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The effects of inserted needle on the subcutaneous interstitial flow is studied.

Our goal is to describe the physical stress affecting cells during acupuncture needling. The convective Brinkman equations are considered to describe the flow through a fibrous medium. Three-dimensional simulations are carried out by employing an ALE finite element model. Numerical studies illustrate the acute physical stress developed by the implantation of a needle.

Introduction

In recent years, computational techniques have been widely used by researchers to investigate and simulate biological flow within three dimensional context. Applications include blood flow models, air flow models in the respiratory tract, interstitial flow models, and chemical mediators transport. Most of the structure and fluid interactions have been considered with simplified rigid wall or deformable wall models.

Methods to predict flows that account for moving domains or domain deformability using the finite element method are based on fixed mesh methods or moving mesh methods. On the one hand, fixed mesh methods include the immersed boundary formulation [START_REF] Peskin | Numerical analysis of blood flow in the heart[END_REF] which relies on the description of solid phase by adding a force vector to the governing equations. A similar approach, known as the fictitious domain formulation [START_REF] Glowinski | A fictitious domain method for dirichlet problem and applications[END_REF][START_REF] Janela | A penalty method for the simulation of fluid-rigid body interaction[END_REF], is based on the use of Lagrange multipliers to enforce kinematic condition on the solid phase or alternatively based on a penalty method [START_REF] Janela | A penalty method for the simulation of fluid-rigid body interaction[END_REF]. Both methods track solid phase with a characteristic function or a level set function. These methods are well adapted to moving bodies in the fluid or fluid-structure computation with interface of a highly geometric complexity. The latest method has been implemented with FreeFem++ [START_REF] Lefebvre | Fluid-particle simulations with FreeFem++[END_REF]. On the other hand, moving mesh methods include the Lagrangian method, the moving finite element (MFE) method [START_REF] Miller | Moving finite elements. II[END_REF][START_REF] Miller | Moving finite elements. I[END_REF], the deformation map method [START_REF] Liao | A new approach to grid generation[END_REF], the Geometric Conservation Law (GCL) method [START_REF] Cao | A moving mesh method based on the geometric conservation law[END_REF], the space/time method [START_REF] Tezduyar | A new strategy for finite element computations involving moving boundaries and interfaces -The deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders[END_REF][START_REF] Pironneau | Characteristic-Galerkin and Galerkin/least-squares space-time formulations for the advectiondiffusion equation with time-dependent domains[END_REF][START_REF] Tezduyar | Computation of moving boundaries and interfaces and 16 stabilization parameters[END_REF][START_REF] Takizawa | Multiscale space-time fluid-structure interaction techniques[END_REF], and the Arbitrarily Lagrangian-Eulerian (ALE) method [START_REF] Hirt | An arbitrary Lagrangian-Eulerian computing method for all flow speeds[END_REF][START_REF] Hughes | Lagrangian-Eulerian finite element formulation for incompressible viscous flows[END_REF][START_REF] Donea | An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions[END_REF] for the solution of fluid dynamic problems. Note that the space-time finite element method can also be implemented in FreeFem++ in 1D and 2D.

Significant progress has been made in recent years in solving fluid-structure interaction problems in deformable domains using the ALE method. The mathematically rigorous ALE framework has been well accepted to be applicable to simulate transport phenomena in time and allows some freedom in the description of mesh motion. A theoretical analysis of the ALE method can be found in [START_REF] Grandmont | Fluid-structure interaction: a theoretical point of view[END_REF][START_REF] Quarteroni | Computational vascular fluid dynamics: problems, models and methods[END_REF]. However, ALE equations are computationally expensive when considering a large domain because of the necessity of continuously updating the geometry of the fluid and structural mesh. Interface tracking with time discretization also raises some implementation questions.

The implementation of the ALE method can be done in FreeFem++ [START_REF] Decoene | Moving meshes with FreeFem++[END_REF].

Study of biological flows plays a central role in acupuncture research. For a description of the underlying acupuncture mechanism, one can refer to [START_REF] Deleuze | Modeling and simulation of local physical stress on the mastocytes created by the needle manipulation during acupuncture[END_REF][START_REF] Thiriet | Intracellular Signaling Mediators in the Circulatory and Ventilatory Systems, Vol. 4 of Biomathematical and Biomechanical Modeling of the Circulatory and Ventilatory Systems[END_REF][START_REF] Thiriet | A biological model of acupuncture and its derived mathematical modeling and simulations[END_REF]. Interstitial flow models take into account interstitial fluid, cell membrane interaction, and fiber interactions [START_REF] Swartz | Interstitial flow and its effects in soft tissues[END_REF]. Mastocytes, among other cells, are able to respond to fluidic stimuli via mechanotransduction pathways leading to the degranulation and liberation of chemical mediators [START_REF] Park | Cell morphological response to low shear stress in a two-dimensional culture microsystem with magnitudes comparable to interstitial shear stress[END_REF]. Degranulation mechanisms include interaction of the cell membrane with interstitial and cytosolic flow [START_REF] Tseng | An immersed boundary method for endocytosis[END_REF]. Ion transport in narrow ion channels is another challenging task to model. Indeed, degranulation of chemical mediators upon stimulation can be triggered by a rapid Ca 2+ entry in the cytosol [START_REF] Thiriet | Cell and Tissue Organization in the Circulatory and Ventilatory Systems[END_REF].

Modeling the three-dimensional interstitial flow in tissues is extremely challenging for a large number of reasons: a complex geometry of the tissue, an accurate constitutive description of the behavior of the tissue, and flow rheology are only few examples. Macroscopic models developed for incorporating complex microscopic structure are essential for applications [START_REF] Swartz | Interstitial flow and its effects in soft tissues[END_REF][START_REF] Thiriet | Cell and Tissue Organization in the Circulatory and Ventilatory Systems[END_REF][START_REF] Blasselle | Modélisation mathématique de la peau[END_REF][START_REF] Yao | Interstitial fluid flow: simulation of mechanical environment of cells in the interosseous membrane[END_REF][START_REF] Yao | Interstitial fluid flow: the mechanical environment of cells and foundation of meridians, Evidence-Based Complementary and Alternative[END_REF]. In the context of acupuncture, the interstitial flow has been modeled by the Brinkman equations in two-dimensional fixed domain [START_REF] Yao | Interstitial fluid flow: simulation of mechanical environment of cells in the interosseous membrane[END_REF][START_REF] Yao | Interstitial fluid flow: the mechanical environment of cells and foundation of meridians, Evidence-Based Complementary and Alternative[END_REF] and two-dimensional deformable domain [START_REF] Deleuze | Modeling and simulation of local physical stress on the mastocytes created by the needle manipulation during acupuncture[END_REF].

In this paper, a porous medium formulation of the interstitial fluid is presented for modeling mastocyte-needle interaction in deformable connective tissues. This formulation is based on the conventional ALE characteristic/Galerkin finite element model for an unsteady flow thought a porous medium modeled by the incompressible Brinkman's equations in a threedimensional moving domain. The motion of the needle in the fluid is taken into account. The main features of the model can be summarized as follows:

1. The loose connective tissue of the hypodermis is constituted of scattered cells immersed in extracellular matrix. The extracellular matrix contains relatively sparse fibers and abundant interstitial fluid. The interstitial fluid contains water, ions and other small molecules. Such a fluid corresponds to plasma without macromolecules and interacts with the ground substance, thereby forming a viscous hydrated gel that can stabilize fiber network [START_REF] Thiriet | Biology and Mechanics of Blood Flows: Part I: Biology, CRM Series in Mathematical Physics[END_REF][START_REF] Thiriet | Cells and tissues[END_REF].

2. The Darcy law is used to approximate fibers of the media as a continuum and allows us to compute the actual microscopic flow phenomena that occur in the fibrous media.

3. Brinkman's law then allows us to describe the flow field around solid bodies such as the embedded cells in extracellular matrix. [START_REF] Hsu | Thermal dispersion in a porous medium[END_REF][START_REF] Nithiarasu | Natural convective heat transfer in a fluid saturated variable porosity medium[END_REF][START_REF] Vafai | Boundary and inertia effects on flow and heat transfer in porous media[END_REF] are applied to simulate interstitial flow in a fibrous medium driven by a moving needle [START_REF] Deleuze | Modeling and simulation of local physical stress on the mastocytes created by the needle manipulation during acupuncture[END_REF].

Transient convective Brinkman's equations

Although the previously stated approach cannot give information on microscopic events, it can describe macroscale flow patterns in porous media.

Focus is given to the effects of interstitial fluid flow during implantation of an acupuncture needle until the tip has reached the desired location within the hypodermis. The objective of this work is to give a description of the physical stress (shear stress and pressure) influencing tissue and cells.

Methods

On a microscopic scale, the interstitial tissues are composed of fluid, cells, and solid fibers. The interstitial fluid contains water, ions and other small molecules. Such a fluid corresponds to plasma without macromolecules [START_REF] Swartz | Interstitial flow and its effects in soft tissues[END_REF].

It interacts with the ground substance to form a gel-like medium.

A model taking into account individual fibers and cell adhesion complexes is already a falsification of the reality. Moreover, it is very costly from the computational viewpoint. When considering an organized homogeneous matrix of fibers, computation of such a model shows the microscopic fluctuations of the fluid shear stress at the protein level [START_REF] Pedersen | Effects of extracellular fiber architecture on cell membrane shear stress in a 3d fibrous matrix[END_REF].

Due to biological complexity, the interstitium is considered as a fluid-filled porous material [START_REF] Swartz | Interstitial flow and its effects in soft tissues[END_REF]. The interstitial flow is simulated using the incompressible convective Brinkman equation. The phenomenological model cannot give information on unneeded microscopic events but the Darcy equation can describe macroscale flow patterns in porous media.

Flow equations

The governing equations of the unsteady flow of an incompressible fluid through a porous medium (with mass density ρ, dynamic viscosity µ, and kinematic viscosity ν = µ/ρ) can be derived as [START_REF] Hsu | Thermal dispersion in a porous medium[END_REF][START_REF] Nithiarasu | Natural convective heat transfer in a fluid saturated variable porosity medium[END_REF][START_REF] Vafai | Boundary and inertia effects on flow and heat transfer in porous media[END_REF]:

ρ α f ∂ū ∂t + ū • ∇ ū α f -µ∇ 2 ū + 1 α f ∇(α f p f ) = - µ P ū in Ω(t), (1) 
∇ • ū = 0, (2) 
ū(x, 0) = ū0 (x), (3) 
where -µ P ū denotes the Darcy drag, P the Darcy permeability, ū the averaged velocity vector, and p f the pressure. The averaged velocity is defined as

ū = α f u f , (4) 
where u f is the fluid velocity and

α f = fluid volume total volume (5) 
is the fluid volume fraction. This volume fraction corresponds to the effective porosity of the medium. The fluid fractional volume α f is taken as a space-dependent parameter to model the distinguished properties around an acupoint.

The system of equations (1-2) is applied to the case of a flow driven by the motion of a needle in the deformable domain Ω(t) [START_REF] Deleuze | Modeling and simulation of local physical stress on the mastocytes created by the needle manipulation during acupuncture[END_REF]. 

ū = v needle , on Γ 1 , (6) 
ū = 0, on Γ 2 , (7) 
ū = 0, on Γ 3 , (8) 
-µ∇ū • n + p f n = 0, on Γ 4 . (9) 

Finite element model

The governing equations in section 2.2.1 are solved using the finite element software FreeFem++ [START_REF] Hecht | New development in FreeFem++[END_REF]. This code programs the discrete equations derived from the finite element weak formulation of the problem presented in section 2.2.3 using a characteristic/Galerkin model to stabilize convection terms. L denotes the characteristic length that is the needle width and V is the characteristic velocity set to be the needle maximum velocity. Rescaling the variables leads to

x = x L , t = t (L/V) , p = p f (ρV 2 ) , u = ū V . (10) 
In the resulting dimensionless form, after removing the prime in the rescaled variables, the dimensionless incompressible convective Brinkman equations read as

1 α f ∂u ∂t + 1 α f u • ∇ u α f - 1 Re ∇ 2 u + 1 α f ∇(α f p) = - 1 Da Re u, (11) 
∇ • u = 0. ( 12 
)
where Re is the Reynolds number and Da is the Darcy number. The previous dimensionless parameters are defined as

Re = ρLV µ , Da = P L 2 . (13) 
In considering the above dimensionless governing equations, the normalized 125 boundary conditions on the domain boundary are prescribed as

u = v on Γ 1 , (14) 
u = 0 on Γ 2 , (15) 
u = 0 on Γ 3 , (16) 
- 1 Re ∇u • n + pn = 0 on Γ 4 . (17) 

ALE implementation on moving meshes

In the present paper, the ALE framework built in FreeFem++ is employed to compute the flow in the moving domain. In the current problem setting, the motion of needle is prescribed with respect to time. The boundary of the 130 domain is thus exactly known at each time so that an area preserving mesh can be precisely generated.

The framework of the ALE approach employed is briefly described below.

Let Ω(t) be the domain at each time t with regular boundary ∂Ω(t). In the Eulerian description, the fluid is described by u(x, t) and p(x, t), ∀x ∈ Ω(t).

To follow a moving domain, one can define the ALE map as

à : ω × R + → R 2 (x, t) → Ã(x, t) := Ãt , (19) 
such that ω(t) = Ã(ω, t), where ω is the reference computational domain.

Given an ALE field q : ω × R + → R, its Eulerian description is given by ∀x ∈ Ω(t), q(x, t) = q( Ã-1 t (x), t)

In ALE framework, the computational domain velocity (or ALE velocity or grid velocity) is defined as

ã(x, t) = ∂ Ã ∂t (x, t), ∀x ∈ ω, ( 21 
)
so that we can get

a(x, t) = ã( Ã-1 t , t). ( 22 
)
The ALE time-derivative is defined as

∂q ∂t à = d dt q( Ã(x, t), t), (23) 
and the following identity holds

∂q ∂t à = (a • ∇)q + ∂q ∂t . (24) 
A general method is used to construct the mapping or, equivalently, the domain velocity a. The domain velocity is computed by solving the following Laplace equation subjected to the Dirichlet boundary condition [START_REF] Fernández | The Derivation of the Equations for Fluids and Structure[END_REF] 135

-∇ 2 a = 0, a | ∂Ω = v. (25) 
In the ALE framework, the equations [START_REF] Tezduyar | Computation of moving boundaries and interfaces and 16 stabilization parameters[END_REF][START_REF] Takizawa | Multiscale space-time fluid-structure interaction techniques[END_REF], subject to a prescribed needle motion, become

∂(u/α f ) ∂t à + u α f -a •∇ u α f - 1 Re ∇ 2 u + 1 α f ∇(α f p) = - u Da Re , (26) 
∇ • u = 0. ( 27 
)
The solutions u and p are sought subject to the initial condition (3) and the boundary conditions (7-9) described in section 2.2.1.

Finite element discretization

The convective incompressible Brinkman equations are approximated with the method of characteristics for the nonlinear convection term and a Galerkin 140 method for the rest of the spatial derivative terms. The time discretization gives 1 ∆t

u n+1 α f - u n α f • X n - 1 Re ∇ 2 u n+1 + 1 α f ∇(α f p n+1 ) = - u n+1 Da Re , ( 28 
)
∇ • u n+1 + εp n+1 = 0, ( 29 
)
in Ω n+1 . Note that X n is approximated by X n ≈ xu n α f -a n (x) ∆t. Note that a small stabilization parameter epsilon is introduced following the so-called artificial compressibility method introduced in [START_REF] Chorin | A numerical method for solving incompressible viscous flow problems[END_REF] and [START_REF] Témam | Une méthode d'approximation de la solution des équations de Navier-Stokes[END_REF].

145 For all ϕ ∈ H 1/2 (Γ 1 ), let us introduce the product space

V ϕ = (w, q) ∈ [H 1 (Ω)] 2 × L 2 (Ω), w = ϕ on Γ 1 , w = 0 on Γ 2 . ( 30 
) Let (a, b) = Ω n+1 ab dx. (31) 
The weak formulation becomes the following finite dimensional linear system:

find (u n+1 , p n+1 ) ∈ V g such that 1 ∆t u n+1 α f - u n α f • X n , w + 1 Re 1 α f ∇u n+1 , ∇w -α f p n+1 , ∇ • w α f + 1 Da Re u n+1 , w = 0, ∇ • u n+1 , q + ε p n+1 , q = 0, (32) 
for all (w, q) ∈ V 0 .

The Taylor-Hood P 2 -P 1 elements are adopted to ensure satisfaction of the LBB stability condition [START_REF] Raviart | Introduction À L'analyse Numérique Des Équations Aux Dérivées Partielles[END_REF]. Note that temporal accuracy order of the presented characteristic/Galerkin method is one. Meshes are generated within FreeFem++ and mesh adaptation is performed prior to simulations so as to improve mesh quality around the needle and the cell.

Validation

Let the interaction of an oscillating circular cylinder with a fluid at rest be considered. The problem is to find the velocity vector field u and the pressure p of a flow satisfying the incompressible Navier-Stokes equations in the domain Ω = [-l, l] × [-h, h] with no-slip boundary conditions on the cylinder and traction-free boundary condition on the border of the physical domain.

The horizontal velocity of the cylinder of diameter D is given by u c (t) = -U cos(2π f t), where U = 2π A f . At each time step, the mesh is moved according to the displacement a ∆t, where a is the solution of [START_REF] Thiriet | Cell and Tissue Organization in the Circulatory and Ventilatory Systems[END_REF]. As soon as the mesh is moved, the computed a n and u n , that are defined in the previous mesh, are then pushed to the new mesh without interpolation following the scheme proposed in [START_REF] Decoene | Moving meshes with FreeFem++[END_REF].

Numerical simulation of flow is carried out for Re = 100 and KC := 

Results

In the present work, the needling direction is perpendicular to the skin surface. In practice, it is possible that the needling direction is oblique to the skin surface. The simulation results show that the insertion of an acupuncture needle can influence interstitial fluid flow. The computed velocity field shows that at a location away from the needle, the effect of the stress field on the meshwork vanishes (Fig. 3). Furthermore, when the needle reaches its maximum speed, the interstitial pressure gradient becomes higher at a location close to the needle tip (Fig. 4). The changes in the interstitial fluid flow and the high pressure gradient can affect the activities of the mastocyte pools in the stimulated area. Local mastocyte pools can be activated in regions close to the needle and remain granulated outside this region of triggered mechanical stress.

Another subject of interest is the effects of the fluidic stimuli on an interstitial cell. Local mechanical forces can trigger the activation of mechanoresponsive proteins on the cell surface [START_REF] Thiriet | Intracellular Signaling Mediators in the Circulatory and Ventilatory Systems, Vol. 4 of Biomathematical and Biomechanical Modeling of the Circulatory and Ventilatory Systems[END_REF][START_REF] Wei | Fluid shear stress-induced cytosolic calcium signalling and degranulation dynamics in mast cells[END_REF] so that Ca ++ is allowed to enter the cytosol via pressure and shear stress gated ion channels. Simulations are carried out by considering fixed cells and no-slip boundary condition prescribed at the cell surface. Figure 5 shows the pressure contours on the surface of a cell added closely to the needle. Figure 6 shows the streamlines and the shear stress along the cell surface. The pressure and the shear stress on the cell surface appear to be higher in the region closest to the needle tip.

Fluctuation of the pressure and the time varying shear stress suggest that 

  The domain boundary can be decomposed into four surfaces: the needle boundary denoted by Γ 1 , an impervious boundary (wall) denoted by Γ 2 , the mastocyte membrane denoted by Γ 3 , and the open boundary on the sides denoted by Γ 4 . The classical noslip condition is applied to the needle surface Γ 1 , the rigid wall Γ 2 , and the cell surface Γ 3 . At the outer boundary Γ 4 a traction-free boundary condition is prescribed. Thus, the entire set of boundary conditions reads as

120 2 . 2 . 1 .

 221 Scaling and setting for numerical simulations

U D f = 5 ,

 5 where U = 1, D = 1, T := 1/f = 5, and A = 5/2π. In figures 1 and 2, good comparison between the computed solution and experimental data from[START_REF] Dütsch | Low-Reynoldsnumber flow around an oscillating circular cylinder at low Keule-gan–Carpenter numbers[END_REF] is shown at two different times that correspond to the phases 7π/6 and 11π/6.

Figure 1 :

 1 Figure 1: Comparison of the computed and referenced solutions along the line x = -0.6 * D (top) and x = 1.2 * D (bottom) for the values of u = (u, v) at t = 55 12 T .

Figure 2 :

 2 Figure 2: Comparison of the computed and referenced solutions along the line x = -0.6 * D (top) and x = 1.2 * D (bottom) for the values of u = (u, v) at t = 59 12 T .
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Figure 3 :

 3 Figure 3: The predicted contours of velocity along the z-direction resulting from the needle (blue) motion in interstitial fluid with α f = 0.7, Da = 0.321, and Re = 0.103

Figure 5 :

 5 Figure 5: The predicted pressure contours on the needle and cell surface as the needle moves toward the cell with α f = 0.7, Da = 0.321, and Re = 0.103.

Figure 6 :

 6 Figure 6: The predicted streamlines and shear stress on the cell surface as the needle moves toward the cell with α f = 0.7, Da = 0.321, andRe = 0.103.

  

Conclusions

The proposed three-dimensional ALE finite element model is able to describe the interstitial flow and pressure from the macroscopic point of view when a needle is inserted and moved within the hypodermis. High local fluid pressure and shear stress on cells are most likely to appear near the needle tip region. However, the proposed method does not model the deformation of the extracellular matrix and only the effect of interstitial flow is considered.

When considering the rotation of the needle, a large deformation of tissues is observed with the twisting of the fibers around the needle, that in turn makes the corresponding change in interstitial flow. A fluid/structure model taking into account the mechanics of the fibers should then be considered.

This study has shown that the numerical prediction of the interstitial pressure and shear stress is an essential tool to gain a better understanding of the activity involved in acupuncture needling.