k = 2 so that δ ≤ ∆ < 2δ and k = 1 so that 2δ ≤ ∆

4We are interested in correct servers that surely can reply, so that a read() message sent by a client is for sure
delivered by servers by t+ δ and a reply sent by t+ T − δ is for sure delivered by client.

26

• Case 1 - (∆S,CAM) with δ ≤ ∆ < 2δ.

From Lemma 6, MaxB̃(t, t+ 2δ) = (d2δ
∆ e+ 1)× f . Considering that δ ≤ ∆ < 2δ, we obtain

MaxB̄(t, t+ 2δ) = 3f .

The number of correct servers at time t + δ is given by the number of serves that are non-
faulty in the whole interval (nCAM −MaxB̄(t, t + 2δ)) plus the number of server that were
not correct at time t but that had “enough” time to terminate the maintenance operation
before time t+ δ (i.e., MaxB̄(t, t+ 2δ)−MaxB̄(t+ δ, t+ 2δ)).

Thus

minC̃oR(t, t+ 2δ) = nCAM −MaxB̄(t, t+ 2δ) +MaxB̄(t, t+ 2δ)−MaxB̄(t+ δ, t+ 2δ)

minC̃oR(t, t+ 2δ) = nCAM −MaxB̄(t+ δ, t+ 2δ)

minC̃oR(t, t+ 2δ) = nCAM − (d2δ
∆
e+ 1)× f

minC̃oR(t, t+ 2δ) = 5f + 1− 2f = 3f + 1 = #replyCAM

• Case 2 - (∆S,CAM) with 2δ ≤ ∆. Following the consideration done in Case 1, we obtain
that MaxB̄(t, t+ 2δ) = 2f for 2δ ≤ ∆ and that

minC̃oR(t, t+ T) = nCAM −MaxB̄(t, t+ 2δ) +MaxB̄(t, t+ 2δ)−MaxB̄(t+ δ, t+ 2δ)

minC̃oR(t, t+ 2δ) = nCAM −MaxB̄(t+ δ, t+ 2δ)

minC̃oR(t, t+ 2δ) = nCAM − (d2δ
∆
e+ 1)× f

minC̃oR(t, t+ 2δ) = 4f + 1− 2f = 2f + 1 = #replyCAM

From which the claim fallows.
2Lemma 7

Definition 12 (Valid Value Set at time t) The valid value set at time t, denoted by V V S(t),
is the set of valid values at time t. More in details it may contain: (i) value v written by the last
write() operation terminated before t, and (ii) any values v′ written by a write() operation running
at time t. As we assume a single writer model, there can be at most one such v′. If no write() has
started before time t, V V S(t) contains only ⊥.

Considering the worst case scenario where each message sent to and by non correct servers is
instantaneously delivered, while each message sent to and by correct servers needs δ time, from
Lemma 7 the next corollary follows

Corollary 3 Let op be a read() operation issued at time t and terminating at time t + 2δ. The
number of replies carrying valid values at some time τ ∈ [t, t+2δ] is always greater than the number
of replies carrying non valid values.

27

Definition 13 (write() completion time twE) Let write() be an operation opW writing v on the
register and let S the set of servers in B(tB(opW)) that missed the write(v) message. Then twE
is the time at which every server sk ∈ S retrieve such value v, so that, by this time v is stored by
#replyCAM + f correct servers.

Lemma 8 Let op be a write(v) operation invoked by a client ck at time tB(op) = t, then (i) any
sj /∈ B(t, t+ δ) has v ∈ Vj at time t+ δ and (ii) the write completion time twE ≤ t+ 2δ.

Proof The first part of the proof simply follows considering that: due to the communication
channel synchrony, the write messages from ck are delivered by servers within the time interval
[t, t+δ]; any correct server sj during the whole time interval [t, t+δ] executes the correct algorithm
code. Thus, when sj delivers the write message it executes line 01 in Figure 23(b) storing v in V .
Concerning the second part, let us call S ⊆ B(t) the set of servers whose missed the write()
message sent by ck because affected by a Byzantine agent at the beginning of op. Let Ti the time at
which servers in S became cured, so that t < Ti < t+ δ. Any server si ∈ S does execute line 07 in
Figure 23(b) (i.e., it stores v in V) when there are at least #replyCAM = (k + 1)f + 1 occurrences
of v in the set fw valsi ∪ echo valsi. Considering that during the write() operation at most 2f
servers may be affected by Byzantine agents (cf. Lemma 6 for a δ time interval), then there are
minC̃o(t, t+ δ) = n− 2f = 3(k + 1)f + 1− 2f = (k + 1)f + 1 non faulty servers. In other words,
there are at least (k+1)f+1 non faulty servers executing line 05. Servers in C̃o(t, t+δ) may deliver
the write() message from ck before of after Ti. Consequently they can send the WRITE FW()
message before of after Ti. In the first case the WRITE FW() message can be missed as well
(i.e. delivered by servers in S before Ti, when still Byzantine). When those servers deliver the
write() message, v is inserted in the V set (Figure 23 line 01) such that at the next maintenance()
operation, at Ti, v is in the echo() message (Figure 22 line 08). This means that servers in S
deliver the written value v at most at Ti + δ. In the second case, when the write() message from
ck is delivered by servers in C̃o(t, t + δ) after Ti , the WRITE FW() message is sent by servers
in the time interval [Ti, tE(op)] (Figure 23 line 05). Since a message is delivered by δ time, then
by tE(op) + δ = t + 2δ any servers in S, that missed the write() message, has enough occurrences
of v in the fw valsi ∪ echo valsi set so that line 07 is executed and v is stored in V . Thus at the
write completion time there are #replyCAM + f servers storing v. To conclude, let us consider
that, each server in V can store up to three values. So that even if there are subsequent write()
operations, such that the completion time of the first overlap the second write(), the new value does
not overwrite the previous one before the write() is effective. 2Lemma 8

Lemma 9 If (i) k∆ ≥ 2δ (with k ∈ {1, 2}), (ii) nCAM ≥ (k + 3)f + 1, (iii) there are no write()
operations during [Ti, Ti + δ]. Then ∀s ∈ Cu(Ti), s ∈ Co(Ti, Ti + δ).

Proof Let us assume that at Ti there are 2f+1 correct servers storing V = {〈v0, 0〉, 〈v1, 1〉, 〈v2, 2〉}
and running the code in Figure 22. In particular each server sj /∈ Cu(T1) broadcasts a echo()
message with attached the content of V (line 11) while each server si ∈ Cu(T1) waits δ time units
(line 04) to gather all the echo() messages. Let us note that, by hypothesis there are no write()
operations during [Ti, Ti + δ]. This means the 2f + 1 broadcast the same set of values V . So
that cured servers set their state to correct and V = {〈v0, 0〉, 〈v1, 1〉, 〈v2, 2〉}. This is always true
if we consider that at the beginning, at T0, there are f servers affected by mobile Byzantine agent
and n − f > 2f + 1 correct servers. So that what we proved always holds. At the end of the

28

maintenance() there are the same number of correct servers (there have no been cured servers yet)
so that at T1 there are n − 2f ≥ 2f + 1 correct servers running the maintenance() and at the end
of it there are n− f correct servers, whose became n− 2f ≥ 2f + 1 at T2 and so on.

2Lemma 9

Lemma 10 If (i) k∆ ≥ 2δ (with k ∈ {1, 2}), (ii) nCAM ≥ (k + 3)f + 1. Then ∀s ∈ Cu(Ti),
s ∈ Co(Ti, Ti + δ) and every server in Co(Ti, Ti + δ) is storing at least one common value, in
particular such value is the last written value before Ti.

Proof Let us assume that at Ti there are 2f+1 correct servers storing V = {〈v0, 0〉, 〈v1, 1〉, 〈v2, 2〉}
and running the code in Figure 22. In particular each server sj /∈ Cu(T1) broadcasts a echo()
message with attached the content of V (line 11) while each server si ∈ Cu(T1) waits δ time
units (line 04) to gather all the echo() messages. If there is a write() operation opW1 writing
〈v3, 3〉, such that Ti ∈ [tB(opW1),tE(opW1)], then the 2f + 1 servers in Co(Ti) may broadcast
different sets of values V , {〈v0, 0〉, 〈v1, 1〉, 〈v2, 2〉} or {〈v1, 1〉, 〈v2, 2〉, 〈v3, 3〉}. At the end of the
maintenance(), servers in Cu(Ti) select values occurring at least 2f + 1 times, thus they set at least
V = {〈v1, 1〉, 〈v2, 2〉, 〈⊥,⊥〉}. At Ti + δ it may also happen that another write() operation, opW2

writing 〈v4, 4〉 subsequent to opW1, occurs, such that Ti+δ ∈ [tB(opW2),tB(opW2)]. In that case it
may happen that all servers that were in Co(t) and are now in Co(t+δ) delivers the write(〈v4, 4〉)
message and no yet the servers that were in Cu(Ti). So that the first group of servers is storing
〈v2, 2〉, 〈v3, 3〉, {〈v4, 4〉} and the second group is storing {〈v2, 2〉, 〈v3, 3〉, 〈⊥,⊥〉}. All of those servers
are storing 〈v2, 2〉 in common, which is the last written value respecting to Ti, concluding the proof.

2Lemma 10

From Lemmas 9 and 10 the next Corollary follows.

Corollary 4 The maintenance() operation guarantees that ∀Ti, i ∈ N, ∀s ∈ Cu(Ti), then s ∈
Co(Ti, Ti + δ).

Lemma 11 Let opW be a write() operation and let v be the written value. Let tEw be its completion
time and let Ti the time of the first Byzantine agent movement after tEw. Then if there are no other
write() operations after opW , the value written by opW is stored by #replyCAM servers forever.

Proof Let us consider the case k = 2. Let us first consider how many Byzantine servers there may
be in the time interval [tB(opW), Ti]. The time from tB(opW) and tEw is at most 2δ (cf. Lemma
8) and the time from tEw to Ti is at most δ since we are considering k = 2. Thus the time interval
[tB(opW), Ti] is at most 3δ. In such period, being the agent movement aligned to Ti and being
k = 2, there may be at most 3f Byzantine servers. Moreover, n ≥ 5f + 1, then at Ti there are
at least f + 1 servers never affected in the considered time interval and thus, for Lemma 8, such
servers are storing v by time tB(opW) + δ. For the same Lemma, by time tEw, the f servers that
were in B(tB(opW)) are storing v. Thus, at time Ti there are at least 2f + 1 correct servers storing
v, so for Lemma 9 at the end of the maintenance(), servers that were cured at Ti are now storing
the same values as servers in Co(Ti). Thus at Ti there are n − f ≥ 4f + 1 correct servers storing
v. At Ti+1 the new maintenance() operation run with n− 2f servers storing v, which at the end of
the maintenance() operation is n− f again and so on. Thus if there are no more write() operation
v is stored forever. Case k = 1 is similar concluding the proof. 2Lemma 11

29

Lemma 12 Let opW0 , opW1 , . . . , opWk−1
, opWk

, opWk+1
, . . . be the sequence of write() operations is-

sued on the regular register. Let us consider a particular opWk
, let v be the value written by opWk

and let tEwk be its completion time. Then the register stores v (there are at least #replyCAM
correct servers storing it) up to time at least tBWk+3.

Proof The proof simply follows considering that:

• for Lemma 11 if there are no more write() operation then v, after tEw, is in the register
forever.

• any new written value is store in an ordered set V (cf. Figure 23 line 01) whose dimension is
3.

• write() operations occur sequentially.

From that is it clear that after the beginning of 3 write() operations, opWk+1
, opWk+2

, opWk+3
, v it

may be no more stored in the regular register. 2Lemma 12

Theorem 8 If (i) k∆ ≥ 2δ (with k ∈ {1, 2}) (ii) nCAM ≥ (k + 3)f + 1 then any read() opera-
tion returns the last value written before its invocation, or a value written by a write() operation
concurrent with it.

Proof Let us consider a read() operation opR. We are interested in the time interval [tB(opR),
tB(opR) + δ]. Since such operation lasts 2δ, the reply messages sent by correct servers within
tB(opR) + δ are delivered by the reading client. For Lemma 7, in such period there are #replyCAM
correct servers that sent back a reply message to the reading client. There are two cases, opR is
concurrent with some write() operations or not.
opR is not concurrent with any write() operation. Let opW be the last write() operation such
that tE(opW) ≤ tB(opR) and let v be the last written value. From Lemma 8 and Lemma 11 after
the write completion time there are #replyCAM correct servers storing v. Since tB(opR)+δ ≥ tEw,
then there are #replyCAM correct servers replying with v. So the last written value is returned.
opR is concurrent with some write() operation. Let us consider the time interval [tB(opR),
tB(opR) + δ]. In such time there can be at most two write() operations. Thus for Lemma 12
the last written value before tB(opR) is still present in #replyCAM correct servers. Thus at least
the last written value is returned. Note that the concurrently written values may be returned if
the write() and reply() messages are fast enough to be delivered before the end of the read()
operation. Note that Byzantine servers may not force the reader to read another or older value
since for Lemma 3 the number of correct replies is greater than the number of incorrect ones and
because even if an older values has #reply occurrences the one with the highest sequence number
is chosen. 2Theorem 8

Basically we can say that thanks to the maintenance() operation and the forwarding mechanism,
when a read() operation opR begins at time tB(opR), at time tB(opR) + δ there are #replyCAM
correct servers that reply with a value v ∈ V V S(tB(opR)).

Theorem 9 Let n be the number of servers emulating the register and let f be the number of
Byzantine agents in the (∆S,CAM) round-free Mobile Byzantine Failure model. Let δ be the upper

30

Table 3: Parameters for PRreg Protocol in the (∆S,CUM).

k = d 2δ
∆
e, δ ≤ ∆ < 3δ nCUM ≥ (3k + 2)f + 1 #replyCUM ≥ (2k + 1)f + 1 #echoCUM ≥ (k + 1)f + 1

k = 2 8f + 1 5f + 1 3f + 1
k = 1 5f + 1 3f + 1 2f + 1

bound on the communication latencies in the synchronous system. If (i) k∆ ≥ 2δ (with k ∈ 1, 2)
and (ii) n ≥ (k + 3)f + 1, then Preg implements a SWMR Regular Register in the (∆S,CAM)
round-free Mobile Byzantine Failure model.

Proof The proof simply follows from Theorem 7 and Theorem 8. 2Theorem 9

6 Optimal Regular Register Implementation in the (∆S,CUM)
model

In this section, we present an optimal protocol Preg that implements a SWMR Regular Register in
a round-free synchronous system for (∆S,CUM) instance of the proposed MBF model.

Our solution is based on the following three key points: (1) we implement a maintenance()
operation that is executed periodically at each Ti = t0 + i∆ time. In this way, the effect of a
Byzantine agent on a server disappears in a bounded period of time; (2) we implement read() and
write() operations following the classical quorum-based approach. The size of the quorum needed to
carry on the operations, and consequently the total number of servers required by the computation,
is computed by taking into account the time to terminate the maintenance() operation, δ and ∆; (3)
we define a forwarding mechanism to avoid that read() and write() messages are “lost” by some
server si due to a concurrent movement of the Byzantine agent during such operations. Note that
even though communication channels are reliable, we may have the following situation: a message
is sent by a client at time t and the Byzantine agents move at some t′ < t+ δ. As a consequence,
some faulty servers may receive the message in the interval [t, t′] and then agents move leaving
cured servers without any trace of the message.
Moreover, contrarily to the (∆S,CAM) case, the values that populate auxiliary variables (i.e., not
the register stored value) have a fixed life time. This is necessary since servers are never aware to
be in a cured state and thus Byzantine processes may force them to take wrong decisions.

Interestingly, we found that the number of replicas needed to tolerate f Byzantine agents does
not depend only on f but also on the ∆ and δ relationship (see Table 3).

6.1 Preg Detailed Description

The protocol Preg for the (∆S,CUM) model is described in Figures 25 - 27.

Local variables at client ci. Each client ci maintains a set replyi that is used during the read()
operation to collect the three tuples 〈j, 〈v, sn〉〉 sent back from servers. Additionally, ci also main-
tains a local sequence number csn that is incremented each time it invokes a write() operation and
is used to timestamp such operations.

Local variables at server si. Each server si maintains the following local variables (we assume
these variables are initialized to zero, false or empty sets according their type):

31

• Vi: an ordered set containing 3 tuples 〈v, sn〉, where v is a value and sn the corresponding
sequence number. Such tuples are ordered incrementally according to their sn values.

• Vsafej : this set has the same characteristic as Vj . The function insert(Vsafei , 〈vk, snk〉) places
the new value in Vsafei according to the incremental order and if dimensions exceed 3 then it
discards from Vsafei the value associated to the lowest sn.

• Wi: is the set where servers store values coming directly from the writer, associating to it
a timer, 〈v, sn, timer〉. Values from this set are deleted at the end of the maintenance()
operation when the timer expires or has a value non compliant with the protocol.

• echo valsi and echo readi: two sets used to collect information propagated through echo
messages at the beginning of the maintenance() operation. The first one stores tuple 〈v, sn〉j
propagated by servers just after the mobile Byzantine agents moved. Set echo readi stores
identifiers of concurrently reading clients in order to notify cured servers and expedite termi-
nation of read().

• pending readi: set variable used to collect identifiers of the clients that are currently reading.

In order to simplify the code of the algorithm, let us define the following functions:

• select three pairs max sn(echo valsi): this function takes as input the set echo valsi and re-
turns, if they exist, 3 tuples 〈v, sn〉, such that there exist at least #echoCUM occurrences in
echo valsi of such tuple. If more than 3 of such tuples exist, the function returns the tuples
with the highest sequence numbers.

• select value(replyi): this function takes as input the replyi set of replies collected by client ci
and returns the pair 〈v, sn〉 occurring at least #replyCUM times. If there are more pairs with
the same occurrence, it returns the one with the highest sequence number.

• conCut(Vi, Vsafei ,Wi): this function takes as input three 3 dimension ordered sets and returns
another 3 dimension ordered set. The returned set is composed by the concatenation of
Vsafei ◦ Vi ◦Wi, without duplicates, truncated after the first 3 newest values (with respect to
the timestamp). e.g., Vi = {〈va, 1〉, 〈vb, 2〉, 〈vc, 3〉, 〈vd, 4〉} and Vsafei = {〈vb, 2〉, 〈vd, 4〉, 〈vf , 5〉}
and Wi = ∅, then the returned set is {〈vc, 3〉, 〈vd, 4〉, 〈vf , 5〉}.

The maintenance() operation. Such operation is executed by servers periodically at any time
Ti = t0 + i∆. Each server first checks if there are expired values in Wi then all the content of
Vsafei is stored in Vi and all Vsafei and echo valsi sets are reset. Each server broadcast an echo
message with the content of Vi, Wi (purged of the timer information) and the set pending readi.
When there is a value in echo vasi set that occurs at least #echoCUM times, it updates Vsafei
set by invoking select three pairs max sn(echo valsi) function. To conclude, after δ time since the
beginning of the operation, the Wi set is pruned from expired values and Vi is reset. Informally
speaking, at this point Vi is no more used, since Vsafei during the maintenance() operation is filled
with values, then the content in Vi is not more necessary.

The write() operation. When the writer wants to write a value v, it increments its sequence
number csn and propagates v and csn to all servers. Then it waits for δ time units (the maximum
message transfer delay) before returning.

32

while (true) :
(01) for each (〈〈v, csn〉, timer〉j ∈Wi) do
(02) if (Expired(timer) ∧ (timer > 2δ)
(03) Wi ←Wi \ 〈〈v, csn〉, timer〉j ;
(04) endif
(05) endFor
————————————————————————————————————-
operation maintenance() executed every Ti = t0 + i∆ :
(06) echo valsi ← ∅; Vi ← Vsafei ; Vsafe ← ∅;
(07) Seti ← ∅;
(08) for each〈〈v, csn〉, timer〉j ∈Wi do;
(09) Seti ← Seti ∪ 〈v, csn〉j ;
(10) endFor
(11) broadcast echo(i, Vi ∪ Seti, pending readi);
(12) wait(δ);
(13) Vi ← ∅;
——————————————————————————————————
when select three pairs max sn(echo valsi) 6= ⊥
(14) insert(Vsafei , select three pairs max sn(echo valsi));
(15) for each (j ∈ (pending readi ∪ echo readi)) do
(16) send reply (i, Vsafe) to cj ;
(17) endFor
————————————————————————————————————-
when echo (j, S, pr) is received:
(18) for each (〈v, sn〉j ∈ S)
(19) echo valsi ← echo valsi ∪ 〈v, sn〉j ;
(20) endFor
(21) echo readi ← echo readi ∪ pr;

Figure 25: AM algorithm implementing the maintenance() operation (code for server si) in the
(∆S,CUM) model.

When a server si delivers a write, it stores v in Wi. Then server sends a reply carrying such
value to each reading client and broadcast such value as an echo() message to other servers.
The read() operation. When a client wants to read, it broadcasts a read() request to all servers
and waits 3δ time to collect replies. When it is unblocked from the wait statement, it selects a value
v occurring #replyCUM number of times from the replyi set, sends an acknowledgement message
to servers to inform that its operation is now terminated and returns v as result of the operation.

When a server si delivers a read(j) message from client cj it first puts its identifier in the set
pending readi to remember that cj is reading and needs to receive possible concurrent updates,
then si sends a reply back to cj . Note that, in the reply() message is carried the result of
conCut(Vi, Vsafei ,Wi). In this case, if the server is correct then Vi contains valid values, and
Vsafei contains valid values by construction, since it comes from values sent during the current
maintenance(). If the server is cured, then Vi and Wi may contain any value. Thus, considering the
function conCut(), a cured server may send a non valid value during 2δ time. Finally, si forwards a
read fw message to inform other servers about cj read request. This is useful in case some server
missed the read(j) message as it was affected by mobile Byzantine agent when such message has
been delivered.

When a read fw(j) message is delivered, cj identifier is added to pending readi set, as when
the read request is just received from the client.

When a read ack(j) message is delivered, cj identifier is removed from both pending readi
and echo readi sets as it does not need anymore to receive updates for the current read() operation.

33

========= Client code ==========
operation write(v):
(01) csn← csn+ 1;
(02) broadcast write(v, csn);
(03) wait (δ);
(04) return write confirmation;

========= Server code ==========
when write(v, csn) is received:
(05) Wi ←Wi ∪ 〈〈v, csn〉, setT imer(2δ)〉;
(06) broadcast echo(i, 〈v, csn〉, pending readi);
(07) for each j ∈ (pending readi ∪ echo readi) do
(08) send reply (i, {〈v, csn〉});
(09) endFor

Figure 26: AW algorithm implementing the write(v) operation in the (∆S,CUM) model.

========= Client code ==========
operation read():
(01) replyi ← ∅;
(02) broadcast read(i);
(03) wait (3δ);
(04) 〈v, sn〉 ← select value(replyi);
(05) broadcast read ack(i);
(06) return v;
———————————————————————–
when reply (j, V set) is received:
(07) for each (〈v, sn〉 ∈ V set) do
(08) replyi ← replyi ∪ {〈j, 〈v, sn〉〉};
(09) endFor

========= Server code ==========
when read (j) is received:
(10) pending readi ← pending readi ∪ {j};
(11) send reply (i, conCut(Vi, Vsafei ,Wi));
(12) broadcast read fw(j);
———————————————————————–
when read fw (j) is received:
(13) pending readi ← pending readi ∪ {j};
———————————————————————–
when read ack (j) is received:
(14) pending readi ← pending readi \ {j};
(15) echo readi ← echo readi \ {j};

Figure 27: AR algorithm implementing the read() operation in the (∆S,CUM) model.

6.2 Correctness proofs

Definition 14 (Faulty servers in the interval I) Let us define as B̃[t, t+T] the set of servers
that are affected by a Byzantine agent for at least one time unit in the time interval [t, t+T]. More
formally B̃[t, t+ T] =

⋃
τ∈[t,t+T]B(τ).

Definition 15 (MaxB̃(t, t+ T)) Let [t, t+ T] be a time interval. The cardinality of B̃(t, t+ T) is
maximum if for any t′, t′ > 0, is it true that |B̃(t, t+ T)| ≥ |B̃(t′, t′ + T)|. Let MaxB̃(t, t+ T) be
such cardinality.

34

Lemma 13 If δ ≤ ∆ < 3δ and T ≥ δ then MaxB̃(t, t+ T) = (d T∆e+ 1)f .

Proof For simplicity let us consider a single agent ma1, then we extend the reasoning to all the f
agents. In the [t, t+ T] time interval, with T ≥ δ, ma1 can affect a different server each ∆ time. It
follows that the number of times it may “jump” from a server to another is T

∆ . Thus the affected
servers are at most d T∆e plus the server on which ma1 is at t. Finally, extending the reasoning to

f agents, MaxB̃(t, t+ T) = (d T∆e+ 1)f , concluding the proof. 2Lemma 13

Concerning the protocol correctness, the termination property is guaranteed by the way the
code is designed, after a fixed period of time all operations terminate. The validity property is
proved with the following steps:

1. maintenance() operation works (i.e., at the end of the operation n−f servers store valid values).
In particular, for a given value v stored by #echoCUM correct servers at the beginning of the
maintenance() operation, there are n− f servers that store v after δ time since the beginning
of the operation;

2. given a write() operation that writes v at time t and terminates at time t+ δ, there is a time
t′ < t+ 3δ after which #replyCUM correct servers store v;

3. at the next maintenance() operation after t′ there are #replyCUM − f = #echoCUM correct
servers that store v, for step (1) this value is maintained in the register;

4. the validity property follows considering that the read() operation is long enough to include
the t′ of the last written value in such a way that servers have enough time to reply. Moreover
we show that Vi is big enough to do not be full filled with new values before t′.

Lemma 14 If a client ci invokes write(v) operation at time t then this operation terminates at
time t+ δ.

Proof The claim simply follows by considering that a write confirmation event is returned to the
writer client ci after δ time, independently of the servers behavior (see lines 03-04, Figure 26).

2Lemma 14

Lemma 15 If a client ci invokes read() operation at time t then this operation terminates at time
t+ 3δ.

Proof The claim simply follows by considering that a read() returns a value to the client after 3δ
time, independently of the behavior of the servers (see lines 03-06, Figure 27). 2Lemma 15

Theorem 10 (ss-Termination) Any operation invoked on the register eventually terminates.

Proof The proof simply follows from Lemma 14 and Lemma 15. 2Theorem 10

Lemma 16 (Step 1.) Let v be a value stored at #echoCUM correct servers sj ∈ Co(Ti), v ∈
Vj∀sj ∈ Co(Ti). Then ∀sc ∈ Cu(Ti) at Ti + δ (i.e., at the end of the maintenance()) v is returned
by the function select pairs(echo valsi).

35

Proof By hypotheses at Ti there are #echoCUM correct servers sj storing the same v and running
the code in Figure 25. In particular each server broadcasts a echo() message with attached
the content of Vj which contains v (line 11). Messages sent by #echoCUM correct servers are
delivered by sc and stored in echo valsc. The system is synchronous, thus by time Ti+ δ function
select pairs(echo valsc) returns v. 2Lemma 16

Lemma 17 Let si be a correct server running the maintenance() operation at time Ti, then if v
is returned by the function select pairs(echo valsi) there exist a write() operation that wrote such
value.

Proof Let us suppose that select pairs(echo valsi) returns v′ and there no exist a write()(v′).
This means that si collects in echo valsi at least #echoCUM occurrences of v′ coming from cured
and Byzantine servers. Let us consider cured servers sc at time Tc. At the beginning of the
maintenance() operation sc broadcasts values contained in Vi and Wi (Figure 25 line 11). Vi is reset
at each operation with the content of Vsafei which is reset at each operation (line 06). It follows
that sc broadcasts non valid values contained in Vi only during the maintenance() operation run
a Tc. Contrarily, values in Wi, depending on k, are broadcast only at Tc or also at Tc+1. Let us
consider two cases: k = 1 and k = 2.
case k = 1: In this case since ∆ ≥ 2δ and the maximum value of the timer associated to a value
is 2δ, then each cured server sc broadcasts a non valid value contained in Wi only during the first
maintenance() operation. Thus, during each maintenance() operation there are f Byzantine servers
and f cured servers, those are not enough to send #echoCUM = 2f + 1 occurrences of v′. For
Lemma 16 this is the necessary condition to return v′ invoking select pairs(echo valsi), leading to
a contradiction.
case k = 2: δ ≤ ∆ < 2δ and the maximum value of the timer associated to a value is 2δ,
then each cured server sc broadcasts a non valid value contained in Wi during the two subsequent
maintenance() operations. Summing up, during each maintenance() operation at time Ti there are
f Byzantine servers, f cured servers and f servers that were cured during the previous operation.
Those servers are not enough to send #echoCUM = 3f + 1 occurrences of v′, for Lemma 16 this
is the necessary condition to return v′ invoking select pairs(echo valsi), leading to a contradiction
and concluding the proof. 2Lemma 17

From the reasoning used in this Lemma, the following Corollary follow.

Corollary 5 Let si be a non faulty process and v a value in Wi. Such value is in Wi during at
most k sequential maintenance() operations.

Finally, considering that servers reply during a read() operation with values in Wi, Vi and Vsafei .
Vsafei is safe by definition, Vi is reset after the first maintenance() operation then it follows that
servers can be in a cured state for 2δ time, the time that never written values can be present in Wi.

Corollary 6 Protocol P implements a maintenance() operation that implies γ ≤ 2δ.

Lemma 18 Let Tc be the time at which sc becomes cured. Each cured server sc can reply back with
incorrect message to a read() message during a period of 2δ time.

36

Proof The proof directly follows considering that the content of a reply() message comes from
the Vc, Vsafec and Wi sets. The first one is filled with the content of Vsafec at the beginning of each
manteneance() operation and after δ time is reset (cf. Figure 25 lines 12-13). The second one is
emptied at the beginning of each manteneance() operation and the third one keeps its value during
k maintenance() operations (cf. Corollary 5). Thus by time Tc + 2δ sc cleans all the values that
could come from a mobile agent. 2Lemma 18

Lemma 19 (Step 2.) Let opW be a write(v) operation invoked by a client ck at time tB(opW) = t
then at time t+ 3δ there are at least n− 2f ≥ #replyCUM correct servers such that v ∈ Vsafei and
is returned by the function concCut().

Proof Due to the communication channel synchrony, the write messages from ck are delivered
by servers within the time interval [t, t+ δ]; any non faulty server sj executes the correct algorithm
code. When sj delivers write message it executes line 05 Figure 26, it stores the value in Wj and
sets the associated timer to 2δ.
For Lemma 13 in the [t, t+ δ] time interval there are maximum 2f Byzantine servers, thus at t+ δ
v ∈ Wj at n− 2f ≥ #echoCUM correct servers. All those servers broadcast v by time t+ δ, so by
time t + 2δ there are #echoiCUM occurrences of v in echo valsi, each server si stores v in Vsafei .
If a Byzantine agent movement happens before t + 2δ, i.e., Ti ∈ [t + δ, t + 2δ] then at time Ti,
due to Byzantine agents movements, there are n − 3f ≥ #echoCUM correct servers that run the
maintenance() operation and broadcast v. Thus at time t + 3δ, for Lemma 16, all correct servers
are storing v ∈ Vsafei and by construction v is returned by the function conCut() by construction.
We conclude the proof by considering that there are at least n− 2f ≥ #replyCUM . 2Lemma 19

For simplicity, from now on, given a write() operation opW we call tB(opW) + 3δ = twC the
completion time of opW , the time at which there are at least #replyCUM servers si storing the
value written by opW in Vsafei .

Lemma 20 (Step 3.) Let opW be a write() operation and let v be the written value. If there are
no other write() operations, the value written by opW is stored by all correct servers forever (i.e., v
is returned invoking the conCut() function).

Proof From Lemma 19 at time twC there are at least n−2f ≥ #replyCUM correct servers sj that
have v in Vsafei . At the next Byzantine agents movement there are n−2f−f ≥ #echoCUM correct
server storing v in Vsafei , which is moved to Vi and broadcast during the maintenance() operation.
For Lemma 16, after δ time, all non Byzantine servers are storing v in Vsafei . At the next Byzantine
agents movement there are f less correct servers that store v in Vsafei , but those servers are still
more than #echoCUM . It follows that cyclically before each agent movements there are f servers
more that store v thanks to the maintenance() and f servers that lose v because faulty, but this set
of non faulty servers is enough to successfully run the maintenance() operation (cf. Lemma 16)). By
hypotheses there are no more write() operation, then v is never overwritten and all correct servers
store v forever.

2Lemma 20

Lemma 21 (Step 3.) Let opW0 , opW1 , . . . , opWk−1
, opWk

, opWk+1
, . . . be the sequence of write() op-

eration issued on the regular register. Let us consider a generic opWk
, let v be the written value by

37

such operation and let twC be its completion time. Then v is in the register (there are #replyCUM
correct servers storing it) up to time at least tBWk+3.

Proof The proof simply follows considering that:

• for Lemma 20 if there are no more write() operation then v, after twC , is in the register forever;

• any new written value eventually is stored in ordered set Vsafe, whose dimension is 3;

• write() operation occur sequentially.

It follows that after 3 write() operations, opWk+1
, opWk+2

, opWk+3
, v is no more stored in the regular

register. 2Lemma 21

Before to prove the validity property, let us consider how many Byzantine and cured servers
can be present during a read() operation that last 3δ, cf. Figure 28. If k = 2 there can be up
to 4f (cf. Lemma 13) Byzantine servers and 2f cured servers. If k = 1 there can be up to 3f
Byzantine servers (cf. Lemma 13) and f cured servers. In Figure 28 we depicted the extreme case
in which there is a read() operation just after the last write() operation. TwC lines represent the
time at which for sure correct servers replies with the last written value. Notice that when δ = ∆
s4 has just the time to correctly reply to the client before being affected. In both cases there are
#replyCUM correct servers that replies with the last written value and the number of those replies
is greater than number of replies coming from cured and Byzantine servers.

Theorem 11 (Step 4.) Any read() operation returns the last value written before its invocation,
or a value written by a write() operation concurrent with it.

Proof Let us consider a read() operation opR. We are interested in the time interval [tB(opR),
tB(opR)+δ]. The operation lasts 3δ, thus reply messages sent by correct servers within tB(opR)+2δ
are delivered by the reading client. During [t, t + 2δ] time interval there are at least #replyCUM
correct servers that have the time to deliver the read request and reply (cf. Figure 28). We have
to prove that what those correct servers reply with is a valid value. There are two cases, opR is
concurrent with some write() operations or not.
- opR is not concurrent with any write() operation. Let opW be the last write() operation such
that tE(opW) ≤ tB(opR) and let v be the last written value. For Lemma 20 after the write comple-
tion time twC there are at least #replyCUM correct servers storing v (i.e., v ∈ conCut(Vi, Vsafei ,Wi).
Since tB(opR) + 2δ ≥ tCw, then there are #replyCUM correct servers replying with v. So the last
written value is returned.
- opR is concurrent with some write() operation. Let us consider the time interval [tB(opR),
tB(opR)+2δ]. In such time there can be at most three sequential write() operations opW1 , opW2 , opW3 .
Let opW0 be the last write operation before opR. In the extreme case in which those operations
happen one after the other we have the following situation. tE(opW0 < tB(opR)) and the write
completion time of opW0 , twC0 < tB(opW0) + 3δ < tB(opR) + 2δ < tB(opW3). Basically, the value
written by opW0 is overwritten in Vi by the value written opW3 , but not before tB(opR) + 2δ, thus
all correct servers have the time to reply with the last written value. Notice that the concurrently
written values may be returned if the write() and reply() messages are fast enough to be delivered
before the end of the read() operation. To conclude, for Lemma 18 Byzantine and cured servers
can no force correct servers to store and thus to reply with a never written value. Only cured and

38

s0

s1

s2

s3

s4

s5

t t+ 3δ

write() TwC

s0

s1

s2

s3

s4

s5

s6

s7

s8

. . .

t t+ 3δ

write() TwC

Figure 28: In the first scenario ∆ ≥ 2δ and in second one is ∆ ≥ δ. Blue arrows are the correct
replies sent back by correct servers.

39

Byzantine servers can reply with non valid values. As we stated, if k = 1 there are up to 4f non
correct servers. If k = 2 there are 6f non correct servers. In both cases the threshold #replyCUM
is higher than the occurrences of non valid values that a reader can deliver. Mobile agents can
not force the reader to read another or older value and even if an older values has #replyCUM
occurrences the one with the highest sequence number is chosen. 2Theorem 11

Theorem 12 Let n be the number of servers emulating the register and let f be the number of
Byzantine agents in the (∆S,CUM) round-free Mobile Byzantine Failure model. Let δ be the upper
bound on the communication latencies in the synchronous system. If (i) k∆ ≥ 2δ (with k ∈ 1, 2)
and (ii) n ≥ 2(k + 1)f + 1, then Preg implements a SWMR Regular Register in the (∆S,CUM)
round-free Mobile Byzantine Failure model.

Proof The proof simply follows from Theorem 10 and Theorem 11. 2Theorem 12

Theorem 13 Protocol PRreg is tight with respect to the number of replicas.

Proof The proof simply follows considering that Theorems 10-11 proved that PRreg works with
bounds provided in Table 3. Those match the previously known lower bounds proved in Theorem
4 and Theorem 6 for the (∆S,CUM) model. 2Theorem 13

7 Conclusion

This paper addressed the problem of emulating multi-reader regular registers under the MBF
adversarial model for round-free computations. We first formalized MBF adversarial model in
order to capture dynamic failures in generic (round-free) distributed computations and then we
studied solvability issues raised by this powerful adversary. In particular, we proved that in the
presence of mobile Byzantine agents a new operation, namely maintenance() must be defined.
Then, we proved that in asynchronous distributed systems it is not possible to emulate a safe or
regular register even in the presence of one Byzantine agent governed by the weakest (∆S,CAM)
adversary. We then considered the case of round-free synchronous systems and we proved that an
emulation of an optimal regular register is possible against (∆S,CAM) adversary provided that,
nCAM ≥ 4f + 1 if 2δ ≤ ∆ < 3δ and nCAM ≥ 5f + 1 if δ ≤ ∆ < 2δ. While an emulation of an
optimal regular register is possible against (∆S,CUM) adversary provided that, nCUM ≥ 5f + 1
if 2δ ≤ ∆ < 3δ and nCUM ≥ 8f + 1 if δ ≤ ∆ < 2δ. We currently are investigating the solvability
of other distributed building blocks under the proposed models.

References

[1] N. Banu, S. Souissi, T. Izumi, and K. Wada. An improved byzantine agreement algorithm
for synchronous systems with mobile faults. International Journal of Computer Applications,
43(22):1–7, April 2012.

[2] Rida A. Bazzi. Synchronous byzantine quorum systems. Distributed Computing, 13(1):45–52,
January 2000.

40

[3] François Bonnet, Xavier Défago, Thanh Dang Nguyen, and Maria Potop-Butucaru. Tight
bound on mobile byzantine agreement. In Distributed Computing - 28th International Sympo-
sium, DISC 2014, Austin, TX, USA, October 12-15, 2014. Proceedings, pages 76–90, 2014.

[4] Silvia Bonomi, Antonella Del Pozzo, and Maria Potop-Butucaru. Tight self-stabilizing mobile
byzantine-tolerant atomic register. In Proceedings of the 17th International Conference on
Distributed Computing and Networking, ICDCN ’16, pages 6:1–6:10, New York, NY, USA,
2016. ACM.

[5] H. Buhrman, J. A. Garay, and J.-H. Hoepman. Optimal resiliency against mobile faults. In
Proceedings of the 25th International Symposium on Fault-Tolerant Computing (FTCS’95),
pages 83–88, 1995.

[6] J. A. Garay. Reaching (and maintaining) agreement in the presence of mobile faults. In
Proceedings of the 8th International Workshop on Distributed Algorithms, volume 857, pages
253–264, 1994.

[7] Leslie Lamport. On interprocess communication. part i: Basic formalism. Distributed Com-
puting, 1(2):77–85, 1986.

[8] Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. Distributed Computing,
11(4):203–213, October 1998.

[9] Jean-Philippe Martin, Lorenzo Alvisi, and Michael Dahlin. Minimal byzantine storage. In
Proceedings of the 16th International Conference on Distributed Computing, DISC ’02, pages
311–325, London, UK, UK, 2002. Springer-Verlag.

[10] Jean-Philippe Martin, Lorenzo Alvisi, and Michael Dahlin. Small byzantine quorum systems.
In Dependable Systems and Networks, 2002. DSN 2002. Proceedings. International Conference
on, pages 374–383. IEEE, 2002.

[11] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks (extended abstract).
In Proceedings of the 10th Annual ACM Symposium on Principles of Distributed Computing
(PODC’91), pages 51–59, 1991.

[12] R. Reischuk. A new solution for the byzantine generals problem. Information and Control,
64(1-3):23–42, January-March 1985.

[13] T. Sasaki, Y. Yamauchi, S. Kijima, and M. Yamashita. Mobile byzantine agreement on arbi-
trary network. In Proceedings of the 17th International Conference on Principles of Distributed
Systems (OPODIS’13), pages 236–250, December 2013.

[14] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Computing Surveys, 22(4):299–319, December 1990.

[15] Paulo Sousa, Alysson Neves Bessani, Miguel Correia, Nuno Ferreira Neves, and Paulo Veris-
simo. Highly available intrusion-tolerant services with proactive-reactive recovery. IEEE Trans-
actions on Parallel & Distributed Systems, (4):452–465, 2009.

41

