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Abstract

Research on collaborative information retrieval (CIR) has shown positive im-
pacts of collaboration on retrieval effectiveness in the case of complex and/or
exploratory tasks. The synergic effect of accomplishing something greater
than the sum of its individual components is reached through the gather-
ing of collaborators’ complementary skills. However, these approaches often
lack the consideration that collaborators might refine their skills and actions
throughout the search session, and that a flexible system mediation guided
by collaborators’ behaviors should dynamically adapt to this situation in
order to optimize search effectiveness. In this article, we propose a new
unsupervised collaborative ranking algorithm which leverages collaborators’
actions for (1) mining their latent roles in order to extract their complemen-
tary search behaviors; and (2) ranking documents with respect to the latent
role of collaborators. Experiments using two user studies with respectively
25 and 10 pairs of collaborators demonstrate the benefit of such an unsu-
pervised method driven by collaborators’ behaviors throughout the search
session. Also, a qualitative analysis of the identified latent role is proposed
to explain an over-learning noticed in one of the datasets.
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1. Introduction

In recent years, researchers have argued that in addition to creating
better algorithms and systems for individualized search and retrieval, a
substantial leap can be taken by incorporating collaborative aspects in
Information Retrieval (IR) (Twidale et al., 1997), referred to as Collabo-
rative Information Retrieval (CIR) (Fidel et al., 2000). However, simply
allowing multiple people collaborate on a search task does not guarantee
any advantages over a single searcher. To gain advantages, one needs to
look deeper into the aspects of collaboration that make it successful and
investigate how those aspects can be incorporated in a search setting. Many
have found that when the collaborators bring a diverse set of skills to a
project, they could achieve something more than what they could using
their individual skills and contributions (Soulier et al., 2014). But how does
one ensure the use of such diverse skills in search? One approach could be
asking the searchers involved in a CIR project about the roles (e.g., query
constructor, information assessor) they would like to play. However, these
collaborators may either not know about such skills they have or may be
unable to specify any preferences. Therefore, one may need to automatically
mine their skills through behavioral features. Recently, this approach
(Soulier et al., 2014) has been proposed, aiming at dynamically identifying,
through search features, the possible roles of collaborators according to a
role taxonomy (Golovchinsky et al., 2009). However, the labeled roles are
predefined regardless of the users, and accordingly, one shortcoming of the
proposed approach is its inability to ensure that the identified roles exactly
fit with collaborators’ search skills.

To tackle this gap, this current article presents a new approach - called
MineRank - that mines in real time the unlabeled role that collaborators
play in a CIR context. The objective is to leverage the diversity of the
collaborators’ search skills in order to ensure the division of labor policy
and to optimize the overall performance. Instead of following predefined
labels or a taxonomy of roles, MineRank is an unsupervised algorithm
that (1) learns about the complementarity of collaborators’ unlabeled
roles in an unsupervised manner using various search behavior-related



features for each individual involved, and (2) re-injects these unlabeled
roles to collaboratively rank documents. The algorithm is used for various
experiments and evaluated using retrieval effectiveness at various levels.
The results show that the model is able to achieve synergic effect in CIR by
learning the latent role of collaborators.

The remainder of the article is structured as follows. Section 2 presents
the related work. In Section 3, we motivate our approach and introduce
the problem definition. Section 4 focuses on our two-step unsupervised CIR
model relying on the collaborators’ unlabeled roles. The experimental evalu-
ation and results are described in Section 5. Section 6 concludes the article.

2. Related Work

2.1. Collaborative Information Retrieval

Collaborative information retrieval (CIR) is defined as a search process
that involves multiple users solving a shared information need (Golovchinsky
et al., 2009). Research has found that this setting is particularly beneficial
in the case of complex or exploratory information tasks (Morris and Horvitz,
2007) in which a lone individual would suffer from insufficient knowledge or
skills. Indeed, collaboration in search could improve in retrieval effective-
ness by providing the opportunity to gather complementary skills and/or
knowledge in order to solve an information need, as well as addressing mu-
tual benefits of collaborators through the synergic effect of the collaboration
(Shah and Gonzalez-Ibanez, 2011b).

Collaboration between users is supported by three main principles: (1)
avoiding redundancy between users’ actions (division of labor), either at
the document level (Foley and Smeaton, 2009) or the role level (Pickens
et al., 2008; Shah et al., 2010); (2) favoring the information flow among
users (sharing of knowledge), either implicitly by search inference (Foley
and Smeaton, 2010) or explicitly by collaborative-based interfaces (Morris
and Horvitz, 2007); and (3) informing users of other collaborators’ actions
(awareness) (Dourish and Bellotti, 1992). Supporting these three principles
remains a challenge in CIR, often tackled with adapted interfaces, revisited
IR techniques, or collaborative document ranking models (Joho et al., 2009).

In this article, we focus more specifically on the third aspect when dealing
with CIR models. In previous work, the focus has been on the mediation
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of collaborators’ actions and complementarity skills in order to enhance the
synergic effect within collaboration towards the satisfaction of the shared
information need (Shah and Gonzalez-Ibénez, 2011b). Henceforth, division
of labor is a pivotal issue for coordinating collaborators in terms of search
actions with respect to their complementary skills. Assigning roles is one
way of tackling this challenge because roles give a structure to the search
process (Kelly and Payne, 2013). Beyond simply considering collaborators
as peers and focusing on inferring the global relevance of documents towards
all collaborators (Foley and Smeaton, 2009) or personalizing document scores
for each collaborator (Morris et al., 2008), several works (Pickens et al., 2008;
Shah et al., 2010; Soulier et al., 2013) propose assigning asymmetric roles to
users in order to optimize the collaborative search effectiveness. Golovchinsky
et al. (2009) suggested these roles in a role taxonomy.

Pickens et al. (2008) proposed a pair of roles, namely Prospector-Miner,
that involved splitting a search task between the collaborators. The Prospec-
tor was responsible for formulating a search request that ensured search di-
versity, whereas the Miner was devoted to identifying highly relevant docu-
ments. Similarly, Shah et al. (2010) proposed a CIR model relying on the
Gatherer-Surveyor relationship, in which the former’s goal was to quickly
scan search results and the latter focused on diversity. In these models,
users’ roles ensured a task-based division of labor.

Different from these works, Soulier et al. (2013) ensured the division of
labor among collaborators by considering their respective domain expertise as
the core source of a collaborator’s role when aiming to solve a multi-faceted
information need. For this purpose, the authors structured collaborators’
actions by assigning documents to the most likely suited users, as well as
allowing users to simultaneously explore distinct document subsets.

A new role-based approach has been proposed in (Soulier et al., 2014)
which considers that collaborators’ search behaviors were dynamic and that
their role might evolve throughout the search session. This statement has
been also outlined in (Tamine and Soulier, 2015). With this in mind, collab-
orators’ predefined and labeled roles, namely Prospector-Miner and Gath-
erer/Surveyor, were identified in real time assuming a task-based division of
labor policy based on their search behavior oppositions. Then, documents
are ranked according to the CIR models associated with the mined roles
(Pickens et al., 2008; Shah et al., 2010).



2.2. User Behavior Models for Document Retrieval

The user behavior modeling domain focuses on the understanding of
the user model within the search session. On one hand, some work (Evans
and Chi, 2010; Yue et al., 2014) only focuses on the user modeling in a
highly abstract level in order to build generative behavioral models. For
instance, Yue et al. (2014) analyze temporal sequential data of collaborative
search through a hidden Markov model. On the other hand, other research
attempts to model user behaviors and to re-inject them into a retrieval
model in order to enhance the search effectiveness (Agichtein et al., 2006).
In the latter research domain, which is closer to our contribution, we
distinguish three main lines of work based on feature-based document
relevance prediction models (Agichtein et al., 2006; Radinsky et al., 2013),
personalization approaches through users’ preferences (Bennett et al., 2012;

Teevan et al., 2005), or role extraction-based ranking models (Henderson
et al., 2012; McCallum et al., 2007).

The first category of research that deals with prediction models analyzes
several dimensions of user behaviors. In most of these works, a simplistic
approach is usually followed that consists of integrating clickthrough data
within the document scoring (Joachims, 2002) since this source of evidence
expresses users’ search behaviors. In addition, some authors (Agichtein
et al., 2006) suggest a further abstraction level by proposing a robust user
behavior model which takes the collective behaviors for reducing noise within
an individual search session into account. Instead of smoothing individual
behaviors with collective search logs, Radinsky et al. (2013) proposed
another dimension of analysis that refines individual search logs through a
temporal aspect that predicts queries and click frequencies within search
behaviors. This user model relied on time-series and dynamically extracted
topical trends re-injected within the ranking or the query auto-suggestion.

Beyond analyzing search behaviors for the purpose of document ranking,
another line of work (Heath and White, 2008; White and Dumais, 2009)
exploits search behaviors for predicting search engine switching events.
These works’ findings may be used to enhance the retrieval effectiveness and
coverage of an information need, thus discouraging switching activities. For
instance, dealing with the personalization approach, user profiles might be
extracted considering users’ relevance feedback (Bennett et al., 2012; Leung
et al., 2008; Soulier et al., 2013; Teevan et al., 2005). In an individual search
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setting, Bennett et al. (2012) proposed to combine short-term and long-term
search behaviors to mine users’ interests. They built a multi-feature profile
based on search history, query characteristics, document topic, and users’
search actions. In contrast, Leung et al. (2008) modeled users’ profiles
through a concept-based representation inferred from clickthrough data.
Each profile is then used to learn users’ preferences with an SVM algorithm
that personalizes their search results. Search personalization is also proposed
in collaborative search settings (Morris et al., 2008; Soulier et al., 2013).
For instance, Morris et al. (2008) integrated a personalized score (Teevan
et al.,, 2005) within (1) a document smart-splitting over collaborators’
rankings for retrieving individual rankings; and (2) a relevance summation
of relevance feedback for building the final document list leveraging the
collective relevance.

In the last category, previous work has proposed to model and/or mine
users’ roles from their search behaviors. In this context, contributions aim
at either statistically identifying predefined roles (Golder and Donath, 2004;
Kwak et al., 2010) or mining latent roles through probabilistic models (Hen-
derson et al., 2012; McCallum et al., 2007). The first perspective relies on
social network interactions for identifying labeled or predefined roles, such as
”Celebrities or Ranters,” through a statistical analysis, (Golder and Donath,
2004), or for identifying the “Network Leaders” using a PageRank-like algo-
rithm (Pal and Counts, 2011) or a clustering method (Kwak et al., 2010).
The second perspective offers a formal way to identify latent roles through
the analysis of user interactions’ similarities and dissimilarities (Henderson
et al., 2012; McCallum et al., 2007). For instance, Henderson et al. (2012)
focused on the transformation of a feature-based multidimensional matrix to
identify the users’ behavior model while McCallum et al. (2007) revised the
LDA algorithm within a communication social network to mine the evolving
roles of users according to message contents.

2.3. Research Objectives

From the literature review, one can infer that the key challenge in CIR
concerns the difficulty of ranking documents in order to satisfy both individ-
ual and mutual goals with respect to the shared information need. Therefore,
this challenge assumes that users are different and guided by complementary
skills or knowledge (Sonnenwald, 1996). One possible way to consider users’



differences might be to assign different roles with respect to their skills. How-
ever, CIR models based on predefined roles (Pickens et al., 2008; Shah et al.,
2010; Soulier et al., 2013) raise two main concerns (Soulier et al., 2014):

1. The role assignment assumes that users behave the same way through-
out the session by assigning roles to users at the beginning of the search
session.

2. A role might not be in accordance with a user’s intrinsic skills, and
more particularly might not consider the ways in which these skills are
most effective.

One solution is to derive users’ roles from the differences and similarities
they demonstrate in their interactions in order to exploit these roles within
the ranking. For this purpose, two main approaches can be traced, which,
unlike works focusing on user behavior models that mainly deal with users’
intrinsic values (Agichtein et al., 2006; Bennett et al., 2012; Leung et al.,
2008), consider users relative to their peers in order to highlight how they
are the most effective. The first approach operates on a pool of predefined
roles, and consists of a dynamic role assignment monitored by supervised
learning, which is based on features inferred from users’ interactions in
the search system (Soulier et al., 2014). Once predefined roles have been
identified, the associated state-of-the-art CIR models are used to solve the
query. However, one limitation that could be raised from this work is that
the labeled roles are predefined regardless of the users, thus restricting
the likelihood that the identified roles exactly match collaborators’ search
skills. Therefore, two main challenges could be raised: (1) would a user be
assigned to the role that best aligns with his/her behavior, even if it is not
in particular accordance with his/her skills?; and (2) what if users align
with multiple roles?

The second approach, which we utilize in this article, dynamically
characterizes latent roles with an unsupervised learning method, rather than
classifying roles in a taxonomy. More particularly, in contrast to well-know
CIR models (Pickens et al., 2008; Shah et al., 2010) and in accordance with
the limitations raised by Soulier et al. (2014), we approach here the problem
of predefined roles, and propose to dynamically mine the unlabeled roles of
collaborators throughout the search session in an unsupervised manner, and
subsequently adapt the collaborative document ranking. As shown in Figure
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Figure 1: Unsupervised latent role learning methodology.

1, unlabeled roles of both collaborators are mined each time a user submits
a query. Then, features modeling these unlabeled roles are re-injected in the
collaborative document ranking model in order to display a ranked list of
documents to this user.

In order to ensure our twofold objective of (1) mining unlabeled roles
with respect to collaborators’ behaviors and (2) collaboratively ranking
documents, we rely on a feature set estimated at the document level.
Therefore, we intuit that, if we consider a document’s receipt of relevance
feedback as a good indicator of users’ search behaviors and preferences
(Agichtein et al., 2006), those features assigned to the relevant document
set would enable us to (1) mine latent roles of collaborators and (2) re-inject
the mined latent roles within a CIR model.

Therefore, we aim to address the following research questions in this
article:

e RQ1: How to infer collaborators’ unlabeled roles through the differ-
ences and complementarities in their behaviors?

e RQ2: How to leverage these unlabeled roles for collaboratively ranking
documents with respect to the shared information need?

We introduce the concept of “latent role,” which captures collaborators’
roles in real time according to the complementarity of their search skills,
without any assumptions of predefined roles labeled or belonging to a role
taxonomy (Golovchinsky et al.; 2009). More particularly, guided by the di-
vision of labor policy, the users’ latent roles leverage the skills in which col-
laborators are different—the most complementary and the most effective for
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enhancing the retrieval effectiveness of the search session. Also, we assume
that collaborators’ search skills might be inferred within the persistence of
their search behaviors, since collaborators might have noisy search actions
that could be due to the task, the topic, the interface design, or collabora-
tors’ engagement within the task. To this end, we are aware that this concept
requires the search session to be synchronous, requiring the users to coordi-
nate their actions and to exhibit their skills at the same time. Moreover, we
assume that the users are constantly engaged in both generating/modifying
the information needs as well as addressing them, and thus not being ac-
tive, which could lead to noisy search actions or behaviors associated with
inactivity.

3. The model

We present here our model based on the latent role of collaborators,
assuming that users might refine their search strategies and behaviors
throughout the session while they interact with their collaborators or assess
search results.

Our model, called MineRank, considers search features modeling collab-
orators’ behaviors and aims to rank documents in a collaborative manner at
each query submission by leveraging collaborators’ search skill complemen-
tarities. For convenience, we call an iteration associated to timestamp {;,
the time-window beginning at each time user v submits query ¢ and ending
while document list DY is retrieved to user u. More particularly, an iteration
of MineRank relies on two main steps illustrated in Figure 2: (1) learning
across time the most discriminant feature set, which maximizes the differ-
ences between users’ behaviors in search results in order to dynamically mine
the latent role of collaborators (section 3.2), and (2) re-injecting latent roles
for collaboratively ranking documents. For this purpose, we aim at predict-
ing, through a learning model, the document relevance towards collaborators
by taking into account their latent roles (section 3.3).

3.1. Notations

We consider a synchronous collaborative search session S involving a pair
of users u; and us for solving a shared information need I during a time
interval T. Each user u browses separately and formulates his/her queries
for accessing their respective document result sets. As shown in Figure 1,
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Figure 2: Minerank methodology for an iteration.

users have the possibility to perform different actions throughout the search
session. Beyond formulating a query, they interact with the retrieved docu-
ments by visiting their content, annotating web pages with comments, book-
marking documents, or snipping pieces of information. Therefore, users’
actions might be characterized by search behavior-based features, noted
F =A{fi,.. ., fxs---, fu}. The latter expresses the set of n features cap-
tured during the search session, detailed in Table 1. These features, based
on the literature (Agichtein et al., 2006), fall under two categories:

o Submitted query features that capture collaborators’ search experience
with respect to the query topic. For instance, we integrate features
based on the overlap between the query and pieces of a document (title,
content, annotations/snippets generated by a user).

o Selected page features that capture collaborators’ browsing behaviors
in the search session in order to highlight time spent on webpages/on
a specific domain as well as the specificity or readability of documents
visited /annotated /snipped, and bookmarked by a given user.

We highlight that the feature set is slightly different from the one used
in (Soulier et al., 2014) since the intuition of this proposed model is to
re-inject the behavioral features within the collaborative document ranking.
Furthermore, the feature set can be extended with no impact on the model.

Following Soulier et al. (2014), we represent a temporal feature-based
user’s behavior matrix Sq(fl) € Ri*" where t; is the timestamp. Each element
Sz(fl)(tj, fr) represents the average value of feature fy for user u aggregated
over the set D(u;)%) of documents visited/annotated/snipped /bookmarked
during the time interval [0...¢;]. Assuming that users’ search behaviors
might be refined throughout the session, the temporal modeling enables the
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characterization of the overall behavior of the user at timestamp ¢; avoiding
the bias induced by noisy search actions.

Table 1: Search behavior features

Feature Description
TitleOverlap (Tio) Fraction of shared words between query and
7 page title
% TextOverlap (Te0) Fraction of shared words between query and
< page content
¢ AnnotationOverlap (10) Fraction of shared words between query and
¢ page annotation
SnippetOverlap (so) Fraction of shared words between query and
snippet of the page
VisitedPosition (vp) Position of the URL in visited page order for
the query
TimeQueryToPage (tqTp) Time between the query submission and the
” visit of the page
% TimeOnPage (Top) Page dwell time
~§ TimeOnDomain (Top) Cumulative time for this domain
iﬁ” Readability (Read) Document content readability
Specificity (Spec) Document content specificity
Rating (Ra) Rate of this page

According to Soulier et al. (2014), users’ search skill difference to-
ward a particular search feature fp € F' is referred to as Agtg)( fr), where

A%)(fk) = Sfff)(fk) — Sz(f;)(fk). In addition, to ensure that both behaviors
are found different in both users, and in order to identify those search behav-
iors that each user is better at than the other, we would like to know in which
of those search behaviors each user is better than the other and highlight the
acts in which he/she is the most effective with respect to his/her intrinsic
skills as well as his/her collaborator’s skills. With this in mind, correlations
between collaborators’ search feature differences were estimated, pair by pair,
by adding the constraint that the difference between users for the implied fea-
tures is significant, using the Kolmogorov-Smirnov test (p-value p(ASQ (fx)))-
Therefore, complementarities and similarities between collaborators u; and
us with respect to their search behaviors are emphasized through a correla-

tion matrix Cﬁé) € RP*P in which each element C’ft’Q)( frs frr) is estimated as

12



(Soulier et al., 2014):

p(A (£, A () if p(AVY (fr) < 8 and p(AY (fr)) < 6
0 otherwise

CU (s fir) = {
(1)

As the goal is to focus on search behavior complementarities between
unlabeled roles of collaborators u; and ws, we assume that two features
fr and fr behave similarly if the correlation p(AYfQ)( fr), Aﬁ@( frr)) of their
difference is close to 1. The closer to -1 the correlation is, the more comple-
mentary are collaborators’ skills towards features f, and f,,. Focusing on
users’ difference Ag@( fr) towards search feature fj is not enough, since it
does not ensure that collaborators’ roles are complementary with respect to
two search features: one user could be better for both features (Soulier et al.,
2014), and, in this case, there is no need to leverage the other collaborator
as a division of labor actor.

With this in mind, we introduce the concept of latent role based on the
following hypothesis:

e H1: A latent role models the most significant similarities and comple-
mentarities between collaborators with respect to their search behav-
iors or skills throughout the search session in order to identify skills in
which collaborators are the most effective.

e H2: Complementarities and similarities are respectively expressed by
negative and positive correlations between search behavior features.

Therefore, at each timestamp, the latent role LR(lt’Q highlights, for a pair
of collaborators u; and us, their search skill differences and complementar-
ities during the time period [0..t;]; where search skills of a user are inferred
from his/her temporal feature-based behavior matrix S to highlight the
persistence of unlabeled roles with respect to the task, the topic, the inter-
face design or users’ engagement within the task. Accordingly, the latent role
LR%IQ) involves:

e A kernel lcifg) of a subset F; ,ﬁl)z C F of p behavioral features F', where p

is automatically defined by the latent role mining algorithm (see Section
3.2). In other words, p expresses the number of the most significant
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features used to characterize the latent role according to hypothesis H1
and H2.

e A correlation matrix C'g) € RP*P that emphasizes complementarities
and similarities between unlabeled roles of collaborators u; and uy with
respect to their search behaviors.

3.2. Learning Users’ Latent Roles in Collaborative Search

The underlying issue of the latent role mining consists of identifying the
most discriminant features for characterizing collaborators’ search behaviors
which maximize, for a pair of collaborators, their complementarity. This
leads us to propose a collaboration-oriented latent role mining approach
based on a feature selection. The intuition behind our contribution is
illustrated in Figure 3. The feature selection operates on the analysis
of users’ search behaviors. Once users have been identified as behaving
differently towards search features, their complementary behaviors are
modeled through a weighted network in order to identify the most important
and discriminant features for characterizing collaborators’ latent roles over
the search session.

In what follows, we first express the optimization problem framework
and the underlying assumptions. Then, we propose a method to solve the
problem.

g [ ] m E i . I @ : :
poly | B . - i L af i [ Feature selection for ofll ()
. | et
S > (+) .Af: (+) [ —— a0
o B f EE Af :
10 /o, CF olll (o)

Figure 3: Unsupervised latent role learning methodology.
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3.2.1. Latent Role Design

Inspired from work proposed by Geng et al. (2007) and adapted to our
collaborative latent role mining, the feature selection consists of building the
latent role kernel IC%) by identifying the smallest subset F) ,ﬁl)Q of p features
(p is undefined) according to three assumptions:

e A1l: the importance Recgflz)( fr) of features fi € F, ,ﬁ’)z is dependent on
their abilities to provide good indicators of the document assignment
to users within the collaborative document ranking. We assume that a
CIR model might support the division of labor, and that a document
might be assigned to the most likely suited collaborator. As proposed
by Shah et al. (2010), we formalize this principle through a document
classification relying on relevance feedback collected throughout the
search session until timestamp ¢;, where each document cluster repre-
sents documents allocated to one of the collaborators. With this goal,
we propose to cluster, using a 2-means classification, the set D®) of se-
lected documents (through annotations/snippets/bookmarks) by both
collaborators until timestamp t;, according to the value of feature f.
The cluster with the highest centroid is assigned to the collaborator u;

with the highest value Sfff)( fr) whereas the other cluster is assigned
to the other collaborator. We measure the quality of the classification
based on feature fj towards each collaborator u; and us using the recall
measure Recﬁ?( fr):

TP(tz)
fr
(tr) (tr)
Tpfkl + Fkal

Rec{y(fi) = (2)

where T’ P}zl) is the number of documents assigned to the cluster as-
sociated to the user who selected those documents using the 2-means
classification based on feature f;. For instance, if u; selected docu-
ment d; before timestamp ¢;, we consider a “True Positive” action if
the classification algorithm attributes document d; to user u;. Ac-
cordingly, TP;:Z) is incremented by 1. Inversely, F'IN }il) expresses the
number of documents not assigned to the cluster associated with the
user who selected those documents. For instance, if document d; is
attributed to cluster of user uy, FFIN J(czl) is incremented of 1.

e A2: the redundancy between features might be avoided in order to
consider only the most discriminant ones for characterizing latent roles
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through complementary search behaviors among users, modeled using
feature correlations C’fté)( frs frr). We investigate here how to identify
the most discriminant features for characterizing users’ roles, and more
particularly features highlighting complementary search behaviors
among users. The main assumption is to identify for which skills
collaborators are the most suited with respect to their co-collaborators
for solving the shared information need. We used the correlation
C’l(té)( fr, frr) between collaborators’” differences Agtlz)( fr) and Aﬁtg’( frr)
towards a pair of search behavior features f; and f .

A3: the feature selection must maximize the importance Rec&f’;( fr) of

the selected features fj € F, ,Sl )2 within the collaborative document rank-

ing and minimize the redundancy Cg)( fr, fr) between the pairwise
selected features. Thus, we formalize the feature selection algorithm as
the following optimization problem:

MaZa Sohoi RectS (fi) -
Mina D g1 Dy Cﬁé)(fk, frr) - ag - o
subject to ar={0,1}; k=1,...,n (3)
and ZZ:1 ap =p

where « is the vector of size n where each element «; is a Boolean
indicator specifying whether feature f; is included in the feature subset
F k(il)Z at timestamp ;.

This optimization problem with multi-objectives might be transformed
as a unique objective optimization problem by linearly combining both
optimization functions.

maze  Rec (i) on =i Koo CLF (s fir) - ax- aw)
k=1
subject to ar={0,1}; k=1,...,n (4)

and Zzzl Qp =p

where 7 is a decay parameter expressing the level of behavior comple-
mentarity taken into account in the latent role mining algorithm. This
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parameter is fixed over the session since we hypothesize that the ratio
between the feature importance and complementarity does not depend
on the collaborators’ current latent roles at timestamp ¢;.

3.2.2. Latent Role Optimization

Our optimization problem defined in Equation 4 might be resolved by un-
dertaking all the possible feature combinations of size p, where p =2,... n.
Although optimal, this method is time-consuming with a complexity of up
to O(S_, C).

We propose, here, a graph-based resolution algorithm attempting to iden-
tify the best feature subset which may provide a locally optimal solution, but
is more practically applicable with complexity which could reach a maximum
of O(35). The main objective is to extract the smallest feature node set
which enhances the importance of the set of retained features while maxi-
mizing the differences of collaborators within their search behaviors. In this
context, we represent features through a collaboration-based graph G 5”2) mod-
eling search behaviors of collaborators u; and us at timestamp ¢;. The graph
G%) = (Agtfz), Cf?), illustrated in Figure A.10, involves nodes A&fg) which rep-
resent each feature f;, € F, weighted by an importance measure Rec%)( fr)
within the collaborative document ranking, and undirected weighted edges
C’fg) : REXF which represent collaborators’ search behavior similarities or

complementarities by considering the correlation Cfté)( fr, frr) between dif-
ferences of pairwise features f; and fi .

The used notations are detailed in Table 2. In what follows, we describe
the algorithm, called Coll-Clique, for solving the optimization problem (Al-
gorithms 1 and 2). Note that an illustration of our algorithm is presented in
Appendix A.

Table 2: Notations

Notation Description

C The feature graph representing the growing clique
P The evolving candidate graph
K The maximum clique satisfying the optimization problem

Nbhd(C') The function that returns in a decreasing order the neighboring
features of all features belonging to C with non null weight
Nds(K)  The function that returns all the features belonging to K
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Algorithm 1: Main
Data: Gy = (A}, C{%), 7
Result: FS(Z)
begin
C={}
K={}
P =Gy
K = Coll — Clique(C, P,v, K)
FU — Nds(K)

sel

B Return F%)

sel

In order to solve the optimization problem, we extended the maximum
clique algorithm (Carraghan and Pardalos, 1990) in order to fit with our
feature selection problem in a collaborative context. Our intuition is that a
weighted graph is complete since it models search behavior complementarities
through correlations between pairwise features. The Coll-Clique algorithm,
rather than focusing on a node level for identifying the biggest complete sub-
graph (Carraghan and Pardalos, 1990), also called the maximum clique, aims
at extracting the subgraph which maximizes the node weights, namely the
search feature importances (assumption Al), and minimizes the relationship
weights between nodes, namely pairwise search behavior correlations for both
collaborators (assumption A2).

As shown in Algorithm 1, Coll-Clique relies on two feature graphs:

e The growing clique C, candidate to be the maximum clique K.

e The feature graph P, which includes candidate features to be added to
the growing clique C'. Nodes in P are obtained through the function
Nds(P).

Initially, C' is empty and P is the graph including all the features. The
algorithm, as shown in Algorithm 2, recursively increments the growing
clique C' using features f;, involved within graph P built upon the function
Nbhd(C'), which creates a new candidate feature graph P that only retrieves
in a decreasing order features characterized by a positive depreciated weight.
This operation is noted C' @ fj,. At each recursion, the weight Rec%)( fir) of
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Algorithm 2: Coll-Clique
Data: C, P,v, K
Result: K
begin
forall the f; € P do
(C) = ¥ enasie) Recﬁwfk)
(P)= kaENds P) Rec (fk)
(K) = %y cxast Reel D (o)
if (W(C)+W(P) < W(K)) then

L /* Return the maximum clique */

w
w
w

Return K

/* Increment the growing clique C' */
C=Caf;
/* Depreciate node weights x/

forall the f;, € P do

t Recgflz)(fk') = Recgfg)(fk,) - C%)(fja fw) x 2y
/* Build the candidate node set */
P’ = Nbhd(C)
if (P' = {} and W(C) > W(K)) then
/* Save the local optimum */
 K=C
f P'# {} then

/* Launch new recursion */

| Coll-Clique(C,P’,y, K)

=0

/* Remove node for new recursion */
C=C\J
P = P\J;

the other remaining features f;, is depreciated by the correlation C ( fis fw)
with respect to the last selected feature f;.

Let us denote W(K) as the sum of feature weights within the maximum
clique K. We assume that this sum refers to the indicator we would like to
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maximize (Equation 4) since the feature weight (importance Recgt’lz)( frr)) is
recursively depreciated with respect to the adjacent edge weight (correlation
CH(f, fir). I the weight W(C) + W(P) of features within C and P is
lower than the weight W (K) within K identified until the current iteration,
there is no way to build a clique from C' by adding features from P with a
higher Wei%ht than the weight of features in K. Finally, the set of selected

features F; ,ﬂl)Q of size p inferred from the p nodes within the maximum clique

K builds the latent role kernel IC%).

We highlight that our algorithm strictly follows the framework of the
maximum clique extraction algorithm proposed by Carraghan and Pardalos
(1990), which is the initial version of the branch-and-bound algorithm cat-
egory, well-known to ensure the guarantee of the optimal solution (Wu and
Hao, 2015). We add one heuristic in order to consider a weighted graph
aiming at solving an optimization problem, initially proposed by Geng et al.
(2007) and adapted to our problem. Therefore, given that the candidate
clique C' in incremented by positively-weighted nodes in a decreasing or-
der, one could assume that the equation (W (C) + W(P) < W(K)) aims at
maximizing the weight of the maximum clique K where its weight could be
estimated as follows:

| K| |K| |K|
W(K) =Y Rec(fi) =13 > B (f f) (5)
k=1 k=1 k'#k;k'=1

The first part of the equation refers to the initial weight of nodes f; in
the initial graph G while the second part expresses the depreciation of the
node weight with respect to the nodes belonging to the maximum clique.
Therefore, maximizing the weight of the maximum clique K is equivalent to
solving the optimization problem presented in Equation 4.

3.3. Latent Role-based Collaborative Document Ranking

In this section, we re-inject the latent role kernel identified in the previ-
ous section in order to collaboratively rank documents to users. The idea is
to use the most discriminant features—characterizing search behavior comple-
mentarities of both collaborators—to first assign documents to the most likely
suited collaborator, in order to ensure the division of labor, and then rank
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Figure 4: Overview of the collaborative document ranking using latent role of
collaborators

the documents assigned to each user. For this purpose, we use a classifier
learning algorithm which operates on the document representation restricted
to features implied within the latent role Ml(té) € R™*™ at timestamp ¢;. We
highlight that only the document list D% associated with the class of the user
u who submitted query ¢ is displayed. Indeed, as explained in Figure 1, we
only attempt to satisfy the information need of the user who submitted the
query. We assume that the other collaborator «/ might not be interested in

query ¢ and is already examining a document list fo, retrieved with respect
to a previously submitted query at timestamp t; < ¢;. We choose to use the
Logistic Regression as the classifier learning algorithm which, as usual, runs
into two stages illustrated in Figure 4:

e Stage 1. The learning step considers the set D®)  of
snipped /bookmarked /annotated documents by either collabora-
tor u; or us before timestamp ¢;. Documents selected by both
collaborators are removed from this set, since they are not discrimi-
nant for the collaborative-based document allocation to collaborators.
Each document d; € D™ is modeled by a feature vector azgtl) e R™,
estimated according to value of the feature f; € ICY’ZQ) for document d;
with respect to collaborators’ actions and timestamp %, of its assess-
ment, with ¢, < t;. Document d; also receives a classification variable

cl(-tl) € {0;1} where values 0 and 1 express the class of collaborators,

respectively u; and us, who have selected this document.

The objective of the document ranking learning function is to iden-
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tify the predictor weight vector ﬁj(.tl) € 'R™ in order to estimate the
probability of allocating documents to collaborator u; € {uy, us}. The
logistic regression aims at maximizing the likelihood [ detailed in Equa-
tion 6 which relies on the logit function formalized in Equation 7. The
latter models the probability P; (xz(»tl)) for document d; belonging to user

class ¢; € {0;1} with respect to feature vector xgtl).

maz o s Lgeptn (¢ - n(Py(x")))
+(1 = ¢;) In(1 = Py({")) (6)
(1) g(ty)

)y _ exp(a]

where P;(x; _
]( [ 1+8XP(XJ<-tl)'BJ(-tl))

Stage 2. The testing step considers the set foéil of documents not

selected by both collaborators u; and uy before timestamp t;. The
feature vector x?l) is estimated according to feature average values of
document d; with respect to the search logs collected before timestamp
t;, not necessarily by both collaborators. Indeed, there is no avail-
able value for action-based features, such as AnnotationOverlap, for
the pair of collaborators considering that the document has not been
collected by the pair of users. The fitted model learnt through the logis-
tic regression algorithm estimates the probability Pj(xgtl)) of assigning
document d; € D:;il
predictor weight 5§tl). Document d; is allocated to the collaborator
class ¢; with the highest probability Pj(:pgtl)); Vj € {0, 1}, which is also
used for ranking documents within the collaborator class.

to the collaborator class ¢; with respect to the

Moreover, we add a supplementary layer of division of labor by ensuring

that result lists DZ’, and DZZ, simultaneously displayed (even if retrieved at
different timestamps ¢, and t¢]) to collaborators u and v’ include distinct
documents.

4. Experimental Evaluation

We performed an experimental evaluation investigating the impact of
mining latent roles of collaborators on the retrieval effectiveness of a collabo-
rative document ranking model. The following are the hypotheses that guide
our investigation:

22



1. A CIR model should fit with collaborators’ complementary skills in
which they are the most effective with respect to the collaborative
setting, taking into account their whole behaviors regardless of their
skills or predefined roles.

2. A CIR model should achieve a greater effectiveness than users working
separately.

3. A CIR model should dynamically assign collaborators’ roles in an un-
supervised manner in the search session instead of assigning roles re-
gardless of their skills.

In what follows, we describe the experimental protocol and present the
obtained results.

4.1. Protocol Design

4.1.1. User studies

Since no well-established benchmark exists in the CIR domain, we used
search logs collected from two different collaborative-based user studies, US1
and US2, supported by a collaborative search system (Shah and Gonzélez-
Ibanez, 2011a) based on user mediation. The system allows users to browse
the web and submit queries on independent search engines, mainly Google.
The system includes a toolbar and a sidebar, providing a functionality in
which users can interact with their peers through an instant messaging system
as well as bookmarking, annotating and snipping web pages. Moreover, the
sidebar ensures awareness by showing a user what he/she, as well as his/her
collaborator, have bookmarked/snipped/annotated during the session. In
addition, the system tracks collaborators’ activities and records their search
logs—such as visited pages, submitted queries, and relevance feedback-all over
the session. An overview of the used system is illustrated in Figure 5. We
outline that this system ensures the awareness paradigm since the sidebar
allows collaborators to be aware of other relevance feedback.

The user studies, US1 and US2, involved respectively 25 non-native and
10 native English user pairs (a total of 70 people) who were recruited from
university campuses and received compensation for their involvement within
the experiments ($20 per person, with an additional $50 for the three best
performing groups). Accordingly, these participants performed the task of
an exploratory search problem within 30 minutes in a co-located setup in
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their mother tongue. During the task, the collaborators interacted with each
other in order to identify as many relevant documents as possible. Their in-
teractive behaviors generally involved discussions about their search strate-
gies or linked sharing exchange, always through the chat system. For user
study US2, participants also had to write a report using web pages saved
throughout the search session, which allowed them less time to browse on
the web. Task topics are, respectively, “tropical storms” and “global warm-
ing”. Guidelines of these two tasks are expressed in Table 3.

Statistics of both user studies are shown in Table 4. An analysis of par-
ticipants’ submitted queries shows that they are mainly a reformulation of
topics, as each topical word often occurs in the queries. Indeed, among the
1174 submitted queries for US1, the terms “tropical” and “storm” are used
1077 and 1023 times, respectively, whereas the terms “global” and “warming”
are used 254 and 247 times over the 313 submitted queries in US2. During
the task, participants examined, respectively, 91 and 73 webpages for US1
and US2. We highlight that the number of submitted queries and visited
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Table 3: Collaborative tasks in user studies US1 and US2

Tasks

Guidelines

US1

The mayor of your countryside village must choose between building a
huge industrial complex or developing a nature reserve for animal con-
servation. As forest preservationists, you must raise awareness about the
possibility of wildlife extinction surrounding such an industrial complex.
Yet, before warning all citizens, including the mayor, you must do ex-
tensive research and collect all the facts about the matter. Your objective
1s to collaboratively create a claim report, outlining all the possible out-
comes for wildlife should the industrial complex be built. Your focus is
on wildlife extinction. You must investigate the animal species involved,
the efforts done by other countries and the association worldwide to pro-
tect them and the reasons we, as humans, must protect our environment
in order to survive. You must identify all relevant documents, facts, and
pieces of information by using bookmarks, annotations, or saving snip-
pets. If one document discusses several pieces of useful information, you
must save each piece separately using snippets. Please assume that this
research task is preliminary to your writing, enabling you to provide all
relevant information to support your claims in your report.

Us2

A leading newspaper agency has hired your team to create a compre-
hensive report on the causes, effects, and consequences of the climate
change taking place due to global warming. As a part of your contract,
you are required to collect all the relevant information from any avail-
able online sources that you can find. To prepare this report, search and
visit any website that you want and look for specific aspects as given in
the guideline below. As you find useful information, highlight and save
relevant snippets. Later, you can use these snippets to compile your
report, no longer than 200 lines. Your report on this topic should ad-
dress the following: Description of global warming, scientific evidence of
global warming affecting climate change, causes of global warming, con-
sequences of global warming causing climate change, and measures that
different countries around the globe have taken over the years to address
this issue, including recent advancements. Also describe different view-
points people have about global warming (specify at least three different
viewpoints you find) and relate those to the the aspects of controversies
surrounding this topic.
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pages by collaborative groups are higher for UST1; this could be explained by
the additional objective of participants in US2, which consisted of writing a
report. The latter left participants less time for browsing the web.

US1 US2
Topic Tropical storm  Global warming
Number of dyads 25 10
Total number of visited pages 4734 1935
Total number of bookmarked/rated pages 333 -
Total number of snipped pages 306 208
Total number of submitted queries 1174 313
Average number of terms by query 3.65 4.73

Table 4: Statistics of user studies US1 and US2

4.1.2. Data

Given the distinct languages of both user studies, we build two separate
document indexes. Respectively, for each user study US1 and US2, we ag-
gregated the respective web pages seen by the whole participant set as well
as the top 100 search engine result pages (SERPs) from Google for the sub-
mitted query set. We highlight that the SERPs were extracted later in order
to avoid processing overload. Each web page was processed for extracting
<title> and <p> tags. In order to increase the size of document indexes,
we carried out this protocol for other proprietary user studies performed in
other collaborative settings, not considered for our experiments (Shah and
Gonzélez-Ibanez, 2011a). In the end, the indexes included 24, 226 and 74, 844
documents for USI and US2, respectively.

4.1.3. Fvaluation protocol

In order to avoid a bias that could be involved in a re-ranking approach
that relies on features measuring the similarity of the document with respect
to the query, we highlight that the collaborative ranking step is carried out on
the whole document collection. With this in mind, we consider two versions
of our model:

e MineRank(q): our proposed unsupervised ranking model in which
the latent role mining and the collaborative ranking steps are succes-
sively launched at each query submission.
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e MineRank(t): our proposed unsupervised model in which the collab-
orators’ latent role mining (section 3.2) is performed at regular times-
tamps ¢ similar to Soulier et al. (2014), while the collaborative ranking
step (section 3.3) is launched at each query submission by considering
the latent role mined at the last timestamp t.

We highlight that, similar to Soulier et al. (2014), the BM25 model is
launched when no search skill differences between collaborators are detected.

For effectiveness comparison, we ran the following baselines at each query
submission:

e BM25: the BM25 ranking model which refers to an individual setting.
This setting simulates a search session in which collaborators perform
their search task on independent search engines.

The BM25 ranking model (Robertson and Walker, 1994) estimates the
similarity score between document d; and query ¢, as:

iy qh) — ;
o et 0.5 fiotki-(1=b+b- L%

avgdi

(8)

where N expresses the collection size, n, the number of documents
including term ¢,. The frequency of term ¢, in document d; is noted
fiv- |d;| represents the length of document d; whereas the average
document length is noted avgy. k1 and b are model parameters.

e Logit: the CIR model which only involves the last step of our algorithm
(section 3.3) considering the whole set of features in order to measure
the effectiveness of a personalized search without any consideration of
the latent roles.

e PM: the CIR model refers to a system-based mediation guided by pre-
defined fixed roles of Prospector-Miner (Pickens et al., 2008).

According to collaborators’ roles, this model relies on two different
ranking functions:

1. The query term suggestion function aims at favoring the Prospec-
tor’s search diversity. For each term ¢, belonging to documents
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previously retrieved in lists L, its score is estimated as:

score(ty) = wp(Ln)wp(Ly)rlf (te, Ln) (9)

Lyel

where rlf(ty, L) expresses the number of documents with term
tk in list Lh-

2. The document ranking function ensures the relevance of docu-
ments not examined by the Prospector towards the topic. The
score of document d; is estimated as follows:

score(d;) = Z w,(Lp)w¢(Ly)borda(d;, Ly,) (10)

Lpel
where borda(d;, Ly) is a voting function.

These two functions are based on relevance and freshness factors esti-
mated as follows:

— The relevance factor w,(L;) which estimates the ratio of relevant
documents in list L retrieved for query g, noted |rel € L;| with
the number of non-relevant documents in the same list, noted
|nonrel € Ly:

|rel € Ly|
wy(Ly) = —————— 11
r(Ln) |nonrel € Ly| (11)

— The freshness factor wy(Ly) which estimates the ratio of docu-
ments not visited in list L, noted |nonvisit € Ly|, with the num-
ber of visited documents in Ly, noted |visit € Ly| :

|nonvisit € Ly|
|U’i8it c Lh|

e (S: the CIR model refers to a system-based mediation guided by pre-
defined fixed roles of Gatherer-Surveyor (Shah et al., 2010).

This model is launched after query submissions (g, and gs) of each
collaborator (respectively, u; and u;) and consists of two steps:

1. The Merging step in which document lists are merged using the
CombSUM function.
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2. The Splitting step in which documents in the merging list are
classified using a 2-means algorithm. Each cluster is assigned to
a collaborator using the following criteria: the cluster with the
highest gravity center is assigned to the Gatherer whereas the
remaining cluster is assigned to the Surveyor.

e RoleMining: the user-driven system-mediated CIR model which mines
predefined roles of collaborators in real time and ranks documents ac-
cording to the associated state of the art CIR models (Soulier et al.,
2014). In contrast to our proposed approach, this setting considers
roles (namely Gatherer/Surveyor and Prospector/Miner) predefined in
a role taxonomy Golovchinsky et al. (2009) that might not exactly fit
with users’ skills.

This model exploits the correlation matrix denoting collaborators’ be-
haviors in order to assign users predefined roles, modeled through a role
pattern. In particular, according to a role pattern pool, the role-based
identification assigns the role pattern correlation matrix Ff12 which
is the most similar to the collaborators’ correlation matrix C’q(jﬂ)w, ob-
tained for the pair of users (uy,us) at given timestamp ¢,.

argmin R1,2’|FR1’2 o CcW Il (13)

uy,u2

subject to :
v(fj,fk)eKRl’2 FRl’Q(fja fk’) - Cgll,)ug(fﬁfk)) > -1

where ||.|| represents the Frobenius norm and & is the minus operator
defined as:

FRi2(f, fr) © O (f fi)
F2(fy, fi) © Clh, (fis f) = if Ffe(fy, fi) € {=1;1}

0 otherwise

4.1.4. Ground truth and Metrics

We built the ground truth using clickthrough data following the as-
sumption that implicit relevance derived from clicks is reasonably accurate
(Joachims et al., 2005). Specifically, the ground truth only relies on
the clicked documents and includes an agreement level, as suggested in
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(Shah and Gonzélez-Ibanez, 2011b). However, in contrast to Soulier et al.
(2014), who consider an agreement level involving two users, we reinforce
the agreement level condition by accounting for the bias of intra-group
collaboration interactions via the notion that participants might belong to
different groups. Indeed, collaborators are likely to interact through the
chat system in order share document links, as suggested in Section 4.1.1.
This results in a small relevant document set, namely 38 and 20 for user
studies US1 and US2, respectively.

Using (Shah and Gonzdlez-Ibanez, 2011b), we used well-known
collaborative-based metrics proposed to evaluate the search outcomes of
collaborative search. These metrics are precision- and recall-oriented, and
are estimated at the group level. As such, they consider documents selected
by collaborators throughout the search session in which submitted queries
constitute a collective action, rather than independent actions. In order to
evaluate the retrieval effectiveness of our proposed model, the metrics are
applied to a document set that aggregates rankings retrieved throughout
the session. These metrics are estimated at the group level (as done by
Shah and Gonzéalez-Ibanez (2011b)) across all queries submitted by all
collaborators. In particular, we (a) considered rankings with respect to
their top 20 ranked documents as usually done in the information retrieval
domain by the rank R (Buckley and Voorhees, 2000), (b) merged the top
20 documents of all rankings retrieved with respect to queries submitted
throughout the search session by all collaborators, and then (c) estimated the
collaborative metrics of this merged document set, namely at the group level.

In order to estimate the collaborative-based metrics, we adapted the uni-
verse, relevant universe, coverage and relevant coverage sets defined in (Shah
and Gonzalez-Ibanez, 2011b):

e The universe U of web pages represents the document dataset.
e The relevant universe U, refers to the ground truth, with U, C U.

e The coverage Cov(g) of a collaborative group g expresses the total
number of distinct documents retrieved for all queries submitted by
collaborators of group g throughout the search session.

e The relevant coverage RelCov(g) of a collaborative group g refers to
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the total number of distinct relevant documents retrieved for all queries
submitted by collaborators of group ¢ throughout the search session.

With this in mind, we used the following collaborative metrics to measure
the synergic effect of a collaborative group g:

e The precision Prec(g) estimated for collaborative group g:

Prec(g) = RGO%O(Z()” (14)

e The recall Recall(g) estimated for collaborative group g¢:

Recall(g) = %Ov(g) (15)

e The F-measure F(g) estimated for collaborative group g which com-
bines both precision and recall metrics:

Flg) = 2 % Prec(g) = Recall(g)
9= Prec(g) + Recall(g)

(16)

Finally, these measures are averaged over the collaborative groups of each
user study, namely the 25 collaborative groups (US1) on one hand and the
10 (US2) on the other hand.

Note that the computation of these collaborative-oriented metrics is as
similar as possible to the precision and recall measures in classical information
retrieval. However, while classical IR considers a ranking an evidence source,
we rely here on a set built by a merging of the top 20 documents retrieved
for all queries submitted over the search session by all collaborators.

4.2. Results

This section reports the obtained results with respect to several scopes.
First, we present the parameter tuning step and then, we analyze the retrieval
effectiveness.
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4.2.1. Parameter Tuning

In order to highlight the consistency of our model regardless of specific
users, tasks, and topics, we performed a learning-testing approach in two
steps, illustrated in Figure 6: (1) the learning step, which optimizes the model
parameter(s) using one of our datasets, e.g. USI, and (2) the testing step,
which estimates the retrieval effectiveness of our model on the other dataset,
e.g. US2, according to parameter optimal value(s) found in the learning step.

Learning step Testing step
Test \
— P
Parameter - "5;n7m;l‘“.
Usl tuning > Lparameterts) | | US2

= 5 | &
Parameter o | Optimal |
us2 tuning | parameters) | us1

Figure 6: Parameter tuning methodology

Note that our model uses a feature set to dynamically mine collabora-
tors’ latent roles by leveraging features’ importance within the collaborative
ranking model and collaborators’ complementarities. With this in mind, we
expressed the assumptions that the decay parameter v combining these two
aspects in the optimization problem (see Equation 4) might be fixed over
the session. Accordingly, the tuning phase mainly concerns the + parameter,
which expresses the collaborators’ complementarity. Both versions of our
proposed model, namely MineRank(q) and MineRank(t), are concerned
with this tuning, and we consider the F-measure indicator to be the tuned
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effectiveness metric because it is a combination of precision and recall.

The first version of our model, namely MineRank(q), launched at each
query submission only depends on the parameter 7, used within the latent
role mining step (Equation 4). The latter was tuned with a value range
v € [0..1], as illustrated in Figure 7. We can see that the optimal value for
parameter 7 is reached at 0.5 and 0.2 for, respectively, user studies US1 and
US2, with an F-measure value respectively equal to 0.074 and 0.060. This
difference suggests that the constraint of the report-writing in US2 does not
allow collaborators to fully emphasize their search behavior complementarity.

F-measure
o]

Q
S}

— US1
- = USs2

0.07

-

0.06

0.05

0.04

00 02 04 06 08 10
aamma

Figure 7: Parameter tuning of MineRank(q)

The second version of our model, namely MineRank(t), requires fixing
the parameter v € [0..1], as previously done, and also timestamp ¢ where the
latent role mining step is launched. We consider that a 1-to-5-minute time
window for mining latent roles is a reasonable range for our experiments.
This better fits with our model’s assumption that search behaviors evolve
throughout the search session. Figure 8a and Figure 8b illustrate the
variation of the F-measure for our model MineRank(t) with respect to both
parameters v € [0..1] and t € [1..5], for, respectively, user studies US7 and
US2. The F-measure is optimal (F' = 0.069) when v = 0.5 and ¢ = 2 for
dataset US1, while in dataset US2, it reaches 0.056 when v = 0.1 and ¢t = 3.

The optimal values 7 obtained for both versions highlight that the consid-
eration of search skill complementarities within the role mining approach is
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Figure 8: Parameter tuning of MineRank(t)

higher in user study US1 than in user study US2. Moreover, scores obtained
for both versions highlight that the effectiveness of the model MineRank(t)
is lower than that of model MineRank(q) in both user studies. This is con-
sistent with the fact that our model relies on relevance feedback expressed
after each submitted query rather than after regular timestamps. Therefore,
in the remaining experiments, we only consider the version MineRank(q).

4.2.2. Analyzing the dynamics of collaborators’ latent roles

In this section, our goal is to identify the evolution of search skills
used by collaborators throughout the search session. For this purpose, we
analyze, first, the average number of selected features for characterizing
the latent role kernels of collaborators, and second, the average overlap
between the feature set selected for two successive collaborators’ latent role
kernels. These indicators are estimated over time at each query submission,
as illustrated in Figure 9. As a reminder, we call an iteration t; the
time-window beginning at each time user u submits query ¢ and ending
when document list DY is displayed to user u.

Since significant differences between features and a latent time interval are
both required to highlight differences between collaborators (Soulier et al.,
2014), we emphasize that only 3 collaborative groups from the 25 in user
study US1 performed more than 60 iterations with respect to our model,
and only one group performed more than 18 iterations in user study US2.
Accordingly, the subsequently noticed variations are not significant.

From Figure 9a, respectively Figure 9b, we can see that the number of
features increases over time and seems to reach an optimum between 8 and
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Figure 9: Analysis of collaborators’ latent role evolution throughout the whole
search sessions.

9, respectively 7, search behavior features over the 11 for US1, respectively
US2. First, the fact that the number of features increases over time might
be explained by the fact that the amount of considered data (namely, rel-
evance feedback) in the algorithm increases over time, thus increasing the
likelihood that we obtain significant p-value within the collaborators’ behav-
ior differences analysis. Second, the difference between both datasets can
be attributed to the participants’ tasks, but could also suggest that a more
intensive activity within the search process—through submitted queries, for
instance—gives a better landscape of collaborators complementarities.

In Figure 9c and Figure 9d, the overlap indicator is also close to 1 after
the 20" submitted query for both datasets, which indicates that the kernel of
the latent roles mined after this timestamp is almost stable over the remain-
der of the session. This suggests that participants naturally adopt the best
behaviors with respect to their search skills, which tend to converge and be
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persistent over the time. Beforehand, participants take time to identify their
best search strategies, and the latent role varies between successive query
submissions.

4.2.8. Retrieval Effectiveness

In this section, we measure the retrieval effectiveness of our collaborative
ranking approach based on latent role mining MineRank(q) with respect to
state-of-the-art ranking models BM25, Logit, GS, PM and RoleMining. Table
5 presents the obtained results.

Table 5: Comparison of the role mining impact on the retrieval effectiveness.
%Chg: MineRank improvement. Student test significance *: 0.01 < ¢ < 0.05 ;
**:0.001 <t <0.01 ;5 ***: ¢ <0.001.

training set — testing set Prec@20 Recall@20 FaQ20
value  %Chg ¢ value  %Chg t value  %Chg t
Ground truth: Collaborative methodology
BM25 0,009 28579 *% 0066 236,51 % 0,017 280,84 F*
Logit 0,031 20,66 0,155 4324 * 0052 23,64
US2—-US1 GS 0,009 306,78 *** 0,045 400,10 ** 0,015 324,29 ***
PM 0,014 178,55 *** 0,029 650,15 ** 0,018 254,85 ***
RoleMining 0.012 217.82 *¥  0.076 194.44 ¥ (0.020 217.99 Fk*
MineRank(q) 0,038 0,223 0,065
BM25 0,015 85,92 * 0,163  74.19 * 0,027  85.29 *
Logit 0,025 10,67 0,252 12,50 0,046 10,92
US1—-US2 GS 0,030  -6,24 0,184  54.28 0,051 0
PM 0,056 -50,04 *** 0205 3846 * 0,088 -41.87
RoleMining 0.024 18.91 0.216 31.70 * 0.046 20.13 *
MineRank(q) 0,028 0,284 0,051

From a general point of view, we notice low evaluation metric values
obtained using baselines as well as our proposed MineRank model. These
low-level effectiveness results could be due to the association between
different facts. Indeed, we hypothesize that precision measures are bounded
de facto because of the small number of assumed relevant documents (see
Section 4.1.4) for both user studies (38 and 20 for respectively US1 and
US2). Moreover, since the SERPs were extracted asynchronously with
participants’ search task, as explained in section 4.1.2, the ground truth is
more likely to be smaller since the documents clicked by the participants
alongside the search task are not obviously in the top ranks of the SERPs.
However, since the same evaluation process is carried out over the different
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models, we believe that the comparison between baselines and the proposed
model is reasonable.

In Table 5, we can see that our model generally provides higher results
than the four baselines with significant improvements ranged between
20.13% and 650.15%. Significantly, the improvements with respect to the
recall measure are generally higher than those obtained for the precision
measure, which suggests that our model is more recall-oriented. Indeed, this
statement seems realistic given that the evaluation metrics are estimated
at the group level, and thus aggregate the different lists retrieved for all
collaborators. Therefore, the coverage is more likely to be higher than
the size of the ground truth, leading recall measures to usurp precision
measures. Moreover, for user study USI, our model significantly exceeds
both individual and collaborative baselines from 43.24% to 650.15% over
the three metrics. For the second user study US2, we obtained significant
improvements for the BM25 and RoleMining baselines over at least two
metrics as well as the collaborative ranking models PM for the recall
measure. We note, however, that our model MineRank(q) seems to be less
effective than GS and PM baselines for the second user study US2 in terms
of precision and F-measure. We will address this issue later in the analysis.

In summary, these results highlight four main contributions:

1. Our model enables users to benefit from the synergic effect of collab-
oration since the effectiveness of the collaboration (our model MineR-
ank) is greater than the sum of the individual search sessions (baseline
BM25);

2. Ranking documents with respect to latent roles gives an additional
value to a CIR model based only on the behavior analysis of collabo-
rators, especially in terms of recall (baseline Logit);

3. Mining latent roles for collaborators seems to be more effective than
a CIR scenario in which roles are fixed throughout the search session
(baselines GS and PM);

4. Leveraging complementarity in unlabeled roles of collaborators seems
more effective than mining predefined roles with respect to their differ-
ences in search behaviors (baseline RoleMining).
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However, by comparing both datasets, we observe that improvements
are lower for user study US2, particularly with respect to the PM baseline
for the precision measure, and accordingly the F-measure. This can be
explained by two main reasons. First, the ratio between the number of
submitted queries and the size of the document collection of both user
studies suggests that the US1 dataset seems to be more topic-concentrated
than US2. Another reason might be that the observed difference in retrieval
effectiveness between US1 and US2 is due to the difference in the ability of
the latent role kernel, identified using Coll-Clique algorithm on both datasets
to the capture complementarities between the involved users. To investigate
this hypothesis, we compared, for each user study, (1) the kernel tuned
with the optimal setting Mo (v =0.5 resp. 0.2 for US1 and US2 achieving
the optimal retrieval effectiveness based on F-measure, as shown in Figure
7), and (2) the kernel identified in the tested model MineRank(q). More
precisely, we carried out a statistical analysis in order to determine, for each
model (Mo and MineRank(q)), which features impacted the F-measure.
For this purpose, we performed an ANOVA analysis between the F-measure
obtained at each query submission and the whole features, noted as binary
indicators in reference to the presence or absence of the features within the
kernel of the mined latent role. To obtain the best model, we first consider a
full model including all explanatory variables (binary indicators of features),
and then performed a backward elimination to iteratively remove the less
significant factors with respect to the F-measure.

Table 6 presents the obtained models after the backward elimination for
both models MineRank(q) and Mo and both user studies US1 and US2.
We can see that, for both MineRank(q) and My, the set of significant
features is larger for user study US1 than for US2, as can be expected from
Figure 9. This suggests that there is a wider range of differences between
collaborators in US1 than in US?2, allowing them to fully benefit from
the collaborators’ skills complementarity. Moreover, comparing the best
explicative models obtained for MineRank(q) with Mo, we can see that for
US1, half (3/6) of the features highlighted as significant for My are also
significant for MineRank(q), while for US2 any (0/3) significant features
for Mo have been highlighted as significant for Mine Rank(q).

Combining these observations, we can clearly explain the low socres ob-
tained for US2. Indeed, the difference between the number of significant
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Table 6: Explanatory features for the F-measure according to the ANOVA
statistical analysis. p-value *: 0.01 < p < 0.05 ; **: 0.001 < p < 0.01 ; ***;
p < 0.001.

MineRank(q) Mo
Feature p-value Feature p-value
TiO 0.033*  TiO 0.002**
Spec 0.050*  TeO 0.034*

Us1 SO 0.033* TQTP 0.006**
VP 0.000%**
Spec 0.015*
SO 0.000***
TOD 0.032* TiO 0.036*
US2 TeO 0.001***
VP 0.021°%*

features in the MineRank setting and in the My one, resulting in a single
feature (TOD), suggests that this set of features is insufficient for model-
ing behavioral differences/complementarities between users. This could be
explained by the fact that the Coll-Clique algorithm is based on the v pa-
rameter tuned on users from US1, who behave differently.

5. Discussion and Conclusion

While several works claim that roles structure collaboration among par-
ticipants (Kelly and Payne, 2013), some role-based approaches inadequately
leverage the skills that individuals bring to a collaboration, as well as the
dynamics of a collaboration. Recently, a new approach (Soulier et al., 2014)
combining a user-driven and a system-based mediation has been proposed,
making it possible to leverage collaborators’ search behaviors in order to
mine predefined roles belonging to a taxonomy.

In this article, we presented an unsupervised method to mine col-
laborators’ latent roles on the basis of their evolving search behavior
complementarities. These latent roles, and more particularly the search
features identified for characterizing their latent roles, are re-injected within
the collaborative document ranking. Experiments on two user studies
highlight that collaborators are able to benefit from the synergic effect
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of the collaboration while the real-time mining of their search behavior
complements their latent roles.

However, this work is not without limitations that could lead to different
perspectives.

First, we focus on the model design, which relies on a particular collab-
orative setting between a pair of synchronously working users. We believe
that our model could be enhanced as follows.

e Some work has found that collaboration is generally performed in larger
groups (Morris, 2013), and we believe that our contribution would ma-
ture if it could facilitate collaboration between more than two users.
This extension would raise new challenges in the latent role modeling
as well as the model steps. In particular, a single correlation matrix
is not sufficient to highlight search skill differences and similarities be-
tween users in a larger group since it is adapted for a dyad. Because
our intuition is to identify in which skill each user is the most effective,
an intrinsic analysis of search behaviors would lack the principles of
division of labor and sharing of knowledge that guide collaboration.
With this in mind, one solution could be to first build latent roles pair
by pair, which could then be aggregated and analyzed at the group
level in order to identify each collaborator’s skills.

e Also, the synchronicity of the search actions could be considered differ-
ently assuming that users could work at different time-windows. This
temporal asynchronicity raises the issue of multi-session management,
which could impact the search behavior modeling based on cumulative
values of search features from the beginning of the search session to a
given timestamp.

e Furthermore, we assumed that collaborators have complementary skills
(Sonnenwald, 1996), which is not always the case in a CIR setting.
For instance, in the retrieval model proposed by (Foley and Smeaton,
2009), document rankings are not personalized, which implies that the
complementarity between collaborators is not necessarily required.

Second, experiments are somehow restricted to a particular framework
which could limit the generalizability of our results. We highlight its pecu-
liarities below.
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e We evaluated our model through user studies in which participants
aimed to solve an exploratory task. We highlight that other types of
tasks are also used in collaborative search, such as travel planning,
shopping, fact-finding tasks, etc (Morris, 2013). Therefore, a future
study would analyze whether the latent role would flourish in these
other types of tasks, which are more practical and less topic-oriented,
and in which search skills are predominant.

e Last, our experimentation consists of a log-study in which latent role
mining and collaborative document ranking are performed on search
logs. We are aware that a user-study would be a more appropriately fit
for tracking collaborators’ search behaviors (interactions, communica-
tions, or search strategies guided by ranking retrieved by the proposed
model), but log-study-based evaluation protocol is less time-consuming
and enables us to compare different baselines without additional costs.
We emphasize, however, that search logs are those collected during a
real collaborative search session, thus making our evaluation as natural
as possible. In the near future, we plan to evaluate our model through
a user-study-oriented evaluation in which participants interact with a
system that supports the proposed CIR model based on collaborators’
latent roles. We assume that this interactive and real-time user-study
would also tackle the low metric value issue that we point out during
the experiments.

Appendix A. Coll-Clique illustration

In order to illustrate our algorithm, we consider a collaborative search
setting involving two users u; and us whose behavioral activity is modeled
by a set F' of features { fi, fo, f3, fa}-

Figure A.10 illustrates the feature-based graph representing the behavior
of these two collaborators u; and us at timestamp ¢;. For instance, the weight
of node f1, namely 0.84, represents the feature importance f; estimated by
Equation 2. The weight of the edge connecting f; and f; expresses the
correlation between the collaborators’ differences towards these two features,
also perceived as the level of complementarity Cg)( fi, f1) -

Table A.7 presents our Coll-Clique algorithm relying on the behavioral
graph presented in Figure A.10. The “Rec.” column expresses the degree of
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0.54

Figure A.10: Example of graph modeling collaborators behaviors according to four behav-
ioral features

the recursion in the algorithm. Columns “C”, “P” and “K” represent the
recursion input data while columns “C &f,”, “P”” and “K,,4” represent the
outputs of the recursion, respectively including the growing clique, the new
candidate network in which feature weight is depreciated, and the current
maximum clique.

At the end of the recursion, the local clique consists of the feature set
including fi, fa, and f3 since the sum of the node weight W (C) is greater
than the weight W (K) of current clique K.
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W(C) W(P) W(K) COfn

Kend

0 1.73

0 1.73

1 (0.84)

0.84 2.42

2.08 0.41

0.84 2.42

Rec. C

init  {}

1 {}

1.1 1 (0.84)

1.1.1 "1 (0.84)
2 (1.24)

1.1 1(0.84)

1.I.1 1 (0.84)
3 (0.88)

~— — — [ — — —

1.72 0.13

ALGORITHM

Table A.7: Tllustration of a recursion of our Coll-Clique algorithm
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