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Abstract

This work deals with the viscoelasticity of the arterial wall and its
influence on the pulse waves. We describe the viscoelasticity by a non-
linear Kelvin-Voigt model in which the coefficients are fitted using exper-
imental time series of pressure and radius measured on a sheep’s arte-
rial network. We obtained a good agreement between the results of the
nonlinear Kelvin-Voigt model and the experimental measurements. We
found that the viscoelastic relaxation time - defined by the ratio between
the viscoelastic coefficient and the Young’s modulus - is nearly constant
throughout the network. Therefore, as it is well known that smaller ar-
teries are stiffer, the viscoelastic coefficient rises when approaching the
peripheral sites to compensate the rise of the Young’s modulus, result-
ing in a higher damping effect. We incorporated the fitted viscoelastic
coefficients in a nonlinear 1D fluid model to compute the pulse waves in
the network. The damping effect of viscoelasticity on the high frequency
waves is clear especially at the peripheral sites.

1 Introduction

One way of obtaining information about the cardiovascular system is by study-
ing pressure and flow waveforms. By analyzing and modeling flow waveforms
we can deduce the mechanical properties of the cardiovascular system even in
regions of the network inaccessible to visualization techniques. However, chal-
lenges still remain such as real time observations and analysis of flow waveforms
to help the medical staff make diagnostics and surgical decisions. Pulse waves
of pressure and flow rate in the arterial system can be correctly captured by
1D models of blood flow. The 1D approach is attractive because it is a good
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compromise between modeling complexity and computational cost and is useful
for medical applications such as disease diagnostic and pre-surgical planning.
Difficulties arise when performing patient-specific simulations as the number
of parameters required by the model increases with the number of simulated
arterial segments. The hardest parameters to obtain are those describing the
complex mechanical properties of the arterial wall. In the 1D model, a con-
stitutive equation of the wall mechanics is necessary to close the system of
conservation laws of mass and momentum. Although the viscoelastic behavior
of the wall has been recognized as fundamental for a long time most 1D numer-
ical simulations existing in literature adopted elastic wall models for simplicity
since the viscoelastic coefficient is difficult to measure. Another problematic
point is that the viscoelastic response of the wall dynamics interacts with the
viscoelastic properties of the blood. Therefore both phenomena should be in-
cluded in the model to obtain a complete picture of the coupled wall-blood flow
dynamics even though it was shown that differentiating both behaviors from
experimental data is a complicated task [1].

Nevertheless, there are previous studies of blood flow in networks using vis-
coelastic 1D models. The viscoelastic models for the arterial wall fall into
roughly two categories: Fung’s quasilinear viscoelastic models [2] and an ar-
rangement of spring-dashpot elements. Models of the first category are more
general but also more difficult to handle when coupled with a 1D model of
blood flow because they involve a creep function and convolutions have to be
computed [3]. Holenstein et al. [4] proposed a model and fitted the parameters
from published data. Reymond et al. [5, 6] adopted Holenstein’s model and
parameter values in their patient-specific simulations. Comparison between nu-
merical results and in vivo measurements reveals a considerable impact of the
viscoelasticity on the pulse waves. Another comparison between the results ob-
tained with 1D models using different viscoelastic models of the first category
shows that the differences between the results computed with different mod-
els are minor [7]. Segers et al [8] proposed another approach incorporating a
frequency dependent viscoelastic model with the linearized 1D model of blood
flow. They found that the influence of viscoelasticity is comparable to the elas-
tic nonlinearity [7]. We note that the parameter values of the viscoelastic model
are fitted from limited available data in literature.

The second class of viscoelastic models are build by combinations of springs
and dashpots. The Kelvin-Voigt model which consists of one spring and one
dashpot connected in parallel is suitable to describe viscoelastic solids and is
straightforward to incorporate in a 1D model of blood flow. Armentano et al. [9]
fitted the coefficients of the Kelvin-Voigt model from simultaneous experimen-
tal measurements of diameter and pressure and obtained acceptable agreements
with measurements. Alastruey et al. [10] also adopted the Kelvin-Voigt model
and estimated the parameters using a tensile test. They simulated the pulsatile
flow in an in vitro experimental setup and compared this model with an elastic
one. They showed that the viscoelastic model agrees much better with mea-
surements than the elastic one. We observe furthermore that the vessels in the
study were made of polymers which are actually much less viscous than the real
arterial wall.

In this paper, we propose to analyze a nonlinear Kelvin-Voigt wall model
and to study the effect of viscoelasticity on the pulse waves of a sheep’s arterial
networks. We collected simultaneous time series of diameter and pressure at
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different arterial sites from a group of sheep (experimental data from [11]). We
estimated the viscoelasticity coefficients by fitting the experimental measure-
ments using the following nonlinear Kelvin-Voigt model

(1− η2)
R

h
P = Eε+ φ0ε̇+ φNLε̇

2

where the nonlinear coefficient φNL appears necessary to retrieve the experi-
mental data. In [8] the authors have shown that the nonlinear term in ε2 can
be neglected compared to ε̇. We have confirmed this fact and therefore we have
removed the corresponding term in the proposed viscoelastic model. Conversely
the nonlinear term in ε̇2 seems to play an important role in the wall dynam-
ics. Reference [12] used this nonlinear term to study the wave propagation in
nonlinear viscoelastic tubes, and the theoretical basis of the approach is in [13].

We computed the unsteady blood flow in the network using a 1D blood
flow model coupled to the linear viscoelastic wall model. We observed the
smoothing effect of the wall viscosity on the pulse waveforms in particular at
the terminal sites of the network. This result is corroborated by the observation
that the viscoelastic relaxation time φ0/E is nearly constant throughout the
network. Therefore, as it is well known that smaller arteries are stiffer, the
viscoelastic coefficient rises when approaching the peripheral sites to compensate
the increase of the Young’s modulus, resulting in a higher damping effect.

Section 2 presents the experimental protocol for data acquisition, the pro-
posed nonlinear Kelvin-Voigt model, the optimization approach to compute the
model parameters, and the 1D blood flow model used in the numerical sim-
ulations. In Section 3 we discuss the optimization results and the numerical
findings. We also present a numerical simulations to explain the differences
between an elastic and a viscoelastic wall model.

2 Methodology

2.1 Data acquisition

The experimental data were obtained from a group of eleven sheep (male Merino,
between 25 and 35 kg). Before surgeries, the animals were anesthetized with
sodium pentobarbital (35 mg/kg). The arterial segments of interest (6 cm long)
were separated from the surrounding tissues. To measure the diameter, two
miniature piezoelectric crystal transducers (5 MHz, 2 mm in diameter) were
sutured on opposite sides into the arterial adventitia. The animals were then
sacrificed and the arterial segments of interest were excised for in vitro tests.

The arterial segments were mounted on a test bench where a periodical
flow was generated by an artificial heart (Jarvik Model 5, Kolff Medical Inc.,
Salt Lake City, USA). The input signal was close as possible to a physiological
waveform. We obtained the desired pressure waveforms by simple adjustments
of tuning resistances and Windkessel chambers.

The circulating liquid was an aqueous solution of Tyrode. At each arte-
rial segment the internal pressure was measured using a solid-state pressure
micro-transducer (Model P2.5, Konigsberg Instruments, Inc., Pasadena, USA),
previously calibrated using a mercury manometer at 37◦C. The arterial diame-
ter signal was calibrated in millimeters using the 1 mm step calibration option
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of the sono-micrometer (Model 120, Triton Technology, San Diego, USA). The
transit time of the ultrasonic signal with a velocity of 1,580 m/s was converted to
the vessel diameter. The experimental protocol was conformed to the European
Convention for the Protection of Vertebrate Animals used for Experimental and
Other Scientific Purposes. For more details on the animal experiments, please
refer to [11].

The synchronized recording of transmural pressure and diameter was applied
on the following seven anatomical locations as shown in Figure 1: Ascending
Aorta (AA), Proximal Descending aorta (PD), Medial Descending aorta (MD),
Distal Descending aorta (DD), Brachiocephalic Trunk (BT), Carotid Artery
(CA) and Femoral Artery (FA).

Figure 1: Arterial tree of a sheep. Experimental data are collected from eleven
sheep at the following seven locations: Ascending Aorta (AA), Proximal De-
scending aorta (PD), Medial Descending aorta (MD), Distal Descending aorta
(DD), Brachiocephalic Trunk (BT), Carotid Artery (CA) and Femoral Artery
(FA). There are three virtual arteries (VA), which are indicated by dashed lines,
to model the side branches when pulse waves are simulated. Parameters for all
the arteries are shown in Table 1.

We note that experimental data was acquired from blood vessels that are
extracted from their surrounding tissue and this modifies the the experimental
”pressure-radius” function we will use to do the optimization process. Others
factors modifying this relation are listed in [14] where it was shown that arterial
wall viscosity and elasticity were influenced by adventitia removal in in-vivo
studies, possibly by a smooth muscle-dependent mechanism.

2.2 Non linear wall model and evaluation of the parame-
ters

In a linear approach for an isotropic, incompressible and homogeneous arterial
wall with a thickness h and radius R the thin cylinder theory stands that the
the stress σ and the linearized strain ε = R−R0

R0
follow the equation

σ =
E

(1− η2)
ε (1)

where E is the Young’s modulus, R0 the unstressed radius and η is the Poisson
ratio (0.5 for incompressible materials). Also the transmural pressure P − Pext
is related to the stress σ by the equation

σ =
R(P − Pext)

h
. (2)
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The reader can refer to [15] for details. Conform to the experimental setup we
set the external pressure to zero and we have

(1− η2)
R

h
P = Eε (3)

the equation linking the pressure P to the strain ε. Adding to the right hand
side a viscoelastic term φε̇ where φ is the coefficient modeling the wall viscosity
we retrieve a classic Kelvin-Voigt model. We can build a more general nonlinear
wall model by developing ε and ε̇ asymptotically to second order, we then find

(1− η2)
R

h
P = Eε+ ENLε

2 + φ0ε̇+ φNLε̇
2 (4)

where the subscript NL stand for nonlinear and where we have ENL << E.
We will show in the Results section that the nonlinear term in ε2 does not

play an important role in the pressure dynamics. In fact the experimental data
are in regions of small ε therefore ε2 << ε and the therm ENLε

2 is negligible.
Re-arranging the equation (4) and recalling that ENL = 0 we get the fol-

lowing relationship connecting the pressure P to the radius R,

P =
Eh

(1− η2)R0
− Eh

(1− η2)

1

R
+

φ0h

(1− η2)R0

dR

Rdt
+

φNLh

(1− η2)R2
0

1

R

(
dR

dt

)2

. (5)

The pressure P is a linear combination of the quantities 1/R, (dR)/(Rdt),

and 1
R

(
dR
dt

)2
. Therefore we estimated the coefficients of the equation by a

linear regression method. Written in matrix form, the problem is P (t) =

MC, where M is a N × 4 matrix [(1, ..., 1)T , 1/R, dR/(Rdt), 1
R

(
dR
dt

)2
], with

N the number of experimental data points, C the 4 × 1 coefficient vector
[Eh/((1−η2)R0),−Eh/(1−η2), φ0h/((1−η2)R0), φNLh/(1−η2)]T . The objec-

tive cost function is J(C) = 1
N

√∑N
i ((Pmodel)i − Pi)2), with Pmodel the pressure

predicted by the model. We assume that the columns of the data matrix are
independent in the linear space and that the errors of the measurement data are
independent and identically distributed. According to the theory of the least
square method the optimal value of C is (MTM)−1MTP .

In the data matrix, we evaluated the derivative of R by a spectral numerical
method. Given a times series R(t) with a period T which is expanded in Fourier

series R =
∑∞
k=−∞ R̂(k)e

2πi
T kt, where R̂ is R̂(k) = 1

T

∫ T
t=0

R(t)e−
2πi
T ktdt. For the

derivative, one has

dR

dt
=

∞∑
k=−∞

R̂
2πi

T
ke

2πi
T kt.

In the computation, we take advantage of the Discrete Fourier Transform
(DFT). The experimental measurements are filtered out through a loop in the
calculation. The pseudo-code is:

• Step 1: Evaluate the DFT of R (assume N as an even number without

loss of generality) R̂k = 1
N

∑N
2

n=−N2 +1
Rn · e−

2πi
N nk, k = −N2 + 1...N2 .
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• Step 2: ||R̂k|| represents the amplitude of the k-th wave. To filter out the
high frequency experimental noise, we impose a criterion γ such that if
||R̂k|| < γ, R̂k is set to 0. The value of γ will be optimized by minimizing
the cost function through the loop.

• Step 3: Multiply R̂k by 2πki
T to get D̂Rk

• Step 4: Evaluate the inverse DFT of D̂R
(
dR
dt

)
k

=
∑N

2

k=−N2 +1
D̂Re

2πi
N nk

• Step 5: Solve the least square problem and evaluate the objective function,
J(C).

• Step 6: Change γ and return back to Step 2 until the value of the objective
function stops decreasing.

The thickness h and the unstressed radius R0 are directly measured. From the
optimization process we computed the Young’s modulus E and the viscosity
coefficients φ and φNL as well as the unsteady radius R0 again. We will show
the measured and optimized values of R0 are equivalent.

We note we have performed the optimization process for a given imposed
physiological frequency given by the Jarvik device, but we know that the model
parameters depend on the frequency. Therefore we are supposing that the model
(both linear or nonlinear) is valid for all frequencies, and this is a strong hy-
pothesis when we use only one imposed frequency. To confirm that hypothesis
we will need to design an optimization process for large band frequencies and
show the optimal parameters are independent of the input frequency. Finally,
once the optimal coefficients found we can introduce them into the numerical
model to study the wave propagation in the network.

2.3 Simulation of pulse waves with the 1D model

For blood flow in arteries, denoting the circular cross-sectional area by A, the
flow rate by Q and the internal pressure by P , the conservation of mass and
balance of momentum follow two partial differential equations (PDEs):

∂A

∂t
+
∂Q

∂x
= 0, (6)

∂Q

∂t
+

∂

∂x

(
Q2

A

)
+
A

ρ

∂P

∂x
= −Cf

Q

A
, (7)

where x is the axial distance and t is the time. The blood density ρ is here
constant, and Cf is the skin friction coefficient which depends on the shape of
the velocity profile. In general, the profile depends on the Womersley number,
R
√
ω/ν, with ω the angular frequency of the pulse wave and ν the kinematic

viscosity of the fluid. In practice, Cf usually takes an empirical value fitted
from experimental observations. In this study, we assume Cf = 22πν as fitted
for the blood flow in large vessels with a Womersley number of about 10 [16].
To close the system of equation we need a constitutive equation for the pressure
P , the equation (5), is then written

P = Pext + β(
√
A−

√
A0) + νs

∂A

∂t
+ νNL

(
∂A

∂t

)2

, (8)
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with

β =

√
πEh

(1− η2)A0
, νs =

√
πφ0h

2(1− η2)A
√
A0

νNL =
1

4

φNLh

(1− η2)

π1/2

A3/2A0

the elastic and viscoelastic coefficients. Those are the governing equations for
the blood flow in one segment.

In the numerical simulations we preserved the conservation of mass and
static pressure at the confluence points between segments. We neglected the
energy loss due to the variation of geometry. We impose a flow rate as input
condition at the inlet of the network (Ascending Aorta). The flow rate is a cyclic
half sinusoidal function in time of a period of 0.5 s.; the simples one having the
right signal characteristic in terms of physiological amplitude and frequency. A
more physiologic waveform shape does not change significantly the numerical
results, which are primarily affected by the confluence reflexions and terminal
resistances. At each outlet, we imposed an identical small reflection coefficient
Rt = 0.3.

We solved the governing equations numerically using a finite volume ap-
proach by a Monotonic Upstream Scheme for Conservation Laws (MUSCL).
The code has been favorably validated with analytic results and experimental
data, see [17, 18].

3 Results and discussion

3.1 Parameters of the arterial wall

Before the complete presentation of the nonlinear Kelvin-Voigt model optimiza-
tion results we discuss the differences in predictions when using a classical linear
model and the relative importance of the nonlinear term in ε2.

Figure 2: Pressure-radius loop of Ascending Aorta : Experimental data and
prediction of (left) linear Kelvin-Voigt model and (right) nonlinear Kelvin-Voigt
model.

The Figure 2 presents in the Ascending Aorta the prediction of the linear
model (ENL and φNL set to zero) and the nonlinear Kelvin-Voigt model pro-
posed

(1− η2)
R

h
P = Eε+ φ0ε̇+ φNLε̇

2. (9)
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The linear model fits poorly the curvature observed in the experimental data
(Figure 2 (left)), and is equivalent to the Valdez-Jasso et al. [11] optimization
analysis that adopts a stress relaxation constant as an extra parameter into a
linear Kelvin-Voigt model. On the contrary the nonlinear prediction (Figure 2
(right)) properly follows the experimental data. We note that linear and non-
linear optimal parameters for (E, φ0) computed independently are very similar :
linear (1.475 MPa, 26.156 KPa ·s) and nonlinear (1.539 MPa, 25.451 KPa ·s).

From the experimental data of Figure 2 we can evaluate the order of mag-
nitude of ε which is around 1.5/10, therefore the nonlinear term scales as
ε2 ∼ 2 10−2. As the ratio ENL

E is around 10−2 as shown by the numerical
results gathered from the optimization process with the nonlinear parameter
ENL, the linear term scales as Eε and the nonlinear one as 10−3Eε. The nu-
merical predictions using the nonlinear term ENL confirm that this nonlinear
term as small influence and can be neglected as already advanced in [8].

Over the subsequent optimizations we used the nonlinear Kelvin-Voigt model
(equation 9). As stated in the introduction there are other models for the vis-
coelasticity (see e.g. [19, 4, 8, 20]). Fung’s quasilinear model is more generalized
than the spring-dashpot models, but its incorporation in 1D fluid models is
complex, thus it is only applicable to limited formulations (e.g. linearized 1D
model [4, 8]).

The results presented in Figure 3 from the upper left side to the bottom
right side (Proximal Descending Aorta, Medial Descending Aorta, Distal De-
scending Aorta, Brachiocephalic Trunk, Carotid Artery, and Femoral Artery)
show that this model captures the wall viscosity and the nonlinearity of the
pressure-radius loop. As stated above, Valdez-Jasso et al. [11] already tested
the Kelvin model modeling two stress relaxation constants and their results are
close to the linear Kelvin-Voigt model. Their sensitivity analysis shows that
the model prediction depends least on this constant among all the parameters,
thus even though the Kelvin-Voigt does not include this constant the validity
is hardly influenced. Moreover, in contrast to nonlinear optimization methods
that estimate the model parameters in [11], we use the linear regression method
which is fast and the global optimization is readily guaranteed.

Figure 3 shows the hysteresis in the pressure-radius loop for six arteries
(the seventh, the Ascending Aorta is in Figure 2). The agreement between the
experimental measurements and the model predictions shows that the nonlinear
Kelvin-Voigt model captures the wall viscosity everywhere. We remark that
among the seven arteries, the brachiocephalic trunk has the largest nonlinearity
(Figure 3 center and left).

At the aorta, the nonlinearity decreases from the proximal part to the distal
end. Finally at the peripheral arteries, represented by carotid artery and femoral
artery, the nonlinearity is negligible.

We present the unstressed ratio R0 with error bars in Figure 4 and the mean
values are [Ascending Aorta, Proximal Descending Aorta, Medial Descend-
ing Aorta, Distal Descending Aorta, Brachiocephalic Trunk, Carotid Artery,
Femoral Artery] = [0.9489, 0.8809, 0.8554, 0.8286, 0.9002, 0.4069, 0.2826]. These
values compare extremely well the experimentally measured ones [0.9360, 0.8600, 0.8500, 0.8250, 0.8900,
0.4060, 0.2810] (crosses in Figure). The experimental measurements of neutral
vessel radius are only possible in in vitro experiments but impossible in an in
vivo analysis, this is the reason we chose to estimate the values of the radius R0

in numerical simulations. Since the nonlinear Kelvin-Voigt model predicts the
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Figure 3: Experimental data and the fitted nonlinear Kelvin-Voigt model. Pa-
rameter values are in Table1.

actual values (within the error bars), that suggests that this approach could be
used in an in vivo situation.

Figure 5 (left) shows the Young’s modulus for the seven arteries and these
results have to be compared to those of the linear viscoelastic modulus φ in
Figure 5 (right). Both predicted values follow the same behavior. By examin-
ing the parameter values among the different arteries, we can see that smaller
arteries tend to be stiffer, as pointed out by previous studies [20, 11]. We note
that running the optimal process for the linear model we found similar values
of E and φ0, this implies that these parameters are unaffected by the nonlinear
coefficient and suggests that at the first order they have a physical meaning.

We analyzed the relation between the Young’s modulus and the viscoelastic
coefficient by defining a characteristic time φ0

E . The Figure 6 presents the values
for the seven arteries: an important observation is that these values seem to be
constant.
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Figure 4: Optimal unstressed radius R0, predicted and measured for the
seven arteries (Ascending Aorta, Proximal Descending Aorta, Medial Descend-
ing Aorta, Distal Descending Aorta, Brachiocephalic Trunk, Carotid Artery,
Femoral Artery)

Figure 5: Mean values of the reference Young’s modulus E (left), and viscosity
coefficient φ0 (right) with standard deviations among the group of sheep at the
seven locations of the arterial network.

We want to stress in this study the importance that the ratio between φ0
and E is constant and the impact this has on high frequencies components of
the pulse waves. From the linear Kelvin-Voigt equation (9), with φNL = 0, the

magnitude of the complex modulus is |G| = E

√
1 +

(
tr
tf

)2
, where tr = φ0/E the

viscoelastic relaxation time and tf = 1/ω is the typical forcing time. The linear

model also gives the phase shift as δ = arctan
(
tr
tf

)
. Therefore for a imposed

pressure perturbation on a viscoelastic arterial wall, the wall will come back
to its equilibrium state but with a phase lag characterized by the viscoelastic
relaxation time. Figure 6 shows that the viscoelastic relaxation time seems
to be a biological constant. It is then evident that for high values of ω the

pressure perturbations vanish as long as arctan
(
tr
tf

)
→ π/2. The pressure

perturbation and the wall response will be in phase opposition. This indicates
that higher frequency of the waves will lead to stronger damping effect of the
wall viscosity. Since the wavefronts are more steepened toward the peripheral
part of the arterial tree due to the advection effect of blood flow, the damping
effect is more significant in this part. Damping effect is maybe a protective
factor of the micro-circulatory system.
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Figure 6: Relaxation time φ0/E with standard deviations at the seven locations
of the arterial network.

In a stiffer vascular network, pulsatile energy at high frequency tends to be
damped in micro-circulation, especially in the brain and kidney [21]. The arte-
rial wall is mainly composed of elastin and muscular fibers and this composition
varies throughout the whole network, from the aorta to the peripheral arteries.
The elastin is more related with the elasticity modulus and the muscular fibers
to the viscoelasticity. The smaller arteries usually have more muscular fibers
than large arteries, and this may also be explained by the need of a stronger
damping factor of pulsations right before the micro-circulations.

Finally the mean values of the ratio φNL
φ are for Ascending Aorta, Proximal

Descending Aorta, Medial Descending Aorta, Distal Descending Aorta, Brachio-
cephalic Trunk, Carotid Artery, and Femoral Artery] equalt to [−0.915,−0.999,
− 0.888,−0.975,−1.380, 0.524,−0.395].

3.2 Pulse waves

We propose a 1D numerical model to put forward the differences between an
elastic and a viscoelastic wall model. We set the nonlinear viscoelastic coefficient
φNL to zero for simplicity. Preliminary simulations show that the behavior is
similar and not particular shape or pattern was found. The nonlinear term
could play a role in a transient state in large networks.

We use the mean values coming from the optimization process. Table 1
shows the parameters of the simulated arterial tree where the length L of each
artery is estimated from data in literature [15].

To model the terminal branches of the aorta, we added three virtual arteries
at the ends of Proximal Descending, Medial Descending and Distal Descending
aorta respectively (see Figure 1). We have determined the radius of the virtual
arteries by Murray’s law and we have calculated their elasticity using a well-
matched condition which is essentially no reflections at the bifurcations.

At the inlet of the network (Ascending Aorta), the flow rate is a cyclic
half sinusoidal function in time with a period of 0.5 s and the peak value is
Qmax = 55cm3.s−1. As long as the pressure waves travel in the network, high
frequency components appear in the signal due to reflexions and the branching
points and because the vessel segments are short, geometrically reducing the
wavelength of the pulse waves.

Figure 7 presents the simulated results of flow rate at two different represen-
tative locations: Medial Descending Aorta (left) en Carotid Artery (right) for
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L R0 h E φ0
Artery (cm) (cm) (mm) (MPa) (kPa·s)

AA 4 0.948 0.38 1.539 25.451
PD 10 0.880 0.91 0.842 12.746
MD 10 0.855 1.26 0.617 11.651
DD 15 0.828 1.10 1.427 24.514
BT 4 0.900 1.06 0.683 12.048
CA 15 0.406 0.78 4.142 77.082
FA 10 0.282 0.31 2.260 43.426

VA1 20 0.384 0.50 4.121 10.000
VA2 20 0.387 0.50 0.237 10.000
VA3 20 0.817 0.50 3.636 10.000

Table 1: Parameters of the simulated arterial tree. The length L is from liter-
ature and the thickness h is directly measured. From the optimization process
we computed the Young’s modulus E and the viscosity coefficients φ0 and the
neutral radius R0.
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Figure 7: Time series of low rate at Medial Descending Aorta (left) and Carotid
Artery (right). The viscoelastic model predicts a smoother waveform than the
elastic model.

peripheral arteries. The elastic wall model shows high frequency components,
specially on the Carotid Artery. With the viscoelastic wall model we observe on
the contrary that the high frequency components of the waveform are damped.

Previous numerical studies [4, 7, 6, 8, 3] have shown the significant damping
effect of wall viscosity on the pulse waves but limited by the lack of exactitude
of the values of the model parameters, especially for the viscoelasticity of the
arterial network. In our numerical simulations we use estimates of the viscoelas-
ticity by evaluating the pressure-diameter relationship from a dataset of direct
measurements on arterial network of sheep.

One of majors the drawbacks of numerical simulation on extended networks
is the impossibility of computing the viscoelastic coefficients directly from ex-
perimental data. On the contrary the Young’s modulus is well known and a
large literature exists. If we work with the hypothesis that the ratio between
the Young’s modulus is almost constant we will able to build networks using
accessible information.
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4 Conclusion

We estimated the viscoelasticity of the arterial network of a sheep by evaluat-
ing the pressure-diameter relationship with a dataset of direct measurements.
Good agreements between a proposed nonlinear Kelvin-Voigt model and mea-
surements were achieved through a linear regression method. The obtained
parameter values were used in a 1D blood flow model to simulate the pulse
waves in the arterial network. We have shown the damping effect of the wall
viscosity on the high frequency waves, especially at the peripheral arteries. We
explained it by the nearly constant value of the viscoelastic relaxation time,
defined by the ratio between the viscosity coefficient and the Young’s modulus.
The optimal values of the ratio φNL

φ seems to be constant in five of the seven ar-
teries, we plan for a future work to study the impact of the nonlinear coefficient
φNL in large networks.
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Armentano, R., 2006. “Adventitia-dependent mechanical properties of bra-
chiocephalic ovine arteries in in vivo and in vitro studies”. Acta Physiolog-
ica, 188(2), pp. 103–111.

[15] Fung, Y., 1997. Biomechanics: circulation. Springer Verlag, New York,
US.

[16] Smith, N., Pullan, A., and Hunter, P., 2002. “An anatomically based model
of transient coronary blood flow in the heart”. SIAM Journal on Applied
mathematics, 62(3), pp. 990–1018.

[17] Wang, X., Delestre, O., Fullana, J.-M., Saito, M., Ikenaga, Y., Matsukawa,
M., and Lagrée, P.-Y., 2012. “Comparing different numerical methods for
solving arterial 1d flows in networks”. Computer Methods in Biomechanics
and Biomedical Engineering, 15(sup1), pp. 61–62.

[18] Wang, X., Fullana, J.-M., and Lagrée, P.-Y., 2015. “Verification and com-
parison of four numerical schemes for a 1d viscoelastic blood flow model”.
Computer Methods in Biomechanics and Biomedical Engineering, 18(15),
pp. 1704–1725.

[19] Bessems, D., Giannopapa, C., Rutten, M., and van de Vosse, F., 2008. “Ex-
perimental validation of a time-domain-based wave propagation model of
blood flow in viscoelastic vessels”. Journal of biomechanics, 41(2), pp. 284–
291.
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