
HAL Id: hal-01351583
https://hal.sorbonne-universite.fr/hal-01351583

Submitted on 5 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cloud Storage for Mobile Users Using Pre-Positioned
Storage Facilities

Benjamin Baron, Prométhée Spathis, Marcelo Dias de Amorim, Mostafa
Ammar

To cite this version:
Benjamin Baron, Prométhée Spathis, Marcelo Dias de Amorim, Mostafa Ammar. Cloud Storage for
Mobile Users Using Pre-Positioned Storage Facilities. ACM SMARTOBJECTS’16, Oct 2016, New
York, United States. �10.1145/2980147.2980151�. �hal-01351583�

https://hal.sorbonne-universite.fr/hal-01351583
https://hal.archives-ouvertes.fr


Cloud Storage for Mobile Users Using Pre-Positioned
Storage Facilities

Benjamin Baron†, Prométhée Spathis†, Marcelo Dias de Amorim†, and Mostafa Ammar
∗

†UPMC Sorbonne Universités ∗Georgia Institute of Technology
{bbaron, spathis, amorim}@npa.lip6.fr, ammar@cc.gatech.edu

ABSTRACT
We propose a cloud-like file storage and sharing system de-
signed for mobile users. Our system relies on a collection
of strategically pre-positioned repositories within which files
are replicated without relying on a conventional infrastructure-
based network. Once stored in the first encountered repos-
itory, copies of the files are carried by the initial uploader
or subsequent users and distributed among the other repos-
itories. Having multiple copies available at different reposi-
tories thus increases the likelihood of finding the requested
files in a timely fashion. Files can later be retrieved by other
users at different locations. We are interested in processing
user storage and retrieval requests before their deadlines ex-
pire. We design an algorithm to place the repositories such
that they serve a maximum number of requests before their
deadlines expire. We evaluate our system using mobility
traces of San Francisco city buses. We show the impact of
the number and placement of repositories on request suc-
cess rate. We also show the benefits of mobility-leveraged
file distribution.

Keywords
Vehicular cloud storage and sharing system, opportunistic
networks, placement algorithm

1. INTRODUCTION
Cloud storage services have shown their great potential

given the popularity of services such as Dropbox or Google
Drive. Mobile users accessing such services through wireless
networks including cellular 4G LTE or Wi-Fi are often faced
with high cost, low bandwidth, and limited coverage.

In this paper, we design a cloud-like file storage and shar-
ing system specifically targeting mobile users. The system
deploys a collection of strategically located pre-positioned
data storage facilities acting as file repositories. Mobile
users upload files that they would like to archive or share,

∗This author’s work was supported in part by NSF grants
NETS 1409589 and NETS 1161879.

or retrieve files uploaded by them or by other users from
this set of repositories as they meet them. We leverage
the existing mobility of the initial uploaders and subsequent
users to limit the dependency of our system on conventional
infrastructure-based networks.

We consider techniques that use the mobility of either the
initial file uploader or subsequent users to replicate files.
The distinctive feature of our approach lies in the oppor-
tunistic use of mobile users as data shuttles between the
file repositories. Copies of the files are transferred to users
when in the vicinity of a repository and transported to other
repositories along user routes. To increase the likelihood of
replication, copies of the user files can be loaded on multiple
users traveling among the repositories.

One of the main challenges in implementing our system is
handling user requests to either store a file or retrieve one
in a timely fashion. A request is delayed depending on how
close the user is from the nearest repository. Each request
comes with a deadline indicating when it expires. Past the
deadline, the request is considered as failed. Our goal in
the design of the system is to bound the request deadline to
minimize the failure rate of requests.

Two aspects of the system can have a significant effect on
the request failure rate. The first is the degree of replication
for files in the repository. The second is the number and
placement of file repositories in the mobile environment. Our
work considers both of these challenges.

We propose an algorithm to place the repositories at strate-
gic locations where they can capture a maximum number of
user requests before they expire. To enable the distribution
strategy of the user files across the repositories, the place-
ment algorithm also takes into account the flows of users
traveling between the repositories. The placement of the
repositories then faces two different objectives. On the one
hand, the repositories must be spaced far enough from one
another to avoid starving user requests and limit the overlap
of user requests they serve. On the other hand, the reposito-
ries must be close enough and well connected to one another
by the movements of the users to create a connected network
that enables the distribution of user files in all repositories.
We instantiate our system using bus stops as potential loca-
tions for repositories and buses as mobile users. Buses also
behave as data shuttles between repositories.

The repositories we use to build our system are somehow
similar to throwboxes [10] and offloading spots [1]. Repos-
itories also enable data transfers by combining the trajec-
tories of multiple mobile users. The mobile users that we
use to distribute the files across the repositories act as data



MULEs [9]. In our system, the repositories store files in a
distributed manner and help share them with mobile users.
Content storage and retrieval was also an issue studied in the
context of Delay-Tolerant Networking (DTN) [4]. Examples
include TierStore [3] which is a Network File System that
relies on very low latency links that intermittently connect
the repositories. This makes TierStore well suited in the
context of DTNs. Ott and Pitkänen [8] proposed a system
based on repositories to cache user content, thus decreas-
ing the latency when retrieving content. However, both of
these approaches do not study the impact of a placement of
storage repositories that can guarantee the availability and
distribution of files.

To summarize, our contributions are the following:

• File distribution. We leverage the users traveling
between repositories to distribute files. With copies of
the files available at multiple repositories, user requests
are more likely to be successful.

• Repository placement. We design an algorithm
that places a target number of repositories over a ge-
ographical area to satisfy a maximum number of user
requests. The placement of the repositories depends
on the mobility patterns of mobile nodes, the deadline
for user requests, and the vehicle flows connecting the
repositories together.

The rest of this paper is organized as follows. We describe
the problem statement in Section 2. In Section 3, we detail
the algorithm to place the repositories. Finally, we evaluate
our cloud storage system with traces of San Francisco buses
in Section 4 and conclude in Section 5.

2. PROBLEM STATEMENT
We consider a geographical area with n mobile users that

move according to a known mobility pattern and m fixed
repositories placed over the geographical area according to
a placement strategy. Both are equipped with wireless capa-
bilities and with local storage to store user files. We enable
communications only between mobile users and repositories
through wireless interfaces (e.g., IEEE 802.11).

2.1 Repositories
The repositories are stationary and located at specific lo-

cations. They feature high availability, large storage and fast
wireless transmission capabilities to handle large data rates
in parallel with multiple mobile users. We assume a central
controller is in charge of monitoring the files available at each
repository. Whenever a repository receives a new file from a
user, it notifies the controller of the availability of this file.
Likewise, the mobile users can be notified of the availability
of the files through the controller. We assume that the com-
munications between the controller and the repositories and
mobile users are handled by an inexpensive control channel
(e.g., a cellular connection).

2.2 User requests
There are two types of user requests: put requests to store

user files and get requests to retrieve them. All requests
have an associated deadline. Once a mobile user generates a
request, the request becomes pending for the user until they
encounter a repository. When in the transmission range of

the repository, the user seamlessly transfers all of its pending
requests to the repository.

put request. When a mobile user generates a put request,
the user waits to be in the transmission range of the first
repository it encounters. On an encounter with a repository,
the user transfers the put request message along with the
file. Once the file is received, the repository updates its
local storage and notifies the availability of the file to the
central controller. We define the two behaviors of mobile
users when they have a put request to execute:

• “First”put policy: Mobile users immediately delete the
request once they transferred it to the first repository
they encounter or if its deadline expires, whichever oc-
curs first.

• “All” put policy: Mobile users delete the request once
the deadline associated with the request has expired.
This allows the users to potentially replicate the files
to all repositories they encounter from the moment the
request is generated to the moment it expires.

get request. Users share the files they store on the repos-
itories with other users. That is, any user can generate a
get request to retrieve any available file. The user then
transmits the get request to repositories it meets until the
request is satisfied or until its deadline expires, whichever
occurs first. In turn, the repository processes the request
and transfers the requested file to the mobile user if the file
is available in the repository’s local storage. Otherwise, the
repository notifies the mobile user that the requested file is
not available. The mobile user will then try to retrieve the
requested file from the next repository it will encounter. If
the mobile user does not encounter any repository with a
copy of the requested file before the request’s deadline ex-
pires, the request fails.

2.3 File distribution with user mobility
We incorporate a file distribution strategy that exploits

user mobility to move copy files among repositories. In-
creased file distribution will reduce get failure rates. To ac-
complish this, we introduce sync requests for the files that
need distribution. Repositories generate sync requests once
files are stored by their initial uploader, following put re-
quests. A sync request results in transferring copies of a
file from the repository to passing mobile users in charge
of distributing these copies to repositories along their tra-
jectories. A later encountered repository updates its local
storage with the corresponding file and notifies the central
controller of the new availability of the file. If the file is
yet to be available in every repository, the new repository
starts distribution the file it just received by generating cor-
responding sync requests. Otherwise, the central controller
informs the repositories of the distribution completion.

The three types of requests put, get, and sync are shown
in Figure 1. In this figure, the mobile nodes are buses that
aggregate requests from the passengers riding the bus. The
first mobile user on the left carries three requests: get for file
A, sync for file B, and put for file C. The repository, which
only has a local copy of file A, executes all the requests and
adds files B and C to its local storage. When a subsequent
mobile user encounters the repository, the repository gener-
ates sync requests and transfers them to the mobile node,



File A
File B File CFile A

File B File C

File B

File C

File A
File B
File C

File B File C

sync putget

sync sync

Figure 1: Requests and data exchanges between a repository
and two mobile users when they encounter one another.

along with the copies of the files. The mobile node then car-
ries the sync requests to the next repository it encounters.

2.4 Performance objectives
We consider the following metrics to evaluate the perfor-

mance of our storage and sharing system:

• Request success ratio. We aim to maximize the
successes and minimize the failures of user requests. A
put or get request is successful if it completes before
its deadline expires. The success ratio is the number
of successful requests divided by the number of all re-
quests issued during the time period of interest.

• File distribution duration. File distribution relies
on the movements of the mobile nodes to distribute
copies of files across the repositories. The distribu-
tion duration of a file is the time it takes for it to be
available in all the repositories of the system. The
repository placement algorithm takes this metric into
account when allocating the location of the repositories
to minimize the distribution duration of the files.

3. REPOSITORY PLACEMENT
We detail the repository placement algorithm that deter-

mines the locations of a target number of repositories for
a given user request deadline. The goals of the placement
algorithm are twofold: (i) determine locations such that the
allocated repositories serve the maximum number of user
requests before they expire and (ii) connect the repositories
together by the mobile users’ movements to create the file
distribution network. The goals of the placement algorithm
are represented in Figure 2 in the case of a bus transit sys-
tem. The bottom layer shows the trajectories of the buses in
the Financial District of San Francisco, with allocated bus
stops. Each bus trajectory is represented by a color and a
width indicating the frequency of buses. The middle layer
shows the discretized demands generated by the bus passen-
gers. This layer shows the demands that are allocated to the
repositories placed at the bus stops. Finally, the top layer
shows a logical graph where nodes correspond to allocated
repositories and edges to the flows of buses running between
two repositories. As in the bottom layer, the width of the
edges corresponds to the frequencies of buses.

We derive the placement of the repositories from a set
cover problem, in particular, the Maximal Covering Loca-
tion Problem [2]. Given a set of candidate locations for the
repositories, the placement problem consists of selecting the
candidate locations that maximize the success ratio of the

Figure 2: Different layers to represent the goals of the placement
algorithm in the case of a bus transit system.

requests issued by the users. This problem was shown to be
NP-Hard [7], so we adapt known heuristics to solve it. To
this end, we consider the Greedy Adding with Substitution
(GAS) heuristic [2] that determines the optimal locations
for each iteration of the algorithm.

3.1 Candidate and demand locations
The placement algorithm takes both a set C of candidate

locations where the repositories can be placed, as well as
a set D of demand locations to be served by the allocated
repositories. The candidate and demand locations refer to
geographical places (typically circles and square cells) visited
by the user trajectories. The algorithm outputs a set A of
allocated candidate locations for the repositories.

Demands. Users can generate a request at any time. Each
successive location visited by the trajectories of the users
is a demand location with equal probability of being the
starting location of a user request. To this end, we divide
the geographical area into a grid of cells of a given size
(e.g., 100 m × 100 m). Each cell aggregates the discretized
user trajectories that go through the cell. The greater the
number of trajectory aggregates, the higher the probability
for a cell to be the starting location of user requests.

Candidates. Candidate locations for the repositories cor-
respond to relevant locations the mobile users will often visit
for long periods of time, allowing the transfer of significant
amounts of data. For instance, candidate locations may be
road intersections, or bus stops (e.g., in the case of a bus
transit system). In the evaluation section, we use available
data from bus transit systems and consider bus stops as
candidates for the location allocation of the repositories.

To determine the locations of the repositories, we quan-
tify the relations between two locations l1 and l2 (either a
demand or candidate location) by computing the following
spatial statistics:

• The mean visit frequency f(l1, l2) of mobile users that
visited location l1, then location l2.

• The median inter-visit duration v(l1, l2) of two consec-
utive visits of mobile users at location l1 that visited
location l2 later in during their trajectory.

• The median travel time t(l1, l2) of the time it takes for
a mobile user to travel from location l1 to location l2.



We then measure the weight w(l1, l2) of a pair of locations
(l1, l2) using the visit frequency f(l1, l2) and the median
inter-visit duration v(l1, l2) as follows:

w(l1, l2) =
f(l1, l2)

v(l1, l2)
·

In the following, we denote by {wl1l2} the weight matrix
such that wl1l2 = w(l1, l2), and by {tl1l2} the travel time
matrix such that tl1l2 = t(l1, l2).

Relations between demands and candidates. The
deadline of the user requests imposes a bound δ on the travel
time t(d, c) between a demand location d and a candidate
location c. A demand location d is allocated to a candidate
point c if the demand is within the bound δ and the weight
wdc is not null (i.e., there are flows of mobile users that travel
from the demand to each of the candidates). The goal is to
maximize the sum of the weights of the demands d ∈ D allo-
cated to a candidate c:

∑
d∈D{wdc | tdc ≤ δdc}. Note that a

single demand cell can be allocated to multiple candidates,
each within the given bound δ with non-null weights.

Relations between pairs of candidates. We character-
ize the connectivity between two candidates in terms of flows
of mobile users travelling from c1 and c2 with both weights
wc1c2 and wc2c1 . For each candidate, we maximize the sum
of the weights between this candidate c and the chosen can-
didates k ∈ A:

∑
k∈A wkc + wck.

3.2 Location allocation algorithm
The algorithm derives from a greedy-adding with substi-

tution (GAS) heuristic proposed to solve the Maximal Cov-
ering Location Problem [2]. For each candidate location, we
divide the iterations into two parts: selection and substitu-
tion.

Selection. We first pre-select the set of candidates from
the set of remaining candidates such that each candidate
is connected to the chosen repositories by the flows of mo-
bile users. This pre-selection is necessary, as it guarantees
the creation of the distribution network and increases the
availability of files. From these pre-selected candidates, we
choose the candidate that maximizes the sum of demand
weights within the bound δ as we defined previously.

Substitution. The second part of the algorithm goes back
on the previous iterations and examines each allocated can-
didate and tries to find a better candidate that maximizes
the demand weights, while guaranteeing that the new candi-
date will be connected to the chosen candidates. If a better
candidate is found, it replaces the candidate under examina-
tion. The substitution part allows to replace the candidates
allocated in the early iterations that are not justified in the
later iterations due to subsequent allocated candidates.

We adapt the algorithm for our system as follows. The
first candidate is chosen such that it maximizes the sum of
demand weights within the bound δ. Note that, since the
demand weights are maximized for this candidate, the candi-
date is often visited by mobile users, making it a good inter-
mediary node to be connected to the other candidates by the
flows of mobile users. There is no substitution part, as no
other candidate was already chosen. In our implementation,
once a candidate is chosen, we remove all the candidates in
the vicinity of the chosen candidate (in terms of travel time
and distance from the chosen candidate, e.g., half the dead-
line and the distance corresponding to this duration with

average speed). This allows us to better spread the reposi-
tories over the geographic area and avoids cluttering denser
regions with too many repositories.

4. EVALUATION
We run our evaluation in two parts. The first part cor-

responds to the allocation of a given number of repositories
for the given deadline. The second part is the simulation of
the system with the repositories placed in the area.

Mobility model for public transit vehicles. Firstly,
we simulated the movements of the San Francisco MUNI
buses1 using the ONE simulator [6]. The ONE simulator is
a time-discrete and event-based simulator of delay-tolerant
networks. We used the MapRouteMovement mobility model
implemented in ONE to simulate the movements of mobile
nodes and their stops on a street map. This mobility model
is particularly well suited to simulate the movement of buses
that are part of a transit system. We derive the movements
of the buses from GTFS (General Transit Feed Specifica-
tion)2 feeds given by the MUNI transit authority that gather
the buses’ schedules. We develop generic tools to convert the
GTFS feeds into a collection of MapRouteMovement mobility
models compatible with the ONE format.

Repository placement. Secondly, we developed a frame-
work to determine the locations of the repositories. The
framework implements the algorithm described in Section 3.
It takes the bus movements we derived from the GTFS feeds.
We divide the geographical area into a grid of cells of size
100m × 100m. We take bus stops as candidates to host
a repository, since the buses stop for a long enough du-
ration to transfer large amounts of data. The framework
then allocates the locations of the target number of repos-
itories among the candidate locations, given user request
deadline. We represented in Figure 3a the output allocation
of 15 repositories’ locations out of the 4,590 bus stops in
San Francisco using the movements of the MUNI buses. In
this figure, we show a Getis Ord-G hotspot analysis of the
spatially significant bus stop candidates with regards to the
visit frequencies of the buses in their vicinity [5].

After running the tools to convert the GTFS feed, we ob-
tained the movements of 493 buses running on 130 different
trajectories, which represents the traffic of buses running be-
tween 10am and 4pm on a typical weekday. Both the mobile
users and the repositories are equipped with WiFi network
interfaces with a range of 250m. We ignore wireless interfer-
ence and assume enough wireless capacity to accommodate
the full exchange of files between the repositories and the
mobile users. The candidate locations are the bus stops
given by the GTFS bus feed projected onto the street map.
The wait time of the buses at the bus stops is picked at ran-
dom between 10 seconds and 30 seconds. The mobile users
send requests independently every 10 minutes following a
Poisson distribution, without any assumptions on the pop-
ularity and geographical locality of the files. We assume the
mobile users generate the put and get requests as follows:
10% of the requests are put requests and 90% of the requests
are get requests. The simulation duration is 20,000 seconds.

Success ratio. As a first step, we perform the simulations
to evaluate the benefits of the put policies and the distri-
bution network in the success ratio of the user requests. To
1https://www.sfmta.com/
2https://developers.google.com/transit/gtfs



LEGEND Demand cell (100m x 100m)
Candidate location (radius 200m)
Allocated candidate
Distribution network link
Demand allocated to an allocated candidate
Getis Ord-G representation of the hotspots (z-values)

1

215
12

13

9

2

14

8
10

4 5

7

6
11

(a) Allocation of the repositories. The color variations of
the candidate locations represent hotspots resulting from
the Getis Ord-G spatial analysis with regard to the bus
visit frequencies at these locations [5].

0 (0)
50 (11)
41 (8)
28 (6)

44 (12)
33 (4)

28 (12)
52 (6)

70 (20)
31 (4)
19 (3)
46 (5)
50 (6)
55 (7)
51 (7)

49 (11)
0 (0)
39 (6)
28 (9)

43 (11)
61 (8)
23 (8)
50 (7)

95 (11)
52 (12)
40 (6)
15 (4)
21 (5)
51 (8)
9 (3)

40 (8)
40 (6)
0 (0)
59 (6)
72 (9)
67 (6)
54 (6)
14 (4)

61 (13)
40 (8)
49 (5)
23 (5)
39 (6)
63 (9)
28 (5)

27 (5)
26 (9)
59 (6)
0 (0)
12 (9)
36 (7)
9 (7)

64 (10)
92 (19)
45 (15)
17 (4)
38 (6)
42 (5)

32 (12)
35 (8)

44 (11)
45 (12)
79 (12)
14 (8)
0 (0)
39 (8)

27 (11)
80 (15)

108 (19)
59 (19)
31 (9)

56 (12)
58 (10)
36 (10)
54 (12)

32 (5)
58 (8)
67 (7)
36 (7)

41 (12)
0 (0)
44 (7)
78 (7)

96 (20)
61 (6)
19 (6)
46 (9)
50 (7)

69 (12)
52 (9)

28 (12)
24 (9)
55 (6)
9 (6)

23 (10)
43 (7)
0 (0)

53 (13)
83 (16)
30 (17)
25 (6)
37 (5)
35 (8)

40 (12)
31 (6)

52 (6)
53 (6)
16 (3)
65 (12)
75 (12)
80 (6)
59 (14)
0 (0)

44 (14)
24 (8)
62 (6)
35 (4)
52 (6)
63 (12)
40 (5)

68 (20)
96 (14)
64 (16)
94 (19)

104 (20)
99 (19)
89 (18)
46 (14)
0 (0)

69 (12)
84 (18)
81 (14)
96 (13)

108 (17)
87 (13)

31 (4)
51 (12)
41 (8)
40 (15)
50 (14)
62 (6)
32 (17)
25 (8)
71 (14)
0 (0)
48 (7)
54 (4)
44 (6)
40 (12)
49 (5)

17 (3)
40 (6)
49 (6)
16 (4)

32 (11)
19 (6)
26 (6)
59 (5)

84 (17)
47 (7)
0 (0)

27 (7)
31 (5)
48 (9)
34 (7)

45 (8)
17 (5)
23 (4)
40 (6)

54 (10)
47 (8)
38 (6)
34 (4)

84 (14)
54 (4)
27 (6)
0 (0)
18 (5)
41 (9)
6 (3)

50 (8)
21 (5)
39 (6)
42 (6)
54 (9)

53 (10)
38 (9)
50 (6)

98 (14)
45 (6)
33 (7)
16 (5)
0 (0)

57 (9)
9 (3)

60 (12)
50 (7)
63 (8)

30 (12)
36 (12)
67 (12)
39 (12)
63 (12)

108 (17)
41 (13)
47 (10)
41 (10)
59 (9)
0 (0)

47 (8)

50 (7)
12 (4)
30 (6)
39 (6)
52 (8)
55 (8)
35 (9)
41 (6)

90 (13)
50 (5)
33 (6)
7 (3)

10 (3)
49 (10)
0 (0)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

(b) Origin-destination matrix of the repositories (identified by the numbers repre-
sented on the Figure 3a showing the mean travel time in minutes between each pair
of repositories. The values in parentheses are the corresponding standard deviation.
The simulations were done for 15 repositories placed as shown in Figure 3a.

Figure 3: Results for the allocation of 15 repositories in San Francisco using the bus movements of the MUNI bus transit system.

First put, no distribution All put, no distribution First put, distribution All put, distribution

0

0.25

0.50

0.75

1

0

0.25

0.50

0.75

1

Success ratio
File availability

0 10 20 0 10 20 0 10 20 0 10 20

Number of repositories

Deadline (seconds) 1200 2400 3600 4800

Figure 4: Comparison of the impact of the different put policies
and the existence of the distribution network in the user request
success ratio and the file availability in the repositories.

this end, we simulate the system under different assumptions
regarding the put policy (“first” or “all”) and the existence
of the distribution network. We represent the average suc-
cess ratio of the get user requests and the file availability in
the repositories in Figure 4. In the scenario with the “first”
put policy and no distribution network, we notice that the
more repositories there are, the more user requests are sat-
isfied. Some buses that have pending get requests are not
able to reach any repository because of their routes and the
few repositories available. Adding more repositories allows
more buses to reach repositories, resulting in better success
ratio of the get user requests. However, since the data is
scattered across multiple repositories, the success ratio of
the get requests still remains low for short deadlines. For
long deadlines, the buses visit more repositories, which in-
creases their chances to visit one with a copy of the requested

file. Taking advantage of the “all” put policy helps increase
the success ratio of the get requests by 9.98% on average
for all the deadlines. With this policy, the buses distribute
copies of the files to different repositories, thus increasing
the availability of the files. Contrary to the “first” put pol-
icy where user files are available at only one repository, the
“all” put policy increases the chance of a mobile user to find
a repository with a local copy of the requested file.

The distribution network led to increase the user request
success ratio by 104.3%. Note that this improvement is
greater for lower user request deadlines (e.g., the improve-
ment for the user requests of 1200 seconds is of 201.4% on
average). The distribution network distributes copies of the
files in several repositories. Since the repository placement
algorithm guarantees that all the repositories are connected
together, the files can be distributed to each repository of
the system. Hence, a mobile user with a pending get request
is more likely to encounter a repository that has a local copy
of the requested file, which increases the success ratio of the
get requests.

File availability. We compare the benefits of the distribu-
tion network with the “all” put policy using the “File avail-
ability” plots in Figure 4. The plots show the proportion
of files available at the repositories, where “1.0” of file avail-
ability corresponds to all the files being available at each
repository. We clearly see the benefits of the distribution
network to distribute the files to the repositories. The “all”
put policy also distributes the files to several repositories,
however, it fails to distribute the files to repositories beyond
those located on the routes of the mobile users that gener-
ated the put requests. The plot further shows that, even
with the distribution network, the files are not available at
every repository (only 85% of them). In fact, the data rep-
resented accounts for the files that were not fully distributed
by the end of the simulation.



0

1000

2000

3000

4000

5000

0.00 0.25 0.50 0.75 1.00
Proportion of file availability

D
ur

at
io

n 
si

nc
e 
pu

t 
tim

e 
(s

ec
on

ds
)

Number of 
repositories

5

10

15

20

25

Figure 5: Distribution duration as a function of the file avail-
ability for different numbers of repositories.

Distribution duration. In the second step of our evalu-
ations, we study the distribution duration of the copies of
user files among the available repositories. In Figure 5, we
show the average duration to distribute a file throughout
the distribution network since the time the file was stored
in the first repository (following a put request). We repre-
sent the distribution duration of the copies of user files as a
function of the proportion of the file availability for different
numbers of repositories. For example, with 10 repositories,
40% of file availability corresponds to the file being avail-
able in four repositories. The first repository where the file
is stored can be any of the repositories available. We no-
tice that the average time needed to distribute the user files
to every repository, regardless of the number of repositories
available, is 4000 seconds, or a little more than one hour. It
takes more time to distribute the copies of the files to the
repositories at the beginning and end of the file distribution.
At the beginning of the file distribution, only one copy of the
files is available at the first repository. It takes on average
700 seconds to distribute the first copy of the file to the sec-
ond repository. As more repositories distribute copies of the
files, the distribution of the copies becomes faster. By the
end of the file distribution, copies of files are available at
most repositories. It takes on average 500 seconds to reach
the last repository, as it is the farthest away from the first
repository where the original copy of the file was stored.

In Figure 3b, we give an origin-destination matrix that
shows the average travel time in minutes between any pair
of repositories. This translates to the time needed to dis-
tribute the file to different repositories from the time the
file was stored in a first repository (following a put request).
These values give the average duration for a file to be avail-
able in a repository. In the figure, the repositories are iden-
tified by the same numbers as the ones in Figure 3a. The
connectivity between two repositories depends on the num-
ber and frequency of the buses going from one repository to
another. For instance, repositories 1 and 15 are very well
connected to the rest of the repositories. However, reposi-
tory 9 is not as well connected since it is farther away from
the rest of the repositories. This further explains the longer
time it takes to distribute copies of the user files from repos-
itory 9 to every other repository. This goes to show that the
further away the repositories are, the more time it takes on
average to reach them and distribute copies of the files to
them.

5. CONCLUSION
In this paper, we presented a cloud-like file storage and

sharing system. Users share files on the system by seam-
lessly storing and retrieving files on pre-positioned reposito-
ries within a bounded deadline. A challenge we identified
in this paper is the processing of user requests in a timely
fashion. To this end, we leverage the movements of the mo-
bile users between the repositories to distribute copies of the
user files throughout the system. Additionally, we designed
an algorithm to place a given number of repositories such
that they serve the maximum number of user requests. We
evaluated the storage system with simulated movements of
San Francisco buses. We showed how the number of stor-
age nodes impacts the success of the user requests to retrieve
user files. We also evaluated the distribution duration of the
copies of the files with the movements of the users between
the repositories. Regardless of the number of repositories
available, it takes a little more than an hour to distribute a
file to each repository placed in San Francisco using traces
of the MUNI buses.

As future work, we plan to implement distribution strate-
gies that replicate copies of the files to some of the reposito-
ries. We also intend to take into account the limited capacity
of wireless transmissions between the mobile users and the
repositories, as well as the contention when multiple nodes
try to exchange files with a repository. This creates more
challenges with regard to the scheduling of the requests ex-
ecuted at each repository.

References
[1] B. Baron, P. Spathis, H. Rivano, and M. D. de Amorim.

Offloading massive data onto passenger vehicles: Topol-
ogy simplification and traffic assignment. IEEE/ACM
Transactions on Networking, 2015.

[2] R. Church and C. R. Velle. The maximal covering lo-
cation problem. Papers in regional science, 1974.

[3] M. J. Demmer, B. Du, and E. A. Brewer. Tierstore: A
distributed filesystem for challenged networks in devel-
oping regions. In FAST, 2008.

[4] K. Fall. A delay-tolerant network architecture for chal-
lenged internets. In ACM SIGCOMM, 2003.

[5] A. Getis and J. K. Ord. The analysis of spatial associa-
tion by use of distance statistics. Geographical analysis,
1992.

[6] A. Keränen, J. Ott, and T. Kärkkäinen. The one sim-
ulator for dtn protocol evaluation. In ACM Simutools,
2009.

[7] N. Megiddo, E. Zemel, and S. L. Hakimi. The maximum
coverage location problem. SIAM Journal on Algebraic
Discrete Methods, 1983.

[8] J. Ott and M. J. Pitkänen. Dtn-based content storage
and retrieval. In IEEE WoWMoM, 2007.

[9] R. C. Shah, S. Roy, S. Jain, and W. Brunette. Data
mules: Modeling and analysis of a three-tier architec-
ture for sparse sensor networks. Elsevier Ad Hoc Net-
works, 1(2):215–233, 2003.

[10] W. Zhao, Y. Chen, M. Amma, M. Corner, B. Levine,
and E. Zegura. Capacity enhancement using throw-
boxes in dtns. In IEEE MASS, 2006.


