
HAL Id: hal-01350646
https://hal.sorbonne-universite.fr/hal-01350646v1

Submitted on 1 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Static analysis by abstract interpretation of functional
properties of device drivers in TinyOS

Abdelraouf Ouadjaout, Antoine Miné, Noureddine Lasla, Nadjib Badache

To cite this version:
Abdelraouf Ouadjaout, Antoine Miné, Noureddine Lasla, Nadjib Badache. Static analysis by abstract
interpretation of functional properties of device drivers in TinyOS. Journal of Systems and Software,
2016, 120, pp.114–132. �10.1016/j.jss.2016.07.030�. �hal-01350646�

https://hal.sorbonne-universite.fr/hal-01350646v1
https://hal.archives-ouvertes.fr

Static Analysis by Abstract Interpretation of Functional Properties of Device
Drivers in TinyOS

Abdelraouf Ouadjaouta,b,c,d,∗, Antoine Minéc,d, Noureddine Laslaa,b, Nadjib Badachea,b

aCERIST Research Center, Algiers, Algeria
bUSTHB University, Algiers, Algeria

cÉcole Normale Supérieure, Paris, France
dUniversity Pierre and Marie Curie, LIP6, Paris, France

Abstract

In this paper, we present a static analysis by Abstract Interpretation of device drivers developed in the TinyOS operating
system, which is considered as the de facto system in wireless sensor networks. We focus on verifying user-defined func-
tional properties describing safety rules that programs should obey in order to interact correctly with the hardware. Our
analysis is sound by construction and can prove that all possible execution paths follow the correct interaction patterns
specified by the functional property. The soundness of the analysis is justified with respect to a preemptive execution
model where interrupts can occur during execution depending on the configuration of specific hardware registers. The
proposed solution performs a modular analysis that analyzes every interrupt independently and aggregates their results
to over-approximate the effect of preemption. By doing so, we avoid reanalyzing interrupts in every context where they
are enabled which improves considerably the scalability of the solution. A number of partitioning techniques are also
presented in order to track precisely some crucial information, such as the hardware state and the tasks queue. We
have performed several experiments on real-world TinyOS device drivers of the ATmega128 MCU and promising results
demonstrate the effectiveness of our analysis.

Keywords: Static analysis, abstract interpretation, wireless sensor networks, device drivers.

1. Introduction

Wireless sensor networks are autonomous systems com-
posed of a set of tiny embedded nodes with limited com-
putational power that can communicate with each other
using short range wireless transmissions. Using distributed
routing algorithms, these systems are able to establish a
multihop network in order to cover large geographic ar-
eas. The main aim of this technology is to remotely
monitor (possibly harsh) environments by equipping nodes
with specific sensors and propagating their measurements
through the ad hoc network towards the end-users. Wire-
less sensor networks have gained great popularity due to
their wide variety of applications (such as habitat and
health monitoring, smart cities, etc) and are considered
as a key enabler of the future Internet of Things (Atzori
et al. (2010)).

The correct operation of these systems relies on the ro-
bustness of the programs controlling the nodes. These
programs are composed of a hierarchy of software com-
ponents with different roles as depicted in Fig. 1. As we

∗Corresponding author
Email addresses: aouadjaout@cerist.dz (Abdelraouf

Ouadjaout), antoine.mine@lip6.fr (Antoine Miné),
nlasla@cerist.dz (Noureddine Lasla), badache@cerist.dz (Nadjib
Badache)

can see from this architecture, device drivers play a central
role among the other components. For instance, the ker-
nel relies on device drivers in order to manage the power
of the MCU (Microcontroller Unit) and configure the in-
terrupt masks. The networking protocols interact heavily
with the device drivers in order to exchange packets with
other nodes through the wireless transceiver and retrieve
the signal quality of communication links. Finally, device
drivers offer to user applications the access to sensor read-
ings in addition to other hardware components such as
EEPROM chips for external data storage.

Therefore, it is vital to verify the reliability of device
drivers since a single software error may affect the op-
eration of the entire network as all the sensors run the
same software. We can divide these failures into two
categories depending on the semantic layer of the error.
On the one hand, the driver can crash due to a generic
language error by violating the specifications of the pro-
gramming language, such as out-of-bounds array access
and null pointer dereferences. This type of errors has
been tackled by most existing driver verification solutions
(such as Regehr (2005); Brauer et al. (2010); Bucur and
Kwiatkowska (2011); Kroening et al. (2015)). On the other
hand, logic errors are related to the way the driver and
its device interact. They occur when this communica-
tion transgresses the manufacturer’s rules that specify how

Preprint submitted to Journal of Systems and Software July 26, 2016

MCU

Radio Sensors

Device drivers

Kernel

Networking

User apps

Software

Hardware

Figure 1: Simplified software architecture of a typical sensor pro-
gram.

to correctly access the hardware functionalities. Existing
tools offer developers the possibility to instrument their
source code with assertions in order to track the proper
evolution of their driver. However, these assertions should
be inserted manually and may require modifications if the
program is changed. In addition, assertions about program
variables and hardware registers may not be appropriate
to easily express some requirements such as complex tem-
poral properties (i.e., an ordering of actions to perform).

Additionally, a major challenge hampering the verifica-
tion of device drivers is concurrency that induces generally
a dramatically large space of possible execution paths that
computers can not represent nor manipulate. We can find
two distinct forms of concurrency in wireless sensor sys-
tems. Interrupts are the main source of concurrency and
can lead to complex execution traces and unexpected sit-
uations not considered during design time since they can
preempt the execution of the program at any moment.
The second concurrency form is related to hardware oper-
ations that can be performed in parallel to the execution
of the program. For example, the MCU contains several
sub-systems that can answer the program’s requests in an
asynchronous way without suspending its execution. Gen-
erally, the hardware manufacturer provides specific guide-
lines for driver developers to track the concurrent evolution
of the hardware state. Existing verification tools consider
only the first form of concurrency and are therefore inad-
equate to analyze effectively the behavior of the driver in
the presence of these asynchronous hardware operations.

In this paper, we propose a static analysis for verifying
the absence of logic errors in device drivers by considering
all possible execution paths emerging from both forms of
concurrency. Our analysis is tailored for programs running
the TinyOS operating system (Levis et al. (2004)), which is
the most popular system for this technology. The analysis
is performed statically, which means that it is executed at
compile time in order to ensure that the program is correct
before deploying it. In order to find the logic errors, we

require the developer to provide a functional property – ex-
pressed as a special type of register automata (Kaminski
and Francez (1994)) – that specifies the pattern of cor-
rect hardware interactions for performing a particular ac-
tion, along with forbidden hardware states that should be
avoided. The property is tied to the hardware specifica-
tion, not to the driver, hence it can be reused without
modification to analyze different versions of a driver, or
even completely different implementations of it, which we
illustrate in our experimental results. In this work, we ex-
emplify the applicability of our approach on several drivers
of the ATmega128 MCU found in many popular sensor
platforms such as MicaZ and Waspmote. Nevertheless, the
analysis is not restricted to this hardware platform and can
be easily extended to other low-power architectures, such
as MSP430 or ARM Cortex M0.

The analysis is developed within the theory of Abstract
Interpretation (Cousot and Cousot (1977)), a general
and successful formal framework for constructing sound
approximations of undecidable (or too costly) problems
about the semantics of large programs (Blanchet et al.
(2002); Cousot et al. (2005)). Our analysis computes a
conservative over-approximation of the reachable states of
the system (including program variable values and hard-
ware state) for all possible executions. No behavior, in
particular, no hardware error is omitted, which makes
our analysis sound by construction and able to certify
the correctness of the driver w.r.t. to the specification.
Our approach can suffer however from false alarms due to
the over-approximations necessary to scale up. Note that
other state-of-the-art formal analyzers of interrupt-based
programs are generally based on bounded model checking
techniques that are less vulnerable to the problem of false
alarms, but can not provide guarantee about entire search
space coverage and thus can suffer from ”false negative”
(i.e., missing actual bugs), which makes them more ade-
quate to bug finding than certification. That being said,
in practice, our analysis can achieve a high precision level
thanks to carefully constructing designed abstractions ad-
equate to driver verification and TinyOS semantics.

The remaining of the paper is organized as follows. Sec-
tion 2 provides a description of TinyOS and how the dif-
ferent software components are orchestrated during exe-
cution. An example of a TinyOS driver is discussed in
Section 3, where we show also how we express a hard-
ware functional property related to this driver. Section
4 provides a short introduction to the theory of Abstract
Interpretation. The details of our analysis are provided
in Sections 6 and 7. To simplify the presentation of our
abstract interpreter, we proceed in two steps. First, we
present in Section 6 a restricted version of our analysis
limited to sequential executions where interrupt preemp-
tion is not supported. This simplification will allow us
to focus on the needed abstraction techniques for deal-
ing with the hardware state and TinyOS scheduler. After
that, we extend this techniques in Section 7 in order to
handle arbitrary interrupts preemption during execution.

2

Experimental results of the analysis of real-world drivers
are presented in Section 8. We discuss in Section 9 the
related work and we end the paper in Section 10 by a con-
clusion.

2. TinyOS

TinyOS is an event-based operating system developed
by Levis et al. (2004) for low-power wireless sensor nodes.
Thanks to its small memory footprint, TinyOS can run
on tiny constrained MCUs that have 2–10 KB of SRAM
and 32–128 KB of flash memory. It supports a variety of
hardware platforms with built-in device drivers, network-
ing protocols, security mechanisms, etc. TinyOS programs
are written in the nesC language (Gay et al. (2003)), a di-
alect of C that offers a modular programming paradigm
for flexible organization of software components. During
compilation, nesC programs are translated into equivalent
C programs using the ncc compiler.

TinyOS programs are driven by a two-level preemption
system with the concepts of interrupts and tasks. Inter-
rupts represent the high priority preemption level. They
play an important role in designing power-efficient pro-
grams and are used to free up the MCU from actively
waiting for the occurrence of a particular event. During
these waiting periods, the microcontroller can either enter
various sleep modes to save energy or execute other wait-
ing functions to save time. Tasks are a special feature of
nesC that provides this concept of waiting functions. This
mechanism allows postponing the execution of a function
in order to let other tasks execute. That is, when a task
is posted, the TinyOS scheduler puts it in a task queue
and the execution of the current function is resumed. The
scheduler, at specific moments, checks its task queue in
order to consume the posted tasks. Tasks run at low pri-
ority and can not preempt each other, while interrupts can
preempt the execution of tasks or other interrupts.

To explain further this execution model, we show in
Fig. 2 the different steps of a TinyOS program lifecy-
cle. These steps can be divided into two main phases: the
initialization phase and the infinite loop. The initializa-
tion phase is responsible for bootstrapping the different
software components. At the beginning, the kernel and
the device drivers are initialized. These steps are executed
without enabling interrupts so the system is started in a
controlled manner. After that, the TinyOS kernel con-
sumes the tasks that have been posted by device drivers
and terminates the initialization phase by starting the user
applications. This final step is executed with interrupts
being enabled because some drivers rely on interrupts for
proper operation.

The second phase is the infinite loop that constitutes the
most important proportion of the program’s lifetime. This
phase begins by consuming the previously posted tasks.
When the tasks queue becomes empty, the MCU can en-
ter the sleep mode in order to save energy while waiting
for interrupts. After the occurrence of an interrupt, the

Kernel init

Drivers init

Is queue
empty?

Dequeue a task
and execute it

Apps init

Is queue
empty?

Dequeue a task
and execute it

Sleep

vector 1

vector 2

⋮

vector n

Interrupts

no

yes

no

yes

Interrupt-disabled block

Interrupt-enabled block

Interrupt trigger

Figure 2: The execution model of a TinyOS program.

MCU executes its corresponding handler function. The
particular sequence tasks-sleep-interrupts forms the body
of the infinite loop which is repeated indefinitely until the
shutdown of the system. It is important to note that in-
terrupts do not occur only during sleep periods, but they
can preempt the execution of the program in every control
location when specific conditions on some hardware reg-
isters are met, which will be discussed in more details in
Section 7.

3. TinyOS Device Drivers

At the core of the TinyOS operating system, we find
a rich library of device drivers for many microcontrollers,
transceivers, sensing boards, etc. These programs should
encapsulate the required sequences of low-level hardware
manipulations to activate the requested functionalities.
The specifications of these sequences are generally de-
scribed in data-sheets provided by the manufacturer of the
hardware. It is vital to ensure that these functional prop-
erties are always preserved during runtime.

In this work, we choose to express these properties as
a type of register automata, which we call an Abstract
Device Property (ADP for short), that takes into account
the semantics of low-level hardware interactions. An ADP
is composed of a finite set of hardware states that corre-
sponds to an abstract discretization of the hardware be-
haviors at specific moments. The dynamics between these
states is modeled by a set of transitions that react to the
occurrence of special low-level events. We can distinguish
between four types of events:

Register access events. Given the set of hardware reg-
isters R, the events {X◇ ∣ X ∈ R,◇ ∈ {r,w}} decorate
transitions that model the reaction of the device when
its registers are accessed by read/write statements is-
sued by the program.

3

Asynchronous events. Hardware concurrency is an im-
portant concept in driver development. Many opera-
tions of the MCU sub-systems are performed indepen-
dently from the program execution flow. A transition
decorated with an asynchronous event, that we de-
note by α, allows us to model the evolution of these
concurrent hardware operations.

Interrupt events. Given the set of interrupts I, the
events {inti ∣ i ∈ I} allow the ADP to model the situa-
tions where an interrupt can occur. When a transition
t is decorated with an event inti, the execution of the
interrupt handler and the transition t are performed
in a synchronous way.

Sleep event. When the TinyOS kernel terminates the ex-
ecution of all posted tasks, it configures the MCU
to suspend its execution waiting for interrupts. This
switching between the active and inactive mode of op-
eration is tracked by the special event sleep.

In addition to the occurrence of an event, each transi-
tion is decorated with a guard, represented as a boolean
expression involving hardware registers as variables, that
expresses a necessary condition for performing the transi-
tion. When both event and guard are satisfied, the ADP
can move to the next state after updating the values of
its registers using the action assignment that labels the
transition.

Example 1. Let us take the example of the driver of
CC2420, which is a low-power wireless transceiver widely
used in sensor motes. It implements the IEEE 802.15.4
standard and can be controlled via a SPI serial bus1. The
specifications of the ATmega128 (Atmel (2011)) stipulate
many rules to establish a correct SPI data exchange. Let
us take the example of two major rules:

• No byte can be sent by the master if the bits MSTR and
SPE are not set in the control register SPCR.

• To exchange data over the bus, the master must write
into the SPDR data register. The transfer is handled by
the MCU in an asynchronous way and therefore, the
master must wait until the termination of the opera-
tion. To do so, it should continuously poll the status
flag SPIF in the SPSR status register, which will be
cleared by the MCU at the end of the transfer.

Fig. 3 shows the ADP ASPI-TX for the previous two SPI
rules. We symbolize a transition as an arrow decorated
with three fields (e, g, a) representing respectively the
event, the guard and the action. Initially, the automaton
is put in OFF state where data transfer is not allowed. The
forbidden data transfer is modeled by a transition to the
special state BUG decorated with the write event SPDRw and

1SPI (Serial Peripheral Interface) is a serial protocol for byte
exchange between devices on a shared electronic bus.

OFF MSTR DONE

BUG BUSY

e:SPDRw

g:!(SPCR&(1<<SPE))

e:SPCRw

g:(SPCR&(1<<SPE)&&
SPCR&(1<<MSTR))

e:SPCRw

g:!(SPCR&(1<<SPE))||
!(SPCR&(1<<MSTR))

e:SPDRw

e:SPDRw

e:α
a:SPSR|=(1<<SPIF)

e:SPDRr

a:SPSR
&=~(1<<SPIF)

Figure 3: The abstract device property ASPI-TX modeling a correct
SPI transfer for the ATmega128 microcontroller.

guarded by the condition !(SPCR&(1<<SPE)) which means
that the forbidden write operation is performed when the
bus is not enabled. When the program modifies the SPE

and MSTR bits in the control register SPCR, the automaton
enters the MSTR state. Putting data in the register SPDR

starts the SPI communication and the bus becomes BUSY.
During this state, no other communication can take place.
The termination of the transfer is modeled with the asyn-
chronous event α that can occur at any moment during
the subsequent program execution. When this event oc-
curs, the flag SPIF in the status register SPSR is set in
order to notify the program. The latter should access the
data register SPDR, to read the byte sent by the slave for
example, which clears the SPIF bit and moves the ADP to
MSTR state.

In Figures 4(a) and 4(b), we illustrate two driver imple-
mentations for our example functional property. The first
implementation is relatively straightforward and performs
an active polling on the status flag SPIF until termination
of every byte transfer. The second implementation is more
involved and exploits the tasks mechanism in order to let
the scheduler execute other tasks while waiting for the end
of the transfer of bytes. This driver works as follows: it
starts by enabling the SPI sub-system before posting the
tx task. The latter checks if the number of sent bytes is
still less then the number of bytes to send. In this case,
the next byte is written into the register SPDR and the task
check is posted. This task verifies the status of the SPIF

bit: if the bit indicates the end of the transfer, the tx task
is posted again to send the next byte, otherwise the check

task posts itself to continue the polling mechanism. When
the last byte is sent, the task end is posted that turns-off
the SPI sub-system. The advantage of such a procedure
is that the scheduler takes control of the execution flow
when the SPI is busy, which is not the case for the first
implementation.

These two illustrative examples demonstrate the fact
that a same functional property can be implemented with
different manners and complexities. Consequently, it is
necessary to analyze the semantics of these implementa-
tions by considering the dynamic behaviors of the pro-

4

1 void send_spi
2 (char* data , char len) {
3 char i = 0, tmp;
4 SPCR |= (1 << SPE)
5 | (1 << MSTR);
6 while (i < len) {
7 SPDR = data[i];
8 while (!(SPSR & (1<<SPIF)));
9 tmp = SPDR;

10 i++;
11 }
12 SPCR &= ~(1 << SPE);
13 ...
14 }

(a)

1 void send_spi
2 (char* data , char len) {
3 m_data = data;
4 m_len = len;
5 i = 0;
6 post tx();
7 SPCR |= (1 << SPE)
8 | (1 << MSTR);
9 }

10 task void tx() {
11 if (i >= m_len) {
12 post end ();
13 return;
14 }
15 SPDR = m_data[i];
16 post check ();
17 }

18 task void check () {
19 if (SPSR & (1<<SPIF)) {
20 char tmp = SPDR;
21 i++;
22 post tx();
23 } else
24 post check ();
25 }

26 task end() {
27 SPCR &=
28 ~(1 << SPE);
29 ...
30 }

(b)

Figure 4: (a) Simplified driver of an SPI data exchange for the ATmega128 MCU. (b) A more complex implementation involving tasks.

gram, since textual pattern matching would be inefficient
to catch all possible implementations. However, the dy-
namic nature of programs can result in complex behaviors
difficult to inspect manually. In fact, these behaviors are
not computable in general. In this work, we propose to
use the theory of Abstract Interpretation to alleviate this
problem. In the next sections, we give a short introduction
to this theory followed by our formulation of an abstract
interpreter that takes into account, on the one hand, the
specificities of TinyOS, and on the other one, the evolution
of the ADP in reaction to program statements.

4. Abstract Interpretation

Abstract Interpretation is a theory that formalizes the
notion of approximation (Cousot and Cousot (1977)). It
proposes a general framework for (i) handling computable
approximations of (possibly infinite) sets and (ii) building
efficient operators that describe how these approximations
evolve in a dynamic system. Basically, the approximations
represent a correspondence between the concrete (real)
view of the dynamic behaviors and an abstract one that
is more efficient and easier to manipulate by programs. A
cornerstone feature of this theory is its soundness guar-
antee: the properties proven over the abstract view are
also valid for the corresponding concrete elements. Dur-
ing the last decade, the theory of Abstract Interpretation
has been widely adopted and successfully applied for the
static analysis of program semantics by many commercial
tools, such as AbsInt Astrée and MathWorks Polyspace.

To develop an abstract interpreter, we start by defining
the concrete semantics which is a precise mathematical
description of the executions of a program. The concrete
semantics is defined by two notions. First, we need a con-
crete semantic domain D, defined generally as a lattice
⟨D,⊑,⊔,�⟩, that provides a representation of program ex-
ecutions. This representation depends on the class of the
properties of interest that we are analyzing. For example,
if we are interested in performing a reachability analysis,

we need to collect the states of the program that may
be reached during execution, so we define the semantic
domain as ⟨℘(Σ),⊆,∪,∅⟩ where Σ represents the set of
states. The second notion is the concrete transfer func-
tions SJsK ∈ D → D defining the effect of a statement s
over our semantic domain.

However, the concrete semantics is not computable in
general. Therefore, we need to approximate the elements
of D by an abstract semantic domain ⟨D♯,⊑♯,⊔♯,�♯⟩ the
elements of which are more compact and provide a sum-
mary of the elements of D by ignoring some of their details.
This approximation relationship is formalized through a
concretization function γ ∈ D♯ → D.

Example 2. Let us consider a simple example of nu-
merical states Σ = V → Z, where V is the set of vari-
ables. One way of abstracting the concrete semantic do-
main ℘(Σ) is to use the domain of intervals (Cousot and
Cousot (1977)) that keeps track of the upper and lower
bound for every variable. This abstract domain is defined
as D♯ = V → (Z∪{−∞}×Z∪{+∞}) with the concretization
function γ(X) = {λv. n ∣ X(v) = (a, b) ∧ n ∈ [a, b]}. The
domain of intervals is very efficient in terms of memory
and computations since it needs to save only two numbers
for every variable. However, it is not very precise because
it can introduce new values and all the relations between
variables are ignored.

In addition to the abstract domain D♯, we need to define
the abstract transfer functions that over-approximate the
effect of executing the different program statements. For
every possible statement s, we build an abstract transfer
function SJsK♯ ∈ D♯ → D♯ that should preserve the sound-
ness condition: ∀X ∈ D♯ ∶ SJsK ○ γ(X) ⊆ γ ○ SJsK♯(X).

Example 3. When using the interval abstract domain
in analyzing the statement x = x + 1, it is sufficient to
increment the boundaries of the variable x. This can be

5

formally stated as:

SJx = x + 1K♯X ≜
let (a, b) =X(x) in X[x→ (a + 1, b + 1)]

In general, when defining the abstract transfer func-
tions SJ.K♯, we need to consider only the atomic state-
ments, i.e.: assignments x = exp and tests ?exp. The re-
maining compound statements, such as conditionals, are
defined by structural induction over the syntax tree of
the program. For example, when analyzing the statement
if (c) {s1} else {s2}, we analyze the true-branch s1 and
the false-branch s2 independently and we merge the results
before continuing with the following statement. By doing
so, we can build generic analyzers that are parametrized
with abstract domains that define only approximations of
the atomic statements.

The case of loops is, however, more complex as it re-
quires handling a possibly unbounded number of itera-
tions. Indeed, the semantics of a loop while (c) {s} is
to repetitively execute the statement s until the condition
c is not verified, which can be expressed with fixpoint it-
erations as follows:

SJwhile (c) sK♯X =
let X⋆ = lfp λX ′. X ⊔ SJsK♯ ○ SJ?cK♯X ′ in
SJ?!cK♯X⋆

where lfp λX. F (X) represents the least element X⋆ that
satisfies X⋆ = F (X⋆) and can be computed using the
Kleene theorem as supremum of the sequence {Fn(�) ∣ n ∈
N}. In other words, to compute the fixpoint X⋆, we itera-
tively build the sequence Xn+1 =X⊔SJsK♯○SJ?cK♯Xn until
Xn+1 = Xn, where X0 = �♯. The obtained limit X⋆ corre-
sponds to the well-known notion of loop invariant, which
represents a property satisfied at every loop iteration.
However, performing these fixpoint iterations may not ter-
minate in a finite time, which is the case when the lattice of
the abstract domain does not verify the ascending chain
condition. The theory of Abstract Interpretation intro-
duces the notion of a widening operator ▽ ∈ D♯ ×D♯ → D♯,
which is an acceleration technique to over-approximate fix-
point computations. Intuitively, giving the result of two
successive iterations Xi and Xi+1 of the fixpoint computa-
tion, the widening operator ▽(Xi,Xi+1) should be chosen
in order to stabilize the convergence in a finite number of
steps. Formally stated, the abstract transfer function of a
loop with widening acceleration becomes:

SJwhile (c) sK♯(X) =
let X⋆ = lfp λX ′. X ′▽ (X ⊔ SJsK♯ ○ SJ?cK♯X ′) in
SJ?!cK♯X⋆

Example 4. Let us analyze the statement
x = 0; while (x < 10) x = x + 1; with the domain
of intervals. Let us denote by Xi the abstract state at the
entry of the while loop after i fixpoint iterations. If we

analyze the loop for the first two iterations, we find that
X0 = ⟨x↦ [0,0])⟩ and X1 = ⟨x↦ [0,1]⟩.

To accelerate the convergence, we can stabilize the
changing upper boundary between X0 and X1 using the
interval widening operator (Cousot and Cousot (1977)) de-
fined as ▽([a, b], [c, d]) = [(c < a)?−∞ ∶ a, (d > b) ∶ +∞ ∶ b].
The principle of this operator is to put unstable bounds
to infinity, where they cannot evolve anymore, so that the
iteration terminates in a finite number of steps (as there
are finitely many bounds to put to infinity). Using this
over-approximation, and by applying the loop-termination
filter (x >= 10), we can easily infer a post-loop abstract
state ⟨x↦ [10,+∞[⟩.

Note that the obtained result is correct but not optimal.
There exists more elaborated techniques, such as widening
with thresholds (Blanchet et al. (2002)) as well as decreas-
ing iterations with narrowing (Cousot and Cousot (1992)),
to efficiently infer a more precise post-loop abstract state
⟨x↦ [10,10]⟩.

Analyzers built by Abstract Interpretation are sound by
construction. This means that no behavior of the program
can be omitted during the analysis. This feature provides
a guarantee that the analyzer will produce no false neg-
ative, which is essential to prove the absence of errors in
programs. However, due to the over-approximations intro-
duced by the abstract semantics and the widening opera-
tor, spurious errors may be encountered during the anal-
ysis, leading to the detection of false positives. These im-
precisions can be eliminated by refining the abstractions
in order to embed more relevant details, which will be il-
lustrated by the partitioning techniques presented in this
work.

5. Assumptions and Notations

Before presenting our abstract interpretation of TinyOS
device drivers, we detail the assumptions of the analysis.
We assume that the input program has been preprocessed
with the ncc compiler so that we manipulate the seman-
tically equivalent C program. We denote by StmtC the
set of statements of this program. As a particularity of
TinyOS programs, these C programs have no dynamic al-
locations nor function pointers. We assume also that there
is no recursive functions and no backward gotos. Let T

be the set of tasks and I the set of interrupts of the input
program. The statements of these particular elements are
defined by the utility function body ∈ (T ∪ I) → StmtC .
Finally, we denote by Iker, Idrv, Iapp ∈ StmtC the initial-
ization routines for the kernel, device drivers and user ap-
plications respectively.

We formalize the ADP as a special register automaton
(S, s0,R, ξ,T), where:

• S is the set of hardware states and s0 is the initial
state.

• R is the set of hardware registers.

6

• ξ ≜ {X◇ ∣ X ∈ R,◇ ∈ {r,w}} ∪ {inti ∣ i ∈ I} ∪ {α,sleep}
is the set of hardware events described previously in
Section 3.

• T ⊆ S ×ξ×S ×StmtC ×StmtC is the set of transitions
where each transition τ = (s, e, s′, g, a) ∈ T moves the
ADP from state s to s′ whenever the event e occurs
and the guard g is verified. When the transition is
performed, the assignment statement a modifies the
required registers.

Since we are analyzing the joint dynamics of the driver,
the kernel and the hardware, the statements that affect the
global state of the system are not restricted the C atomic
statements. Consequently, we consider an extended set
Stmt ≜ StmtC ∪ StmtH ∪ StmtQ with the following addi-
tional statements:

• The set StmtH ≜ {event e ∣ e ∈ ξ} ∪ {event⋆ e ∣ e ∈ ξ}
consists of the statements that trigger the ADP tran-
sitions. The statement event e fires the event e and
performs a single transition of the ADP. The state-
ment event⋆ e is similar but instead of making a sin-
gle transition, it continues by firing all asynchronous
post-transitions labeled with the event α.

• The set StmtQ ≜ {dequeue t ∣ t ∈ T} ∪ {post t ∣ t ∈
T} ∪ {notask} refers to the elementary operations for
manipulating the TinyOS tasks queue: removing a
task from the head of the queue, posting a task at
the end of the queue and testing whether the queue
is empty.

6. Sequential Executions Analysis

In this section, we describe the design of a static reacha-
bility analysis for TinyOS programs by Abstract Interpre-
tation. We start by presenting the analysis of sequential
executions where we limit the trigger of interrupts during
only sleep periods. This simplification allows us to ignore
the preemption of tasks by interrupts, in order to focus
on the dynamics of the program related to the interaction
with the ADP and the tasks mechanism. In Section 7,
we will extend this analysis to take into consideration the
arbitrary occurrence of interrupts during execution.

An early version of the sequential executions analysis
was briefly described in Ouadjaout et al. (2014) where we
supported only numeric abstractions of program variables.
In this section, we develop more elaborated domains pro-
viding different abstraction levels for handling the evolu-
tion of the hardware state of the TinyOS tasks queue. In
addition, we present a more efficient analysis method based
on structural induction and inspired by the design of the
Astrée static analyzer (Cousot et al. (2009)).

6.1. Concrete Semantics

Our concrete semantic domain D ≜ ℘(E) is defined as
the set of subsets of concrete environments E ≜M×S ×Q

the elements of which provide a complete characterization
of the state of the system at a given program location. An
environment ρ = (m,s, q) ∈ E is divided into three parts
describing respectively the memory, the hardware state
and the tasks queue.

The memory environment M maintains the values of
the program variables, as well as hardware registers that
we consider as numeric variables to facilitate their manip-
ulation in usual C expressions. We employ the cell-based
representation proposed by Miné (2006a) to deal with com-
plex C data structures and pointer arithmetics. A cell
c = (v, i, τ) ∈ C ⊆ (V ×N×T) is a tuple encoding an offset i
within a host variable v and having a type τ . The memory
environment is defined as M ≜ (C → Z) × (C → (V × N))
in which we distinguish between two types of cells: nu-
meric and pointer cells. The numeric cells are mapped
to numeric values which range depends on the type of
the cell. The pointer cells are considered as tuples de-
scribing the target host variable and the offset, in bytes,
since the beginning of the target variable. The effect of
C statements on M is given by a set of transfer functions
SJ.KM ∈ ℘(M)→ ℘(M). For the case of an atomic assign-
ment statement, SJx = expKM evaluates the left hand side
expression in every input memory environment and, for ev-
ery possible value of the expression, returns a new memory
environment where the left-hand side target variable of the
assignment has been updated. The test transfer function
SJ?expKM allows filtering the input memory environments
to retain only those where the expression exp can be eval-
uated to true. More details about the formalization of the
complete semantics of C statements can be found in the
work of Miné (2006a).

The queue environment Q provides information about
the contents of the tasks queue. There exists two imple-
mentations of the queuing system in TinyOS. The first
one employs a FIFO ordering of posted tasks with pos-
sible redundant occurrences of the same task. This im-
plementation is the default mechanism used in version 1.x
of TinyOS. The second implementation considers also a
FIFO queue but with the restriction that the queue can
not contain two entries for the same task. That is, when a
task is posted again before consuming it, the queue is not
modified and the second post is ignored. This behavior
was chosen for TinyOS version 2.x. In the sequel of this
paper, we will describe our analysis using the first imple-
mentation, since it is more general and the second one can
be easily derived from it. Nevertheless, we will provide in
Section 8 the experimental results when using both imple-
mentations in order to give an overview about the impact
of those strategies on the analysis.

Formally, we define the tasks queue environment as Q ≜
⋃i≥0 T i, where T 0 ≜ {∅Q} represents the singleton set of
the empty queue ∅Q and T i ≜ [0, i − 1] → T is the set of
finite task sequences t0 . . . ti−1 of length i. We will employ
the ordinary concatenation operator q ⋅ t (resp. t ⋅ q) to
denote a queue ending (resp. starting) with the task t.
In addition, we introduce an auxiliary function count ∈

7

SJnotaskKR ≜ {(s,m, q) ∈ R ∣ q = ∅Q}
SJpost tKR ≜ {(m,s, q′) ∣ ∃(m,s, q) ∈ R ∶ q′ = q.t}
SJdequeue tKR ≜ {(s,m, q′) ∣ ∃(s,m, q) ∈ R ∶ q = t.q′}

HWe assume that X is the only register occurring in exp I
SJX = expKR ≜

HNotify the ADP about the read eventI
let R1 = SJevent⋆ XrKR in
HUpdate the register variable with the assignment statementI
let R2 = {(m′, s, q) ∣ (m,s, q) ∈ R1 ∧m′ ∈ SJX = expKM({m})} in
HNotify the ADP about the write eventI
SJevent⋆ XwKR2

SJevent⋆ eKR ≜ lfp λX. SJevent eKR ∪ SJeventαKX
SJevent eKR ≜ {(m′, s′, q) ∣ ∃(m,s, q) ∈ R,∃(s, e, s′, g, a) ∈ T ∶m′ ∈ SJaKM ○ SJ?gKM({m})}

Figure 5: Concrete transfer functions of sequential executions.

HThe set of initial statesI
HThe queue is empty and all registers are initialized to 0 I
let R0 = {(m,s0,∅Q) ∣
m ∈ fold (λr.λR. SJr = 0KMR)M R} in

HInitialize the kernel and the driversI
let R1 = SJIdrvK ○ SJIkerKR0 in
HAnalyze the posted tasks until emptying the queueI
let R2 = lfp λR. R1 ∪⋃t∈T SJbody(t)K ○ SJdequeue tKR in
let R3 = SJnotaskKR2 in
HInitialize the user applicationsI
let R4 = SJIappKR3 in

lfp λR. (
HAnalyze the posted tasksI
let R5 = lfp λR′. R ∪⋃t∈T SJbody(t)K ○ SJdequeue tKR′ in
HMove the MCU to sleep mode when no task is postedI
let R6 = SJevent⋆ sleepK ○ SJnotaskKR5 in
HAnalyze the interruptsI
R4 ∪⋃i∈I SJbody(i)K ○ SJevent⋆ intiKR6

)

Figure 6: Concrete interpreter for sequential executions.

Q× T → N giving the number of occurrences of a task in a
queue.

We present in Fig. 5 a summary of the most important
transfer functions SJ.K ∈ ℘(E) → ℘(E) related to hard-
ware state manipulation and TinyOS tasks. The functions
SJpost tK, SJnotaskK and SJdequeue tK formalizing the queu-
ing system are straightforward and just alter the queues
of the input environment without modifying memory and
hardware state. However, handling the effect of hardware
interactions is more complex. We give the example of the
function SJX = expK – where X is a register and the ex-
pression exp contains a read access to the same register –
because it represents a frequent pattern in device drivers.
For example, it is used to modify a particular bit in a
register without altering the other bits, as depicted in the
SPI driver in Fig. 4(a). To handle the eventual hard-

ware state changes, we define the functions SJevent eK and
SJevent⋆ eK that compute the possible transitions of the
ADP in response to an event e ∈ ξ. Intuitively, the function
SJevent eK computes the effects of the one-step transitions
decorated with event e and having valid guards when eval-
uated in the input environments. The function SJevent⋆ eK
computes the same transitions provided by SJevent eK in
addition to the subsequent asynchronous transitions deco-
rated with the asynchronous event α. Since the hardware
can perform several asynchronous transitions in response
to the event e, we need to collect all possible sequences of
intermediate states (of arbitrary length) that the hardware
can go through during this period. This is the reason for
the fixpoint formulation of SJevent⋆ eK, which is similar to
the traditional definition of a transitive closure.

Using these transfer functions, we provide in Fig. 6 a
fixpoint formulation of our first concrete interpreter re-
stricted to the analysis of the sequential executions. The
interpreter starts by initializing the kernel and the drivers,
and then consuming the posted tasks. After booting the
user-space applications, we use two nested fixpoint com-
putations. The inner one consumes the posted tasks and
the outer one stabilizes the effect of interrupts after firing
the sleep event when no task is waiting.

6.2. Abstract Semantics

In this section, we present two abstraction levels for
approximating the (non computable) semantics domain
D. The first abstraction level focuses on the dynamics of
ADP and maintains precise information about the hard-
ware states in order to detect forbidden transitions. While
this abstraction is sound and covers every possible execu-
tion path, it may lack some precision in presence of com-
plex control flows that use the tasks mechanisms. There-
fore, we propose a second abstraction that refines the first
one by adding partial information about the contents of
the tasks queue in order to avoid inconsistent tasks order-
ing.

8

SJX = expK♯SX ≜
let X1 = SJevent⋆ XrK♯SX in
let X2 = λs. SJX = expK♯M ○X1(s) in
SJevent⋆ XwK♯SX2

SJevent⋆ eK♯SX ≜
lfp λX ′. X ′▽S (SJevent eK♯SX ⊔S SJeventαK♯SX

′)
SJevent eK♯SX ≜

λs. ⊔M
(s′,e,s,g,a)∈T

SJaK♯M ○ SJ?gK♯M ○X(s′)

Figure 7: Abstract transfer functions for hardware state partitioning.

6.2.1. Hardware State Partitioning

To properly analyze the behaviors of a device driver, two
important design goals should be considered. First, it is vi-
tal to keep accurate information about the hardware state
since it is a key guidance element to correctly simulate
the evolution of the ADP. Consequently, losing informa-
tion about hardware state – when merging environments
for example – should be avoided. Also, it is necessary to
preserve some relationship between the hardware state of
the ADP and the values of the registers because drivers
try to infer the state of the device by inquiring its regis-
ters where state information is generally encoded in a set
of bits.

Therefore, our first abstraction performs a partitioning
with respect to the hardware states so that memory in-
formation about different states are not merged together.
In other words, we collect the reachable memory environ-
ments separately for every hardware state s of the target
ADP. Since we can not keep every possible detail about
these environments, we build a sound summary of them us-
ing the memory abstraction framework described in Miné
(2006a) and Miné (2012) that can over-approximate the
effect of complex C constructs on memory variables ef-
ficiently. This abstraction framework is generic and can
be used with any underlying numerical domain, such as
the intervals domain presented earlier or even more com-
plex relational domains such as octagons (Miné (2006b))
or polyhedra (Cousot and Halbwachs (1978)). However,
in this work, we will limit ourself to the use of the inter-
vals domain for its simplicity and efficiency. The details
of these memory approximations are out of the scope of
this paper, so we assume that we are given an abstract
memory domain ⟨M♯,⊑M,⊔M,�M⟩ along with a widen-
ing operator ▽M, a concretization function γM and the
abstract transfer functions SJ.K♯M.

The formal definition of the hardware state partitioning
domain ⟨D♯S ,⊑S ,⊔S ,�S⟩ is given by:

D♯S ≜ S →M♯

with the following concretization function:

γS(X) ≜ {(m,s, q) ∣ q ∈ Q ∧ s ∈ S ∧m ∈ γM ○X(s)}

and all lattice and widening operators are defined point-
wise.

HInitial abstract stateI
let X0 =
�S[s0 → fold (λr. λX. SJr = 0K♯MX) ⊺MR] in

HInitialize the kernel and the driversI
let X1 = SJIdrvK♯S ○ SJIkerK♯SX0 in
HAnalyze the posted tasks until emptying the queueI
let X2 = lfp λX.
X ▽S (X1 ⊔S ⊔S

t∈T
SJbody(t)K♯S ○ SJdequeue tK♯SX) in

let X3 = SJnotaskK♯SX2 in
HInitialize the user applicationsI
let X4 = SJIappK♯SX3 in

lfp λX. (
HAnalyze the posted tasksI
let X5 = lfp λX ′.
X ′▽S (X ⊔S ⊔S

t∈T
SJbody(t)K♯S ○ SJdequeue tK♯SX

′) in

let X6 = SJnotaskK♯SX5 in
HMove the MCU to sleep modeI
let X7 = SJevent⋆ sleepK♯SX6 in
HAnalyze the interruptsI
X4 ⊔S ⊔S

i∈I
SJbody(i)K♯S ○ SJevent⋆ intiK♯SX7

)

Figure 8: Abstract interpreter for sequential executions.

Since the number ∣S ∣ of hardware states is finite and
generally small, this partitioning does not induce exces-
sive computational costs. It is important to note that this
abstraction forgets about the contents of the tasks queue
which leads to a loss of precision. Indeed, without any
information about the posted tasks, preserving the sound-
ness condition implies that we must assume that the queue
can be any element ofQ which means that our analysis will
compute the effect of every possible ordering of all existing
tasks.

The most interesting transfer functions are presented in
Fig. 7. The function SJevent eK♯S computes the abstract
effect of an event e on the hardware and works by collect-
ing for every possible next state s the set of transitions
(s′, e, s, g, a) ∈ T going from a previous state s′ to s. The
abstract memory environment at the state s′ is then fil-
tered by the guard g and transformed by the hardware
assignment a. The function SJevent⋆ eK♯S performs a se-
quence of widening-based iterations to compute an over-
approximation of the effect of asynchronous events after
the event e. The function SJX = expK♯S is based on the
previous two functions to over-approximate the effect of
a register assignment on both the program and hardware
state. Since we do not maintain any information about
the posted tasks, the functions SJpost tK♯S , SJdequeue tK♯S
and SJnotaskK♯S are defined as the identity function.

The abstract version of the restricted interpreter for se-
quential executions is depicted in Fig. 8. We can notice
that its structure is very similar to the concrete version,
with the difference of employing the widening operator in

9

Iteration 1

MSTR

i = 0
SPSR = 0

X 1
6

BUSY

i = 0
SPSR = 0

DONE

i = 0
SPSR = 0x80

X 1
8

DONE

i = 1
SPSR = 0x80

X 1
9

MSTR

i = 1
SPSR = 0

X 1
11

Iteration 2

MSTR

i ∈ [0,∞[
SPSR = 0

X 2
6 = X1

6 ▽S (X 1
6 ⊔S X 1

11)

BUSY

i ∈ [0, len[
SPSR = 0

DONE

i ∈ [0, len[
SPSR = 0x80

X 2
8

DONE

i ∈ [0, len[
SPSR = 0x80

X 2
9

MSTR

i ∈ [1, len]
SPSR = 0

X 2
11

Iteration 3

MSTR

i ∈ [0,+∞[
SPSR = 0

X 3
6 = X2

6 ▽S (X 1
6 ⊔S X 2

11)

Figure 9: Results of fixpoint iterations obtained during the analysis of the task-less SPI driver using hardware state partitioning.

order to accelerate the convergence of the fixpoint itera-
tions for consuming tasks and firing interrupts.

Example 5. To explain the intuition behind this first ab-
straction, let us consider again the ADP of the SPI sub-
system and its driver example presented in Fig. 3 and 4(a)
respectively. The main steps of the analysis iterations are
presented in Fig. 9 where we use the notation X il to denote
the abstract environment at line l during iteration i.

When the execution reaches for the first time the while
loop at line 6, the ADP is in state MSTR. After the assign-
ment statement at line 7 modifies the SPDR data register,
the ADP moves to state BUSY. Since the SPI communi-
cation is asynchronous, the ADP can change its state to
DONE at any moment, which is expressed in the abstract
state X 1

8 by two distinct state partitions. It is important
to note that the value of the status register SPSR is differ-
ent between these two partitions. This disjunction allows
the analysis to infer the correct abstract environment X 1

9

that indicates that the ADP should be in state DONE after
the polling loop.

When performing the second fixpoint iteration of the
while loop at line 6, the value of i is extrapolated to
[0,+∞[using the widening operator. The same previous
behavior is observed: the ADP moves to states BUSY or
DONE depending on the termination of the transfer and the
polling loop will discard the first state partition by filtering
on the value of the status register SPSR.

At the end of the program, the BUG state was not reached
at any step of the analysis, which constitutes a proof that
the property is not violated.

6.2.2. Tasks Queue Partitioning

In some TinyOS drivers, the control flow of hardware
interactions is implemented by tasks in order to free up
the scheduler during polling periods. In such situations,
the previous abstract domain D♯S is too imprecise to recon-
struct the real control flow since no information is main-
tained by D♯S about the tasks queue. Therefore, it is nec-
essary to refine the previous abstraction to preserve a par-

tial view on the contents of the queue. An efficient solu-
tion is to count the number of occurrences of every task
and ignore their order in the queue. This abstraction is
known as a Parikh vector (Parikh (1966)) which is gener-
ally used to approximate sets of sequences/collections of
discrete objects (Feret (2001)). Unfortunately, this tech-
nique is not sufficient to prove the correctness of several
task-based drivers, as we illustrate in the following exam-
ple.

Example 6. We consider the previous task-based SPI
driver presented in Fig. 4(b). An analysis with the state
partitioning domain presented in the previous section will
fatally lead to the BUG state. Indeed, since no informa-
tion is available about posted tasks, the task tx can be
executed in the initial hardware state OFF, resulting in a
forbidden data transfer over the inactivated SPI bus.

Even if we extend D♯S with a Parikh vector, the analy-
sis can not eliminate the false alarm. To explain further
this problem, we depict in Fig. 10 the results of the fix-
point iterations using the extended domain and we focus
on the obtained abstract environments during the tasks
consumption step, which corresponds to the computation
of X5 in the previous abstract interpreter. The execution
trace of these iterations can be summarized as follows:

1. Initially, after executing the send_spi function, the
task tx is posted to send the first byte while the ADP
is in state MSTR.

2. During the first fixpoint iteration, the task tx is exe-
cuted and the transfer is started, which generates two
additional partitions for the states BUSY and DONE.
The task check is posted in order to continuously
check the termination of the transfer.

3. The task check filters its input abstract environment
depending on the status flag SPIF. The next byte is
prepared to be sent when this flag is set, which corre-
sponds to the state partition DONE. Since we are using
the widening operator, the byte index i is extrapo-
lated to [0,+∞[.

10

MSTR

i = 0
SPSR = 0
tx = 1
check = 0
end = 0

Iteration 1

MSTR

i = 0
SPSR = 0
tx = 1
check = 0
end = 0

BUSY

i = 0
SPSR = 0
tx = 0
check = 1
end = 0

DONE

i = 0
SPSR = 0x80
tx = 0
check = 1
end = 0

Iteration 2

MSTR

i ∈ [0,+∞[
SPSR = 0
tx = 1
check = 0
end = 0

BUSY

i = 0
SPSR = 0
tx = 0
check = 1
end = 0

DONE

i = 0
SPSR = 0x80
tx = 0
check = 1
end = 0

Iteration 3

MSTR

i ∈ [0,+∞[
SPSR = 0
tx ∈ [0,+∞[
check = 0
end ∈ [0,+∞[

BUSY

i ∈ [0,+∞[
SPSR = 0
tx = 0
check = 1
end = 0

DONE

i ∈ [0,+∞[
SPSR = 0x80
tx = 0
check = 1
end = 0

Iteration 4

MSTR

i ∈ [0,+∞[
SPSR = 0
tx ∈ [0,+∞[
check = 0
end ∈ [0,+∞[

BUSY

i ∈ [0,+∞[
SPSR = 0
tx = 0
check = 1
end = 0

DONE

i ∈ [0,+∞[
SPSR = 0x80
tx = 0
check = 1
end = 0

OFF

i ∈ [0,+∞[
SPSR = 0
tx ∈ [0,+∞[
check = 0
end ∈ [0,+∞[

Iteration 5

BUG

i ∈ [0, m len[
SPSR = 0
tx ∈ [0,+∞[
check = 0
end ∈ [0,+∞[

...

Iteration 6

Figure 10: The analysis trace of a false positive during the analysis of the task-based SPI driver using the hardware state partitioning.

4. The execution of the task tx over this new abstract
environment will generate two cases: the transfer of
the next byte or the end of the transfer. The lat-
ter case is performed by posting the task end. It is
important to note that this task is posted while the
ADP is in state MSTR. By merging this result with the
previous MSTR partition, and by widening, we reach
an imprecise and nondeterministic situation resulting
from the fact that tx ∈ [0,+∞[and end ∈ [0,+∞[.
These values imply that no constraint is available for
these two tasks, and therefore any ordering of them
can happen.

5. When the analyzer executes the task end in this im-
precise context, it will shut down the SPI, moving
the ADP to state OFF. Due to the previous nondeter-
minism, the task tx can be executed in this hardware
state, which will lead to a false positive after writing
to data register SPDR while the bus is inactive.

The previous example shows that counting the number
of posts can be insufficient to reconstitute a correct ex-
ecution flow of tasks. More precisely, the false positive
originated from a lack of relation between the entries of
the Parikh vector. Indeed, for this illustrative example,
there exists an exclusive-or relation between the presence
of the tasks tx and end together in the queue, and provid-
ing the analyzer with such information will eliminate the
false positive. To provide such relationship, we propose to
build a partitioning with respect to the presence of tasks.
This form of disjunction allows the analyzer to keep sep-
arate two sets of environments when a task is not posted
in both cases.

Formally, we define the task partitioning abstract do-
main ⟨D♯Q,⊑Q,⊔Q,�Q⟩ having the following structure:

D♯Q ≜ ℘(T)→ (D♯S × (T → N ♯))

where ⟨N ♯,⊑N ,⊔N ,�N ⟩ is a numeric abstract domain ap-
proximating a set of integers, such as intervals, provided
with its concretization function γN . Basically, when X ∈
D♯Q is an abstract environment and T ∈ ℘(T) is a set of
tasks, the partition X(T) provides an over-approximation

of the memory, hardware and queue environments when
only the tasks t ∈ T are present in the queue. To obtain the
concrete environments approximated by the abstract en-
vironment X, we define the following concretization func-
tion:

γQ(X) ≜
{(m,s, q) ∣ ∃T ∈ ℘(T) ∶ (m,s,−) ∈ γS○ ↓S ○X(T)
∧∀t ∈ T ∶

count(q, t) ∈ γN ○ ↓tQ ○X(T) ∧ count(q, t) > 0

∧∀t ∉ T ∶ count(q, t) = 0}

where ↓S (XS ,XT), ↓Q (XS ,XT) and ↓tQ (XS ,XT) are
three projection operators to retrieve respectively XS , XT

and XT (t) from an abstract environment (XS ,XT) ∈ D♯Q.
Intuitively, the function γQ obtains the concrete memory
and hardware environments using the previous concretiza-
tion function γS . The concrete queues environments are
constructed using the condition that the number of occur-
rences of every task should be in the range of its corre-
sponding entry in the Parikh vector.

Since the transfer functions for this domains share many
similar constructs, we limit ourselves to the presentation
of the case of the statement post t:

SJpost tK♯QX ≜

λT.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�S , λt′. �N if t ∉ T
↓S ○X(T),
↓Q ○X(T)[t← inc♯N ○ ↓tQ ○X(T)] otherwise

⊔Q

λT.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�S , λt′. �N if t ∉ T
↓S ○X(T ∖ {t}),
↓Q ○X(T ∖ {t})[t← one♯N] otherwise

The first part of the union ⊔Q handles the case where the
task t was already posted and operates by incrementing the
number of its occurrences using the abstract incrementa-
tion function inc♯N that verifies the soundness condition:

∀X ∈ N ♯ ∶ γN ○ inc♯N (X) ⊇ {i + 1 ∣ i ∈ γN (X)}

The case where t was not present in the queue is handled by
the second part, which updates the partitions X(T ∖ {t})
by setting the Parikh vector entry of t to the abstract

11

tx

MSTR

i = 0
SPSR = 0
tx = 1

Iteration 1

tx

MSTR

i = 0
SPSR = 0
tx = 1

check

BUSY

i = 0
SPSR = 0
check = 1

DONE

i = 0
SPSR = 0x80
check = 1

Iteration 2

tx

MSTR

i ∈ [0,+∞[
SPSR = 0
tx = 1

check

BUSY

i = 0
SPSR = 0
check = 1

DONE

i = 0
SPSR = 0x80
check = 1

Iteration 3

tx

MSTR

i ∈ [0,+∞[
SPSR = 0
tx = 1

check

BUSY

i ∈ [0,+∞[
SPSR = 0
check = 1

DONE

i ∈ [0,+∞[
SPSR = 0x80
check = 1

end

MSTR

i ∈ [m len,+∞[
SPSR = 0
end = 1

Iteration 4

tx

MSTR

i ∈ [0,+∞[
SPSR = 0
tx = 1

check

BUSY

i ∈ [0,+∞[
SPSR = 0
check = 1

DONE

i ∈ [0,+∞[
SPSR = 0x80
check = 1

end

MSTR

i ∈ [m len,+∞[
SPSR = 0
end = 1

∅
OFF

i ∈ [m len,+∞[
SPSR = 0

Iteration 5

Figure 11: A summary of fixpoint iterations obtained during the analysis of the SPI driver using tasks queue partitioning.

element one♯N that verifies the soundness condition: 1 ∈
γN (one♯N).

Example 7. We illustrate in Fig. 11 the advantage of
the tasks queue partitioning for proving the correctness of
the previous SPI driver. The execution trace is relatively
similar to the previous case for the first three iterations.
During the fourth iteration, the task end is posted in a par-
tition different from the task tx, which avoids the previous
nondeterminism and shuts down the SPI bus safely.

7. Preemptive Executions Analysis

Until now, we have considered that interrupts can occur
only during inactivity periods of the MCU. This assump-
tion allowed us to simplify the presentation of the abstrac-
tions related to the hardware state and the tasks queue. In
this section, we extend the previous analysis to take into
consideration the preemption of execution by interrupts
at any moment of the program lifetime. We define new
concrete and abstract semantics, that build on the previ-
ous ones, to soundly over-approximate the set of reachable
hardware states during all possible concurrent executions.

7.1. Concrete Semantics

To add interrupts preemption to our previous analysis,
we need to care about (i) when an interrupt can be fired
and (ii) when the MCU is configured to execute its cor-
responding interrupt vector. In this work, we focus on
the second consideration and we approximate the first one
using nondeterminism. In other words, as long as an in-
terrupt is not masked by software, we consider that it can
happen at any moment, which can be implemented as a
nondeterministic choice to execute or not the interrupt
handler before executing any statement. Nevertheless, the
imprecision caused by the nondeterminism can be reduced
by filtering the hardware states in which interrupts can
not occur. This can be done by adding transitions, la-
beled with interrupt events inti, that go from the filtered
states to a special absorbing state that has no successor.

An interrupt can be masked at two levels: globally and
partially. The first level is handled by a Global Interrupt
Enable (GIE) bit found in most MCUs. For the case of

the ATmega128 MCU that we are considering in this work,
the I bit located at the last position in the status regis-
ter SREG must be set in order to enable interrupts. In the
following, we will denote by gcond ≜ SREG & (1 << 7) != 0

the condition expression that verifies that the I bit is set
in SREG. Also, we define two shortcut statements cli ≜
SREG &= ~(1 << 7) and sei ≜ SREG |= (1 << 7) to respec-
tively clear and set the I bit.

The second masking level consists in the inhibition of a
partial set of interrupts, performed generally through the
configuration of particular control registers. Since these
configurations differ from an interrupt to another, we de-
fine the function icond ∈ I → StmtC giving for every in-
terrupt its corresponding firing condition, formulated as a
C boolean expression. For example, to allow the occur-
rence of the Timer0 compare interrupt (T0CI), the follow-
ing condition should be verified:

icond(T0CI) ≜ (TCCR0 & ((1 << CS02) | (1 << CS01) |

(1 << CS00)))

&& (TIMSK & (1 << TOIE0))

The first condition ensures that a non null prescaler is
configured in the control register TCCR0, otherwise no clock
will source the timer sub-system. The second condition
checks whether this particular interrupt is enabled in the
timer mask register TIMSK.

Since these conditions are expressed as predicates over
hardware registers – which are considered as normal pro-
gram variables – we can use our previous concrete semantic
domain DI ≜ D to encapsulate the mask values of inter-
rupts. However, we need to extend the transfer functions
in order to handle the nondeterministic execution of in-
terrupt vectors when they are not masked. To do so, we
only need to define the transfer functions for the atomic C
statements (assignments and tests) and for the additional
statements set StmtH and StmtQ. The remaining transfer
functions are kept unmodified because they are ultimately
reduced, by structural induction on the syntax, to atomic
statements. Let s be one of these atomic statements. We

12

define its preemption-aware transfer function as follows:

SJsKIR ≜ SJsK(R ∪⋃i∈I
let R1 = SJevent⋆ intiK ○ SJ? icond(i)K ○ SJ?gcondKR in
SJseiK ○ SJbody(i)KI ○ SJcliKR1)

Basically, this function executes the statement s over the
union of the input environments R and the post-execution
environments of the enabled interrupts. These environ-
ments are obtained by first filtering R in order to keep
only the environments where the condition expressions of
the global enable bit and the partial mask of i are true.
After that, we signal the occurrence of the interrupt to
the ADP by calling the function SJevent⋆ intiK. Finally,
we execute the interrupt vector body by first clearing the
global interrupt enable bit and then setting it again as
specified by the ATmega128 data sheet.

Two important points should be noted. First, using the
union of the post-interrupts environments implies that at
most one interrupt handler is executed. This choice is jus-
tified by the fact that the MCU, after returning from an
interrupt, must execute at least one instruction before al-
lowing the execution of the next interrupt, which avoids a
continuous succession of interrupts that prevents a func-
tion from terminating its computations. Second, this for-
mulation allows the analysis of nested interrupts by using
the preemptive transfer function SJbody(i)KI . Neverthe-
less, since the I-bit is automatically cleared at the begin-
ning of the interrupt, the body of the corresponding rou-
tine should execute the sei statement to allow this feature,
which is taken into account by our semantics.

Using this preemption mechanism, we define in Fig. 12
the concrete preemptive interpreter of TinyOS programs.
It shares with the previous sequential interpreter, pre-
sented in Fig. 6, most of its structure with two major dif-
ferences. Firstly, the body of the initialization procedures,
tasks and interrupts are analyzed using the preemption-
aware transfer function SJ.KI , instead of the sequential ver-
sion SJ.K. Secondly, we have instrumented the interpreter
with statements to control the global interrupt mask as
performed by the TinyOS scheduler. Note that, at spe-
cific locations, the scheduler saves the register SREG in a
backup variable, that we denote by oldSREG, in order to
restore it later to preserve the modifications performed by
the tasks.

7.2. Abstract Semantics

In this section, we develop an abstraction of the domain
DI and the transfer functions SJ.KI that approximate the
dynamics of preemptive executions. To do so, we divide
our problem into two parts: (i) the maintenance of an
abstract view about the enabled interrupts, and (ii) the
computation of the effect of an enabled interrupt on the
execution flow. Therefore, we start by presenting an ap-
proximation of the masking system before describing how
to use this abstraction to analyze the preemptive execu-
tions of a TinyOS program.

HThe set of initial statesI
let R0 = {(m,s0,∅Q) ∣
m ∈ fold (λr.λR. SJr = 0KMR)M R} in

HInitialize the kernel and the driversI
let R1 = SJIdrvKI ○ SJIkerKIR0 in
HAnalyze tasksI
let R2 = lfp λR. R1 ∪⋃t∈T SJbody(t)KI ○ SJdequeue tKIR in
let R3 = SJnotaskKIR2 in
HEnable interrupts and analyze the user apps initializationI
let R4 = SJoldSREG = SREGK ○ SJIappKI ○ SJseiKR3 in

lfp λR. (
HRestore the global interrupts mask and analyze tasksI
let R5 = SJSREG = oldSREGKR in
let R6 =
lfp λR′. R5 ∪⋃t∈T SJbody(t)KI ○ SJdequeue tKIR′ in

let R7 = SJnotaskKIR6 in
HSave the global interrupts mask and enable interruptsI
let R8 = SJseiK ○ SJoldSREG = SREGKR7

HMove the MCU to sleep modeI
let R9 = SJevent⋆ sleepKR7 in
HAnalyze interruptsI
R4∪
⋃i∈I SJseiK ○ SJbody(i)KI ○ SJcliK ○ SJevent⋆ intiKR9

)

Figure 12: Concrete interpreter for preemptive executions.

7.2.1. Abstraction of Interrupt Masks

We approximate the interrupt masks by breaking the
relation between the global masking level and the partial
one. This separation allows us to build efficient trans-
fer functions by sacrificing some precision. Formally, we
define the abstract mask domain ⟨D♯K,⊑K,⊔K,�K⟩ as the
following product:

D♯K ≜ {�01,0,1,⊺01}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

K♯G

× (℘(I)→ D♯Q)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

K♯P

The global mask is maintained by the lattice K♯G that is
identical to the powerset lattice ℘({0,1}) and encodes all
possible states of the I bit. The second masking level is
provided by the lattice K♯P defining a partitioning with
respect to the activated interrupts. From the pointwise
definition of the lattice operators of K♯P and the simple
definition of K♯G , we can easily derive the definition of the
bottom element �K and the operators ⊔K, ⊑K and ▽K.

The set of concrete environments corresponding to a
given abstract interrupt mask is given by the following

13

SJSREG = expK♯K(G,X) ≜
let X1 = λI. SJSREG = expK♯Q ○X(I) in

let G1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if ∀I ∈ ℘(I) ∶ SJ?gcondK♯Q ○X1(I) ≠ �Q ∧ SJ?!gcondK♯Q ○X1(I) = �Q
0 if ∀I ∈ ℘(I) ∶ SJ?gcondK♯Q ○X1(I) = �Q ∧ SJ?!gcondK♯Q ○X1(I) ≠ �Q
⊺01 if ∀I ∈ ℘(I) ∶ SJ?gcondK♯Q ○X1(I) ≠ �Q ∧ SJ?!gcondK♯Q ○X1(I) ≠ �Q
�01 otherwise

in (G1,X1)

SJX = expK♯K(G,X) ≜
let X1 = λI. SJX = expK♯Q ○X(I) in
let X2 = λI. ⊔Q

i∈I,I′∈℘(I)
SJ? icond(i)K♯Q ○X1(I ′) ⊔Q ⊔Q

i∉I,I′∈℘(I)
SJ?! icond(i)K♯Q ○X1(I ′)

in (G,X2)

Figure 13: Abstract transfer functions for the D♯K domain.

concretization function:

γK(G,X) ≜
let R = {(m,s, q) ∣ ∃I ∈ ℘(I) ∶ (m,s, q) ∈ γQ ○X(I)∧
∀i ∈ I ∶ (m,s, q) ∈ SJ? icond(i)K ○ γQ ○X(I)∧
∀i ∉ I ∶ (m,s, q) ∈ SJ?! icond(i)K ○ γQ ○X(I)}

in match G with
∣ ⊺01 → R
∣ 1→ SJ?gcondKR
∣ 0→ SJ?!gcondKR
∣ �01 → ∅

Let us define now the abstract transfer functions SJ.K♯K
related to D♯K. The most important cases are presented
in Fig. 13. The transfer function SJSREG = expK♯K(G,X)
handles the change of the global enable bit I after a mod-
ification of the SREG status register, as performed by the
two shortcut statements sei and cli. After updating each
partition with the assignment statement, we check the dif-
ferent values of the mask expression gcond over the re-
sulting environments and update the abstract global bit
accordingly. The effect of changing the partial masks is
defined by the function SJX = expK♯K(G,X), where X is a
hardware register different than SREG and present in at
least one of the expressions icond. The function updates
the partitions with the effect of the assignment and re-
builds the partitions again depending on the evaluation of
the expressions icond.

7.2.2. Abstraction of Preemption

Dealing with preemption in interrupt-rich programs is a
challenging task. Several approaches have been developed
offering different precision/efficiency tradeoffs. Sequen-
tialization (Monniaux (2007); Bucur and Kwiatkowska
(2011)) is a simple solution consisting in instrumenting
the original program with nondeterministic calls to the
interrupt handlers. Since the number of execution paths
may become intractable, different forms of partial order
reduction are proposed to restrict the locations of this in-
strumentation. This method allows a precise analysis, but
becomes inefficient in the presence of a large number of

interrupts with possible nested occurrences. A more inter-
esting approach, proposed i-CBMC model checker (Kroen-
ing et al. (2015)), alleviates the need to apply partial or-
der reductions and provides a better scalability with less
instrumentation effort. It is based on the definition of a
partial order on preemption traces that uses a set of logical
clocks to symbolically encode the different interleavings of
interrupts. Whilst this method is effective in many test
cases, it lacks the soundness guarantee and can not cover
all possible execution traces of complex programs in finite
time.

In our work, we aim at proposing a more efficient ap-
proach that guarantees the soundness condition and avoids
executing interrupt handlers every time they are enabled.
Our solution is based on the Modular Abstract Interpre-
tation framework (Cousot and Cousot (2002)) and is sim-
ilar to the approach of the static analyzer AstréeA (Miné
(2011, 2014)). The general idea of this method consists
in analyzing the parts of the program separately and then
compose the local results of every part to get an aggre-
gate view of the whole program. Since the interactions
between these parts can be complex, the analysis may be
iterated several times to obtain the correct results. Indeed,
the initial analysis iteration has no information about the
influence of a part on another and is therefore performed
by assuming that there is no such interactions. However,
during this iteration, the analysis can discover new interac-
tions on the fly, such as new call sites, providing a more ac-
curate view on the actual interaction map. Consequently,
successive iterations are required until we ensure that all
interactions have been discovered.

In our case, the high-level functions (initialization func-
tions, tasks and interrupts) constitute the parts of the pro-
gram with the restriction that only interrupts can preempt
execution. The analysis processes each part separately
and constructs two inter-parts information: the preemp-
tion contexts and the return contexts:

1. The preemption context of an interrupt represents the
collection of the abstract environments where an in-
terrupt may occur. It is constructed on the fly during
the analysis of the other parts by computing the union

14

task void t() {

...

x = e;

...

}

Task t

__attribute ((signal))

void __vector_1 () {

...

}

Interrupt 1

__attribute ((signal))

void __vector_2 () {

...

}

Interrupt 2

2

1 Return contexts injected

Preemption contexts updated

Figure 14: Approximation of interrupts preemption using the re-
turn contexts of interrupts. Preemption contexts are updated for an
eventual next iteration.

of the abstract environments that verify the enable
condition of the interrupt.

2. The analysis computes the return contexts of inter-
rupts by executing separately each interrupt handler
over its corresponding preemption context. It will be
used during the next iteration to soundly emulate the
execution of the interrupt handler whenever the inter-
rupt is enabled.

An illustrative example of this mechanism is depicted in
Fig. 14 where a task t is analyzed with two preempting
interrupts. Let us denote by X the abstract environment
reaching the statement s ∶ x = e. The approximation of
the eventual preemption before s is performed by merg-
ing X with the return contexts of the enabled interrupts
before passing the resulting environment to the transfer
function of the statement. In addition, if X contains new
state information not present in the current preemption
contexts, the latter should be updated in order to perform
a new iteration that will compute the new return contexts
that consider these modifications.

Formally, we define our preemptive abstract domain D♯I
as the following product:

D♯I ≜ D♯K × (I→ D♯K) × (I→ D♯K)

The first element of this product corresponds to the ab-
stract environment of the current flow over which state-
ments are executed. The second and the third elements
represent two maps giving for every interrupt its preemp-
tion and return contexts respectively. The definitions of
�I , ⊑I , ⊔I and ▽I are easily derived from this definition.
For an atomic statement s, we define its abstract transfer
function as:

SJsK♯I(Xc,Xp,Xr) ≜
let Ien = {i ∈ I ∣ SJ? icond(i)K♯K ○ SJ?gcondK♯KXc ≠ �K} in
let X ′

c = SJ?!gcondK♯KXc ⊔K ⊔K
i∈Ien

Xr(i) in

let X ′
p = λi. { Xc ⊔KXp(i) if i ∈ Ien

Xp(i) otherwise
in

(SJsK♯KX
′
c,X

′
p,Xr)

The intuition behind this definition can be explained as
follows. First, we construct the set Ien of enabled inter-
rupts using the enable mask expressions. After that, we

merge their return contexts with the current abstract en-
vironment Xc to over-approximate the effect of the nonde-
terministic preemption. Also, we update the preemption
contexts of the enabled interrupts with Xc. Finally, we
apply the statement abstract transfer function SJsK♯K on
the newly computed environment X ′

c.
Our modular abstract interpreter for the analysis of pre-

emptive executions is presented in Fig. 15 and operates as
follows. Given the input preemption and return contexts
Xp and Xr, we execute the main TinyOS program, which
consists in executing the different initialization procedures
and then entering the infinite tasks-sleep-interrupt loop,
but without executing the interrupt handlers. During the
analysis of the main program, the functions SJ.K♯I collect
the preemption contexts of every interrupt. After reaching
the fixpoint of the infinite loop, we execute every interrupt
on its preemption context. As for the main program, we
also collect during the analysis the preemption contexts
of every interrupt. To compute the new preemptive and
return contexts X ′

p(i),X ′
r(i) of an interrupt i for the next

iteration, we proceed as follows. ForX ′
r(i), we just retrieve

the post-execution environment reached at the end of the
analysis of the vector of interrupt i. For the preemption
context X ′

p(i), we merge the environments Xmain
p (i) col-

lected during the analysis of the main program with those
collected during the analysis of other interrupts. Note that
this formulation assumes that there is no reentrant inter-
rupt, i.e. an interrupt does not allow, during its execution,
being interrupted by itself. Finally, to accelerate the con-
vergence of the fixpoint computation, we use the widening
operator when computing the new preemption contexts
X ′
p(i).

8. Experiments

In this section we describe the experimental results of
the analysis of our motivating example and other real-
world TinyOS device drivers using a prototype of our anal-
ysis called SADA (Static Analyzer with Device Abstrac-
tion) that supports both sequential and preemptive exe-
cution models. We implemented SADA using the OCaml
language. The implementation consists of 4.000 lines of
code and uses the CIL framework (Necula et al. (2002))
for parsing the input C files generated by the ncc com-
piler. It also builds upon the Apron library developed by
Jeannet and Miné (2009) that provides a rich collection
of numerical abstract domains, such as intervals, octagons
and polyhedra. For our experiments, we used the interval
domain enriched with modular arithmetics operations to
handle the finite-size representation of numbers.

To assess the efficiency and precision of SADA, we first
analyzed some device drivers of the ATmega128 MCU from
the latest TinyOS 1.x release. We chose three test cases
with growing complexities, in terms of lines of codes and
the tasks/interrupts execution flows. For each case, a set
of ADPs were verified and we were interested in three met-
rics: the analysis time, the peak memory consumption and

15

HLoop until the preemption contexts stabilizeI
lfp λ(Xp,Xr).

HMain program is analyzed firstI
let (−,Xmain

p ,Xmain
r) =

HInitial abstract stateI
let X0 = �Q[∅Q → �S[s0 → fold (λr. λX. SJr = 0K♯MX) ⊺MR]] in
HAnalyze the initialization of the kernel and the driversI
let X1 = SJIdrvK♯I ○ SJIkerK♯I(X0,Xp,Xr) in
HAnalyze tasksI
let X2 = lfp λX. X ▽I (X1 ⊔I ⊔I

t∈T
SJbody(t)K♯I ○ SJdequeue tK♯IX) in

HAnalyze user apps initializationI
let X3 = SJoldSREG = SREGK♯I ○ SJIappK♯I ○ SJseiK♯I ○ SJnotaskK♯IX2 in
lfp λX. X ▽I (

HRestore the global interrupts maskI
let X4 = SJSREG = oldSREGK♯IX in
HAnalyze tasksI
let X5 = lfp λX ′. X ′▽I (X4 ⊔I ⊔I

t∈T
SJbody(t)K♯I ○ SJdequeue tK♯IX

′) in

HMove the MCU to sleep modeI
let X6 = SJevent⋆ sleepK♯I ○ SJseiK♯I ○ SJoldSREG = SREGK♯I ○ SJnotaskK♯IX5 in
X3 ⊔I X6

)
in
HInterrupts are analyzed separatelyI
let Xint = λi. SJseiK♯I ○ SJbody(i)K♯I ○ SJcliK♯I ○ SJevent⋆ intiK♯I(Xp(i),Xp,Xr) in
HExtraction of the new return contextsI
let X ′

r = λi. (let (Xi,−,−) =Xint(i) in Xi) in
HExtraction of the new preemption contextsI
let X ′

p = λi. Xp(i)▽ (Xmain
p (i) ⊔K ⊔K

j≠i∈I
let (−,Xj

p ,−) =Xint(j) in Xj
p(i)) in

(X ′
p,X

′
r)

Figure 15: Abstract interpreter for preemptive executions.

the nature of the reported alarms. In total, seven ADPs
were analyzed that capture the most recurrent program-
ming patterns in embedded device driver development.

The second set of experiments consists in the analysis
of the same ADPs but on a different implementation, that
is, on the version 2.x of TinyOS. It is worth noting that
TinyOS 2.x has been completely re-written with drastic
changes in the design and the implementation. There-
fore, analyzing different versions of the same driver, while
keeping the ADPs unchanged, allows showing the capac-
ity of the tool in analyzing the same specifications but on
several, and possibly extremely different, implementations
without additional effort from the user to configure the
tool or accommodate the source code.

Finally, we also run these experiments using i-CBMC in
order to compare its performances to SADA. The reason
behind this choice is that it is the most efficient state-
of-the-art analysis tool available for interrupt-based pro-
grams (Kroening et al. (2015)). However, we limited
the use of i-CBMC to the analysis of TinyOS 2.x device
drivers only because using i-CBMC requires a considerable
amount of time in instrumenting the source for emulating
the asynchronous hardware operations and the arrival of
interrupts, as explained later in this section.

8.1. Test Cases

Embedded device driver development shares many pro-
gramming practices that can be applied to different hard-

ware architectures. Polling on status bits, interrupt-based
serial transfer and GPIO configurations are some exam-
ples of frequent patterns that represent important building
blocks in most implementations of device drivers. In this
section, we briefly describe some instantiations of these re-
current patterns on the ATmega128 platform, along with
some functional properties for ensuring their correctness.

8.1.1. Asynchronous Timer

The ATmgega128 provides four hardware timers with
different capabilities and applications. The 8-bit Timer/-
Counter0 is frequently used in low-power embedded appli-
cations since it is the only timer that allows going to a
deep sleep mode (in terms of energy consumption) while
keeping the timer module active to wake up the MCU af-
ter a period of time. To do so, Timer/Counter0 should
be configured in asynchronous mode that allows it to use
an external 32.768kHz crystal (TOSC1) to operate indepen-
dently from the main oscillator of the MCU.

However, the asynchronous mode of Timer/Counter0
requires a number of safety measures as listed in the
datasheet of the MCU (Atmel (2011), pp. 106–108). We
limit the description herein to two important ones:

• The first precaution that should be considered when
operating in asynchronous mode is the stabilization of
the timer after wakeup. Indeed, the datasheet stipu-
lates that “if the time between wakeup and re-entering

16

STABLE

SLEEP

e:sleep

UNSTBL
e:int15∣16

BUG

e:sleep

BUSY

e:TCCR0w

a:ASSR|=(1<<TCR0UB)

e:sleep

e:α
a:ASSR&=~(1<<TCR0UB)

(a) Stabilization of Timer/Counter0.

IDLE DONE

BUSY BUG

e:TWCRw

g:(TWCR&(1<<TWINT))
&&(TWCR&(1<<TWEN))
&&(TWCR&(1<<TWIE))
a:TWCR&=~(1<<TWINT);

e:α
a:TWCR|=(1<<TWINT);

e:int33

e:TWCRw

(b) TWI serial transfer using interrupts.

Figure 16: Examples of ADPs used in the experiments.

sleep mode is less than one TOSC1 cycle, the interrupt
will not occur, and the device will fail to wake up”.

• Also, the datasheet indicates that “when writing to
one of the [timer] registers, the value is transferred
to a temporary register, and latched after two positive
edges on TOSC1. The user should not write a new
value before the contents of the Temporary Register
have been transferred to its destination”.

To ensure both requirements, the same mechanism is
generally employed, which is based on polling the first
three bits of the ASSR register that indicate the effective
transfer from the temporary register to the actual register.
Since this operation requires at least one TOSC1 cycle, the
timer driver can assess the value of these bits for ensuring
both stabilization and correct transfer to registers.

Consequently, we wrote three ADPs to ensure that the
driver performs the appropriate polling mechanism. The
first one, denoted ASTBL, specifies the stabilization require-
ment and verifies that, when the MCU is waked-up by the
timer routine, at least one of the timer registers (OCR0, or
TCCR0) is modified and the program will not return to sleep
again only until it verifies that appropriate status bit in
ASSR indicates the end of transfer. An illustration of this
ADP is depicted in Fig. 16(a). The two other ADPs,
denoted AOCR0 and ATCCR0, model the proper access to reg-
isters OCR0 and TCCR0 respectively, and ensure that the
driver waits after every write access for the completion of
the transfer operation before modifying the register again.

8.1.2. ADG715 Analog Switch

The component ADG715 is an analog switch that is used
generally as a multiplexer to dynamically route the power
supply to other components (mainly sensors) for control-
ling energy consumption. It is configured by the MCU
through a TWI (Two Wire Interface) serial bus for send-
ing byte commands to open/close the switch ports.

To ensure the proper transfer of these commands over
the bus, several safety rules should be observed. In our
experiments, we were interested in two properties:

• It is important to ensure that all TWI-related hard-
ware registers are not be modified when the bus is

busy. In the case of TinyOS (both 1.x and 2.x),
TWI operations are performed in the interrupt-based
mode. Therefore, the ATWI-TX ADP, depicted in Fig.
16(b), tracks the start of a transmission and performs
an asynchronous transition to model the arrival of the
interrupt at any moment. All access to the register in
the meanwhile are forbidden.

• In addition to safe serial transfer, the SCL and SDL

pins, used as the clock and data lines respectively,
should be configured as pulled-up. Our ADP APULL-UP

verifies this condition by checking that the corre-
sponding GPIO pins are configured as input pins
through the DDx register and that they are driven high
through the PORTx register. This check is performed
at every transmission over the TWI bus.

8.1.3. CC2420 Transceiver

In Section 3, we described in detail the ADP ASPI-TX

that models a safe serial transfer between the MCU and
an SPI slave (which is the CC2420 transceiver in the case
of the MicaZ mote). In addition, our benchmark includes a
second ADP ASPI-SS that ensures that the MCU selects the
appropriate end-point slave by pulling down a particular
SS (Slave Select) pin before starting transmitting over the
SPI bus. Consequently, the ADP checks that direction and
state of PB0 pin are correctly set in registers DDRB and
PORTB whenever a byte is written into the data register
SPDR.

8.2. Results and Discussion

The obtained results are summarized in Table 1 and 2.
For each ADP, we analyzed the original device driver along
with a modified incorrect version that contains a manu-
ally injected bug. Note that two of our benchmark device
drivers contained errors in their original version that we
discovered during our experiments. We used a timeout of
30 minutes and we reported the total analysis time, the
peak memory consumption and the analysis result. We
distinguish between four types of results: (i) safe program
with no missed errors (4), (ii) the program is incorrect

and the analysis reports no error (△4), (iii) the program

17

is incorrect and the errors are detected (8), and finally
(vi) the program is correct while false alarms are reported

(△8). A precise analysis should only exhibit (i) and (iii)
results. For certifications purposes, a small ratio of (vi)
is expected due to approximations, but (ii) should never
occur. For bug finding, however, (ii) is acceptable but not
(vi).

8.2.1. TinyOS Benchmarks

Table 1 shows the results of our tool SADA on the dif-
ferent TinyOS device drivers. In order to show the cost
of introducing arbitrary preemption during the analysis,
we considered both sequential and preemptive execution
models separately. In addition, we compared the results
of the hardware state partitioning domain DS with the
tasks queue partitioning domain DQ. Overall, our bench-
marks consisted of 112 tests and we analyzed a total of
23260 lines of code, with drivers containing between 1 to
10 tasks and 1 or 2 interrupts.

The analysis terminated before timeout in 95% of the
test cases, with 90% of them under one minute. We ex-
perienced only 6 timeouts. Four of them were due to the
coarse over-approximation of the state partitioning domain
DS that does not keep information about the tasks queue,
but these timeouts have been eliminated by the use of the
more precise domainDQ. The two remaining ones emerged
when analyzing the incorrect versions of the drivers. Nev-
ertheless, it is important to note that these benchmarks
were run in full-coverage mode of SADA, i.e. the analysis
does not stop until all paths are verified. SADA supports
also another option that terminates the analysis whenever
an error is detected. In such configuration, all timeouts
disappear, as described later in this section (see Table 2).

In terms of precision, we note that SADA has not missed
any bug on the incorrect version of the drivers, which is
coherent with the soundness property of the underlying
abstract interpretation theory. In addition, two real bugs
were detected on the original versions, which were, to our
knowledge, not known before. On the other hand, 7 false
alarms were detected. Using the tasks queue partitioning
domain DQ we can eliminate 4 of them, in a similar way
to the example in Fig. 11 that motivated the introduc-
tion of DQ. The remaining 3 false alarms are all related
to the timer driver and are due to the lack of quantita-
tive modeling of the physical time and delays. Indeed,
asynchronous events – such as propagating a value to the
TCCR0 from the temporary register – are modeled in our
analysis using nondeterminism and can occur at any mo-
ment. However, these transitions in fact have a limited
trigger timeframe, after which we are sure that the asyn-
chronous event has occurred. This type of information is
not handled by SADA and is out of the scope of the ADPs
semantics. Note that other existing analysis tools such as
i-CBMC do not model such semantics and are therefore
prone to the same problem.

From these results, we can observe that the analysis

costs do not always increase with the level of precision of
the abstract domain. Indeed, in most cases, the queue
partitioning domain DQ has shown a better analysis time
compared to the more compact state abstraction DS . This
is particularly observable when the driver implementation
uses a significant number of tasks, such as the CC2420 2.x
driver where we obtained a 95% decrease in the analysis
time. This is explained by the fact that, due to the addi-
tional details provided by the increased precision of the do-
main, more spurious execution paths are filtered and fewer
iterations are required to reach the fixpoint. However, for
less task-intensive programs such the Timer driver, the
domain DQ was less efficient.

Finally, these experimental results demonstrate the scal-
ability of the Modular Abstract Interpretation framework,
since the sound preemptive analysis was able to analyze
the full search space with arbitrary preemption, while
maintaining a reasonable cost in comparison to the re-
stricted sequential analysis which does not necessarily
cover all behaviors.

8.2.2. Comparison with i-CBMC

Table 2 shows the obtained results of running the
TinyOS 2.x test cases using i-CBMC with different loops
unwinding. The table also presents the results of SADA
without full-coverage in case of error detection, since i-
CBMC behaves in the same way. To compare both ap-
proaches, we consider three criterions: efficiency, precision
and automation.

Efficiency It is clear that SADA scales better than i-
CBMC in all test cases. Analysis times of i-CBMC
are larger in general with a total of 10 timeouts, while
SADA converged in all cases without exceeding one
minute per driver. Note that we limited the maximal
unwinding of the main TinyOS loop to two iterations
in the experiments with i-CBMC, since the analysis
time of i-CBMC exceeded the timeout duration when
using three loops unwinding for all the benchmark
programs. In addition, the memory consumption of i-
CBMC is much higher, reaching the giga byte in many
cases, in contrast to SADA that consumed at most 20
mega bytes in the worst case thanks to the use of the
efficient abstraction of the interval domain.

Precision Due to the limited search depth in i-CBMC,
not all errors can be discovered. This is exemplified
by the missed bugs reported during the analysis of
the incorrect versions of the drivers. SADA, and ab-
stract interpretation based tools in general, do not
suffer from these limitations since all possible errors
are detected, which makes the tool more adequate
to correctness certification. False alarms are, on the
other hand, the main drawback of our method since
no indication can be provided to developers to decide
the genuineness of the errors. However, in practice,
SADA presents a low false alarm rate with only one

18

Table 1: Analysis benchmarks for TinyOS 1.x and 2.x. Three metrics are shown: the analysis time (in seconds), the peak memory consumption (in mega bytes) and the analysis result

(4: safe, 8: bug detected correctly,△8 : false bug alarm,△4 : bug missed). ∞ denotes a timeout of 30mn.

Non-Preemptive Analysis Preemptive Analysis

DS DQ DS DQ

Driver

#
L

in
es

#
IS

R

#
T

a
sk

s

ADP

#
S
ta

te
s

Original Incorrect Original Incorrect Original Incorrect Original Incorrect

Timer 1.x 1627 1 3

ASTBL 7 1 10 △8 1 10 8 1 10 4 1 10 8 6 11 △8 7 11 8 39 16 △8 36 16 8

AOCR0 4 1 10 △8 1 10 8 1 10 4 2 10 8 3 10 △8 3 10 8 29 15 △8 29 15 8

ATCCR0 4 1 10 4 1 10 8 1 10 4 1 10 8 3 10 4 3 10 8 37 16 4 41 15 8

Timer 2.x 2384 2 2

ASTBL 7 2 11 4 3 11 8 2 11 4 3 11 8 7 12 4 15 12 8 26 13 4 78 15 8

AOCR0 4 3 11 4 2 11 8 4 11 4 3 11 8 10 12 4 9 12 8 38 13 4 36 13 8

ATCCR0 4 3 11 4 3 11 8 3 11 4 3 11 8 10 11 △8 10 12 8 23 13 △8 23 13 8

ADG715 1.x 2038 1 1
APULL-UP 4 1 11 8 1 11 8 1 11 8 1 10 8 1 11 8 1 11 8 1 11 8 1 11 8

ATWI-TX 6 1 11 4 1 11 8 1 11 4 2 11 8 4 11 4 4 11 8 7 12 4 7 12 8

ADG715 2.x 4412 1 6
APULL-UP 4 3 13 4 3 13 8 2 13 4 2 13 8 23 14 4 30 14 8 8 13 4 6 14 8

ATWI-TX 6 4 14 8 6 14 8 2 14 8 3 14 8 40 16 8 42 16 8 6 14 8 6 14 8

CC2420 1.x 2666 1 1
ASPI-SS 4 10 13 4 4 13 8 28 12 4 2 12 8 12 12 4 6 12 8 850 42 4 52 11 8

ASPI-TX 10 5 12 4 3 12 8 28 13 4 26 12 8 21 13 4 19 14 8 1600 74 4 ∞

CC2420 2.x 10133 2 10
ASPI-SS 4 1040 33 △8 800 33 8 12 17 4 5 16 8 ∞ ∞ 34 18 4 27 18 8

ASPI-TX 10 1659 27 △8 597 27 8 13 17 4 ∞ ∞ ∞ 39 18 4 49 19 8

Table 2: Comparison with i-CBMC on the TinyOS 2.x drivers with different unwinding iteration limits.

Non-Preemptive Analysis Preemptive Analysis

i-CBMC (1 iteration) i-CBMC (2 iterations) SADA i-CBMC (1 iteration) i-CBMC (2 iterations) SADA

ADP Original Incorrect Original Incorrect Original Incorrect Original Incorrect Original Incorrect Original Incorrect

ASTBL 38 200 4 29 200 △4 456 447 4 354 441 8 2 11 4 1 9 8 45 290 4 43 286 △4 404 494 △8 386 497 8 26 13 4 6 12 8

AOCR0 16 178 4 35 247 △4 325 450 4 401 474 8 4 11 4 1 8 8 33 262 4 64 340 △4 354 500 4 444 561 8 38 13 4 1 9 8

ATCCR0 29 210 4 34 225 △4 357 462 4 400 484 8 3 11 4 1 10 8 54 323 △8 56 336 8 385 510 △8 397 507 8 4 10 △8 3 10 8

APULL-UP 2 37 4 1 37 △4 1601 1919 4 1552 1907 △4 2 13 4 1 11 8 1 37 4 1 41 8 1 36 4 1 37 △4 8 13 4 4 12 8

ATWI-TX 1 37 △4 1 36 △4 1362 1762 △4 1520 1940 △4 1 10 8 1 11 8 1 36 △4 1 37 △4 1 36 △4 1 37 △4 1 11 8 1 11 8

ASPI-SS 2 64 4 1 62 △4 129 507 4 126 505 △4 12 17 4 4 16 8 ∞ ∞ ∞ ∞ 34 18 4 6 16 8

ASPI-TX 2 65 4 2 62 △4 ∞ ∞ 13 17 4 1 14 8 ∞ ∞ ∞ ∞ 39 18 4 2 15 8

19

occurence in TinyOS 2.x benchmark. Note that i-
CBMC reported also the same false alarm because
both tools lack appropriate modeling of hardware-
level timings in order to restrict the firing timeframes
of the critical interrupts.

Automation As reported by Bucur and Kwiatkowska
(2011), employing a bounded model checking ap-
proach is generally hampered by the laborious task
of setting the appropriate loops unwinding which re-
quires enumerating all loops of the program, elimi-
nating the unnecessary ones and fixing an individual
unwinding limit for the remaining loops (an excep-
tion was made for the main TinyOS loop for which we
made its unwinding limit as a parameter of the analy-
sis to vary the depth of execution flows). In the case of
SADA, such manual tuning was not required thanks
to the widening mechanism of abstract interpretation
that allows a fully automatic and sound analysis up
to arbitrary (possibly infinite) loop bounds. Addition-
ally, i-CBMC is a general purpose tool for analyzing
preemptive ANSI C programs and does not embed
a dedicated semantics for low-level hardware interac-
tions. As a consequence, it is necessary to manually
modify the programs in order to emulate the reaction
of the device to registers modifications. Practically,
before analyzing a program with i-CBMC, we added
C functions modeling the behavior of hardware in re-
action to read/write register events and we inserted
asynchronous calls to these functions and to interrupt
vectors at the appropriate locations. Note that we
were not able to faithfully mimic the full semantics of
the driver due to some limitations in i-CBMC related
to the management of atomic sections. Consequently,
the obtained instrumented program is not semanti-
cally equivalent to the real behavior of the driver and
the device.

9. Related Work

Software reliability in wireless sensor networks repre-
sents a crucial problem that has been addressed by many
recent works. Due to the undecidability of the verification
problem, proposed solutions tend to be limited to specific
families of properties. We can distinguish between two
major trends.

Network-level verification approaches focus on the dis-
tributed behavior of the sensor network. By allowing the
users to specify inter-node assertions, these tools aim at
checking the correctness of the message exchange proto-
cols and the dynamics of the global state of the network.

T-Check (Li and Regehr (2010)) and KleeNet (Sas-
nauskas et al. (2010)) are considered as the pioneering
network-level verification tools for wireless sensor net-
works. T-Check is a depth-bounded model checker that
can verify safety and liveness properties expressed over the
variables of the nodes of the entire network. To alleviate

the problem of state space explosion, T-Check uses random
walks at specific stages of the verification process and em-
beds a partial order reduction technique to avoid exploring
redundant paths. KleeNet is based on the symbolic virtual
machine KLEE (Cadar et al. (2008)) and aims at finding
node interaction bugs by injecting specific failures (such
as packet loss and node crash) in a nondeterministic way
during the symbolic execution of the program.

Anquiro (Mottola et al. (2010)) is a domain-specific ex-
tension to the Bogor model checker (Robby et al. (2003))
that adds support for the specificities of sensor network
programs written for the Contiki OS (Dunkels et al.
(2004)), such as timers and wireless message processing.
Basically, the main idea of Anquiro is to translate the
semantics of the Coniki program into a finite state ma-
chine that can be processed by the Bogor model checker.
The user can express a LTL formulae specifying a property
about the program’s variables and that can be quantified
over the network nodes to model correctness rules of com-
munication protocols.

In contrast to the network-level approaches, node-level
verification approaches are rather interested in the lo-
cal behaviors of individual nodes, and are therefore more
adapted to device drivers verification. Indeed, the previ-
ously described category slices the programs at a high level
of abstraction in order to effectively handle the complexity
of networks interactions. Consequently, access to low-level
hardware details, such as bitwise operations on registers,
are not taken into consideration.

The most widespread program verification technique is
testing that consists in the assessment of a limited num-
ber of finite program execution traces in order to look for
the presence of some predefined errors. To perform such
type of verification, a controlled runtime environment is
required, that should be able to monitor the correct evo-
lution of the program state during execution. Generally,
this is done by instrumenting the program with a runtime
detection mechanism of error situations that puts the pro-
gram into a safe mode and alerts the user whenever an
error is detected. Several solutions has been proposed in
this context that are tailored to TinyOS programs (Bucur
(2012); Zhai et al. (2014)) and they allow tracking com-
plex safety properties during execution on real hardware
platforms. RID (Regehr (2005)) is another testing tool
for TinyOS which is, in contrast to previously cited work,
particularly designed to run in an emulation environment.
It is based on a random testing technique that employs a
restricted interrupt discipline which guides the scheduling
of random interrupts in order to fire them at semantically
valid moments and avoid spurious executions.

Testing techniques are well-appropriate to bug finding
but lack a formal framework that allows assessing proper-
ties on a larger scale than individual executions. To this
end, bounded model checking (Clarke et al. (2001)) has
been proposed to exhaustively analyze a part of the search
space using a symbolic encoding of execution traces trun-
cated to a given length. Two verification tools have imple-

20

mented this technique for TinyOS and both are based on
CBMC (Clarke et al. (2004)), a general purpose ANSI C
model checker. The first tool is TOS2CProver (Bucur and
Kwiatkowska (2011)) and provides a verification toolchain
of TinyOS programs for MSP430 MCU. Before applying
CBMC, it instruments the source with appropriate asser-
tions expressing generic language safety rules or particular
requirements on hardware registers values. Since CBMC
can handle only sequential programs, TOS2CProver ap-
plies the sequentialization technique and inserts nondeter-
ministic calls to interrupt handlers at specific locations us-
ing a partial order reduction, in order to decrease the pro-
gram’s state space. The second tool is i-CBMC (Kroening
et al. (2015)), which is an extension of CBMC to support
native modeling of interrupt preemption without applying
any partial order reduction. The basic idea of i-CBMC
is to enrich the trace formula of CBMC with an encod-
ing of the possible interrupts interleavings using a set of
symbolic clocks. These clocks represent the logical occur-
rence time of the access events on the program variables.
The proposed method defines a set of constraints for re-
stricting the values of theses clocks and expressing a set of
happens-before conditions emerging from the semantics of
interrupt preemption.

Finally, sound formal verification has also been proposed
for interrupt-based programs. Brauer et al. (2010) devel-
oped an abstract interpreter for analyzing binary programs
of the ATmega16 microcontroller. Their solution is tai-
lored to the static verification of generic language errors,
such as out-of-bound array access. They proposed to use
a reduced product of word-level and bit-level intervals in
order to handle both arithmetic and bitwise operations,
the latter being omnipresent in binary codes. The analy-
sis of interrupts is context-sensitive and employs only the
information of the global interrupt bit to restrict the oc-
currences of interrupts. However, their approach does not
consider the presence of nested interrupts nor the asyn-
chronous concurrency of hardware operations.

10. Conclusion

We presented an effective static analysis by Abstract In-
terpretation of device drivers in TinyOS programs. We de-
scribed an automata-based formalism to express functional
properties that specify the correct hardware interaction
patterns that should be followed by the device driver. Our
analysis is based on several abstract domains that provide
a multi-level partitioning according to the hardware state,
the tasks queue and the interrupts masking system. To ef-
ficiently handle concurrency, we perform a compositional
analysis by processing the interrupt vectors separately and
propagate their effects to program locations where inter-
rupts are enabled. Several experiments were conducted on
real-world TinyOS drivers and promising results demon-
strate the efficiency of the approach.

We plan to extend the presented analysis to other exe-
cution models of sensor network programs. An interesting

case is the protothreads paradigm (Dunkels et al. (2006))
implemented in the Contiki operating system. This pro-
gramming abstraction is different from the task-driven exe-
cution model of TinyOS and allows developing programs in
a thread-like style, which is more “natural” in the context
of event-driven programs and has been proved to reduce
their implementation complexity.

In addition, our current implementation supports only
the ATmega128 MCU and we would like to extend our
framework to other microcontroller families. We envisage
to add support for the famous MSP430 16-bits MCU, and
also the promising ARM Cortex M0 32-bits architecture
implemented in various MCUs, such as Nordic nRF51 and
STM32 F0 MCUs. To support these platforms, new ADPs
should be formalized to express the specific hardware be-
haviors of their different subsystems.

References

Atmel, 2011. Atmega128(l) datasheet. www.atmel.com/images/

doc2467.pdf.
Atzori, L., Iera, A., Morabito, G., 2010. The internet of things: A

survey. Computer Networks 54, 2787 – 2805.
Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné,

A., Monniaux, D., Rival, X., 2002. Design and implementation
of a special-purpose static program analyzer for safety-critical
real-time embedded software, in: The Essence of Computation:
Complexity, Analysis, Transformation. Essays Dedicated to Neil
D. Jones. Springer. volume 2566 of Lecture Notes in Computer
Science (LNCS), pp. 85–108.

Brauer, J., Noll, T., Schlich, B., 2010. Interval analysis of microcon-
troller code using abstract interpretation of hardware and soft-
ware, in: Proc. of the 13th International Workshop on Software
& Compilers for Embedded Systems (SCOPES), pp. 3:1–3:10.

Bucur, D., 2012. Temporal monitors for tinyos., in: Proc. of the
Third International Conference on Runtime Verification (RV),
Springer. pp. 96–109.

Bucur, D., Kwiatkowska, M., 2011. On software verification for sen-
sor nodes. Journal of Systems and Software 84, 1693–1707.

Cadar, C., Dunbar, D., Engler, D., 2008. Klee: Unassisted and
automatic generation of high-coverage tests for complex systems
programs, in: Proc. of the 8th USENIX Conference on Operating
Systems Design and Implementation (OSDI), pp. 209–224.

Clarke, E., Biere, A., Raimi, R., Zhu, Y., 2001. Bounded model
checking using satisfiability solving. Form. Methods Syst. Des.
19, 7–34.

Clarke, E., Kroening, D., Lerda, F., 2004. A tool for checking ANSI-
C programs, in: Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Springer Berlin Heidelberg. volume
2988 of Lecture Notes in Computer Science, pp. 168–176.

Cousot, P., Cousot, R., 1977. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or
approximation of fixpoints, in: Conference Record of the Fourth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), ACM. pp. 238–252.

Cousot, P., Cousot, R., 1992. Abstract interpretation frameworks.
Journal of Logic and Computation 2, 511–547.

Cousot, P., Cousot, R., 2002. Modular static program analysis, in-
vited paper, in: Proc. of the Eleventh International Conference
on Compiler Construction (CC), Springer. pp. 159–178.

Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monni-
aux, D., Rival, X., 2005. The Astrée analyzer, in: Proc. of the
European Symposium on Programming (ESOP), Springer. pp. 21–
30.

Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival,
X., 2009. Why does astrée scale up? Formal Methods in System
Design 35, 229–264.

21

www.atmel.com/images/doc2467.pdf
www.atmel.com/images/doc2467.pdf

Cousot, P., Halbwachs, N., 1978. Automatic discovery of linear re-
straints among variables of a program, in: Conference Record of
the Fifth Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL), ACM. pp. 84–97.

Dunkels, A., Gronvall, B., Voigt, T., 2004. Contiki - a lightweight
and flexible operating system for tiny networked sensors, in: Proc.
of the 29th IEEE International Conference on Local Computer
Networks (LCN), pp. 455–462.

Dunkels, A., Schmidt, O., Voigt, T., Ali, M., 2006. Protothreads:
Simplifying event-driven programming of memory-constrained
embedded systems, in: Proc. of the 4th International Conference
on Embedded Networked Sensor Systems (SensSys), ACM. pp.
29–42.

Feret, J., 2001. Occurrence counting analysis for the pi-calculus.
Electronic Notes in Theoretical Computer Science 39.(2). Work-
shop on GEometry and Topology in COncurrency theory.

Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler,
D., 2003. The nesC language: A holistic approach to networked
embedded systems, in: Proc. of the ACM Conference on Pro-
gramming Language Design and Implementation (PLDI), ACM.
pp. 1–11.

Jeannet, B., Miné, A., 2009. Apron: A library of numerical abstract
domains for static analysis, in: Proc. of the 21st International
Conference on Computer Aided Verification (CAV), Springer-
Verlag. pp. 661–667.

Kaminski, M., Francez, N., 1994. Finite-memory automata. Theo-
retical Computer Science 134, 329 – 363.

Kroening, D., Liang, L., Melham, T., Schrammel, P., Tautschnig,
M., 2015. Effective verification of low-level software with nested
interrupts, in: Proc. of the Design, Automation & Test in Europe
Conference & Exhibition (DATE), EDA Consortium. pp. 229–234.

Levis, P., Madden, S., Polastre, J., Szewczyk, R., Woo, A., Gay,
D., Hill, J., Welsh, M., Brewer, E., Culler, D., 2004. Tinyos: An
operating system for sensor networks, in: Ambient Intelligence,
Springer Verlag. pp. 115–148.

Li, P., Regehr, J., 2010. T-check: Bug finding for sensor networks, in:
Proc. of the 9th ACM/IEEE International Conference on Informa-
tion Processing in Sensor Networks (IPSN), ACM. pp. 174–185.

Miné, A., 2006a. Field-sensitive value analysis of embedded C pro-
grams with union types and pointer arithmetics, in: Proc. of the
ACM SIGPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES), ACM. pp. 54–63.

Miné, A., 2006b. The octagon abstract domain. Higher-Order and
Symbolic Computation (HOSC) 19, 31–100.

Miné, A., 2011. Static analysis of run-time errors in embedded crit-
ical parallel C programs, in: Proc. of the 20th European Sympo-
sium on Programming (ESOP), Springer. pp. 398–418.

Miné, A., 2012. Abstract domains for bit-level machine integer and
floating-point operations, in: Proc. of the 4th International Work-
shop on Invariant Generation (WING), p. 16.

Miné, A., 2014. Relational thread-modular static value analysis by
abstract interpretation, in: Proc. of the 15th International Confer-
ence on Verification, Model Checking, and Abstract Interpretation
(VMCAI), Springer. pp. 39–58.

Monniaux, D., 2007. Verification of device drivers and intelligent
controllers: A case study, in: Proc. of the 7th ACM/IEEE In-
ternational Conference on Embedded Software (EMSOFT), pp.
30–36.

Mottola, L., Voigt, T., Österlind, F., Eriksson, J., Baresi, L., Ghezzi,
C., 2010. Anquiro: Enabling efficient static verification of sensor
network software, in: Proc. of the Workshop on Software Engi-
neering for Sensor Network Applications (SESENA), ACM. pp.
32–37.

Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W., 2002. CIL:
Intermediate language and tools for analysis and transformation
of C programs, in: Proc. of the 11th International Conference on
Compiler Construction (CC), pp. 213–228.

Ouadjaout, A., Lasla, N., Bagaa, M., Badache, N., 2014. Poster
abstract: Static analysis of device drivers in tinyos, in: Proc. of
the 13th International Symposium on Information Processing in
Sensor Networks (IPSN), IEEE Press. pp. 297–298.

Parikh, R.J., 1966. On context-free languages. Journal of ACM 13,
570–581.

Regehr, J., 2005. Random testing of interrupt-driven software, in:
Proc. of the 5th ACM International Conference on Embedded
Software (EMSOFT), ACM. pp. 290–298.

Robby, Dwyer, M.B., Hatcliff, J., 2003. Bogor: An extensible and
highly-modular software model checking framework, in: Proc. of
the 9th European Software Engineering Conference (ESEC/FSE),
pp. 267–276.

Sasnauskas, R., Landsiedel, O., Alizai, M.H., Weise, C., Kowalewski,
S., Wehrle, K., 2010. Kleenet: Discovering insidious interaction
bugs in wireless sensor networks before deployment, in: Proc. of
the 9th ACM/IEEE International Conference on Information Pro-
cessing in Sensor Networks (IPSN), ACM. pp. 186–196.

Zhai, J., Sridhar, N., Hallstrom, J.O., 2014. Supporting the specifi-
cation and runtime validation of asynchronous calling patterns in
reactive systems, in: Proc. of the 5th International Conference on
Runtime Verification (RV), Springer. pp. 108–123.

Abdelraouf Ouadjaout received the MS degree in comput-
ing science from the USTHB (Algiers, Algeria) in 2009 and is
working toward the PhD degree in the same university. He was
also a research assistant at the Research Center CERIST (Al-
giers, Algeria) from 2009 to 2015. He is currently a research
engineer at ENS and UPMC (Paris, France). His current re-
search interests include wireless sensor networks and software
verification of embedded software.

Antoine Miné is a Computer Science Professor at Universit
Pierre et Marie Curie (Paris, France). After a PhD at cole
Polytechnique in 2004, he was Research Scientist at CNRS
(2007-2015) at cole normale suprieure. He specializes in for-
mal methods ensuring program correctness, and in particular
the theory of Abstract Interpretation and its application to de-
sign semantic-based automatic static analyzers. His contribu-
tions include the design of novel abstractions to prove numeri-
cal properties of programs, and the participation to the design,
development and industrialization of the Astrée analyzer that
proved the correctness of large embedded critical avionics C
codes.

Noureddine Lasla received the MS degree in computing sci-
ence from the National Institute of Informatics (ESI) in 2008
and is working toward the PhD degree at the USTHB, Algeria.
He is also a research assistant at the Research Center CERIST,
Algeria. His current research interest include localization, de-
ployment and coverage in wireless sensor network.

Nadjib Badache joined USTHB University of Algiers, in

1983, as assistant professor and then professor, where he taught

operating systems design, distributed systems and networking

with research mainly in distributed algorithms and mobile sys-

tems. From 2000 to 2008, he was the head of LSI laboratory,

where he conducted many projects on routing protocols, energy

efficiency and security in mobile ad-hoc networks and WSN.

Since March 2008, he has been the director of CERIST and

professor at USTHB University.

22

	Introduction
	TinyOS
	TinyOS Device Drivers
	Abstract Interpretation
	Assumptions and Notations
	Sequential Executions Analysis
	Concrete Semantics
	Abstract Semantics
	Hardware State Partitioning
	Tasks Queue Partitioning

	Preemptive Executions Analysis
	Concrete Semantics
	Abstract Semantics
	Abstraction of Interrupt Masks
	Abstraction of Preemption

	Experiments
	Test Cases
	Asynchronous Timer
	ADG715 Analog Switch
	CC2420 Transceiver

	Results and Discussion
	TinyOS Benchmarks
	Comparison with i-CBMC

	Related Work
	Conclusion

